Science.gov

Sample records for galaxy cluster velocities

  1. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  2. The relation between velocity dispersion and central galaxy density in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, N. A.

    1981-01-01

    A correlation between cluster velocity dispersion and average central galaxy density is reported. The correlation covers the range from rich clusters to small groups of galaxies, or, in terms of velocity dispersion, from v sub r approximately 1500 to approximately 100 km/s. This result is useful for estimating unknown velocity dispersions in clusters with the aid of the relatively easily determined 0.5 Mpc central galaxy density parameter. When combined with the virial theorem, the above relation also suggests that the mass-to-light ratio of galaxy systems increases with the system's velocity dispersion.

  3. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    SciTech Connect

    Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W. E-mail: stacy.mcgaugh@case.edu E-mail: angus.gz@gmail.com

    2013-07-20

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  4. New measurements of radial velocities in clusters of galaxies. II

    NASA Astrophysics Data System (ADS)

    Proust, D.; Mazure, A.; Sodre, L.; Capelato, H.; Lund, G.

    1988-03-01

    Heliocentric radial velocities are determined for 100 galaxies in five clusters, on the basis of 380-518-nm observations obtained using a CCD detector coupled by optical fibers to the OCTOPUS multiobject spectrograph at the Cassegrain focus of the 3.6-m telescope at ESO La Silla. The data-reduction procedures and error estimates are discussed, and the results are presented in tables and graphs and briefly characterized.

  5. Dwarf galaxies in the Coma cluster - I. Velocity dispersion measurements

    NASA Astrophysics Data System (ADS)

    Kourkchi, E.; Khosroshahi, H. G.; Carter, D.; Karick, A. M.; Mármol-Queraltó, E.; Chiboucas, K.; Tully, R. B.; Mobasher, B.; Guzmán, R.; Matković, A.; Gruel, N.

    2012-03-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is -21 < MR < -15 mag. This paper (Paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using penalized pixel fitting (PPXF) and using the calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation (L∝σα) and find that the slope of the relation is α= 1.99 ± 0.14 for galaxies brighter than MR≃-16 mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in Paper II.

  6. GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

    SciTech Connect

    Naoz, Smadar; Narayan, Ramesh

    2014-08-10

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 10{sup 5}-2.5 × 10{sup 6} M {sub ☉} (10{sup 5}-4 × 10{sup 6} M {sub ☉}) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  7. Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution

    NASA Astrophysics Data System (ADS)

    Einasto, M.; Vennik, J.; Nurmi, P.; Tempel, E.; Ahvensalmi, A.; Tago, E.; Liivamägi, L. J.; Saar, E.; Heinämäki, P.; Einasto, J.; Martínez, V. J.

    2012-04-01

    Context. The study of the signatures of multimodality in groups and clusters of galaxies, an environment for most of the galaxies in the Universe, gives us information about the dynamical state of clusters and about merging processes, which affect the formation and evolution of galaxies, groups and clusters, and larger structures - superclusters of galaxies and the whole cosmic web. Aims: We search for the presence of substructure, a non-Gaussian, asymmetrical velocity distribution of galaxies, and large peculiar velocities of the main galaxies in clusters with at least 50 member galaxies, drawn from the SDSS DR8. Methods: We employ a number of 3D, 2D, and 1D tests to analyse the distribution of galaxies in clusters: 3D normal mixture modelling, the Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests, as well as the Anscombe-Glynn and the D'Agostino tests. We find the peculiar velocities of the main galaxies, and use principal component analysis to characterise our results. Results: More than 80% of the clusters in our sample have substructure according to 3D normal mixture modelling, and the Dressler-Shectman (DS) test shows substructure in about 70% of the clusters. The median value of the peculiar velocities of the main galaxies in clusters is 206 km s-1 (41% of the rms velocity). The velocities of galaxies in more than 20% of the clusters show significant non-Gaussianity. While multidimensional normal mixture modelling is more sensitive than the DS test in resolving substructure in the sky distribution of cluster galaxies, the DS test determines better substructure expressed as tails in the velocity distribution of galaxies (possible line-of-sight mergers). Richer, larger, and more luminous clusters have larger amount of substructure and larger (compared to the rms velocity) peculiar velocities of the main galaxies. Principal component analysis of both the substructure indicators and the physical parametres of clusters shows that galaxy clusters

  8. A comparison between observed and analytical velocity dispersion profiles of 20 nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.

    2014-05-01

    We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.

  9. Velocity segregation effects in galaxy clusters at 0.4 ≲ z ≲ 1.5

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Girardi, M.; Biviano, A.; Borgani, S.; Annunziatella, M.; Nonino, M.

    2016-11-01

    Aims: Our study is meant to extend our knowledge of the galaxy color and luminosity segregation in velocity space (VCS and VLS, respectively), to clusters at intermediate and high redshift. Methods: Our sample is a collection of 41 clusters in the 0.4 ≲ z ≲ 1.5 redshift range for a total of 4172 galaxies, 1674 of which are member galaxies of the clusters within 2R200 with photometric or spectroscopic information, as taken from the literature. We perform homogeneous procedures to select cluster members, compute global cluster properties, in particular the line-of-sight (LOS) velocity dispersion σV, and separate blue from red galaxies. Results: We find evidence of VCS in clusters out to z ≃ 0.8 (at the 97-99.99% confidence level, depending on the test), in the sense that the blue galaxy population has a 10-20% larger σV than the red galaxy population. Poor or no VCS is found in the high-z sample at z ≥ 0.8. For the first time, we detect VLS in non-local clusters and confirm that VLS only affects the very luminous galaxies; brighter galaxies have lower velocities. The threshold magnitude of VLS is m3 + 0.5, where m3 is the magnitude of the third brightest cluster galaxy. Current data suggest that the threshold value moves to fainter magnitudes at higher redshift. We also detect (marginal) evidence of VLS for blue galaxies. Conclusions: We conclude that segregation effects can be important tracers of the galaxy evolution and cluster assembly when they are studied up to distant clusters. We also discuss the evidence of VCS at high redshift, which is poor or absent.

  10. The Velocity Dispersion Function of Very Massive Galaxy Clusters: Abell 2029 and Coma

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Geller, Margaret J.; Zahid, H. Jabran; Fabricant, Daniel G.; Diaferio, Antonaldo; Rines, Kenneth J.

    2017-04-01

    Based on an extensive redshift survey for galaxy clusters Abell 2029 and Coma, we measure the luminosity functions (LFs) and stellar mass functions (SMFs) for the entire cluster member galaxies. Most importantly, we measure the velocity dispersion functions (VDFs) for quiescent members. The MMT/Hectospec redshift survey for galaxies in A2029 identifies 982 spectroscopic members; for 838 members, we derive the central velocity dispersion from the spectroscopy. Coma is the only other cluster surveyed as densely. The LFs, SMFs, and VDFs for A2029 and Coma are essentially identical. The SMFs of the clusters are consistent with simulations. The A2029 and Coma VDFs for quiescent galaxies have a significantly steeper slope than those of field galaxies for velocity dispersion ≲ 100 {km} {{{s}}}-1. The cluster VDFs also exceed the field at velocity dispersion ≳ 250 {km} {{{s}}}-1. The differences between cluster and field VDFs are potentially important tests of simulations and of the formation of structure in the universe.

  11. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    SciTech Connect

    Ruel, J.; Bayliss, M.; Bazin, G.; Bocquet, S.; Brodwin, M.; Foley, R. J.; Stalder, B.; Ashby, M. L. N.; Aird, K. A.; Armstrong, R.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; and others

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.

  12. Estimating Cosmological Parameters and Cluster Masses through Escape Velocity Measurements in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gifford, Daniel William

    2016-08-01

    Galaxy clusters are large virialized structures that exist at the intersection of filaments of matter that make up the cosmic web. Due to their hierarchical growth history, they are excellent probes of the cosmology that governs our universe. Here, we aim to use clusters to better constrain cosmological parameters by systematically studying the uncertainties on galaxy cluster mass estimation for use in a halo mass function analysis. We find that the caustic technique is capable on average of recovering unbiased cluster masses to within 30% for well sampled systems. We also quantify potential statistical and systematic biases due to observational challenges. To address statistical biases in the caustic technique, we developed a new stacking algorithm to measure the average cluster mass for a single stack of projected cluster phase-spaces. By varying the number of galaxies and number of clusters we stack, we find that the single limited value is the total number of galaxies in the stack opening up the possibility for self-calibrated mass estimates of low mass or poorly sampled clusters in large surveys. We then utilize the SDSS-C4 catalog of galaxy clusters to place some of the tightest galaxy cluster based constraints on the matter density and power spectrum normalization for matter in our universe.

  13. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Zheng, Zheng; Zehavi, Idit; Dawson, Kyle; Skibba, Ramin A.; Tinker, Jeremy L.; Weinberg, David H.; White, Martin; Schneider, Donald P.

    2015-01-01

    We present the measurements and modelling of the projected and redshift-space clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 11. For a volume-limited luminous red galaxy sample in the redshift range of 0.48 < z < 0.55, we perform halo occupation distribution modelling of the small- and intermediate-scale (0.1-60 h-1 Mpc) projected and redshift-space two-point correlation functions, with an accurate model built on high-resolution N-body simulations. To interpret the measured redshift-space distortions, the distribution of galaxy velocities must differ from that of the dark matter inside haloes of ˜1013-1014 h-1 M⊙, i.e. the data require the existence of galaxy velocity bias. Most notably, central galaxies on average are not at rest with respect to the core of their host haloes, but rather move around it with a 1D velocity dispersion of 0.22^{+0.03}_{-0.04} times that of the dark matter, implying a spatial offset from the centre at the level of ≲1 per cent of the halo virial radius. The luminous satellite galaxies move more slowly than the dark matter, with velocities 0.86^{+0.08}_{-0.03} times those of the dark matter, which suggests that the velocity and spatial distributions of these satellites cannot both be unbiased. The constraints mainly arise from the Fingers-of-God effect at non-linear scales and the smoothing to the Kaiser effect in the translinear regime; the robustness of the results is demonstrated by a variety of tests. We discuss the implications of the existence of galaxy velocity bias for investigations of galaxy formation and cosmology.

  14. The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Cisewski, J.; Price, L. C.

    2017-01-01

    We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight velocities, v, or velocity dispersions are used to infer cluster masses, M, to quantify the halo mass function (HMF), {dn}(M)/d{log}(M), which is strongly affected by mass measurement errors. In our new method, the probability distributions of velocities for each cluster in the sample are summed to create a new statistic called the velocity distribution function (VDF), {dn}(v)/{dv}. The VDF can be measured more directly and precisely than the HMF and can be robustly predicted with cosmological simulations that capture the dynamics of subhalos or galaxies. We apply these two methods to realistic (ideal) mock cluster catalogs with (without) interlopers and forecast the bias and constraints on the matter density parameter Ωm and the amplitude of matter fluctuations σ8 in flat ΛCDM cosmologies. For an example observation of 200 massive clusters, the VDF with (without) interloping galaxies constrains the parameter combination {σ }8 {{{Ω }}}m0.29(0.29)=0.589+/- 0.014 (0.584+/- 0.011) and shows only minor bias. However, the HMF with interlopers is biased to low Ωm and high σ8 and the fiducial model lies well outside of the forecast constraints, prior to accounting for Eddington bias. When the VDF is combined with constraints from the cosmic microwave background, the degeneracy between cosmological parameters can be significantly reduced. Upcoming spectroscopic surveys that probe larger volumes and fainter magnitudes will provide clusters for applying the VDF as a cosmological probe.

  15. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    SciTech Connect

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-08-10

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  16. Primordial inhomogeneities in the expanding universe. I - Density and velocity distributions of galaxies in the vicinities of rich clusters

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1979-01-01

    The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.

  17. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters

    SciTech Connect

    Becker, M.R.; McKay, T.A.; Koester, B.; Wechsler, R.H.; Rozo, E.; Evrard, A.; Johnston, D.; Sheldon, E.; Annis, J.; Lau, E.; Nichol, R.; Miller, C.; /Michigan U.

    2007-06-05

    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.

  18. The SLUGGS Survey: A Catalog of Over 4000 Globular Cluster Radial Velocities in 27 Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Alabi, Adebusola; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Foster, Caroline; Usher, Christopher; Spitler, Lee; Bellstedt, Sabine; Pastorello, Nicola; Villaume, Alexa; Wasserman, Asher; Pota, Vincenzo

    2017-03-01

    Here, we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 < log {M}* /M ⊙ < 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10 m telescope. Radial velocities are measured using the calcium triplet lines, with a velocity accuracy of ±10–15 km s‑1. We use phase space diagrams (i.e., velocity–position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass, in a similar manner to the Faber–Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.

  19. Constraining the galaxy mass content in the core of A383 using velocity dispersion measurements for individual cluster members

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Zitrin, A.; Geller, M. J.; Grillo, C.; Mercurio, A.; Greisel, N.; Halkola, A.; Suyu, S. H.; Postman, M.; Rosati, P.; Balestra, I.; Biviano, A.; Coe, D.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2015-02-01

    We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with Multiple Mirror Telescope Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17 per cent in terms of the image reproduction χ2, or 20 per cent in terms of the rms. The constraints on the mass parameters improve by ˜10 per cent for the DH, while for the galaxy component, they are refined correspondingly by ˜50 per cent, including the galaxy halo truncation radius. For an L* galaxy with M^{*}B=-20.96, for example, we obtain best-fitting truncation radius r_tr^{*}=20.5^{+9.6}_{-6.7} kpc and velocity dispersion σ* = 324 ± 17 km s-1. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on rtr of two nearby cluster members, which have measured velocity dispersions, by more than ˜30 per cent. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available.

  20. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  1. Radial velocities of galaxies in the cluster Klemola 22 from observations with OPTOPUS, the ESO multiple object spectroscopy facility

    NASA Astrophysics Data System (ADS)

    Cristiani, S.; D'Odorico, S.; de Souza, R.; Lund, G.; Quintana, H.

    1987-06-01

    This paper presents the first results obtained with the ESO multiple fiber spectroscopic facility (OPTOPUS). Radial velocities and magnitudes are given for 44 galaxies in the cluster Klemola 22. The average redshift is 16160 km s-1 and the velocity dispersion 742 km s-1. The galaxy Kle 22/17 shows strong emission lines of [O III], with a FWHM of 850 km s-1, and is classified as a type 2 Seyfert. From these observations, the average efficiency of OPTOPUS, including telescope, spectrograph and detector, is computed as 1 detected photoelectron Å-1s-1 for an object of 15 B magnitude.

  2. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Merritt, Allison; Mowla, Lamiya; Romanowsky, Aaron; Zhang, Jielai

    2016-09-01

    Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these ultra-diffuse galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here, we present the stellar kinematics of Dragonfly 44, one of the largest Coma UDGs, using a 33.5 hr integration with DEIMOS on the Keck II telescope. We find a velocity dispersion of σ ={47}-6+8 {km} {{{s}}}-1, which implies a dynamical mass of {M}{dyn}(\\lt {r}1/2)={0.7}-0.2+0.3× {10}10 {M}⊙ within its deprojected half-light radius of {r}1/2=4.6+/- 0.2 {kpc}. The mass-to-light ratio is M/{L}I(\\lt {r}1/2)={48}-14+21 {M}⊙ /{L}⊙ , and the dark matter fraction is 98% within {r}1/2. The high mass of Dragonfly 44 is accompanied by a large globular cluster population. From deep Gemini imaging taken in 0\\buildrel{\\prime\\prime}\\over{.} 4 seeing we infer that Dragonfly 44 has {94}-20+25 globular clusters, similar to the counts for other galaxies in this mass range. Our results add to other recent evidence that many UDGs are “failed” galaxies, with the sizes, dark matter content, and globular cluster systems of much more luminous objects. We estimate the total dark halo mass of Dragonfly 44 by comparing the amount of dark matter within r=4.6 {kpc} to enclosed mass profiles of NFW halos. The enclosed mass suggests a total mass of ˜ {10}12 {M}⊙ , similar to the mass of the Milky Way. The existence of nearly dark objects with this mass is unexpected, as galaxy formation is thought to be maximally efficient in this regime.

  3. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.; Gaspari, M.; Schekochihin, A. A.; Lau, E. T.; Nagai, D.; Nelson, K.; Parrish, I. J.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  4. The Rotation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tovmassian, H. M.

    2015-09-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher than the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b > 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy, which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60%, and clusters of BMI type with dominant cD galaxy, ≈ 35% . The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not experience mergings with other clusters and groups of galaxies, as a result of which the rotation was prevented.

  5. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  6. PROSPECTS FOR MEASURING THE RELATIVE VELOCITIES OF GALAXY CLUSTERS IN PHOTOMETRIC SURVEYS USING THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Keisler, Ryan; Schmidt, Fabian E-mail: fabians@astro.princeton.edu

    2013-03-10

    We consider the prospects for measuring the pairwise kinetic Sunyaev-Zel'dovich (kSZ) signal from galaxy clusters discovered in large photometric surveys such as the Dark Energy Survey (DES). We project that the DES cluster sample will, in conjunction with existing mm-wave data from the South Pole Telescope (SPT), yield a detection of the pairwise kSZ signal at the 8{sigma}-13{sigma} level, with sensitivity peaking for clusters separated by {approx}100 Mpc distances. A next-generation version of SPT would allow for a 18{sigma}-30{sigma} detection and would be limited by variance from the kSZ signal itself and the residual thermal Sunyaev-Zel'dovich (tSZ) signal. Throughout our analysis, we assume photometric redshift errors that wash out the signal for clusters separated by {approx}<50 Mpc; a spectroscopic survey of the DES sample would recover this signal and allow for a 26{sigma}-43{sigma} detection, and would again be limited by kSZ/tSZ variance. Assuming a standard model of structure formation, these high-precision measurements of the pairwise kSZ signal will yield detailed information on the gas content of the galaxy clusters. Alternatively, if the gas can be sufficiently characterized by other means (e.g., using tSZ, X-ray, or weak lensing), then the relative velocities of the galaxy clusters can be isolated, thereby providing a precision measurement of gravity on 100 Mpc scales. We briefly consider the utility of these measurements for constraining theories of modified gravity.

  7. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  8. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  9. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  10. THE HIGH-VELOCITY SYSTEM: INFALL OF A GIANT LOW-SURFACE-BRIGHTNESS GALAXY TOWARD THE CENTER OF THE PERSEUS CLUSTER

    SciTech Connect

    Yu, Alice P.-Y.; Lim, Jeremy; Chan, Jeffrey C.-C.; Ohyama, Youichi; Broadhurst, T.

    2015-12-01

    The high-velocity system (HVS) lies just north-west of the center and is moving at a speed of 3000 km s{sup −1} toward NGC 1275, the central giant elliptical galaxy in the Perseus cluster. We report imaging spectroscopy of the HVS in Hα and [N ii] that resolves both the nature of this galaxy and its physical relationship with NGC 1275. The HVS exhibits a distorted disk having a projected rotational velocity that rises steadily to ∼200 km s{sup −1} at a radius of ∼12 kpc, the same maximal extent detectable in neutral gas and dust. We discover highly blueshifted emission at relative velocities of up to ∼800 km s{sup −1} distributed throughout and confined almost entirely within the projected area of the disk, tracing gas stripped by ram pressure. The distribution of the stripped gas implies that the HVS is moving essentially along our sightline closely toward the center of NGC 1275. We show that the speed of the HVS is consistent with it having fallen from rest at the virial radius of the Perseus cluster and reached ∼100 kpc from the cluster center. Despite having an overall metallicity (inferred from [N ii]/Hα) significantly lower than that of star-forming disk galaxies, the HVS exhibits a current star formation rate of ∼3.6 M{sub ⊙} yr{sup −1} and numerous young star clusters projected against giant H ii regions. The evidence assembled implicates a progenitor giant low-surface-brightness galaxy that, because of galaxy harassment and/or the cluster tidal field, has developed two prominent spiral arms along which star formation is strongly elevated.

  11. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  12. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  13. Dust in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Polikarpova, O. L.; Shchekinov, Yu. A.

    2017-02-01

    The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d / S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100-300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1-3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

  14. Understanding Galaxy Cluster MKW10

    NASA Astrophysics Data System (ADS)

    Sanders, Tim; Henry, Swain; Coble, Kimberly A.; Rosenberg, Jessica L.; Koopmann, Rebecca A.

    2015-01-01

    As part of the Undergraduate ALFALFA Team (UAT), we are studying the galaxy cluster MKW 10 (RA = 175.454, Dec = 10.306, z ~ 0.02), a poor cluster with a compact core in which tidal interactions have occurred. This cluster has been observed in HI and Hα. We used SDSS and NED to search for optical counterparts. By comparing data at multiple wavelengths, we hope to understand the structure, environment, and star formation history of this cluster. Following the techniques of others involved in the groups project and using the program TOPCAT to manipulate the data, we explored both the spatial and velocity distributions to determine cluster membership. We have determined that this cluster consists of 11 galaxies, mostly spiral in shape. Chicago State University is new the UAT and we began our work after taking part in the winter workshop at Arecibo.This work was supported by: Undergraduate ALFALFA Team NSF Grant AST-1211005 and the Illinois Space Grant Consortium.

  15. The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Churazov, E.; Nagai, D.; Lau, E. T.; Zhuravleva, I.

    2014-09-01

    Exploring the power spectrum of fluctuations and velocities in the intracluster medium (ICM) can help us to probe the gas physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with the ICM thermodynamic perturbations. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For a low 3D Mach number M ~ 0.25, gravity waves mainly drive entropy perturbations, which are traced by preferentially tangential turbulence. For M> 0.5, sound waves start to significantly contribute and pass the leading role to compressive pressure fluctuations, which are associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting toward isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number, M1D ~ δρ/ρ. This linear relation allows us to easily convert between gas motions and ICM perturbations (δρ/ρ< 1), which can be exploited by the available Chandra, XMM data and by the forthcoming Astro-H mission. At intermediate and small scales (10-100 kpc), the turbulent velocities develop a tight Kolmogorov cascade. The thermodynamic perturbations (which can be generally described by log-normal distributions) act as effective tracers of the velocity field, in broad agreement with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive features induce a flattening in the cascade of the perturbations. Thermal conduction, on the other hand, acts to damp the thermodynamic

  16. Arms pattern speed of galaxies in clusters

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Dottori, H.; Reichert, D.

    We aim to study arm pattern speed and consequently pattern resonances in galaxies of clusters. If the perturbation of cluster galaxies is mainly produced by the interaction with the cluster ambient the pattern speed might well depend on the history of the galaxy orbit within the cluster. We are trying to determine if this constrain exist. We use published data cube of HII regions velocity fields (Asram et al. 1992, Garrido et al. 2004, 2005) and 2-mass images to apply the Tremaine-Weinberg (1984)method to determine pattern speed in barred galaxies. The use of a 2-mass image to obtain the galaxies brightness distribution is justified since it traces the distribution of disk stars and consequently the position of the original perturbation that influence the velocity field of all the matter, including that of the HII regions. First results for the Pegasus cluster indicates that NGC 7536 and NGC 7593 present pattern speeds Ω_p= 26±3 km/sec/kpc and 41±4km/sec/kpc with correlation coefficient of 0.97 and 0.99 respectively. A third galaxy, NGC 7643, presents a quite noisy vs , that does not allow to determine a reliable pattern speed, indicating probably that the perturbation is to weak in this galaxy as to be detected with T-W method.

  17. The spiral density-wave structure of our own Galaxy as traced by open clusters: Least-squares analysis of line-of-sight velocities

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Lin, Chien-Cheng; Ngeow, Chow-Choong; Jiang, Ing-Guey

    2014-05-01

    The rotation about the Galactic center of open clusters belonging to the thin component of the Milky Way Galaxy is studied on the basis of line-of-sight velocities and positions for 169 nearby objects taken from the literature. The minor second-order effects caused by the Lin-Shu-type density waves are taken into account by using the least-squares numerical method. Even preliminary, the physical interpretation of the results obtained in this manner shows that (i) among several Fourier modes of collective oscillations developing in the solar neighborhood the one-armed m=1 spiral mode is the main one; the Galaxy has thus significant lopsidedness in the stellar distribution at large radii, (ii) the Sun is located between the major trailing spiral-arm segments in Carina-Sagittarius and Perseus, closer to the outer Perseus one, (iii) the local Cygnus-Orion segment is not a part of the dominant spiral arm but is a minor one, which is due to a secondary Fourier harmonic of the Galaxy’s oscillations, (iv) the pitch angle of the dominant density-wave pattern in the solar vicinity seems to be relatively small, of the order of 7°, and the wavelength (the radial distance between spiral arms) of the m=1 pattern is about 6 kpc, (v) the Galactocentric distance where the velocities of disk rotation and of the spiral density wave (the corotation radius) coincide is located outside of the solar circle; thus, a pattern angular speed lower than the local angular rotation velocity, and finally (vi) the spiral arms of the Galaxy do not represent small deviations of the surface density and gravitational potential from a basic distribution that is axisymmetric in the mean.

  18. The Dynamical Equilibrium of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Yee, H. K. C.; Ellingson, E.; Morris, S. L.; Abraham, R.; Gravel, P.; Pritchet, C. J.; Smecker-Hane, T.; Hartwick, F. D. A.; Hesser, J. E.; Hutchings, J. B.; Oke, J. B.

    1997-02-01

    If a galaxy cluster is effectively in dynamical equilibrium, then all galaxy populations within the cluster must have distributions in velocity and position that individually reflect the same underlying mass distribution, although the derived virial masses can be quite different. Specifically, within the Canadian Network for Observational Cosmology cluster sample, the virial radius of the red galaxy population is, on the average, a factor of 2.05 +/- 0.34 smaller than that of the blue population. The red galaxies also have a smaller rms velocity dispersion, a factor of 1.31 +/- 0.13 within our sample. Consequently, the virial mass calculated from the blue galaxies is 3.5 +/- 1.3 times larger than from the red galaxies. However, applying the Jeans equation of stellar hydrodynamic equilibrium to the red and blue subsamples separately gives statistically identical cluster mass profiles. This is strong evidence that these clusters are effectively equilibrium systems and therefore demonstrates empirically that the masses in the virialized region are reliably estimated using dynamical techniques.

  19. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  20. The Distances to Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scodeggio, Marco

    1997-12-01

    The properties of the Fundamental Plane (FP) of E and S0 galaxies are analyzed using a sample of early-type galaxies in s nearby clusters of galaxies. I band CCD observations are presented for 631 galaxies in the A262, Cancer, A1367, Coma, Pegasus, and A2634 clusters, and in the NGC 383 and NGC 507 groups. Medium dispersion spectroscopic observations are presented for a sub-set composed of 212 galaxies. Combining this data-set with data taken from the literature, gives a FP sample of 294 galaxies. The clusters are chosen to span as large as possible a range of environmental conditions, from a rich, relaxed, X-ray luminous cluster like Coma, to rather poor groups of galaxies like the NGC 383 group. They are also chosen among the clusters that have the largest available samples of Tully-Fisher (TF) measurements, to allow an accurate comparison of the distance scales obtained using the FP and TF relations independently. Both selection criteria are aimed at quantifying the possible presence of environmental effects on the FP relation. The scatter observed around the FP template implies that the distance to a single galaxy can be obtained, using the FP, with a 22% uncertainty (a 0.48 mag uncertainty on the galaxy distance modulus). The peculiar velocity estimates for the 8 clusters in the sample are all small, consistent with the clusters being at rest in the Cosmic Microwave Background reference frame. Monte Carlo simulations are used to quantify the effects of sample selection and measurement uncertainties on the FP template, and correct the resulting biases. After these corrections are applied, it is found that the properties of the FP do not change significantly as a function of the cluster richness, or as a function of the galaxy position within the cluster. Moreover there is very good agreement between the distance measurements obtained using the FP relation, and those obtained using the TF relation. These results are used to derive an upper limit of 5% on

  1. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    DOE PAGES

    Bocquet, S.; Saro, A.; Mohr, J. J.; ...

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data setmore » (SZ clusters+σv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the eΣxpansion and the growth

  2. Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion σ v and X-Ray Y X Measurements

    NASA Astrophysics Data System (ADS)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; de Haan, T.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σ v ) and 16 X-ray Y X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ v and Y X are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data set (SZ clusters+σ v +Y X) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m ν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m ν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y X calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find ∑m ν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = -1.007 ± 0.065, demonstrating that the expansion and the growth

  3. Astrophysics of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ettori, Stefano

    2016-07-01

    As the nodes of the cosmic web, clusters of galaxies trace the large-scale distribution of matter in the Universe. They are thus privileged sites in which to investigate the complex physics of structure formation. However, the complete story of how these structures grow, and how they dissipate the gravitational and non-thermal components of their energy budget over cosmic time, is still beyond our grasp. Most of the baryons gravitationally bound to the cluster's halo is in the form of a diffuse, hot, metal-enriched plasma that radiates primarily in the X-ray band. X-ray observations of the evolving cluster population provide a unique opportunity to address such fundamental open questions as: How do hot diffuse baryons accrete and dynamically evolve in dark matter potentials? How and when was the energy that we observe in the ICM generated and distributed? Where and when are heavy elements produced and how are they circulated? We will present the ongoing activities to define the strategy on how an X-ray observatory with large collecting area and an unprecedented combination of high spectral and angular resolution, such as Athena, can address these questions.

  4. The cluster of galaxies Abell 376

    NASA Astrophysics Data System (ADS)

    Proust, D.; Capelato, H. V.; Hickel, G.; Sodré, L., Jr.; Lima Neto, G. B.; Cuevas, H.

    2003-08-01

    We present a dynamical analysis of the galaxy cluster Abell 376 based on a set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence observatories and completed with data from the literature. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as well as some properties of the cluster. We obtained an improved mean redshift value z = 0.0478+0.005-0.006 and velocity dispersion sigma = 852+120-76 km s-1. Our analysis indicates that inside a radius of ~ 900 h70-1 kpc ( ~ 15 arcmin) the cluster is well relaxed without any remarkable features and the X-ray emission traces fairly well the galaxy distribution. A possible substructure is seen at 20 arcmin from the centre towards the Southwest direction, but is not confirmed by the velocity field. This SW clump is, however, kinematically bound to the main structure of Abell 376. A dense condensation of galaxies is detected at 46 arcmin (projected distance 2.6 h70-1 Mpc) from the centre towards the Northwest and analysis of the apparent luminosity distribution of its galaxies suggests that this clump is part of the large scale structure of Abell 376. X-ray spectroscopic analysis of ASCA data resulted in a temperature kT = 4.3 +/- 0.4 keV and metal abundance Z = 0.32 +/- 0.08 Zsun. The velocity dispersion corresponding to this temperature using the TX-sigma scaling relation is in agreement with the measured galaxies velocities. Based on observations made Haute-Provence and Pic du Midi Observatories (France). Table 1 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/31

  5. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    SciTech Connect

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A. E-mail: wirth@keck.hawaii.edu

    2014-05-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  6. THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS

    SciTech Connect

    Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E. E-mail: heinz@astro.ugto.mx E-mail: k.alamo@astrosmo.unam.mx

    2009-06-15

    A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that {approx}92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.

  7. CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847

    NASA Astrophysics Data System (ADS)

    Biviano, A.; Rosati, P.; Balestra, I.; Mercurio, A.; Girardi, M.; Nonino, M.; Grillo, C.; Scodeggio, M.; Lemze, D.; Kelson, D.; Umetsu, K.; Postman, M.; Zitrin, A.; Czoske, O.; Ettori, S.; Fritz, A.; Lombardi, M.; Maier, C.; Medezinski, E.; Mei, S.; Presotto, V.; Strazzullo, V.; Tozzi, P.; Ziegler, B.; Annunziatella, M.; Bartelmann, M.; Benitez, N.; Bradley, L.; Brescia, M.; Broadhurst, T.; Coe, D.; Demarco, R.; Donahue, M.; Ford, H.; Gobat, R.; Graves, G.; Koekemoer, A.; Kuchner, U.; Melchior, P.; Meneghetti, M.; Merten, J.; Moustakas, L.; Munari, E.; Regős, E.; Sartoris, B.; Seitz, S.; Zheng, W.

    2013-10-01

    Aims: We constrain the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 CLASH cluster MACS J1206.2-0847, using the projected phase-space distribution of cluster galaxies in combination with gravitational lensing. Methods: We use an unprecedented data-set of ≃600 redshifts for cluster members, obtained as part of a VLT/VIMOS large program, to constrain the cluster mass profile over the radial range ~0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. Results: The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200 = (1.4 ± 0.2) × 1015 M⊙ and concentration c200 = 6 ± 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. Conclusions: This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual

  8. The radius-dependence of velocity dispersion in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Binney, J.

    1980-01-01

    The equations of stellar hydrodynamics are used to derive the radial variation of velocity dispersion in galaxies whose mass-to-light ratios are constant and whose brightness profiles obey the r to the 1/4 law. It is found that the projected central velocity dispersion in such a system should be about 40 percent lower than the peak velocity dispersion. The observability and physical interpretation of this phenomenon is discussed. There is some evidence that a similar effect has been observed in the structure of rich clusters of galaxies.

  9. MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σ {sub v} AND X-RAY Y {sub X} MEASUREMENTS

    SciTech Connect

    Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2015-02-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg{sup 2} of the survey along with 63 velocity dispersion (σ {sub v}) and 16 X-ray Y {sub X} measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ {sub v} and Y {sub X} are consistent at the 0.6σ level, with the σ {sub v} calibration preferring ∼16% higher masses. We use the full SPT{sub CL} data set (SZ clusters+σ {sub v}+Y {sub X}) to measure σ{sub 8}(Ω{sub m}/0.27){sup 0.3} = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m {sub ν} = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m {sub ν} further reconciles the results. When we combine the SPT{sub CL} and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y {sub X} calibration and 0.8σ higher than the σ {sub v} calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω{sub m} = 0.299 ± 0.009 and σ{sub 8} = 0.829 ± 0.011. Within a νCDM model we find ∑m {sub ν} = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation

  10. The KMOS Galaxy Clusters Project

    NASA Astrophysics Data System (ADS)

    Davies, Roger L.; Beifiori, A.; Bender, R.; Cappellari, M.; Chan, J.; Houghton, R.; Mendel, T.; Saglia, R.; Sharples, R.; Stott, J.; Smith, R.; Wilman, D.

    2015-04-01

    KMOS is a cryogenic infrared spectrograph fed by twentyfour deployable integral field units that patrol a 7.2 arcminute diameter field of view at the Nasmyth focus of the ESO VLT. It is well suited to the study of galaxy clusters at 1 < z < 2 where the well understood features in the restframe V-band are shifted into the KMOS spectral bands. Coupled with HST imagining, KMOS offers a window on the critical epoch for galaxy evolution, 7-10 Gyrs ago, when the key properties of cluster galaxies were established. We aim to investigate the size, mass, morphology and star formation history of galaxies in the clusters. Here we describe the instrument, discuss the status of the observations and report some preliminary results.

  11. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  12. Constraining the Mass of A Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Cemenenkoff, Nicholas; Rines, Kenneth J.; Geller, Margaret J.; Diaferio, Antonaldo

    2017-01-01

    Accurate cluster masses are critical for understanding dark matter and for using clusters to constrain cosmological parameters. We use the observed surface number density profile and velocity dispersion profile of galaxies in the Coma cluster to constrain its mass profile via Jeans analysis. In particular, we evaluate the robustness of the mass estimate M_200 by using different parametric forms for the distribution of mass and galaxies as well as different models of the orbital anisotropy parameter β (r) . Allowing for variation between the scale radii of the mass profile and the galaxy profile (i.e. relaxing the assumption that galaxies trace mass) does not significantly change the estimate of M 200 . We use a Bayesian approach to construct probability distribution functions of M 200, scale radius, and beta via Markov Chain Monte Carlo (MCMC) sampling. We apply this approach to ensemble clusters stacked by either their Sunyaev-Zel'dovich (SZ) signals or X-ray luminosities to measure the scaling relations of dynamical mass estimates with these mass proxies. Specifically, we test the hypothesis that the apparent deficit of SZ clusters (compared to predictions based on observations of the microwave background) can be explained by a bias of ˜ 60% in the normalization of the scaling relation between SZ signal and mass.

  13. The Cluster of Galaxies Surrounding Cygnus A

    NASA Astrophysics Data System (ADS)

    Owen, Frazer N.; Ledlow, Michael J.; Morrison, Glenn E.; Hill, John M.

    1997-10-01

    We report optical imaging and spectroscopy of 41 galaxies in a 22' square region surrounding Cygnus A. The results show that there is an extensive rich cluster associated with Cyg A of Abell richness of at least 1 and possibly as high as 4. The velocity histogram has two peaks, one centered on Cyg A and a more significant peak redshifted by about 2060 km s-1 from the velocity of Cyg A. The dynamical centroid of the spatial distribution is also shifted somewhat to the northwest. However, statistical tests show only weak evidence that there are two distinct clusters. The entire system has a velocity dispersion of 1581 km s-1, which is slightly larger than other, well-studied examples of rich clusters.

  14. Gravitational lensing by clusters of galaxies - Constraining the mass distribution

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).

  15. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.

  16. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    SciTech Connect

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from the metric plane

  17. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  18. Galaxy Evolution in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, U.; Hill, J. M.

    2000-12-01

    We present the first results of a study of the morphological and spectral evolution of galaxies within the dense cores of distant clusters at redshifts between z=0.4 and 1. The morphology, colors, concentration index, and asymmetry parameters of these cluster members are compared by using a combination of deep HST NICMOS and WFPC2 imaging, covering the rest-frame U and J bands. We also discuss the influence of dust obscuration on the derived measurements. Of particular interest is the morphology of galaxies at near-infrared wavelengths in rich clusters which show an excess of blue galaxies (Butcher-Oelmer effect), namely Abell 851 (z=0.4) and CL 1603+43 (z=0.92). We focus our study on optical/near-infrared measurements of galaxy asymmetry and central concentration, derived from a large number (>400) of objects detected within the core of Abell 851. The sensitivity and reliability of these parameters for galaxy classification and physical diagnostic purposes are tested. In conjunction with the use of recent source extraction software we are able to establish a fast, robust, and highly automated procedure of mapping the structural parameters of large galaxy samples. This work is supported by NASA, under contract NAS5-26555.

  19. Galaxy clusters: Radio relics from fossil electrons

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, Melanie

    2017-01-01

    The detection of a tailed radio galaxy in a galaxy cluster conjoined to a region of diffuse radio emission confirms that radio galaxies provide the energetic electrons needed to explain the origin of this enigmatic emission.

  20. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  1. Galaxy Pairwise Velocity Distributions on Nonlinear Scales

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Geller, Margaret J.

    1996-08-01

    The redshift-space correlation function ξ_s_ for projected galaxy separations <~ 1 h^-1^ Mpc can be expressed as the convolution of the real-space correlation function with the galaxy pairwise velocity distribution function (PVDF). An exponential PVDF yields the best fit to the ξ_s_ measured from galaxy samples of different redshift surveys. We show that this exponential PVDF is not merely a fitting function but arises from well-defined gravitational processes. Two ingredients conspire to yield a PVDF with a nearly exponential shape: (1) the number density n(σ) of systems with velocity dispersion σ and (2) the unrelaxed dynamical state of most galaxy systems. The former ingredient determines the exponential tail, and the latter determines the central peak of the PVDF. We examine a third issue: the transfer of orbital kinetic energy to galaxy internal degrees of freedom. Although this effect is of secondary importance for the PVDF exponential shape, it is detectable in galaxy groups, which indicates that galaxy merging is an ongoing process in the present universe. We compare the ξ_s_ measured on nonlinear scales from galaxy samples of the Center for Astrophysics redshift surveys with different models of the PVDF convolved with the measured real-space correlation function. This preliminary comparison indicates that the agreement between model and observations depends strongly on both the underlying cosmological model and the internal dynamics of galaxy systems. Neither parameter dominates. Moreover, the agreement depends sensitively on the accuracy of the galaxy position and velocity measurements. We expect that ξ_s_ will pose further constraints on the model of the universe and will improve the knowledge of the dynamics of galaxy systems on very small scales if we improve (1) the galaxy coordinate determination and (2) the measurement of relative velocities of galaxies with small projected separation. In fact, the redshift-space correlation function

  2. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  3. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  4. Cosmology with Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano

    I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.

  5. Predicting the peculiar velocities of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Sharpe, Jacob; Rowan-Robinson, Michael; Canavezes, A.; Saunders, W.; Efstathiou, G.; Frenk, C.; Keeble, O.; McMahon, R. G.; Maddox, S.; Oliver, S. J.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-06-01

    We use the Least Action Principle to predict the peculiar velocities of PSC-z galaxies inside (cz = 2000 kms^{-1}). Linear theory is used to account for tidal effects to (cz = 15000 kms^{-1}), and we iterate galaxy positions to account for redshift distortions. As the Least Action Principle is valid beyond Linear theory, we can predict reliable velocities even for very nearby galaxies (ie cz <= 500 kms^{-1}). These predicted peculiar velocities are then compared with the observed velocities of 12 galaxies with Cepheid distances. The combination of the PSC-z galaxy survey (with its large sky coverage and uniform selection), with the accurate Cepheid distances, makes this comparison relatively free from systematic effects. We find that galaxies are good tracers of the mass, even at small (<= 10 h^{-1}Mpc) scales; and under the assumption of no biasing, β <= 0.75 (at 90% confidence). We use the reliable predicted peculiar velocities to estimate (H0) from the local volume without ``stepping up'' the distance ladder, finding a confidence range of 65-75 kms^{-1}Mpc^{-1} (at 90% confidence).

  6. Nonthermal Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Storm, Emma

    Galaxy clusters are the most massive gravitationally-bound objects in the universe. The bulk of the mass in a cluster is dark matter, while the dominant baryonic component is a thermal, X-ray emitting plasma. Radio observations of diffuse synchrotron emission indicate that galaxy clusters host a population of cosmic rays; however, the nature of this nonthermal component is not well-understood. In this dissertation, I investigate three sources of nonthermal emission in galaxy clusters. The first is star formation in galaxies, which is correlated to gamma-ray emission. I derive lower limits on the gamma-ray emission for nearby clusters by considering the emission from star formation in cluster galaxies. These lower limits sit about an order of magnitude below current upper limits on gamma rays in clusters and will be an important contributor to gamma-ray emission as upper limits improve over time. Dark matter annihilation, which produces relativistic particles that can result in a broad spectrum of emission in cluster environments, is another source of nonthermal emission. I use nondetections and marginal detections of diffuse radio emission in clusters to constrain dark matter annihilation. I derive limits on the annihilation cross section that are competitive with limits from the nondetection of gamma rays in clusters and show that the best objects for study in the radio are different than those in gamma rays, indicating that dark matter searches in the radio can be complementary to searches in other energy bands. I also investigate the cosmic ray population in the merging cluster A2319, which hosts a previously detected radio halo. I present new observations which reveal a two-component radio halo: a 2 Mpc region that extends far past the observable X-ray emission, and an 800 kpc "core" that is bounded by the X-ray cold front. I speculate on the origins of this structure, and show that a hadronic origin for this radio halo is disfavored. Finally, I discuss current

  7. Radial velocities of remote globular clusters - stalking the missing mass

    SciTech Connect

    Peterson, R.C.

    1985-10-01

    Measurements good to 25 km/s are presented of radial velocities of five remote galactic globular clusters, based on aperture-plate spectra of individual stars at 3.0 A resolution. Velocities with respect to the galactic rest-frame of two individual systems, Eridanus and Palomar 14, are large enough to suggest a total mass for the Galaxy of 1 trillion solar masses. A similar mass is inferred from the average of the galactocentric distance times velocity squared. 36 references.

  8. Galaxy Populations and Evolution in Clusters IV Deep H 1 Observations of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Conselice, Christopher J.; ONeil, Karen; Gallagher, John S.; Wyse, Rosemary F. G.

    2003-01-01

    In this paper we present deep Arecibo H I and WIYN optical observations of Virgo Cluster dwarf elliptical galaxies. Based on this data we argue that a significant fraction of low-mass galaxies in the Virgo Cluster recently underwent evolution. Our new observations consist of H I 21 cm line observations for 22 classified dE galaxies with optical radial velocities consistent with membership in the Virgo Cluster. Cluster members VCC 390 and VCC 1713 are detected with H 1 masses M H1= 6 x 10 sup 7 and 8 x 10 sup 7 M , respectively, while MH I values in the remaining 20 dE galaxies have upper limits as low as about 5 x 1O sup 5 M. We combine our results with those for 26 other Virgo Cluster dE galaxies with H 1 observations in the literature, seven of which have H I detection claims.

  9. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  10. Cluster Physics with Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor

    Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard ΛCDM model, where the total density is dominated by the cosmological constant (Λ) and the matter density by cold dark matter (CDM), structure formation is hierarchical, and clusters grow mostly by merging. Mergers of two massive clusters are the most energetic events in the universe after the Big Bang, hence they provide a unique laboratory to study cluster physics. The two main mass components in clusters behave differently during collisions: the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulence are developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thus our review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clusters is to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses. New high spatial and spectral resolution ground and space based telescopes will come online in the near future. Motivated by these new opportunities, we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  11. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  12. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Masters, Craig E.; Ashman, Keith M. E-mail: ashmank@umkc.ed

    2010-12-10

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  13. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Lund, G.; Capelato, H.

    1987-03-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  14. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Capelato, H. V.; Lund, G.

    1988-04-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  15. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  16. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2016-01-01

    Galaxy clusters are a rich source of information for examining fundamental astrophysical processes and cosmological parameters, however, employing clusters as cosmological probes requires accurate mass measurements derived from cluster observables. We study dynamical mass measurements of galaxy clusters contaminated by interlopers, and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create a mock catalog from Multidark's publicly-available N-body MDPL1 simulation where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. The presence of interlopers in the catalog produces a wide, flat fractional mass error distribution, with width = 2.13. We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (width = 0.67). Remarkably, SDM applied to contaminated clusters is better able to recover masses than even a scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  17. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    SciTech Connect

    Cowie, L.L.; Hu, E.M.

    1986-06-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation. 14 references.

  18. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  19. Galaxy formation through hierarchical clustering

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  20. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  1. On the formation of cD galaxies and their parent clusters

    NASA Astrophysics Data System (ADS)

    Tovmassian, Hrant M.; Andernach, Heinz

    2012-12-01

    In order to study the mechanism of the formation of cD galaxies, we search for possible dependencies between the K-band luminosity of cD galaxies and the parameters of their host clusters which we select to have a dominant cD galaxy, corresponding to a cluster morphology of Bautz-Morgan type I (BM I). As a comparison sample we use cD galaxies in clusters where they are not dominant, which we define here as non-BM I (NBMI) type clusters. We find that for 71 BM I clusters the absolute K-band luminosity of cD galaxies depends on the cluster richness, but less strongly on the cluster velocity dispersion. Meanwhile, for 35 NBMI clusters the correlation between cD luminosity and cluster richness is weaker, and is absent between cD luminosity and velocity dispersion. In addition, we find that the luminosity of the cD galaxy hosted in BM I clusters tends to increase with the cD's peculiar velocity with respect to the cluster mean velocity. In contrast, for NBMI clusters the cD luminosity decreases with increasing peculiar velocity. Also, the X-ray luminosity of BM I clusters depends on the cluster velocity dispersion, while in NBMI clusters such a correlation is absent. These findings favour the cannibalism scenario for the formation of cD galaxies. We suggest that cD galaxies in clusters of BM I type were formed and evolved preferentially in one and the same cluster. In contrast, cD galaxies in NBMI-type clusters were either originally formed in clusters that later merged with groups or clusters to form the current cluster, or are now in the process of merging.

  2. Spiral galaxies in clusters. III. Gas-rich galaxies in the Pegasus I cluster of galaxies

    SciTech Connect

    Bothun, G.D.; Schommer, R.A.; Sullivan, W.T. III

    1982-05-01

    We report the results of a 21-cm and optical survey of disk galaxies in the vicinity of the Pegasus I cluster of galaxies. The color--gas content relation (log(M/sub H//L/sub B/) vs (B-V)/sup T//sub 0/ ) for this particular cluster reveals the presence of a substantial number of blue, gas-rich galaxies. With few exceptions, the disk systems in Pegasus I retain large amounts of neutral hydrogen despite their presence in a cluster. This directly shows that environmental processes have not yet removed substantial amounts of gas from these disk galaxies. We conclude that the environment has had little or no observable effect upon the evolution of disk galaxies in Pegasus I. The overall properties of the Pegasus I spirals are consistent with the suggestion that this cluster is now at an early stage in its evolution.

  3. Evidence for a low-density universe from the relative velocities of galaxies

    PubMed

    Juszkiewicz; Ferreira; Feldman; Jaffe; Davis

    2000-01-07

    The motions of galaxies can be used to constrain the cosmological density parameter Omega and the clustering amplitude of matter on large scales. The mean relative velocity of galaxy pairs, estimated from the Mark III survey, indicates that Omega = 0.35(-0.25)(+0.35). If the clustering of galaxies is unbiased on large scales, Omega = 0. 35 +/- 0.15, so that an unbiased Einstein-de Sitter model (Omega = 1) is inconsistent with the data.

  4. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  5. Construction of luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Godłowski, Włodzimierz; Popiela, Joanna; Bajan, Katarzyna; Biernacka, Monika; Flin, Piotr; Panko, Elena

    2015-02-01

    The luminosity function is an important quantity for analysis of large scale structure statistics, interpretation of galaxy counts (Lin & Kirshner 1996). We investigate the luminosity function of galaxy clusters. This is performed by counting the brightness of galaxies belonging to clusters in PF Catalogue. The obtained luminosity function is significantly different than that obtained both for optical and radiogalaxies (Machalski & Godowski 2000). The implications of this result for theories of galaxy formation are discussed as well.

  6. Galaxy evolution in clusters since z~1

    NASA Astrophysics Data System (ADS)

    Aragon-Salamanca, Alfonso

    2010-09-01

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  7. Galaxy Evolution in Clusters Since z ~ 1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  8. Evolution of the BCG in Disturbed Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ardila, Felipe; Strauss, Michael A.; Lauer, Tod R.; Postman, Marc

    2017-01-01

    The present paradigm in cosmology tells us that large-scale structures grow hierarchically. This suggests that galaxy clusters grow by accreting mass and merging with other clusters, a process which should be detectable by the presence of substructure within a cluster. Using the Dressler-Shectman (DS) three-dimensional test for dynamical substructure, we determined which clusters showed evidence for disturbance from a set of 227 Abell clusters from Lauer et al. (2014) with at least 50 member galaxies and spectroscopic redshifts, z < 0.08. Our results show that 155 (68.2%) of the clusters showed evidence for substructure at ≥ 95% confidence, while 72 did not. Kolmogorov-Smirnov tests suggest that the two populations of clusters (those with and without detected substructure) are significantly different in their distributions of BCG luminosities (Lm), but not in their BCG stellar velocity dispersions (σ), their BCG spatial offsets from the x-ray centers of the clusters, their BCG velocity offsets from the mean cluster velocity, the logarithmic slopes of their BCG photometric curves of growth (α), their cluster velocity dispersions, or their luminosity differences between the BCG and the second-ranked galaxy in the cluster (M2). Similarly, no significant difference was found in the fitting of the Lm-α-σ metric plane for BCGs of clusters with substructure compared those in which there is not substructure. This is surprising since our hierarchical growth models suggest that some of these BCG/cluster properties would be affected by a disturbance of the cluster, indicating that our understanding of how BCGs evolve with their clusters is incomplete and we should explore other ways to probe the level of disturbance.

  9. PECULIAR VELOCITIES OF GALAXIES IN THE LEO SPUR

    SciTech Connect

    Karachentsev, Igor D.; Makarova, Lidia N.; Makarov, Dmitry I.; Tully, R. Brent; Rizzi, Luca

    2015-06-01

    The Hubble Space Telescope Advanced Camera for Surveys has been used to determine accurate distances for the spiral galaxy NGC 2683 and 12 other galaxies in a zone of the “local velocity anomaly” from luminosity measurements of the brightest red giant branch stars. These galaxies lie in the Leo Spur, the nearest filament beyond our Local Sheet. The new accurate distance measurements confirm that galaxies along the Leo Spur are more distant than expected from uniform cosmic expansion, and hence have large and peculiar velocities toward us. The motions are generally explained by a previously published model that posits that the Local Sheet is descending at 259 km s{sup −1} toward the south supergalactic pole due to expansion of the Local Void and is being attracted toward the Virgo Cluster at 185 km s{sup −1}. With the standard ΛCDM cosmology, an empty void expands at 16 km s{sup −1} Mpc{sup −1}, so a motion of 259 km s{sup −1} requires the Local Void to be impressively large and empty. Small residuals from the published model can be attributed to an upward push toward the north supergalactic pole by the expansion of the Gemini–Leo Void below the Leo Spur. The Leo Spur is sparsely populated, but among its constituents there are two associations that contain only dwarf galaxies.

  10. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  11. ROSAT Discovers Unique, Distant Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  12. Galaxy cluster mass estimation from stacked spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Evrard, August E.; Rozo, Eduardo; Rykoff, Eli S.; Wechsler, Risa H.

    2016-08-01

    We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, Mσ(λ), derived from stacked pairwise spectroscopy of clusters with richness λ. Using ˜130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with mi < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes ˜60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find = ln (M30) + αm ln (λ/30) with M30 = 1.56 ± 0.35 × 1014 M⊙ and αm = 1.31 ± 0.06stat ± 0.13sys. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

  13. Investigations of galaxy clusters using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  14. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  15. The Radio Properties of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.

    2014-09-01

    Energetic feedback from the Active Galactic Nucleus (AGN) of the Brightest Cluster Galaxy (BCG) is required to prevent catastrophic cooling of the intra-cluster medium (ICM) in galaxy clusters. Evidence for this is seen through the inflation of cavities in the ICM by AGN-launched, radio-emitting jets, and understanding this process is an active area of research. Radio observations play an integral role in this, as they trace the active stages of the feedback cycle. Understanding the radio properties of BCGs is therefore paramount for understanding both galaxy clusters and AGN feedback processes globally. Within this thesis, the BCGs in a large (>700) sample of X-ray selected clusters are studied. We observe these BCGs with a wide variety of facilities, building a census of their radio properties across a range of frequencies, timescales and angular resolutions. Radio spectral energy distributions (SEDs) are built for over 200 BCGs, and then decomposed into two components; a core, attributable to ongoing nuclear activity, and a non-core, attributable to historical accretion. Both components are not only more common, but also significantly more powerful in cool-core (CC) clusters than non-cool core (NCC) clusters. However, it is the presence of an active core that shows BCGs in CC clusters are constantly `on' - explaining how they regulate their environments over gigayear timescales. We observe 35 currently active BCGs at high (15-353 GHz) radio frequencies, and monitor their variability. Self-absorbed, active components are found to be common at high frequency. Little variability is seen on < year timescales, although longer term variation of ~10% annually over few-decade timescales is observed. Evidence is presented for a hitherto unseen component in BCG spectra that may be attributable to a naked Advection Dominated Accretion Flow (ADAF). The milli-arcsecond scale radio properties of 59 sources are studied, with a large range of morphologies recovered although no

  16. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  17. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-02-20

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  18. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    SciTech Connect

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-04-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.

  19. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.

    PubMed

    Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-12-02

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  20. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  1. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  2. Galaxy and mass assembly (GAMA): projected galaxy clustering

    NASA Astrophysics Data System (ADS)

    Farrow, D. J.; Cole, Shaun; Norberg, Peder; Metcalfe, N.; Baldry, I.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Hopkins, A. M.; Lacey, Cedric G.; Liske, J.; Loveday, Jon; Palamara, David P.; Robotham, A. S. G.; Sridhar, Srivatsan

    2015-12-01

    We measure the projected two-point correlation function of galaxies in the 180 deg2 equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and 0.5. To do this, we further develop the Cole method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ˜3 h-1 Mpc. We compare to two different versions of the GALFORM galaxy formation model, Lacey et al. (in preparation) and Gonzalez-Perez et al., and find that the models reproduce the trend of stronger clustering for more massive galaxies. However, the models underpredict the clustering of blue galaxies, can incorrectly predict the correlation function on small scales and underpredict the clustering in our sample of galaxies with {˜ } 3 Lr^*. We suggest possible avenues to explore to improve these clustering predictions. The measurements presented in this paper can be used to test other galaxy formation models, and we make the measurements available online to facilitate this.

  3. Dark matter and the dynamics of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Evrard, August E.

    The dynamics of galaxy clustering is investigated in simulations of the large scale structure of the universe. Emphasis is placed on determining the accuracy of virial mass estimates, and therefore of the mean mass density in the universe. For galaxies modelled as point masses, the virial theorem yields mass estimates accurate to within a factor of 2 for a wide range of clustered systems. The point mass approximation, however, is incapable of reproducing observed small scale clustering behavior and is unrealistic in view of the observational and theoretical evidence for dominant amounts of dark matter around individual galaxies and in clusters. Simulations of the large scale clustering of galaxies with massive dark halos are then performed for both a critically dense and open universe. The extended mass distribution and dynamical friction, both absent in the point mass models, conspire to reduce galactic peculiar velocities on clustered scales and enhance galaxy correlations at small separations. The median virial mass estimates of galaxy groups systematically underestimate the total mass present by at least a factor of 3.

  4. The Dependence of Cluster Galaxy Properties on the Central Entropy of their Host Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Ko, Jongwan; Hwang, Ho Seong; Edge, Alastair C.; Lee, Joon Hyeop; Lee, Jong Chul; Jeong, Hyunjin

    2017-02-01

    We present a study of the connection between brightest cluster galaxies (BCGs) and their host galaxy clusters. Using galaxy clusters at 0.1< z< 0.3 from the Hectospec Cluster Survey (HeCS) with X-ray information from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), we confirm that BCGs in low central entropy clusters are well aligned with the X-ray center. Additionally, the magnitude difference between BCG and the second brightest galaxy also correlates with the central entropy of the intracluster medium. From the red-sequence (RS) galaxies, we cannot find significant dependence of RS color scatter and stellar population on the central entropy of the intracluster medium of their host cluster. However, BCGs in low-entropy clusters are systematically less massive than those in high-entropy clusters, although this is dependent on the method used to derive the stellar mass of BCGs. In contrast, the stellar velocity dispersion of BCGs shows no dependence on BCG activity and cluster central entropy. This implies that the potential of the BCG is established earlier and the activity leading to optical emission lines is dictated by the properties of the intracluster medium in the cluster core.

  5. Brightest cluster galaxies as standard candles

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Lauer, Tod R.

    1995-01-01

    We investigate the use of brightest cluster galaxies (BCGs) as standard candles for measuring galaxy peculiar velocities on large scales. We have obtained precise large-format CCD surface photometry and redshifts for an all-sky, volume-limited (z less than or = 0.05) sample of 199 BCG. We reinvestigate the Hoessel (1980) relationship between the metric luminosity, L(sub m), within the central 10 kpc/h of the BCGs and the logarithmic slope of the surface brightness profile, alpha. The L(sub m)-alpha relationship reduces the cosmic scatter in L(sub m) from 0.327 mag to 0.244 mag, yielding a typical distance accuracy of 17% per BCG. Residuals about the L(sub m)-alpha relationship are independent of BCG luminosity, BCG B - R(sub c) color, BCG location within the host cluster, and richness of the host cluster. The metric luminosity is independent of cluster richness even before correcting for its dependence on alpha, which provides further evidence for the unique nature of the BCG luminosity function. Indeed, the BCG luminosity function, both before and after application of the alpha-correction, is consistent with a single Gaussian distribution. Half the BCGs in the sample show some evidence of small color gradients as a function of radius within their central 50 kpc/h regions but with almost equal numbers becoming redder as becoming bluer. However, with the central 10 kpc/h the colors are remarkably constant -- the mean B - R(sub c) color is 1.51 with a dispersion of only 0.06 mag. The narrow photometric and color distributions of the BCGs, the lack of 'second-parameter' effects, as well as the unique rich cluster environment of BCGs, argue that BCGs are the most homogeneous distance indicators presently available for large-scale structure research.

  6. Cluster X-Ray Substructure and Radio Galaxy Correlations

    NASA Astrophysics Data System (ADS)

    Ledlow, M. J.; Burns, J. O.

    1994-12-01

    Current wisdom suggests that X-ray substructure in the intracluster medium (ICM) is fairly common in galaxy clusters. This substructure takes the form of elongations, isophotal twisting, asymmetries, and sub-clumping. Substructure is also frequently present in kinematical analysis of the galaxy velocity and spatial distributions. These features include bimodality, kurtosis or skewness, and non-Gaussian velocity distributions. Consistent with the observations, Hydro/N-Body simulations suggest that cluster-subcluster mergers may be the culprit to explain these features in the ICM gas distribution, and would indicate that many clusters, even at the present epoch, are still undergoing significant dynamical evolution. From a sample of X-ray images from the Einstein satellite and, more recently, the ROSAT mission, Burns et al. (1994) found a significant correlation between the positions of radio galaxies and subclumps within the cluster-scale X-ray emission. Burns et al. have suggested that radio galaxies reside in the residue of cluster/sub-cluster merging sites, and may therefore act as pointers to clusters with ongoing and intersting dynamical activity. We are following up these ideas with a detailed substructure analysis, and a comparison to a sample of clusters without radio galaxies. In order to determine the signficance of substructure, we have reanalyzed the X-ray images using a Bootstrap-Resampling Monte-Carlo technique. In this method, asymmetries, elongations, and other forms of substructure are evaluated using a moment-analysis similar to M{o}hr et al. (1994), with the advantage that we need not assume apriori any specific substructure-free model for the source (\\ie\\ a Beta-model). The significance of individual features is determined solely from a comparison to statistical fluctuations (including noise) of the actual data. Using this technique, we place limits on the fraction of clusters with significant substructure and test the radio galaxy

  7. ORIENTATION OF BRIGHTER GALAXIES IN NEARBY GALAXY CLUSTERS

    SciTech Connect

    Panko, E.; Juszczyk, T.; Flin, P. E-mail: sfflin@cyf-kr.edu.pl

    2009-12-15

    A sample of 6188 nearby galaxy structures, complete to r{sub F} = 18fm3 and containing at least 10 members each, was the observational basis for an investigation of the alignment of bright galaxies with the major axes for the parent clusters. The distribution of position angles for galaxies within the clusters, specifically the brightest, the second brightest, the third, and the tenth brightest galaxies was tested for isotropy. Galaxy position angles appear to be distributed isotropically, as are the distributions of underlying cluster structure position angles. The characterization of galaxy structures according to richness class also appears to be isotropic. Characterization according to BM types, which are known for 1056 clusters, is more interesting. Only in the case of clusters of BM type I is there an alignment of the brightest cluster member with the major axis of the parent cluster. The effect is observed at the 2 significance level. In other investigated cases the distributions are isotropic. The results confirm the special role of cD galaxies in the origin/evolution of large-scale structures.

  8. The APM Galaxy Survey - V. Catalogues of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Efstathiou, G.

    1997-08-01

    We describe the construction of catalogues of galaxy clusters from the APM Galaxy survey using an automated algorithm based on Abell-like selection criteria. We investigate the effects of varying several parameters in our selection algorithm, including the magnitude range and radius from the cluster centre used to estimate the cluster richnesses. We quantify the accuracy of the photometric distance estimates by comparing them with measured redshifts, and we investigate the stability and completeness of the resulting catalogues. We find that the angular correlation functions for different cluster catalogues are in good agreement with one another, and are also consistent with the observed amplitude of the spatial correlation function of rich clusters.

  9. N-Body Simulations of Galaxies in the Cluster Environment

    NASA Astrophysics Data System (ADS)

    Humphrey, Nicholas; Berrington, R. C.

    2010-01-01

    We present numerous N-body simulations of galaxy clusters consisting of up to 600,000 total particles and 50 galaxies each to characterize the evolution of galaxies in the cluster environment. These simulations were run on the Ball State University (BSU) College of Science and Humanities (CSH) 64-node Beowulf Cluster. Because the velocity dispersion (σ) is a tracer of a galaxies’ potential well and therefore its mass, we will use it to examine the mass evolution of the galaxies in the simulations by fitting a function to the σ of the galaxies. The strength of this function is its direct comparison to observational data. We further investigate the evolution of the galaxy structure parameters through the use of projected mass radii and line-of-sight (LOS) σ. Additionally, we discuss the use of alternate orbital parameters such as Vesc to investigate the potential wells of the galaxies. Our goal is to isolate the mass and luminosity evolution from the environmental effects on the evolution of elliptical galaxies. This project is a subset of a continuing study whose intent is to combine observational data with numerical techniques to study the effects of a galaxies’ environment on its mass evolution and internal dynamics.

  10. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  11. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  12. Galaxy evolution in clusters since z=1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  13. Most Massive Globular Cluster in Our Galaxy

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  14. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  15. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Armandroff, T. E.; Da Costa, G. S.

    1986-01-01

    The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.

  16. Low mass galaxy clusters and galaxy morphology evolution

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, J. L.; Órdenes, Y.; Ramos, F.; Alonso, M. V.; Cuevas, H.; García Lambas, D.; Ramírez, A.

    We present preliminary results about the galaxy morphology evolution in three low mass galaxy clusters: RX J0533.9-5809 ([VMF98]046, z 0.198), RX J1204.3-0350 ([VMF98]113, z 0.261) and RX J0533.8-5746 ([VMF98]045, z 0.295). Full photometric catalogues were created using SExtractor v2.8.0. Also, photometric redshifts (z phot ) were obtained for all the object classified as galaxies, using the ANNz code. Color-Magnitude Diagrams (CMD) were generated for those galaxies clas- sified as cluster members. Clear Red Cluster Sequences (RCS) with a me- dian slopes of -0.03 are observed for all the tree clusters. Based on the RCS best fit, a blue and a red population of galaxies were defined, observ- ing that the color distribution of the cluster [VMF98]045 is well fitted by a double Gaussian function (2 0.2), while the clusters [VMF98]046 and [VMF98]113 presents a third population between the blue and red peak dis- tributions. These preliminary results would show the existence of a possible transi- tion population between the blue and the red population in these low mass galaxy clusters at low redshifts.

  17. Separating galaxies from the cluster dark matter halo in Abell 611

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Geller, M. J.; Zitrin, A.; Mercurio, A.; Suyu, S. H.; Postman, M.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2017-03-01

    We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of ∼1.5, or, equivalently, we would underestimate the mass of the cluster dark halo by ∼5 per cent. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the five galaxies close to the arc by a factor up to ∼10. The resulting parameters are in good agreement with the σ-rtr scaling relation derived in the pointlike analysis. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1σ confidence level with the spectroscopic measurements. In contrast, the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.

  18. A simple recipe for estimating masses of elliptical galaxies and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.

    2013-04-01

    We discuss a simple and robust procedure to evaluate the mass/circular velocity of massive elliptical galaxies and clusters of galaxies. It relies only on the surface density and the projected velocity dispersion profiles of tracer particles and therefore can be applied even in case of poor or noisy observational data. Stars, globular clusters or planetary nebulae can be used as tracers for mass determination of elliptical galaxies. For clusters the galaxies themselves can be used as tracer particles. The key element of the proposed procedure is the selection of a ``sweet'' radius R_sweet, where the sensitivity to the unknown anisotropy of the tracers' orbits is minimal. At this radius the surface density of tracers declines approximately as I(R)∝ R-2, thus placing R_sweet not far from the half-light radius of the tracers R_eff. The procedure was tested on a sample of cosmological simulations of individual galaxies and galaxy clusters and then applied to real observational data. Independently the total mass profile was derived from the hydrostatic equilibrium equation for the gaseous atmosphere. Mismatch in mass profiles obtained from optical and X-ray data is used to estimate the non-thermal contribution to the gas pressure and/or to constrain the distribution of tracers' orbits.

  19. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N-body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ(2)/dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass Macc at the time of accretion, the maximum circular velocity Vacc at the time of accretion, and the peak maximum circular velocity Vpeak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L*). For low-luminosity samples, the Vacc model stands out in reproducing the data, with the Vpeak model slightly worse, while the Macc model fails to fit the data. We discuss the implications of the modelling results.

  20. Clusters of Galaxies in Infrared Domain

    NASA Astrophysics Data System (ADS)

    Wszołek, B.

    2008-12-01

    Far infrared emission (FIR) of the sky is generally thought to originate mainly in cold dust grains distributed in space. The FIR emission of galaxy clusters may be considered therefore as a tracer of the dust constituent of the intracluster medium. The presence of dust distributed in the intergalactic medium of galaxy clusters is of considerable interest for several studies. Based on IRAS and COBE/DIRBE sky surveys we found excess FIR emission from the sky area occupied by galaxy cluster ZW5897. Very good positional and extensional coincidence between infrared source and ZW5897 may suggest intracluster origin of the emission. We studied the distribution of stars and galaxies in the cluster area using Palomar Survey data to check whether these distributions are affected by local dust. We found that a foreground obscuring cloud, overlapping accidentally the distant cluster ZW5897, may be responsible for some part of the detected FIR emission.

  1. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  2. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Lehnert, M. D.; Villar-Martín, M.; Norris, R. P.; Ekers, R. D.; van Moorsel, G. A.; Dannerbauer, H.; Pentericci, L.; Miley, G. K.; Allison, J. R.; Sadler, E. M.; Guillard, P.; Carilli, C. L.; Mao, M. Y.; Röttgering, H. J. A.; De Breuck, C.; Seymour, N.; Gullberg, B.; Ceverino, D.; Jagannathan, P.; Vernet, J.; Indermuehle, B. T.

    2016-12-01

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy—a massive galaxy in a distant protocluster—is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  3. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters

    NASA Astrophysics Data System (ADS)

    Griv, E.; Jiang, I.-G.

    2015-02-01

    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r<3 kpc from the Sun and -200 < z <200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high-velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin-Shu type density waves estimated from two independent line-of-sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  4. On the clustering of faint red galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Haojie; Zheng, Zheng; Guo, Hong; Zhu, Ju; Zehavi, Idit

    2016-08-01

    Faint red galaxies in the Sloan Digital Sky Survey show a puzzling clustering pattern in previous measurements. In the two-point correlation function (2PCF), they appear to be strongly clustered on small scales, indicating a tendency to reside in massive haloes as satellite galaxies. However, their weak clustering on large scales suggests that they are more likely to be found in low-mass haloes. The interpretation of the clustering pattern suffers from the large sample variance in the 2PCF measurements, given the small volume of the volume-limited sample of such faint galaxies. We present improved clustering measurements of faint galaxies by making a full use of a flux-limited sample to obtain volume-limited measurements with an increased effective volume. In the improved 2PCF measurements, the fractional uncertainties on large scales drop by more than 40 per cent, and the strong contrast between small-scale and large-scale clustering amplitudes seen in previous work is no longer prominent. From halo occupation distribution modelling of the measurements, we find that a considerable fraction of faint red galaxies to be satellites in massive haloes, a scenario supported by the strong covariance of small-scale 2PCF measurements and the relative spatial distribution of faint red galaxies and luminous galaxies. However, the satellite fraction is found to be degenerate with the slope of the distribution profile of satellites in inner haloes. We compare the modelling results with semi-analytic model predictions and discuss the implications.

  5. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    SciTech Connect

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer, Hans; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U., ICG /North Carolina U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Michigan U. /Fermilab /Princeton U. Observ. /Garching, Max Planck Inst., MPE /Pittsburgh U. /Tokyo U., ICRR /Baltimore, Space Telescope Sci. /Penn State U. /Chicago U. /Stavropol, Astrophys. Observ. /Heidelberg, Max Planck Inst. Astron. /INI, SAO

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster. However, if we

  6. Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.

  7. A serach for 'failed clusters' of galaxies

    NASA Technical Reports Server (NTRS)

    Tucker, W. H.; Tananbaum, H.; Remillard, R. A.

    1995-01-01

    We describe a search for a new type of object - large clouds of hot gas with no visible galaxies - which we call failed clusters of galaxies. We calculate the expected X-ray luminosity, temperature, and angular diameter of such objects as a function of total cloud mass and convert the results to expected X-ray fluxes from failed clusters at different redshifts. Using the Einstein Imaging Proportional Counter (IPC) database, we establish a strategy to search for candidate failed clusters. From this initial screening of 1435 IPC fields, 17 candidates are selected for more detailed analysis, which indicates that 10 of these are very probably extended X-ray sources. Optical follow-up on the 10 prime candidates finds eight clusters of galaxies (including six reproted for the first time in this paper), one stellar identification, and one without an obvious optical counterpart (the candidate with the weakest evidence for X-ray extent). Investigation of several candidates with less evidence for X-ray extent yields two additional new clusters of galaxies. A conservative comparison of our results with the Einstein Extended Medium Sensitivity Survey demonstrates that failed clusters are a relatively unimportant contributor to the mass density of the universe. Our inability to find failed clusters is consistent with the hierarchical clustering scenario for the formation of galaxies and clusters.

  8. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    SciTech Connect

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A. E-mail: shields@astro.as.utexas.edu

    2012-03-20

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 {+-} 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  9. Galaxy cluster mass reconstruction project - I. Methods and first results on galaxy-based techniques

    NASA Astrophysics Data System (ADS)

    Old, L.; Skibba, R. A.; Pearce, F. R.; Croton, D.; Muldrew, S. I.; Muñoz-Cuartas, J. C.; Gifford, D.; Gray, M. E.; der Linden, A. von; Mamon, G. A.; Merrifield, M. R.; Müller, V.; Pearson, R. J.; Ponman, T. J.; Saro, A.; Sepp, T.; Sifón, C.; Tempel, E.; Tundo, E.; Wang, Y. O.; Wojtak, R.

    2014-06-01

    This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealized clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R200, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 1014M⊙, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of 2. Below 1014M⊙, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic.

  10. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  11. The Formation of Galaxies and Clusters.

    ERIC Educational Resources Information Center

    Gregory, Stephen; Morrison, Nancy D.

    1985-01-01

    Summarizes recent research on the formation of galaxies and clusters, focusing on research examining how the materials in galaxies seen today separated from the universal expansion and collapsed into stable bodies. A list of six nontechnical books and articles for readers with less background is included. (JN)

  12. The Buildup of Passive Galaxies in Clusters and the Field Over the Last 7 Billion Years.

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; van der Wel, A.; Moustakas, J.; Jablonka, P.

    2011-01-01

    One of galaxy evolution's most long-standing problems is determining how clusters affect the properties of infalling galaxies. One useful metric for this is how quickly the passive galaxy population in clusters assembles over time. Standard practice has been to assume that all red sequence galaxies are passive and to measure the evolution in the red fraction and red sequence luminosity function over time. This approach, however, neglects the possible contribution of dusty galaxies to the red sequence, which can be significant at intermediate environment and low to intermediate stellar masses. We move beyond a simple red sequence cut by using a new multi-color technique to distinguish red passive galaxies from red dusty star-forming galaxies. Isolating passive galaxies is inherently more physical than studying galaxies selected on one color alone. We track the buildup of passive galaxies in the field and in clusters using the COSMOS data for the former and a large imaging and spectroscopy survey of intermediate redshift clusters for the latter. The fraction of passive galaxies in clusters increases with increasing galaxy mass, increasing cluster velocity dispersion, and with time at a fixed mass and velocity dispersion. We relate the passive fraction in clusters to that for field galaxies of similar masses and use this to constrain the processes that shut off star formation in infalling cluster galaxies. The fraction of dust-obscured star forming galaxies changes with stellar mass and environment and this affects the interpretation of the rapid evolution in the faint red sequence galaxy population and its environmental dependence, as seen in other works.

  13. The kinematics and dynamics of the rich cluster of galaxies Abell 539

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Huchra, John P.; Geller, Margaret J.; Kurtz, Michael J.

    1988-01-01

    A sample of 289 redshifts within 10 deg of the center of the cluster A539 have been obtained in order to investigate the cluster kinematics and dynamics. Within 1 Mpc of the center, the physical parameters of A539 are found to be typical of those of rich clusters. It is shown that early-type galaxies are more concentrated toward the cluster center and that the velocity distributions of early-type and late-type galaxies differ marginally.

  14. Galaxy Recycling in the Centaurus Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, M. D.; West, M. J.

    2002-12-01

    The Centaurus cluster of galaxies contains a spectacular example of galaxy destruction and recycling, a giant plume of stellar debris over 100 kpc in length and ~ 15 kpc wide. We have obtained HST/WFPC2 V and I band images of a tiny portion of the Centaurus plume. A highly significant excess of objects is detected in the plume, compared to surrounding regions. The excess objects, assuming they are in Centaurus, range from -6 > MV> -12, providing evidence that globular clusters and dwarf galaxies can be born from tidal debris in rich galaxy clusters, just as is known to occur in field galaxy tidal interactions. Over time, the recycled debris from many such disruption events augments the intracluster population of stars, clusters, dwarf galaxies, and gas, and is a major driver of the global evolution of the cluster. We will also discuss our deep u'g'r'i'z' multicolor images of Centaurus, obtained with the CTIO 4m 8K Mosaic to investigate the entire plume and enabling a cluster-wide search for additional tidal debris to very faint levels. We acknowledge financial support from the National Science Foundation and the Space Telescope Science Institute. Part of this work was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  15. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most

  16. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  17. Characterizing galaxy clusters with gravitational potential

    NASA Astrophysics Data System (ADS)

    Lau, Erwin Tin-Hay

    2010-11-01

    We propose a simple estimator for the gravitational potential of cluster-size halos using the temperature and density profiles of the intracluster gas based on the assumptions of hydro-static equilibrium and spherical symmetry. Using high resolution cosmological simulations of galaxy clusters, we show that the scaling relation between this estimator and the gravitational potential has a small intrinsic scatter of ˜ 10%, and it is insensitive to baryon physics outside the cluster core. The slope and the normalization of the scaling relation vary weakly with redshift, and they are relatively independent of the choice of radial range used and the dynamical states of the clusters. The results presented here provide a way for using the cluster potential function as an alternative to the cluster mass function in constraining cosmology using galaxy clusters.

  18. Low X-Ray Luminosity Galaxy Clusters: Main Goals, Sample Selection, Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, José Luis; Alonso, M. Victoria; García Lambas, Diego; Valotto, Carlos; O'Mill, Ana Laura; Cuevas, Héctor; Carrasco, Eleazar R.; Ramírez, Amelia; Astudillo, José M.; Ramos, Felipe; Jaque Arancibia, Marcelo; Ulloa, Natalie; Órdenes, Yasna

    2016-06-01

    We present our study of 19 low X-ray luminosity galaxy clusters (L{}X ˜ 0.5-45 × 1043 erg s-1), selected from the ROSAT Position Sensitive Proportional Counters Pointed Observations and the revised version of Mullis et al. in the redshift range of 0.16-0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations, and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. Using the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogs contain the point-spread function and aperture magnitudes of galaxies within the 90% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km s-1 for [VMF98]022 to 775 km s-1 for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray emission peak and with clustercentric velocities smaller than the cluster velocity dispersion or 6000 km s-1, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations, the galaxy luminosity function, and cluster dynamics.

  19. How robust are predictions of galaxy clustering?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2013-07-01

    We use the Millennium Simulation data base to compare how different versions of the Durham and Munich semi-analytical galaxy formation models populate dark matter haloes with galaxies. The models follow the same physical processes but differ in how these are implemented. All of the models we consider use the Millennium N-body Simulation; however, the Durham and Munich groups use independent algorithms to construct halo merger histories from the simulation output. We compare the predicted halo occupation distributions (HODs) and correlation functions for galaxy samples defined by stellar mass, cold gas mass and star formation rate. The model predictions for the HOD are remarkably similar for samples ranked by stellar mass. The predicted bias averaged over pair separations in the range 5-25 h-1 Mpc is consistent between models to within 10 per cent. At small pair separations there is a clear difference in the predicted clustering. This arises because the Durham models allow some satellite galaxies to merge with the central galaxy in a halo when they are still associated with resolved dark matter subhaloes. The agreement between the models is less good for samples defined by cold gas mass or star formation rate, with the spread in predicted galaxy bias reaching 20 per cent and the small-scale clustering differing by an order of magnitude, reflecting the uncertainty in the modelling of star formation. The model predictions in these cases are nevertheless qualitatively similar, with a markedly shallower slope for the correlation function than is found for stellar mass selected samples and with the HOD displaying an asymmetric peak for central galaxies. We provide illustrative parametric fits to the HODs predicted by the models. Our results reveal the current limitations on how well we can predict galaxy bias in a fixed cosmology, which has implications for the interpretation of constraints on the physics of galaxy formation from galaxy clustering measurements and the

  20. Tidal Stripping of Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-01

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 1014 M⊙ h-1. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters SN depends on their clustercentric distance.

  1. TIDAL STRIPPING OF GLOBULAR CLUSTERS IN A SIMULATED GALAXY CLUSTER

    SciTech Connect

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-20

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 10{sup 14} M{sub ⊙} h{sup −1}. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters S{sub N} depends on their clustercentric distance.

  2. NGC 4388 - A Seyfert 2 galaxy in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Phillips, M. M.; Malin, D. F.

    1982-06-01

    Direct photographic data and preliminary spectroscopy of the spiral galaxy NGC 4388 are presented. The galaxy appears to be a barred spiral of morphological class SB(s)b pec and is almost certainly a member of the Virgo cluster. The nucleus was studied with a photon-counting image intensifier/reticon scanner and was found to emit a high-excitation, narrow emission-line spectrum of relatively low luminosity. Image-tube spectrograms and spectroscopy using an image photon-counting system revealed optical, X-ray, and radio nuclear properties consistent with a classical Seyfert 2 galaxy. The radial velocity of the peaks of the asymmetric nuclear emission lines is 55 km/s less than the H I 21 cm systemic velocity.

  3. Major cluster mergers and the location of the brightest cluster galaxy

    SciTech Connect

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-05-10

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc){sup 3} in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M {sub cl} > 1.1 × 10{sup 12} M {sub ☉}, including 18 massive clusters with M {sub cl} > 10{sup 14} M {sub ☉}. It also contains 1, 088, 797 galaxies with mass M {sub gal} ≥ 2 × 10{sup 9} M {sub ☉} and luminosity L > 9.5 × 10{sup 5} L {sub ☉}. For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f {sub BNC} of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f {sub BNC} increases from 0.05 for low-mass clusters (M {sub cl} ∼ 10{sup 12} M {sub ☉}) to 0.5 for high-mass clusters (M {sub cl} > 10{sup 14} M {sub ☉}) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f {sub BNC} increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi

  4. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  5. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    SciTech Connect

    Su, Yuanyuan; Weeren, Reinout van; Buote, David A.; Gastaldello, Fabio

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  6. The Virgo Cluster of Galaxies in the Making

    NASA Astrophysics Data System (ADS)

    2004-10-01

    VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the

  7. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  8. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  9. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias

  10. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  11. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  12. Numerical Simulations of Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Roettiger, Kurt; Loken, Chris; Burns, Jack O.

    1997-04-01

    We present results from three-dimensional numerical simulations of head-on mergers between two clusters of galaxies using a hybrid hydro/N-body code. In these simulations, the gaseous intracluster medium (ICM) is evolved as a massless fluid within a changing gravitational potential defined by the collisionless dark matter component. The ICM is represented by the equations of hydrodynamics which are solved by an Eulerian, finite-difference method. The cluster dark matter component is represented by the N-body particle distribution. A series of simulations have been conducted in which we have systematically varied the cluster-subcluster mass ratio between 8:1 and 1:1. We find that cluster-subcluster mergers result in an elongation of both the cluster dark matter and gas distributions. The dark matter distribution is elongated parallel to the merger axis and accompanied by anisotropy in the dark matter velocity dispersion. Both the elongation and corresponding velocity anisotropy are sustained for more than 5 Gyr after the merger. The elongation of the gas distribution is also generally along the merger axis, although shocks and adiabatic compressions produce elongations perpendicular to the merger axis at various times during the merger. We also find a significant offset between dark matter and gas centroids in the period following core passage. The gasdynamics is also severely affected by the cluster-subcluster merger. In these simulations, the subcluster enters the primary at supersonic speeds initiating bulk flows that can exceed 2000 km s-1. The width of the bulk flows are seen to range between several hundred kiloparsecs to nearly 1 Mpc. We believe the bulk flows can produce the bending of wide-angle tailed (WAT) radio sources. The most significant gasdynamics is seen to subside on timescales of 2 Gyr, although still significant dynamics is seen even after 5 Gyr. The merger-induced gasdynamics may also play a role in the formation of radio halo sources, and

  13. Characterizing the Small Scale Structure in Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    2001-01-01

    We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.

  14. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  15. Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Li, Ran; Mo, H. J.; Yang, Xiaohu

    2009-04-01

    Galaxy clustering and galaxy-galaxy lensing probe the connection between galaxies and their dark matter haloes in complementary ways. Since the clustering of dark matter haloes depends on cosmology, the halo occupation statistics inferred from the observed clustering properties of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light ratios for dark matter haloes. Galaxy-galaxy lensing, which yields direct constraints on the actual mass-to-light ratios, can therefore be used to break this degeneracy, and thus to constrain cosmological parameters. In this paper, we establish the link between galaxy luminosity and dark matter halo mass using the conditional luminosity function (CLF), Φ(L|M)dL, which gives the number of galaxies with luminosities in the range L +/- dL/2 that reside in a halo of mass M. We constrain the CLF parameters using the galaxy luminosity function and the luminosity dependence of the correlation lengths of galaxies. The resulting CLF models are used to predict the galaxy-galaxy lensing signal. For a cosmology that agrees with constraints from the cosmic microwave background, i.e. (Ωm,σ8) = (0.238,0.734), the model accurately fits the galaxy-galaxy lensing data obtained from the Sloan Digital Sky Survey. For a comparison cosmology with (Ωm,σ8) = (0.3,0.9), however, we can accurately fit the luminosity function and clustering properties of the galaxy population, but the model predicts mass-to-light ratios that are too high, resulting in a strong overprediction of the galaxy-galaxy lensing signal. We conclude that the combination of galaxy clustering and galaxy-galaxy lensing is a powerful probe of the galaxy-dark matter connection, with the potential to yield tight constraints on cosmological parameters. Since this method mainly probes the mass distribution on relatively small (non-linear) scales, it is complementary to constraints obtained from the galaxy power spectrum, which

  16. Numerical experiments on galaxy clustering in open universes

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1984-01-01

    Numerical studies were performed on the dynamical effects on the evolution of clumps, filaments, voids, and galaxy clusters by various final Omega values. The final Omega values examined ranged from 0.03-1, and attention was given to defining observations of superclusters which would aid in determining an actual value for Omega. The numerical trials consisted of n-body integration programs governed by the total expansion and final Omega value and included comparisons between results for open and closed universes. All runs started from the same initial conditions. The dispersion trajectories of particles and the final galactic cluster forms were found to be equivalent, regardless of the final Omega value. The possibility of deriving a value for Omega from velocity data on galaxies which have not yet joined clusters is discussed.

  17. Three-point correlations of galaxy clusters

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Hollosi, Joseph; Szalay, Alexander S.

    1989-01-01

    A relation between two- and three-point correlation functions similar to that of galaxies is presently established by estimating the irreducible angular three-point correlation function of Abell clusters in distance classes 5 and 6, for Galactic latitudes below 40 deg. The shape of the three-point correlation function is fully consistent with the quadratic scaling law found by Groth and Peebles (1977) for galaxies. The three-point correlation function is inconsistent with the expectations from biasing.

  18. CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Mercurio, A.; Balestra, I.; Nonino, M.; Biviano, A.; Grillo, C.; Rosati, P.; Annunziatella, M.; Demarco, R.; Fritz, A.; Gobat, R.; Lemze, D.; Presotto, V.; Scodeggio, M.; Tozzi, P.; Bartosch Caminha, G.; Brescia, M.; Coe, D.; Kelson, D.; Koekemoer, A.; Lombardi, M.; Medezinski, E.; Postman, M.; Sartoris, B.; Umetsu, K.; Zitrin, A.; Boschin, W.; Czoske, O.; De Lucia, G.; Kuchner, U.; Maier, C.; Meneghetti, M.; Monaco, P.; Monna, A.; Munari, E.; Seitz, S.; Verdugo, M.; Ziegler, B.

    2015-07-01

    Aims: In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACS J1206.2-0847 at z ~ 0.44 and probe its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Methods: Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS at VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R200 (4 h70-1 Mpc). We classify 412 galaxies as passive, with strong Hδ absorption (red and blue galaxies), and with emission lines from weak to very strong. A number of tests for substructure detection are applied to analyze the galaxy distribution in the velocity space, in 2D space, and in 3D projected phase-space. Results: Studied in its entirety, the cluster appears as a large-scale relaxed system with a few secondary, minor overdensities in 2D distribution. We detect no velocity gradients or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive galaxies and red strong Hδ galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hδ galaxies also mark a secondary, dense peak ~2 h70-1 Mpcat ESE. The emission line galaxies cluster in several loose structures, mostly outside R200. Two of these structures are also detected through our 3D analysis. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive galaxies and red strong Hδ galaxies. The red strong Hδ galaxies, interpreted as poststarburst galaxies, date a likely important event 1-2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions. Based in large part

  19. On the distribution of dark matter in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sand, David J.

    2006-07-01

    The goal of this thesis is to provide constraints on the dark matter density profile in galaxy clusters by developing and combining different techniques. The work is motivated by the fact that a precise measurement of the logarithmic slope of the dark matter on small scales provides a powerful test of the Cold Dark Matter paradigm for structure formation, where numerical simulations suggest a density profile r DM 0( r -1 or steeper in the innermost regions. We have obtained deep spectroscopy of gravitational arcs and the dominant brightest cluster galaxy in six carefully chosen galaxy clusters. Three of the clusters have both radial and tangential gravitational arcs while the other three display only tangential arcs. We analyze the stellar velocity dispersion for the brightest cluster galaxies in conjunction with axially symmetric lens models to jointly constrain the dark and baryonic mass profiles jointly. For the radial are systems we find the inner dark matter density profile is consistent with r DM 0( r -b , with [left angle bracket]b[right angle bracket] = [Special characters omitted.] (68% CL). Likewise, an upper limit on b for the tangential arc sample is found to be b <0.57 (99% CL). We study a variety of possible systematic uncertainties, including the consequences of our one- dimensional mass model, fixed dark matter scale radius, and simple velocity dispersion analysis, and conclude that at most these systematics each contribute a Db ~ 0.2 systematic into our final conclusions. These results suggest the relationship between dark and baryonic matter in cluster cores is more complex than anticipated from dark matter only simulations. Recognizing the power of our technique, we have performed a systematic search of the Hubble Space Telescope Wide Field and Planetary Camera 2 data archive for further examples of systems containing tangential and radial gravitational arcs. We carefully examined 128 galaxy cluster cores and found 104 tangential arcs and 12

  20. Mass Distribution in Galaxy Cluster Cores

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.; Edge, A. C.; Main, R. A.

    2017-03-01

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar (M *), gas (M gas), and dark matter (M DM) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular Hα emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r 1.1 expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r 0.67 down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”

  1. Dust in Cluster Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Baes, M.; Fritz, J.; Verstappen, J.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; Davies, J. I.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Magrini, L.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    Based on single cross-scan data of the Herschel Virgo Cluster Survey, we report the first detections of dust in cluster early-type dwarf galaxies: VCC 209, VCC 781 and VCC 951. All three galaxies have dust masses M d ≈ 105 - 106 M⊙ and average dust temperatures ≈ 16-20 K. Since these three early-type dwarfs reside in densely crowded regions close to the center of the Virgo cluster, and several H I-detected dwarfs in the outskirts of Virgo were not detected by Herschel(implying a dust content < 104 M⊙), this might imply that dust in dwarfs is more closely related to the molecular gas, which is more centrally peaked in a galaxy's potential well and therefore, not easily removed by any stripping mechanism. We conclude that the removal of interstellar dust from these early-type dwarfs appears to be less efficient than the removal of the H I gas.

  2. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  3. Galaxies in Clusters : Gas Stripping and Accretion

    NASA Astrophysics Data System (ADS)

    O'Dea, Chris; Balsara, Dinshaw; Livio, Mario

    1994-05-01

    We study the process of a galaxy moving through the intercluster gas in a cluster of galaxies, using a high quality hydrocode run at high resolutions. We find that ram pressure stripping occurs in the form of individual events that are separated by about ten million years. In addition we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial "pumping" mode, similar to the one found previously in simulations of wind accretion onto compact objects. Some implications of our results for the understanding of a few recent observations are discussed.

  4. Galaxy Luminosity Function of the Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    NASA Astrophysics Data System (ADS)

    Lee, Youngdae; Rey, Soo-Chang; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K.

    2016-05-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to {M}r˜ -14 mag based on deep images in the u, g, and r bands taken by using MOSAIC II CCD mounted on the Blanco 4 m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information and on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at r˜ 18.5 mag ({M}r˜ -17.8 mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the clustercentric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely associated with the surrounding, possible filamentary structure. The combined LF of the overdense regions exhibits a two-component function with a distinct dip, while the LF of the central region is well described by a single Schechter function. We suggest that, in the context of the hierarchical cluster formation scenario, the observed overdense regions are the relics of galaxy groups, retaining their two-component LFs with a dip, which acquired their shapes through a galaxy merging process in group environments, before they fall into a cluster.

  5. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    SciTech Connect

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; de Haan, T.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data set (SZ clustersv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the

  6. When clusters collide - A numerical Hydro/N-body simulation of merging galaxy clusters

    NASA Technical Reports Server (NTRS)

    Roettiger, Kurt; Burns, Jack; Loken, Chris

    1993-01-01

    A 3D numerical simulation of two merging clusters of galaxies, using a hybrid Hydro/N-body code, is presented. The hydrodynamics of the code is solved by an Eulerian finite difference method. Initial results disclose that the X-ray emission of the dominant cluster becomes elongated and broadened; heating occurs at the core of the dominant cluster as a result of multiple shocks, and high velocity gas motions within the intracluster medium. It is predicted that clusters which have undergone recent mergers and do not have cooling flows will have high peculiar gas velocities and that the shocks and turbulence generated during the merger may power cluster-wide radio halos. Prolonged high-velocity gas motions through the dominant cluster core possibly play a major role in the formation and shaping of wide-angle tailed radio sources associated with central dominant galaxies. The N-body component of the simulation reveals the subcluster to be dispersed as it passes through the dominant cluster.

  7. Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry; Bailin, Jeremy

    2017-01-01

    We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ≃ 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ≃ ‑2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R≳ 4 {R}{eff}, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.

  8. Intracluster Light in Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony; Zabludoff, Ann I.; Zaritsky, Dennis F.

    2016-01-01

    We present recent results from our study on the origin and assembly history of the intracluster starlight (ICL) for a sample of 29 galaxy groups and clusters with 3x1013clusters show clear negative color gradients. Such negative colour (and equivalently, metallicity) gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the brightest cluster galaxy (BCG). We also find ICL luminosities of 3-9 L* in the range 10 < r < 110 kpc for these clusters. Dwarf disruption alone cannot explain the total luminosity of the ICL and remain consistent with the observed evolution in the faint-end slope of the luminosity function. The results of our study are suggestive of a formation history in which the ICL is built-up by a combination of stripping of L* galaxies and/or dwarf disruption and disfavor significant contribution by major mergers with the BCG.This sample of groups and clusters is the largest with HST/WFC3 data for ICL analysis that spans two orders of magnitude in halo mass at redshifts >0.3. Because of this we can investigate how the ICL color profile changes as a function of cluster mass for the first time, as well as expand previous studies of the changing fraction of cluster luminosity that is contained in the BCG+ICL as a function of halo mass. We present our preliminary results and describe our next steps using this sample to investigate the intracluster light in massive halos.

  9. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  10. SPECTRAL IMAGING OF GALAXY CLUSTERS WITH PLANCK

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-20

    The Sunyaev–Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  11. Watching the Birth of a Galaxy Cluster?

    NASA Astrophysics Data System (ADS)

    1999-07-01

    First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of

  12. Kinematics of the Globular Cluster System of the Sombrero Galaxy

    NASA Astrophysics Data System (ADS)

    Windschitl, Jessica L.; Rhode, K. L.; Bridges, T. J.; Zepf, S. E.; Gebhardt, K.; Freeman, K. C.

    2013-06-01

    Using spectra from the Hydra spectrograph on the 3.5m WIYN telescope and from the AAOmega spectrograph on the 3.9m Anglo-Australian Telescope, we have measured heliocentric radial velocities for >50 globular clusters in the Sombrero Galaxy (M104). We combine these new measurements with those from previous studies to construct and analyze a total sample of >360 globular cluster velocities in M104. We use the line-of-sight velocity dispersion to determine the mass and mass-to-light ratio profiles for the galaxy using a spherical, isotropic Jeans mass model. In addition to the increased sample size, our data provide a significant expansion in radial coverage compared to previous spectroscopic studies. This allows us to reliably compute the mass profile of M104 out to ~43 kpc, nearly 14 kpc farther into the halo than previous work. We find that the mass-to-light ratio profile increases from the center to a value of ~20 at 43 kpc. We also look for the presence of rotation in the globular cluster system as a whole and within the red and blue subpopulations. Despite the large number of clusters and better radial sampling, we do not find strong evidence of rotation.

  13. Numerical experiments on the clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1983-01-01

    Consistent and robust growth rates for disturbances which lead to galaxy clustering are obtainable with a precision of 1-2 percent, in numerical experiments that encompass such conditions as expansion, nonexpansion, and parameter variations. The experiments have given attention to the dominant physical processes of gravitational clustering in an expanding universe of conventional matter, and are based on n-body integrations for 100,000 particles responding self-consistently to forces of self-gravitation with periodic boundary conditions. Observed structures of the scale of galaxy clusters and superclusters are most easily described in terms of matter swept away from growing empty regions. The result of this process has a cellular appearance which resembles clustering of the scale of large voids and superclusters.

  14. New Frontiers in Galaxy Clusters with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Miller, Eric D.; Kitayama, Tetsu; Akamatsu, Hiroki; Allen, Steven W.; Bautz, Mark W.; de Plaa, Jelle; Galeazzi, Massimiliano; Kawaharada, Madoka; Madejski, Grzegorz Maria; Markevitch, Maxim L.; Matsushita, Kyoko; McNamara, Brian R.; Nakazawa, Kazuhiro; Ota, Naomi; Russell, Helen; Sato, Kosuke; Sekiya, Norio; Simionescu, Aurora; Tamura, Takayuki; Uchida, Yuusuke; Ursino, Eugenio; Werner, Norbert; Zhuravleva, Irina; Zuhone, John A.; ASTRO-H Team

    2015-01-01

    The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters. For the first time, the focal plane calorimeter aboard ASTRO-H will achieve the spectral resolution required to measure velocities of the intracluster plasma. At the same time, the Hard X-ray Imager (HXI) will extend the simultaneous spectral coverage to energies well above 10 keV, critical for studying both thermal and non-thermal gas in clusters. We present an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters, including their cosmological implications, the physics of AGN feedback, the dynamics of cluster mergers and associated high-energy processes, the chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter. By demonstrating these capabilities explicitly on representative galaxy clusters, we hope to aid and encourage the broader astrophysical community in developing ASTRO-H science.

  15. New Frontiers in Galaxy Clusters with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Miller, Eric D.; Kitayama, Tetsu; Bautz, Marshall; Markevitch, Maxim; Matsushita, Kyoko; Allen, Steven; Kawaharada, Madoka; McNamara, Brian; Ota, Naomi; Akamatsu, Hiroki; de Plaa, Jelle; Galeazzi, Massimiliano; Madejski, Grzegorz; Nakazawa, Kazuhiro; Russell, Helen; Sato, Kosuke; Sekiya, Norio; Simionescu, Aurora; Tamura, Takayuki; Uchida, Yuusuke; Ursino, Eugenio; Werner, Norbert; Zhuravleva, Irina; ZuHone, John; ASTRO-H Team

    2015-08-01

    The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters. For the first time, the focal plane calorimeter aboard ASTRO-H will achieve the spectral resolution required to measure velocities of the intracluster plasma. At the same time, the Hard X-ray Imager (HXI) will extend the simultaneous spectral coverage to energies well above 10 keV, critical for studying both thermal and non-thermal gas in clusters. We present an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters, including their cosmological implications, the physics of AGN feedback, the dynamics of cluster mergers and associated high-energy processes, the chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter. By demonstrating these capabilities explicitly on representative galaxy clusters, we hope to aid and encourage the broader astrophysical community in developing ASTRO-H science.

  16. Constraints on the Optical Depth of Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-01

    Future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel’dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average {τ }500 (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

  17. Spectroscopy for E and S0 galaxies in nine clusters

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per

    1995-10-01

    Central velocity dispersions, Mg_2 line indices and radial velocities for 220 E and S0 galaxies are derived on the basis of intermediate resolution spectroscopy. Galaxies in the following clusters have been observed: Abell 194, Abell 539, Abell 3381, Abell 3574, S639, S753, Doradus, HydraI (Abell 1060) and Grm 15. For 151 of the galaxies, the velocity dispersion has not previously been measured. 134 of the Mg_2 determinations are for galaxies with no previous measurement. The spectra cover either 500 or 1000A, centred on the magnesium triplet at 5177A. The observations were obtained with the Boller & Chivens spectrograph at the ESO 1.5-m telescope and with the OPTOPUS, a multi-object fibre-fed B&C spectrograph, at the ESO 3.6-m telescope. The data are part of our ongoing study of the large-scale motions in the Universe and the physical background for the Fundamental Plane. The Fourier fitting method was used to derive the velocity dispersions and radial velocities. The velocity dispersions have been corrected for the effect of the size of the aperture. The correction was established on the basis of velocity dispersion profiles available in the literature. A comparison with results from Davies et al. shows that the derived central velocity dispersions have an rms error of 0.036 in logsigma. There is no offset relative to the velocity dispersions from Davies et al. The offset relative to data from Lucey & Carter is -0.017+/-0.011 in logsigma, with our velocity dispersions being the smallest. The velocity dispersions derived from the B&C and the OPTOPUS observations, as well as the velocity dispersions published by Davies et al., Dressler, Lucey & Carter and Lucey et al., can be brought on a system consistent within 3 per cent. The Mg_2 line indices have been corrected for the size of the apertures, transformed to the Lick system, and corrected for the effect of the velocity dispersion. From comparison with data from Davies et al. and from Faber, we find that the rms

  18. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  19. Cosmology and astrophysics with galaxy clusters

    SciTech Connect

    Nagai, Daisuke

    2014-11-20

    Galaxy clusters are the largest gravitationally bound objects in the universe, whose formation is driven by dark energy and dark matter. The majority of the baryonic mass in clusters resides in the hot X-ray emitting plasma, which also leaves imprints in the cosmic microwave background radiation. Recent X-ray and microwave observations have revealed detailed thermodynamic structure of the hot X-ray emitting plasma from their cores to the virial radii, making comparisons of baryonic component in simulations to observations a strong cosmological probe. However, the statistical power of these future surveys can only be exploited for cosmology if and only if we are able to measure the cluster mass with a very high precision. I will discuss recent progress and future challenges for the use of galaxy clusters as precise cosmological probes, with highlights on (1) the importance of understanding thermodynamics and plasma physics in the outskirts of galaxy clusters and (2) prospects for improving the power of cluster-based cosmological measurements using numerical simulations and multi-wavelength observations.

  20. Interpreting the Clustering of Distant Red Galaxies

    SciTech Connect

    Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng; /Princeton, Inst. Advanced Study

    2009-08-03

    We analyze the angular clustering of z {approx} 2.3 distant red galaxies (DRGs) measured by Quadri et al. (2008). We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w({theta}) at {theta} = 10{double_prime}, nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is {approx} 44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that {approx} 30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z {approx} 0 estimates. Down to the completeness limit of the Quadri et al sample, we find that the halo masses of central DRGs are {approx} 50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only {approx} 2/3 of the time.

  1. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  2. Exploring the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, E.; George, J.; Mushotzky, R.; Bautz, M.; Davis, D.; Henry, J.

    2014-07-01

    A number of recent studies have traced the hot intracluster medium (ICM) to the virial radius in a sizeable sample of galaxy clusters. These results have begun to clarify the thermodynamic conditions at the edge of clusters, constraining models of cluster growth and evolution, yet the observations are challenging and bedeviled by a host of systematic issues due to the very low ICM surface brightness in the cluster outskirts. We are currently embarked on a program to observe a sample of about ten relaxed clusters with Suzaku, fully imaging each cluster to beyond R_{200}, and leveraging complementary data from XMM-Newton and Chandra. Our results support the idea that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see indications of low-entropy substructures and some evidence for azimuthal variations in temperature and surface brightness. I will present the latest results from this project, explore the possible sources of systematic error, and discuss the remarkable ``universality'' of thermodynamic profiles to the outer limits of galaxy clusters.

  3. K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mohr, Joseph J.

    2004-12-01

    We investigate the near-infrared K-band properties of the brightest cluster galaxies (BCGs) in a sample of 93 X-ray galaxy clusters and groups, using data from the Two Micron All Sky Survey. Our cluster sample spans a factor of 70 in mass, making it sensitive to any cluster mass-related trends. We derive the cumulative radial distribution for the BCGs in the ensemble and find that 70% of the BCGs are centered in the cluster to within 5% of the virial radius r200; this quantifies earlier findings that BCG position coincides with the cluster center as defined by the X-ray emission peak. We study the correlations between the luminosity of the BCGs (Lb) and the mass and the luminosity of the host clusters, finding that BCGs in more massive clusters are more luminous than their counterparts in less massive systems and that the BCGs become less important in the overall cluster light (L200) as cluster mass increases. By examining a large sample of optically selected groups, we find that these correlations hold for galactic systems less massive than our clusters (<3×1013 Msolar). From the differences between luminosity functions in high- and low-mass clusters, we argue that BCGs grow in luminosity mainly by merging with other luminous galaxies as the host clusters grow hierarchically; the decreasing BCG luminosity fraction (Lb/L200) with cluster mass indicates that the rate of luminosity growth in BCGs is slow compared to the rate at which clusters acquire galaxy light from the field or other merging clusters. Utilizing the observed correlation between the cluster luminosity and mass and a merger tree model for cluster formation, we estimate that the amount of intracluster light (ICL) increases with cluster mass; our calculations suggest that in 1015 Msolar clusters more than 50% of total stellar mass is in ICL, making the role of ICL very important in the evolution and thermodynamic history of clusters. The cluster baryon fraction accounting for the ICL is in good

  4. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  5. The Evolution of Stellar Velocity Dispersion in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Stickley, Nathaniel Roland

    Stellar velocity dispersion is a key measurable quantity in galactic astronomy, yet its variation during galaxy mergers is not well-understood theoretically. Thus, while it is fairly common to measure velocity dispersion in galaxies that are in the process of merging, it is unclear how these measurements should be interpreted. In this dissertation, I provide a theoretical analysis of the evolution of stellar velocity dispersion during galaxy mergers. This is done using a set of numerical simulations. The temporal and directional evolution of velocity dispersion are examined in detail for a variety of merger simulations. I also examine the effects that dust attenuation and star formation have on measurements of velocity dispersion by creating detailed, Doppler broadened galaxy spectra. Velocity dispersions are measured from the synthetic spectra using the same technique that is employed for observations of real galaxies. I find that velocity dispersion increases rapidly and significantly as two galaxies pass through one another. As galaxies recede from a collision, their velocity dispersions rapidly decrease and nearly return to their pre-collision values. Velocity dispersion increases in all directions during collisions, however the enhancement is most significant along the collision axis. After the nuclei of the progenitor system coalesce, the velocity dispersion oscillates slightly of the coalesced system oscillated around its final equilibrium value for up to several dynamical timescales. I also find that the mean velocity dispersion of young stars tends to be lower than the velocity dispersion of the galaxy as a whole. The young stars become dynamically heated with time. In most cases, the youngest stars are found in dusty environments. Thus, dust preferen- tially obscures young stars, partially removing them from the flux-weighted velocity dispersion measurement. This causes flux-weighted velocity dispersion measurements to be elevated with respect to mass

  6. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM

  7. THE FIRST GENERATION OF VIRGO CLUSTER DWARF ELLIPTICAL GALAXIES?

    SciTech Connect

    Lisker, Thorsten; Janz, Joachim; Hielscher, Oliver; Paudel, Sanjaya; Hensler, Gerhard; Kim, Suk; Rey, Soo-Chang; Weinmann, Simone; Mastropietro, Chiara; Kotulla, Ralf

    2009-11-20

    In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE subclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single peak. We conclude that the round dEs probably are on circularized orbits, while the flat dEs are still on more eccentric or radial orbits typical for an infalling population. In this picture, the round dEs would have resided in the cluster already for a long time, or would even be a cluster-born species, explaining their nearly circular orbits. They would thus be the first generation of Virgo cluster dEs. Their shape could be caused by dynamical heating through repeated tidal interactions. Further investigations through stellar population measurements and studies of simulated galaxy clusters would be desirable to obtain definite conclusions on their origin.

  8. X-ray scaling laws for galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Horner, Donald John

    Scaling laws between galaxy cluster properties, such as the x-ray luminosity- temperature relation (L-T), the total mass-temperature relation (M-T), and velocity dispersion-temperature relation (?-T) reflect the underlying physics in clus ter formation and evolution. The differences between empirically determined and theoretically predicted scaling laws can give useful insights into physical processes happening in clusters. To determine these scaling laws, we have developed a data reduction pipeline for clusters observed by the ASCA x-ray satellite to create a sample of 273 clusters and groups with measured x-ray luminosities, average temperatures, and metal abundances. This is the largest such sample yet created and will form a baseline for future studies with improved instruments like Chandra and XMM-Newton. We compare our ASCA cluster catalog to data in the literature to examine some of the biases and systematics that affect measurement of x-ray properties, and illuminate issues that affect the science results derived from such x-ray samples. We derive the L-T relationship over several orders of magnitude in luminosity, from rich clusters to groups. In combination with data from the literature, we examine the M-T relationship for a variety of mass estimators. We then examine the ?-T relationship and other correlations between the optical and x-ray propertie s of galaxy clusters. In general, we find that these scaling laws are affected by non-gravitational processes which require additional physics, e.g., energy injection by supernovae. We also see little evolution of galaxy cluster properties with redshift to z - 0.5.

  9. An updated survey of globular clusters in M 31. I. Classification and radial velocity for 76 candidate clusters

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-09-01

    Aims.We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M 31 galaxy. The survey is aimed at the classification of known candidate M 31 clusters and at the study of their kinematic properties. Methods: .We obtained low-resolution spectroscopy (λ/Δλ ≃ 800-1300) for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M 31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~± 20 km s-1. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. Results: .In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M 31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 Hii regions belonging to M 31 and 3 unclassified (possibly M 31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M 31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Conclusions: .Our results suggest that a significant number of genuine clusters (≳100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M 31 galaxy is still far from complete even in terms of simple membership.

  10. SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VI. NINE CLUSTERS IN THE INNER MILKY WAY

    SciTech Connect

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Korchagin, Vladimir I.; Van Altena, William F.; Lopez, Carlos E.

    2010-11-15

    We have measured the absolute proper motions of nine low-latitude, inner Galaxy globular clusters, namely, NGC 6273 (M 19), NGC 6284, NGC 6287, NGC 6293, NGC 6333 (M 9), NGC 6342, NGC 6356, NGC 6388, and NGC 6441. These are the first determinations ever made for these clusters. The proper motions are on the International Celestial Reference System via Hipparcos. The proper-motion errors range between 0.4 and 0.9 mas yr{sup -1} and are dominated by the number of measurable cluster members in these regions which are very crowded by the bulge/bar and the thick disk. This sample contains five metal-poor ([Fe/H] < -1.0) and four metal-rich ([Fe/H] {>=} -1.0) clusters; seven clusters are located within {approx}4 kpc from the Galactic center, while the remaining two, namely NGC 6356 and NGC 6284, are in the background of the bulge at {approx}7.5 kpc from the Galactic center. By combining proper motions with radial velocities and distances from the literature we derive three-dimensional velocities. In a number of cases, distance uncertainties make the kinematical classification ambiguous. For the metal-poor group of clusters, we find that three clusters, namely NGC 6273, NGC 6287, and NGC 6293 are members of a kinematically hot system, the inner halo. As for the remaining two metal-poor clusters, NGC 6284 is located at {approx}7.5 kpc from the Galactic center and kinematically belongs to the thick disk, while NGC 6333, located in the inner {approx}2 kpc, has an uncertain membership (between halo and thick disk) due to the distance uncertainty. Within the metal-rich group of clusters, NGC 6356 and NGC 6342 have velocities compatible with membership in the thick disk; however, velocity uncertainties do not allow us to rule out their belonging to a hotter system. NGC 6342 is within {approx}2 kpc from the Galactic center, and thus it may belong to the bulge. NGC 6356 is at {approx}7.5 kpc from the Galactic center and thus its metallicity, kinematics, and location argue

  11. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  12. Isolated elliptical galaxies and their globular cluster systems. II. NGC 7796 - globular clusters, dynamics, companion

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Salinas, R.; Lane, R. R.; Hilker, M.; Schirmer, M.

    2015-02-01

    Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long-term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims: We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods: Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results: The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals. The colour distribution of globular clusters is bimodal, which does not necessarily mean a metallicity bimodality. The kinematic literature data are somewhat inconclusive. The velocity dispersion in the inner parts can be reproduced without dark matter under isotropy. Radially anisotropic models need a low stellar mass-to-light ratio, which would contrast with the old age of the galaxy. A MONDian model is supported by X-ray analysis and previous dynamical modelling, but better data are necessary for a confirmation. The dwarf companion galaxy NGC 7796-1 exhibits tidal tails, multiple nuclei, and very boxy isophotes. Conclusions: NGC 7796 is an old, massive isolated elliptical galaxy with no indications of later major star formation events as seen frequently in other isolated ellipticals. Its

  13. ChaMP Serendipitous Galaxy Cluster Survey

    SciTech Connect

    Barkhouse, Wayne A.; Green, P.J.; Vikhlinin, A.; Kim, D.-W.; Perley, D.; Cameron, R.; Silverman, J.; Mossman, A.; Burenin, R.; Jannuzi, B.T.; Kim, M.; Smith, M.G.; Smith, R.C.; Tananbaum, H.; Wilkes, B.J.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley, Astron. Dept. /SLAC /Garching, Max Planck Inst., MPE /Moscow, Space Res. Inst. /NOAO, Tucson /Cerro-Tololo InterAmerican Obs.

    2006-04-03

    We present a survey of serendipitous extended X-ray sources and optical cluster candidates from the Chandra Multi-wavelength Project (ChaMP). Our main goal is to make an unbiased comparison of X-ray and optical cluster detection methods. In 130 archival Chandra pointings covering 13 square degrees, we use a wavelet decomposition technique to detect 55 extended sources, of which 6 are nearby single galaxies. Our X-ray cluster catalog reaches a typical flux limit of about {approx} 10{sup -14} erg s{sup -1} cm{sup -2}, with a median cluster core radius of 21''. For 56 of the 130 X-ray fields, we use the ChaMP's deep NOAO/4m MOSAIC g', r', and i' imaging to independently detect cluster candidates using a Voronoi tessellation and percolation (VTP) method. Red-sequence filtering decreases the galaxy fore/background contamination and provides photometric redshifts to z {approx} 0.7. From the overlapping 6.1 square degree X-ray/optical imaging, we find 115 optical clusters (of which 11% are in the X-ray catalog) and 28 X-ray clusters (of which 46% are in the optical VTP catalog). The median redshift of the 13 X-ray/optical clusters is 0.41, and their median X-ray luminosity (0.5-2 keV) is L{sub X} = (2.65 {+-} 0.19) x 10{sup 43} ergs s{sup -1}. The clusters in our sample that are only detected in our optical data are poorer on average ({approx} 4{sigma}) than the X-ray/optically matched clusters, which may partially explain the difference in the detection fractions.

  14. When galaxy clusters collide: the impact of merger shocks on cluster gas and galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stroe, A.

    2015-09-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to cluster-wide traveling shocks, which can be detected at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. The 'Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We derive shock properties and the magnetic field structure for the relic. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the 'Sausage' relic. Halpha mapping of the cluster provides the first direct test as to whether the shock drives or prohibits star formation. We find numerous galaxies in! close proximity to the radio relic which are extremely massive, metal-rich, star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction between the merger, the shock wave and gas is a fundamental driver in the evolution of cluster galaxies from gas rich spirals to gas-poor ellipticals.

  15. Intermediate Redshift Galaxy Clusters from DPOSS

    NASA Astrophysics Data System (ADS)

    Lopes, P. A. A.

    2003-06-01

    In this thesis we discuss the selection of intermediate redshift galaxy cluster candidates based on the Digitized Second Palomar Observatory Sky Survey (DPOSS). Clusters are detected using the best DPOSS plates based on seeing and limiting magnitude. The search is further restricted to high galactic latitudes (|b| > 50 °), where stellar contamination is mild and nearly uniform. The input galaxy catalogs used for this search are limited to r = 21.1. The cluster selection is based on two techniques, the adaptive kernel and the voronoi tesselation methods. The final combined catalog contains ~ 10,000 candidates over ~ 2,700 square degrees, with ~ 0.30 and ~ 40 (Ngals is a richness estimate we provide). Rich clusters are detected down to z ~ 0.5. This cluster catalog is a supplement to the previous DPOSS catalogs, being the largest resource of rich clusters in this redshift range to date. In order to optimize the detection algorithms and estimate the contamination and completeness rates, we perform a large number of simulations for both catalogs. Redshift and richness estimates are also provided for all candidates in the two catalogs. As a by-product we present a comparison between the DPOSS and SDSS surveys. This comparison is used to estimate the DPOSS detection limits. Some of the projects to be developed in the future are also discussed.

  16. Clusters of Galaxies in the last 5 Billion Years: from the Brightest Cluster Galaxy to the Intra-Cluster Light

    NASA Astrophysics Data System (ADS)

    Pillepich, Annalisa

    2014-10-01

    Understanding the physical processes which shape the galaxy population in the high density environment of galaxy clusters as a function of cosmic time is a central open question in galaxy evolution studies. With the Frontier Field Initiative, HST will provide an ultra-deep view and an unprecedented multi-wavelength dataset to study the galaxy population in and around galaxy clusters at intermediate redshift. With our study, we aim at providing the first self-consistent theoretical framework based on cosmological hydrodynamical simulations to understand the evolution of cluster galaxies: our analysis is designed to complement and aid the interpretation of the wealth of observational data within the LCDM Cosmology. In particular, we plan an in-depth analysis of a sample of 15 haloes with masses between 7x10^13 and 2x10^15 Msun at z=0, simulated with the gravity+hydrodynamics code Arepo. The numerical scheme and the galaxy formation model adopted in this study have already been successfully tested against a series of global measurements: they will allow us to follow the fate, within each cluster, of hundreds of well-resolved galaxies with stellar masses above 5x10^9 Msun. Our analysis will include the assembly properties of the central brightest galaxies as well as the demographics of the satellite populations and their cluster-centric gradients of colors, morphologies and star formation rates. Our setup is suitable to quantify the effects of environment on star formation, stripping, and quenching across an unprecedented range of galaxy masses, cluster masses and spatial scales, in addition to providing valuable clues about the diffuse intra-cluster light.

  17. Merging Galaxy Cluster A2255 in Mid-infrared

    NASA Astrophysics Data System (ADS)

    Shim, Hyunjin; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2011-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 μm and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (~11 μm) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 - S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (-2.0 < N3 - S11 < -1.2) galaxies that are quiescent, old (>5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (-1.2 < N3 - S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is ~130 M sun yr-1, which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red, quiescent galaxies from the

  18. Galaxies in clusters: Gas stripping and accretion

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw; Livio, Mario; O'Dea, Christopher P.

    1994-12-01

    We study the process of a galaxy moving through the intracluster gas in a cluster of galaxies, using two-dimensional hydrodynamic simulations at high resolution. We find that ram pressure stripping occurs in the form of individual events which are separated by a few times 107 yr. In addition, we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial 'pumping' mode, similar to the one found previously in simulations of wind accretion onto compact objects. The flow is found to exhibit a complex shock structure around the core. Some implications of our results for the understanding of a few recent observations are discussed.

  19. The galaxy cluster outskirts probed by Chandra

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine

    2015-08-01

    Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056 3 keV) in the Chandra archive, with a total integration time of ~20 Ms. We stacked the emission measure profiles of the clusters to detect a signal out to R_{100}. We then measured the average emission measure, gas density and gas fraction, which scale according to the self-similar model of cluster formation. We observe a steepening of the density profiles beyond R_{500} with slope beta ~ 0.68 at R_{500} and beta ~ 1 at R_{200} and beyond. By tracking the direction of the cosmic filaments where the clusters are embedded, we report that galaxy clusters deviate from spherical symmetry. We also did not find evolution of the gas density with redshift, confirming the self-similar evolution of the gas density. The value of the baryon fraction reaches the cosmic value at R_{200}: however, systematics due to non-thermal pressure support and clumpiness might enhance the measured gas fraction, leading to an actual deficit of the baryon budget with respect to the primordial value). This novel method, the stacking the X-ray signal of cluster outskirts, has the capacity to provide a generational leap forward in our understanding of cluster physics and formation, and the use of clusters as cosmological probes.

  20. Galaxy Cluster Takes It to the Extreme

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA's Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years requires one of the most energetic events ever detected. The cluster of galaxies is filled with tenuous gas at 170 million degree Celsius that is bound by the mass equivalent of a quadrillion, or 1,000 trillion, suns. The temperature and mass make this cluster a giant among giants. VLA Radio Image of 3C438 VLA Radio Image of 3C438 "The huge feature detected in the cluster, combined with the high temperature, points to an exceptionally dramatic event in the nearby Universe," said Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and leader of a team of astronomers involved in this research. "While we're not sure what caused it, we've narrowed it down to a couple of exciting possibilities." The favored explanation for the bright X-ray arc is that two massive galaxy clusters are undergoing a collision at about 4 million miles per hour. Shock waves generated by the violent encounter of the clusters' hot gas clouds could produce a sharp change in pressure along the boundary where the collision is occurring, giving rise to the observed arc-shaped structure which resembles a titanic weather front. "Although this would be an extreme collision, one of the most powerful ever seen, we think this may be what is going on," said team member Martin Hardcastle, of the University of Hertfordshire, United Kingdom. Images of 3C438 and Surrounding Galaxy Cluster Images of 3C438 and Surrounding Galaxy Cluster A problem with the collision theory is that only one peak in the X-ray emission is seen, whereas two are expected. Longer observations with Chandra and the XMM-Newton X-ray observatories should help determine how serious this problem is for the collision hypothesis. Another possible explanation is that the disturbance was

  1. The Adopted Morphological Types of 247 Rich PF Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, Elena; Bajan, Katarzyna; Flin, Piotr; Gotsulyak, Alla

    2016-10-01

    Morphological types were determined for 247 rich galaxy clusters from the PF Catalogue of Galaxy Clusters and Groups. The adopted types are based on classical morphological schemes and consider concentration to the cluster center, the signs of preferential direction or plane in the cluster, and the positions of the brightest galaxies. It is shown that both concentration and preferential plane are significant and independent morphological criteria.

  2. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  3. Correlation analysis of objectively defined galaxy and cluster catalogues

    NASA Astrophysics Data System (ADS)

    Stevenson, P. R. F.; Fong, R.; Shanks, T.

    1988-10-01

    The authors present further galaxy clustering results from the objective COSMOS/UKST galaxy catalogue of Stevenson et al. They first re-examine the results of SSFM for the galaxy correlation function, wgg(θ), testing the stability of the result against possible systematic effects and extending the analysis to larger angular scales. They then use the method of Turner & Gott to automatically detect groups and clusters in these catalogues. The authors next present the cluster-galaxy cross-correlation function wcg. Finally, the above correlation analyses are carried out on simulated galaxy and cluster catalogues.

  4. Nonextensivity and galaxy clustering in the Universe

    NASA Astrophysics Data System (ADS)

    Wuensche, C. A.; Ribeiro, A. L. B.; Ramos, F. M.; Rosa, R. R.

    2004-12-01

    We investigate two important questions about the use of the nonextensive thermostatistics (NETS) formalism in the context of nonlinear galaxy clustering in the Universe. Firstly, we define a quantitative criterion for justifying nonextensivity at different physical scales. Then, we discuss the physics behind the ansatz of the entropic parameter q(r). Our results suggest the approximate range where nonextensivity can be justified and, hence, give some support to the applicability of NETS to the study of large-scale structures.

  5. Jet-driven feedback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian; Morsony, Brian; Bruggen, Marcus; Ruszkowski, Mateusz

    A decade of Chandra imaging has provided us with overwhelming evidence for the large scale impact black holes have on the inner regions of galaxy clusters. While it is now mostly accepted that jets play a major role in heating cool core clusters, the details of just how the heating occurs and whether it is sufficient to halt cooling are still unclear. We will present results from a series of numerical investigations that aim to illuminate how jets interact with the intracluster medium, with the primary aim to connect observed properties of radio sources and X-ray cavities to the underlying dynamics of feedback. In particular, we will argue that the dynamical state of the cluster is critically important for the evolution of radio sources, and inferences about the power and duty cycle of jets made on the basis of models that neglect cluster weather are likely to be incorrect.

  6. Masses of Galaxy Clusters from Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk; Bartelmann, Matthias; Dahle, Håkon; Israel, Holger; Limousin, Marceau; Meneghetti, Massimo

    2013-08-01

    Despite consistent progress in numerical simulations, the observable properties of galaxy clusters are difficult to predict ab initio. It is therefore important to compare both theoretical and observational results to a direct measure of the cluster mass. This can be done by measuring the gravitational lensing effects caused by the bending of light by the cluster mass distribution. In this review we discuss how this phenomenon can be used to determine cluster masses and study the mass distribution itself. As sample sizes increase, the accuracy of the weak lensing mass estimates needs to improve accordingly. We discuss the main practical aspects of these measurements. We review a number of applications and highlight some recent results.

  7. Shock Features in Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dasadia, Sarthak; Sun, Ming; Morandi, Andrea

    2017-01-01

    Clusters of galaxies are the largest and the most massive gravitationally collapsed objects in the universe. In the hierarchical scenarios of the large-scale structure formation of the universe, they form by subcluster mergers and infall. Major mergers inject tremendous amounts of energy (˜1064 erg) into the intracluster medium (ICM), triggering shocks and generating. These hydro-dynamical activities may amplify magnetic fields in the cluster and accelerate relativistic particles. These non-thermal phenomena have been revealed by the detection of Mpc-scale diffuse radio emission. Current studies hint at a correlation between X-ray and Radio morphologies.To further address this issue, shock properties of 15 galaxy clusters were studied. The sample was divided into two categories: with and without diffuse radio emission. In my dissertation, my goal is to address questions: Do more luminous clusters have stronger shocks?, How continuous gas stripping affect cool cores?, Why some clusters exhibit a stronger correlation between X-ray shocks and radio relic?

  8. Surface photometry of Virgo cluster galaxies - Barred galaxies

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.

    1976-01-01

    Photographic surface photometry in B and V is presented for three barred galaxies in the Virgo cluster: N4548, N4596, and N4608. Intercomparisons of luminosity and color profiles and standard photometric parameters indicate that for these galaxies: (1) the nuclear component follows the fourth-root-of-radius luminosity law for both B and V, (2) the luminosity profiles along the bar show a characteristic shoulder with a slight fall in B-V color profile at the brightest point in the bar, the strength of the effect declining from N4548 to N4608, (3) the integrated bar component is slightly bluer than the nucleus, and (4) as the disk, arm, and ring components contribute less to the total luminosity of the system, the contribution of the bar increases as does the equivalent gradient.

  9. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    SciTech Connect

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it

    2013-04-10

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  10. VizieR Online Data Catalog: Radial velocities of 76 M31 candidate clusters (Galleti+, 2006)

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-06-01

    We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M31 galaxy. The survey is aimed at the classification of known candidate M31 clusters and at the study of their kinematic properties. We obtained low-resolution spectroscopy for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~+/-20Km/s. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 HII regions belonging to M31 and 3 unclassified (possibly M31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Our results suggest that a significant number of genuine clusters (~>100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M31 galaxy is still far from complete even in terms of simple membership. (1 data file).

  11. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  12. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    SciTech Connect

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.

  13. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O ii] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  14. Shaken and Stirred: Conduction and Turbulence in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ruszkowski, M.; Oh, S. Peng

    2010-04-01

    Uninhibited radiative cooling in clusters of galaxies would lead to excessive mass accretion rates contrary to observations. One of the key proposals to offset radiative energy losses is thermal conduction from outer, hotter layers of cool core (CC) clusters to their centers. However, thermal conduction is sensitive to magnetic field topology. In CC clusters where temperature decreases inwards, the heat buoyancy instability (HBI) leads to magnetic fields ordered preferentially in the direction perpendicular to that of gravity, which significantly reduces the level of conduction below the classical Spitzer-Braginskii value. However, the CC clusters are rarely in perfect hydrostatic equilibrium. Sloshing motions due to minor mergers and stirring motions induced by cluster galaxies or active galactic nuclei can significantly perturb the gas. The turbulent cascade can then affect the topology of the magnetic field and the effective level of thermal conduction. We perform three-dimensional adaptive mesh refinement magnetohydrodynamical simulations of the effect of turbulence on the properties of the anisotropic thermal conduction in CC clusters. We show that very weak subsonic motions, well within observational constraints, can randomize the magnetic field and significantly boost effective thermal conduction beyond the saturated values expected in the pure unperturbed HBI case. We find that the turbulent motions can essentially restore the conductive heat flow to the CC to level comparable to the theoretical maximum of ~1/3 Spitzer for a highly tangled field. Runs with radiative cooling show that the cooling catastrophe can be averted and the cluster core stabilized; however, this conclusion may depend on the central gas density. Above a critical Froude number, these same turbulent motions also eliminate the tangential bias in the velocity and magnetic field that is otherwise induced by the trapped g-modes, and possibly allow significant turbulent heat diffusion. Our

  15. Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    NASA Astrophysics Data System (ADS)

    Caldwell, C. E.; McCarthy, I. G.; Baldry, I. K.; Collins, C. A.; Schaye, J.; Bird, S.

    2016-11-01

    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary cosmic microwave background (CMB) data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g. X-ray luminosity, Sunyaev-Zel'dovich flux, and optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ cold dark matter models. These predictions can be compared with the results from existing redshift surveys such as the highly complete Galaxy And Mass Assembly survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey and the Dark Energy Survey Instrument.

  16. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  17. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  18. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    SciTech Connect

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.; Randriamampandry, S. M. E-mail: gregory.wirth@gmail.com

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs at the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.

  19. Nonthermal emission from clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show

  20. Nonthermal emission from clusters of galaxies

    SciTech Connect

    Kushnir, Doron; Waxman, Eli E-mail: eli.waxman@weizmann.ac.il

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10{sup 14.5}M{sub ☉}, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β{sub core} and η{sub e}. β{sub core} is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η{sub e(p)} is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β{sub core} ≅ η{sub p}/200, nearly independent of cluster mass and with a scatter Δln β{sub core} ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η{sub e}/η{sub p})(T/10 keV){sup −1/2} and ≅ 150(η{sub e}/η{sub p})(T/10 keV){sup −1/2} respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η{sub p} ∼ η{sub e} ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular

  1. TANGENTIAL VELOCITY OF THE DARK MATTER IN THE BULLET CLUSTER FROM PRECISE LENSED IMAGE REDSHIFTS

    SciTech Connect

    Molnar, Sandor M.; Broadhurst, Tom; Zitrin, Adi; Rephaeli, Yoel; Shimon, Meir

    2013-09-01

    We show that the fast-moving component of the ''Bullet Cluster'' (1E0657-56) can induce potentially resolvable redshift differences between multiply lensed images of background galaxies. This moving cluster effect, due to the tangential peculiar velocity of the lens, can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components; the effect is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The Bullet Cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply lensed images of systems ''G'' and ''H'' straddling the critical curve of the bullet component will show the largest frequency shifts up to {approx}0.5 km s{sup -1}. These shifts are within the range of the Atacama Large Millimeter/Submillimeter Array for molecular emission, and are near the resolution limit of the new generation high-throughput optical-IR spectrographs. The detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with {Lambda}CDM, which is inferred from the gas motion less directly. This method may be extended to smaller redshift differences using the Ly{alpha} forest toward QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic Sunyaev-Zel'dovich effect, providing a full three-dimensional description of

  2. STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS

    SciTech Connect

    Zhang Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q.; Sheldon, Erin S.

    2013-08-20

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of {approx}5{sigma} out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.

  3. ON THE CLUSTERING OF SUBMILLIMETER GALAXIES

    SciTech Connect

    Williams, Christina C.; Giavalisco, Mauro; Yun, Min S.; Pope, Alexandra; Wilson, Grant W.; Cybulski, Ryan; Schloerb, F. Peter; Porciani, Cristiano; Scott, Kimberly S.; Austermann, Jason E.; Aretxaga, Itziar; Hughes, David H.; Hatsukade, Bunyo; Kawabe, Ryo; Lee, Kyoung-Soo; Kohno, Kotaro; Perera, Thushara

    2011-06-01

    We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg{sup 2} down to a 1.26 mJy beam{sup -1} (1{sigma}) limit, including 189 (328) sources with S/N {>=}3.5 (3). We can only set upper limits to the correlation length r{sub 0}, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits of r{sub 0} {approx}< 6-8h{sup -1} Mpc at 3.7 mJy and r{sub 0} {approx}< 11-12 h{sup -1} Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r{sub 0} is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg{sup 2} is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope's 6'' beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.

  4. Dynamical Analyses of Galaxy Clusters With Large Redshift Samples

    NASA Astrophysics Data System (ADS)

    Mohr, J. J.; Richstone, D. O.; Wegner, G.

    1998-12-01

    We construct equilibrium models of galaxy orbits in five nearby galaxy clusters to study the distribution of binding mass, the nature of galaxy orbits and the kinematic differences between cluster populations of emission-line and non emission-line galaxies. We avail ourselves of 1718 galaxy redshifts (and 1203 cluster member redshifts) in this Jeans analysis; most of these redshifts are new, coming from multifiber spectroscopic runs on the MDM 2.4m with the Decaspec and queue observing on WIYN with Hydra. In addition to the spectroscopic data we have V and R band CCD mosaics (obtained with the MDM 1.3m) of the Abell region in each of these clusters. Our scientific goals include: (i) a quantitative estimate of the range of binding masses M500 consistent with the optical and X-ray data, (ii) an estimate of the typical galaxy oribital anisotropies required to make the galaxy data consistent with the NFW expectation for the cluster potential, (iii) a better understanding of the systematics inherent in the process of rescaling and ``stacking'' galaxy cluster observations, (iv) a reexamination of the recent CNOC results implying that emission-line (blue) galaxies are an equilibrium population with a more extended radial distribution than their non emission-line (red) galaxy counterparts and (v) a measure of the galaxy contribution to the cluster mass of baryons.

  5. The structure and dynamics of the AC114 galaxy cluster revisited

    NASA Astrophysics Data System (ADS)

    Proust, Dominique; Yegorova, Irina; Saviane, Ivo; Ivanov, Valentin D.; Bresolin, Fabio; Salzer, John J.; Capelato, Hugo V.

    2015-10-01

    We present a dynamical analysis of the galaxy cluster AC114 based on a catalogue of 524 velocities. Of these, 169 (32 per cent) are newly obtained at European Southern Observatory (Chile) with the Very Large Telescope and the VIsible MultiObject spectrograph. Data on individual galaxies are presented and the accuracy of the measured velocities is discussed. Dynamical properties of the cluster are derived. We obtain an improved mean redshift value z = 0.31665 ± 0.0008 and velocity dispersion σ = 1893^{+73}_{-82} km s^{-1}. A large velocity dispersion within the core radius and the shape of the infall pattern suggests that this part of the cluster is in a radial phase of relaxation with a very elongated radial filament spanning 12 000 km s-1. A radial foreground structure is detected within the central 0.5 h-1 Mpc radius, recognizable as a redshift group at the same central redshift value. We analyse the colour distribution for this archetype Butcher-Oemler galaxy cluster and identify the separate red and blue galaxy sequences. The latter subset contains 44 per cent of confirmed members of the cluster, reaching magnitudes as faint as Rf= 21.1 (1.0 mag fainter than previous studies). We derive a mass M200 = (4.3 ± 0.7) × 1015 M⊙ h-1. In a subsequent paper, we will utilize the spectral data presented here to explore the mass-metallicity relation for this intermediate redshift cluster.

  6. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  7. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  8. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  9. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  10. IPC two-color analysis of x ray galaxy clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1990-01-01

    The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.

  11. Weak lensing galaxy cluster field reconstruction

    NASA Astrophysics Data System (ADS)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  12. Understanding the Toothbrush Merging Galaxy Cluster to Constrain Dark Matter

    NASA Astrophysics Data System (ADS)

    Dawson, William; Brüggen, M.; Van Weeren, R. J.; Wittman, D. M.

    2014-01-01

    Merging galaxy clusters have proven to be one of the most important probes of dark matter self-interaction properties. If their full dark matter constraining power is to be realized though, we must accurately quantify the properties of these dissociative mergers. Some properties such as mass and relative line of sight velocity can be directly measured and sufficiently constrained, but there remains considerable uncertainty on indirect properties of the mergers. Indirect properties such as the angle of the merger axis with the plane of the sky and collision velocity are crucial to translating the gravitational lensing measurements of the mass, X-ray measurements of the cluster gas and optical measurements of the galaxies into constraints on the dark matter properties. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger (1RXS J0603+4212) we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches.

  13. Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

    SciTech Connect

    Park, Y.

    2015-07-19

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  14. Galaxy properties in low X-ray luminosity clusters at z=0.25

    NASA Astrophysics Data System (ADS)

    Balogh, Michael; Bower, R. G.; Smail, Ian; Ziegler, B. L.; Davies, Roger L.; Gaztelu, A.; Fritz, Alexander

    2002-11-01

    We present the first spectroscopic survey of intrinsically low X-ray luminosity clusters at z>> 0, with Hubble Space Telescope (HST) WFPC2 imaging and spectroscopy from Calar Alto and WHT-LDSS2. We study 172 confirmed cluster members in a sample of ten clusters at 0.23 < z < 0.3, with LX<~ 4 × 1043h-2 erg s-1[0.1-2.4 keV] (Ωm= 0.3, Λ= 0.7). The core of each cluster is imaged with WFPC2 in the F702W filter, and the spectroscopic sample is statistically complete to Mr~-19.0 + 5 log h, within an 11 arcmin (~1.8 h-1 Mpc) field. The clusters are dynamically well-separated from the surrounding field and most have velocity distributions consistent with Gaussians. The velocity dispersions range from ~350-850 km s-1, consistent with the local LX-σ correlation. All 10 clusters host a bright, giant elliptical galaxy without emission lines, near the centre of the X-ray emission. We measure the equivalent width of two nebular emission lines, [OII] and Hα, and the Hδ absorption line to classify the cluster members spectrally. Galaxy morphologies are measured from the HST images, using the two-dimensional surface-brightness fitting software GIM2D. Emission-line galaxies in these clusters are relatively rare, comprising only 22 +/- 4 per cent of the sample. There is no evidence that these emission-line galaxies are dynamically distinct from the majority of the cluster population, though our sample is too small to rule out the ~30 per cent difference that has been observed in more massive clusters. We find 11 galaxies, comprising 6 per cent of the cluster members, that are disc-dominated but show no sign of emission in their spectrum. Most of these are relatively isolated, spiral galaxies with smooth discs. We find no cluster members with a starburst or post-starburst spectrum. The striking similarity between the spectral and morphological properties of galaxies in these clusters and those of galaxies in more massive systems at similar redshifts implies that the physical

  15. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  16. QUASAR-GALAXY CLUSTERING THROUGH PROJECTED GALAXY COUNTS AT z = 0.6-1.2

    SciTech Connect

    Zhang Shaohua; Zhou Hongyan; Wang Tinggui; Wang Huiyuan E-mail: twang@ustc.edu.cn

    2013-08-20

    We investigate the spatial clustering of galaxies around quasars at z = 0.6-1.2 using photometric data from Sloan Digital Sky Survey Stripe 82. The quasar and galaxy cross-correlation functions are measured through the projected galaxy number density n(r{sub p} ) on scales of 0.05 < r{sub p} < 20 h {sup -1} Mpc around quasars for a sample of 2300 quasars from Schneider et al. We detect strong clustering signals at all redshifts and find that the clustering amplitude increases significantly with redshift. We examine the dependence of quasar-galaxy clustering on quasar and galaxy properties and find that the clustering amplitude is significantly larger for quasars with more massive black holes or with bluer colors, while there is no dependence on quasar luminosity. We also show that quasars have a stronger correlation amplitude with blue galaxies than with red galaxies. We finally discuss the implications of our findings.

  17. H I absorption toward cooling flows in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; O'Connell, Robert W.; Bregman, Joel N.

    1990-01-01

    An H I survey of 14 cooling flow clusters and two noncooling flow clusters was conducted, and H I absorption features were detected against the nuclear radio continuum sources of two cooling flow dominant (CFD) galaxies, 2A 0335 + 096 and MKW3s. The absorption features are broad and redshifted with respect to the stellar absorption-line velocity of the CFDs by 90-225 km/s. This indicates that the H I is falling onto, and is probably gravitationally bound to, the CFDs. The kinematics of the H I clouds suggest a possible kinematic link between the warm and cold phases of the intracluster medium. The clouds are orders of magnitude smaller in radius and mass and larger in density than Galactic H I clouds. The detected CFDs have mass-accretion rates that are about 2.5 times larger than the CFDs that were not detected.

  18. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    SciTech Connect

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I.; Lopez, S.; Lira, P.; Maureira, M. J.; Gilbank, D. G.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities

  19. On the evolution of globular cluster systems. I - Present characteristics and rate of destruction in our Galaxy

    NASA Technical Reports Server (NTRS)

    Aguilar, Luis; Hut, Piet; Ostriker, Jeremiah P.

    1988-01-01

    The current dynamic state and rate of destruction for the system of globular clusters in the Galaxy are modeled. It is found that gravitational shocks due to the central bulge of the Galaxy are very efficient in destroying clusters on highly radial orbits. This effect, extrapolated at the present unweighted destruction rate over 10 to the 10th yr, can account for the observed difference between the velocity distribution of globular clusters and other tracers of the halo population.

  20. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model

  1. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  2. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  3. X-ray emission from clusters and groups of galaxies.

    PubMed

    Mushotzky, R

    1998-01-06

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  4. Simulations of binary galaxy cluster mergers: Modeling real clusters and exploring parameter spaces

    NASA Astrophysics Data System (ADS)

    Zuhone, John A.

    We present an investigation of controlled N -body/hydrodynamics high-resolution simulations of binary galaxy cluster mergers, performed using the FLASH code. In addition to analyzing the quantities directly from the simulation, we produce simulated X-ray observations of the cluster ICM and perform standard analyses of the surface brightness distribution and spectra of the X-ray photons emitted from the hot cluster gas. Several lines of evidence have suggested that the galaxy cluster Cl 0024+17, an apparently relaxed system, is actually a collision of two clusters, the interaction occurring along our line of sight. We present a high-resolution N -body/hydrodynamics simulation of such a collision. We analyze mock X-ray observations of our simulated clusters to generate radial profiles of the surface brightness and temperature to show that at later times the simulated surface brightness profiles are better fit by a superposition of two b-model profiles than a single profile, in agreement with the observations of Cl 0024+17. We determine from our fitted profiles that if the system is modeled as a single cluster, the hydrostatic mass estimate is a factor ~2-3 less than the actual mass, but if the system is modeled as two galaxy clusters in superposition, a hydrostatic mass estimation can be made which is accurate to within ~10%. Additionally, recent lensing observations of Cl 0024+17 suggest the presence of a ring-like dark matter structure, which has been interpreted as the result of such a collision. To determine the conditions under which such a feature would form, we vary the initial velocity anisotropy of the dark matter particles. Our simulations show a ring feature does not occur even when the initial particle velocity distribution is highly tangentially anisotropic. Only when the initial particle velocity distribution is circular do our simulations show such a feature, which is consistent with the halo velocity distributions seen in cosmological simulations

  5. Galaxy Cluster Studies with the Hobby Eberly Telescope Dark Energy Experiment

    NASA Astrophysics Data System (ADS)

    Boada, Steven A.; Papovich, Casey J.; Wechsler, Risa H.; Rozo, Eduardo; Rykoff, Eli S.; Gebhardt, Karl

    2016-01-01

    The study of clusters of galaxies has been argued to be a very effective way to measure cosmological parameters, including measuring dark energy and testing models of gravity. The Hobby Eberly Telescope Dark Energy Experiment (HETDEX) will observe many hundreds of square degrees, covering a large sample of galaxy clusters out to z = 0.5 based on their optical spectra (3500-5500 Å). The spectra will provide important measures of the clusters dynamics and may enable constraints on cosmological parameters, but only if the measurements provide accurate estimates of the total cluster masses. We have carried out a study to investigate the ability of HETDEX to recover accurate galaxy cluster masses over a wide range of masses and redshifts. We used a detailed mock galaxy catalog and present mock observations of two different scenarios: (1) We targeted individual galaxy clusters to investigate the recovery of parameters with such observations. (2) We created and evaluated a HETDEX-like selection "function'' of galaxies over a similarly sized portion of the sky and use well adopted techniques to recover the dynamical properties, such as velocity dispersion and mass. Using both observing strategies, we produce cluster mass probability density functions P(X|M,z), which can be used to determine the probability that a galaxy cluster of given mass (M), located at redshift (z) determined using observable parameter (X). We then applied these probability functions to ten galaxy clusters selected from the Sloan Digital Sky Survey DR8 and the Chandra-XMM X-ray Cluster Survey at z=0.2-0.3, and observed by the HETDEX spectrograph prototype instrument (VIRUS-p). We measured spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, derived a line-of-sight velocity dispersion, and inferred a dynamical mass for each cluster which ranges from (0.4-24) x 1014 M⊙ (M200c). Using the mass probability density functions described above, we updated these

  6. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  7. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  8. Steep Spectrum Radio Sources in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy E.

    2012-05-01

    Steep spectrum radio emission associated with galaxy clusters comes from compact central active galactic nuclei (AGN) driven radio sources in dense cool core clusters as well as from large regions of diffuse (halo and relic) emission associated with dynamically complex merging systems. These radio halos and relics are best traced at low radio frequencies where details of their morphology, location and spectral index distribution can be used to probe the underlying acceleration mechanism(s) as well as important details of large scale structure formation. Low frequency radio observations also play an important role in the study of AGN feedback into the intracluster medium and the regulation of cooling cores. While spectacular results are coming from the current generation of low frequency instruments, there will soon be a new revolution in studies of steep spectrum sources with the upcoming generation of low frequency interferometers on Earth and ultimately the moon.

  9. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  10. Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Kauffmann, Guinevere; Börner, Gerhard; Kang, Xi; Wang, Lan

    2007-04-01

    By comparing semi-analytic galaxy catalogues with data from the Sloan Digital Sky Survey (SDSS), we show that current galaxy formation models reproduce qualitatively the dependence of galaxy clustering and pairwise peculiar velocities on luminosity, but some subtle discrepancies with the data still remain. The comparisons are carried out by constructing a large set of mock galaxy redshift surveys that have the same selection function as the SDSS Data Release Four (DR4). The mock surveys are based on two sets of semi-analytic catalogues presented by Croton et al. and Kang et al. From the mock catalogues, we measure the redshift-space projected two-point correlation function wp(rp), the power spectrum P(k) and the pairwise velocity dispersion (PVD) in Fourier space σ12(k) and in configuration space σ12(rp), for galaxies in different luminosity intervals. We then compare these theoretical predictions with the measurements derived from the SDSS DR4. On large scales and for galaxies brighter than L*, both sets of mock catalogues agree well with the data. For fainter galaxies, however, both models predict stronger clustering and higher pairwise velocities than observed. We demonstrate that this problem can be resolved if the fraction of faint satellite galaxies in massive haloes is reduced by ~30 per cent compared to the model predictions. A direct look into the model galaxy catalogues reveals that a significant fraction (15 per cent) of faint galaxies (-18 < M0.1r - 5 log10h < -17) reside in haloes with Mvir > 1013 Msolar, and this population is predominantly red in colour. These faint red galaxies are responsible for the high PVD values of low-luminosity galaxies on small scales.

  11. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological

  12. Clues to the nature of ultradiffuse galaxies from estimated galaxy velocity dispersions

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis

    2017-01-01

    We describe how to estimate the velocity dispersions of ultradiffuse galaxies (UDGs) using a previously defined galaxy scaling relationship. The method is accurate for the two UDGs with spectroscopically measured dispersions, as well as for ultracompact galaxies, ultrafaint galaxies, and stellar systems with little or no dark matter. This universality means that the relationship can be applied without further knowledge or prejudice regarding the structure of a galaxy. We then estimate the velocity dispersions of UDGs drawn from two published samples and examine the distribution of total masses. We find, in agreement with the previous studies of two individual UDGs, that these systems are dark matter dominated systems, and that they span a range of at least 1010 < M200/M⊙ < 1012. These galaxies are not, as an entire class, either all dwarfs or all failed L* galaxies. Estimates of the velocity dispersions can also help identify interesting subsets of UDGs, such as those that are likely to have the largest mass-to-light ratios, for subsequent spectroscopic study.

  13. A partial list of southern clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Quintana, H.; White, R. A.

    1990-01-01

    An inspection of 34 SRC/ESO J southern sky fields is the basis of the present list of clusters of galaxies and their approximate classifications in terms of cluster concentration, defined independently of richness and shape-symmetry. Where possible, an estimate of the cluster morphological population is provided. The Bautz-Morgan classification was applied using a strict comparison with clusters on the Palomar Sky Survey. Magnitudes were estimated on the basis of galaxies with photoelectric or photographic magnitudes.

  14. THE GALAXY POPULATION OF LOW-REDSHIFT ABELL CLUSTERS

    SciTech Connect

    Barkhouse, Wayne A.; Yee, H. K. C.; Lopez-Cruz, Omar E-mail: hyee@astro.utoronto.c

    2009-10-01

    We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (f{sub b} ) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r {sub 200} to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (B {sub gc}), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The f{sub b} is found not to correlate with B {sub gc}; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy f{sub b} is approximately constant with clustercentric radius except for the inner-cluster core region where f{sub b} decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.

  15. Star formation activity of intermediate redshift cluster galaxies out to the infall regions

    NASA Astrophysics Data System (ADS)

    Gerken, B.; Ziegler, B.; Balogh, M.; Gilbank, D.; Fritz, A.; Jäger, K.

    2004-07-01

    We present a spectroscopic analysis of two galaxy clusters at z≈0.2, out to ˜4 Mpc. The two clusters VMF73 and VMF74 as identified by \\citet{VMFJQH98} were observed with multiple object spectroscopy using MOSCA at the Calar Alto 3.5 m telescope. Both clusters lie in the ROSAT Position Sensitive Proportional Counter field R285 and were selected from the X-ray Dark Cluster Survey \\citep{GBCZ04} that provides optical V- and I-band data. VMF73 and VMF74 are located at respective redshifts of z=0.25 and z=0.18 with velocity dispersions of 671 km s-1 and 442 km s-1, respectively. Both cluster velocity dispersions are consistent with Gaussians. The spectroscopic observations reach out to ˜2.5 virial radii. Line strength measurements of the emission lines Hα and [O II]λ3727 are used to assess the star formation activity of cluster galaxies which show radial and density dependences. The mean and median of both line strength distributions as well as the fraction of star forming galaxies increase with increasing clustercentric distance and decreasing local galaxy density. Except for two galaxies with strong Hα and [O II] emission, all of the cluster galaxies are normal star forming or passive galaxies. Our results are consistent with other studies that show the truncation in star formation occurs far from the cluster centre. Table A.1 is only available in electronic from at http//www.edpsciences.org

  16. The Formation of Cluster Populations Through Direct Galaxy Collisions

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley W.; Smith, Beverly J.; Struck, Curtis

    2016-01-01

    Much progress has been made on the question of how globular clusters form. In particular, the study of extragalactic populations of young, high-mass clusters ("super star clusters") has revealed a class of objects can evolve into globular clusters. The process by which these clusters form, and how many survive long enough to become globular clusters, is not wholly understood. Here, we use new data on the colliding galaxy system Arp 261 to investigate the possibility that young, massive clusters form in greater numbers during direct galaxy collisions, compared to less direct tidal collisions.

  17. Formation and evolution of star clusters in merging galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Qing

    2002-04-01

    Recent observations have revealed numerous young massive star clusters, often known as “young globular clusters”. Their formation and evolution are important astrophysical processes and may potentially have cosmological implications. In this work, we focus on the star clusters in the nearest ongoing merger NGC 4038/9 (the “Antennae”). With the Hubble Space Telescope, we identify clusters with all ages, most of which are younger than 20 Myr. Our goal is to study their formation mechanisms, and the relation with the interstellar medium environment, and their evolutionary connection with old globular clusters. We find that their luminosity function and mass function are best described as power laws with indices around -2. The masses of young star clusters cover the range 104 ≤ M ≤ 10 6 M⊙ . This result is distinctly different from that of old globular clusters that has a “preferred” scale at M ≈ 2 × 105 M⊙ . To understand the difference in MF between the young and old star clusters, we conduct a theoretical study on the effects of dynamical disruption of individual clusters on the mass function. We find that, for a wide variety of initial conditions, the mass function develops a characteristic scale, that is remarkably close to the observed one for globular clusters after 12 Gyr. In addition, we find that some radial anisotropy in the initial velocity distribution, especially when decreasing outward, is needed to account for the observed near-uniformity of the mass functions of globular clusters. This is consistent with the observed near-isotropy of the present velocity distributions because clusters on elongated orbits are preferentially destroyed. In order to understand the formation and feedback effects of young star clusters, we have also conducted a multi- wavelength study on the association between young star clusters and their interstellar environment in the Antennae galaxies. This is possible for the first time because various new

  18. Two high-velocity encounters of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Balcells, Marc; Borne, Kirk D.; Hoessel, John G.

    1989-01-01

    This paper describes results obtained on a simulation of two high-velocity encounters of NGC 4782/4783 and NGC 2672/2673 binary elliptical galaxies which differ substantially in mass ratio (about 1 for the first pair, and about 10 for the second). CCD images and velocities obtained from digital spectra were used to constrain simulations of the galaxy collisions. The binary orbital elements, the orientation of the orbit in the sky, the time since pericenter, and the dynamical mass of the pair were derived. Results suggested that the dumb-bell galaxy NGC 4782/4783 is not a supermassive galaxy, as was claimed earlier on the basis of the high relative velocity and high central dispersion, but has a moderate mass to luminosity ratio M/L(B) of about 10. It was concluded that its trajectory changed from hyperbolic to elliptical as a result of energy lost during the collision. It was found that the NGC 2672/2673 also has a moderate M/L(B) of about 7.

  19. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST

  20. Galaxy populations in the Antlia cluster - II. Compact elliptical galaxy candidates

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía V.; Faifer, Favio R.; Richtler, Tom; Bassino, Lilia P.

    2008-12-01

    Continuing our study of galaxy populations in the Antlia cluster, we present a photometric analysis of four galaxies classified as compact elliptical (cE) galaxies in the 1990 Antlia Group catalogue of Ferguson and Sandage. Until now, there have been only six known members of this rare type of galaxy. Using data from various photometric systems (Washington C, Kron-Cousins R, Bessel V and I, Hubble Space Telesecope F814W and F435W), we measured the brightness and colour profiles, as well as the structural parameters. By comparing these with those of other galaxies in the Antlia cluster, as well as with confirmed cE galaxies from the literature, we found that two of the cE candidates, although spectroscopically confirmed Antlia members, are not cE galaxies. However, one of these objects presents strong ellipticity and position angle variations that resemble those already reported for M32, leading us to speculate about this type of object being a progenitor of a cE galaxy. The other two cE candidates, for which radial velocities are not available, match some features typical of cE galaxies, such as being close in projection to a larger galaxy, displaying flat colour profiles, and having a high degree of compactness. Only one of the remaining cE candidates shows a high central surface brightness, two components in its brightness profile and distinct changes in ellipticity and position angle where the outer component begins to dominate. It seems to follow the same trend as other confirmed cE galaxies in a luminosity versus mean effective surface brightness diagram. Moreover, it shows a distorted inner structure with similar characteristics to those found by simulations of interacting galaxies. Also, an extremely faint structure, which seems to link this object with one of the Antlia dominant galaxies, has been detected in images from the Cerro Tololo Inter-American Observatory MOSAIC, the Very Large Telescope FORS1 and the Hubble Space Telescope Advanced Camera for

  1. Do Disk Galaxies Have Different Central Velocity Dispersions At A Given Rotation Velocity?

    NASA Astrophysics Data System (ADS)

    Danilovich, Taissa; Jones, H.; Mould, J.; Taylor, E.; Tonini, C.; Webster, R.

    2011-05-01

    Hubble's classification of spiral galaxies was one dimensional. Actually it was 1.5 dimensional, as he distinguished barred spirals. Van den Bergh's was two dimensional: spirals had luminosity classes too. Other schemes are summarized at http://www.daviddarling.info/encyclopedia/G/galaxyclassification.html A more quantitative approach is to classify spiral galaxies by rotation velocity. Their central velocity dispersion (bulge) tends to be roughly one half of their rotation velocity (disk). There is a trend from σ/W = 0.8 to σ/W = 0.2 as one goes from W = 100 to 500 km/s, where W is twice the rotation velocity. But some fraction of spirals have a velocity dispersion up to a factor of two larger than that. In hierarchical galaxy formation models, the relative contributions of σ and W depend on the mass accretion history of the galaxy, which determines the mass distribution of the dynamical components such as disk, bulge and dark matter halo. The wide variety of histories that originate in the hierarchical mass assembly produce at any value of W a wide range of σ/W, that reaches high values in more bulge- dominated systems. In a sense the two classifiers were both right: spirals are mostly one dimensional, but σ/W (bulge to disk ratio) is often larger than average. Is this a signature of merger history?

  2. The Scaling of Stellar Mass and Central Stellar Velocity Dispersion for Quiescent Galaxies at z<0.7

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Geller, Margaret J.; Fabricant, Daniel G.; Hwang, Ho Seong

    2016-12-01

    We examine the relation between stellar mass and central stellar velocity dispersion—the M * σ relation—for massive quiescent galaxies at z < 0.7. We measure the local relation from the Sloan Digital Sky Survey and the intermediate redshift relation from the Smithsonian Hectospec Lensing Survey. Both samples are highly complete (>85%) and we consistently measure the stellar mass and velocity dispersion for the two samples. The M * σ relation and its scatter are independent of redshift with σ \\propto {M}* 0.3 for M * ≳ 1010.3 M ⊙. The measured slope of the M * σ relation is the same as the scaling between the total halo mass and the dark matter halo velocity dispersion obtained by N-body simulations. This consistency suggests that massive quiescent galaxies are virialized systems, where the central dark matter concentration is either a constant or negligible fraction of the stellar mass. The relation between the total galaxy mass (stellar + dark matter) and the central stellar velocity dispersion is consistent with the observed relation between the total mass of a galaxy cluster and the velocity dispersion of the cluster members. This result suggests that the central stellar velocity dispersion is directly proportional to the velocity dispersion of the dark matter halo. Thus, the central stellar velocity dispersion is a fundamental, directly observable property of galaxies, which may robustly connect galaxies to dark matter halos in N-body simulations. To interpret the results further in the context of ΛCDM, it would be useful to analyze the relationship between the velocity dispersion of stellar particles and the velocity dispersion characterizing their dark matter halos in high-resolution cosmological hydrodynamic simulations.

  3. Cosmology with EMSS Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. Mark

    1999-01-01

    We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.

  4. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  5. A velocity dipole in the distribution of radio galaxies.

    PubMed

    Blake, Chris; Wall, Jasper

    2002-03-14

    The motion of our Galaxy through the Universe is reflected in a systematic shift in the temperature of the cosmic microwave background-because of the Doppler effect, the temperature of the background is about 0.1 per cent higher in the direction of motion, with a correspondingly lower temperature in the opposite direction. This effect is known as dipole anisotropy. If our standard cosmological model is correct, a related dipole effect should also be present as an enhancement in the surface density of distant galaxies in the direction of motion. The main obstacle to finding this signal is the uneven distribution of galaxies in the local supercluster, which drowns out the small cosmological signal. Here we report a detection of the expected cosmological dipole anisotropy in the distribution of galaxies. We use a survey of radio galaxies that are mainly located at cosmological distances, so the contamination from nearby clusters is small. When local radio galaxies are removed from the sample, the resulting dipole is in the same direction as the temperature anisotropy of the microwave background, and close to the expected amplitude. The result therefore confirms the standard cosmological interpretation of the microwave background.

  6. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  7. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II.. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, B.; Noll, S.; Halliday, C.; Poggianti, B. M.; Jablonka, P.; Aragón-Salamanca, A.; Saglia, R. P.; Nowak, N.; von der Linden, A.; De Lucia, G.; Pelló, R.; Moustakas, J.; Poirier, S.; Bamford, S. P.; Clowe, D. I.; Dalcanton, J. J.; Rudnick, G. H.; Simard, L.; White, S. D. M.; Zaritsky, D.

    2008-05-01

    Aims: We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. Methods: We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. Results: The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters. Conclusions: Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for 26 EDisCS clusters with redshifts in the range 0.40-0.96 and velocity dispersions in the range 166 km s-1-1080 km s-1. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419

  8. Velocity dispersions in the bulges of spiral and S0 galaxies. II Further observations and a simple three-component model for spiral galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, B. C.; Kirshner, R. P.

    1981-11-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L ∝ σ4, but with velocity dispersions that are 17 ± 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L ∝ σ4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. We also find that the bulge components of SO galaxies follow a L ∝ σ4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar. We have compared our velocity dispersions with rotational velocities determined from neutral hydrogen widths. For a totally bulge dominated spiral the ratio of the asymptotic rotational velocity to the velocity dispersion is about 1.4. This suggests that the mass responsible for producing the flat rotation curves (presumably the "halo") resides in a spheroidal component rather than in the disk. Our study also substantiates our earlier result that the massive halo is not merely an extension of the bulge, but is a separate dynamical component for most of our galaxies. A simple three-component model has been constructed to aid in the interpretation of this data. These models provide an independent indication of the existence of massive halos in spiral galaxies.

  9. The Luminosity Functions of Low Redshift Field and Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Jorgensen, I.; Hill, G. J.; Bergmann, M. P.; Elston, R.; Vanden Berk, D.; Jurcevic, J. S.

    1999-12-01

    We present a comparison of the luminosity functions for low redshift field and cluster galaxies. The luminosity functions are established for field galaxies in UBVRI, and for galaxies in the Coma cluster in UBRI. The field galaxy sample is drawn from The Texas Deep Sky Survey (TDSS) of a 2.1 by 2.1 sq. deg. area around the North Galactic Pole. More than 40000 objects have been detected in our survey of this area. We have obtained spectra of approximately 700 galaxies, making the redshift information complete to a total R magnitude of 18.5 mag. We have surveyed the central square degree of the Coma cluster in UBRI. Approximately 16000 objects have been detected in our survey. We have obtained spectra for 220 galaxies in the area with no previous measurements. Together with published data these observations make the redshift information complete for galaxies brighter than a total R magnitude of 17.5. A total of 480 members of the cluster have measured redshifts, while 180 background and foreground galaxies in the field have measured redshifts. The accurate determination of the luminosity functions for low redshift galaxies is important for the interpretation of luminosity functions established for higher redshift galaxies, both in clusters and in the field. This research was supported in part by NASA through grant number HF-01073.01.94A to IJ from the Space Telescope Science Institute.

  10. Scaling Relations of Mass, Velocity, and Radius for Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Earl

    2017-02-01

    I demonstrate four tight correlations of total baryonic mass, velocity, and radius for a set of nearby disk galaxies: the mass–velocity relation {M}{{t}}\\propto {V}4; the mass–radius relation {M}{{t}}\\propto {R}2; the radius–velocity relation R\\propto {V}2; and the mass–radius–velocity relation {M}{{t}}\\propto {{RV}}2. The mass–velocity relation is the familiar Baryonic Tully–Fisher relation, and versions of the other three relations, using magnitude rather than baryonic mass, are also well known. These four observed correlations follow from a pair of more fundamental relations. First, the centripetal acceleration at the edge of the stellar disk is proportional to the acceleration predicted by Newtonian physics, and second, this acceleration is a constant that is related to Milgrom’s constant. The two primary relations can be manipulated algebraically to generate the four observed correlations and allow little room for dark matter inside the radius of the stellar disk. The primary relations do not explain the velocity of the outer gaseous disks of spiral galaxies, which do not trace the Newtonian gravitational field of the observed matter.

  11. Investigation of dwarf galaxies in the Virgo cluster

    SciTech Connect

    Bothun, G.D.; Mould, J.R.; Wirth, A.; Caldwell, N.

    1985-05-01

    We have obtained 21-cm H I observations of a sample of 32 dwarf irregular (dI) and 12 dwarf elliptical (dE) galaxies that are located in the Virgo cluster. Altogether, 18 of 32 DIs were detected in H I, but none of the dEs were detected at a sensitivity level of M/sub Htsi/ = 2--3 x 10/sup 6/ M/sub sun/. The detected dIs have M/sub Htsi/>3 x 10/sup 7/ M/sub sun/. This disparity in H I content between dIs and dEs effectively dispels the possibility that the dEs are presently in a stage of quiescence (hibernation), between bursts of star formation. In order to supplement the 21-cm data, we have acquired optical spectroscopy, CCD images, and infrared photometry for a limited subsample of these dwarfs. The most significant result provided by this additional data is that the dEs, although very H I poor, nevertheless have observed (J-K) colors which indicate somewhat high metallicity, implying some degree of enrichment due to multiple generations of star formation. In contrast, most of the dIs are quite H I rich (with some having fractional H I contents that exceed 30% by mass), yet they are apparently in a quiescent phase, judging by their low central surface brightnesses (<10% of sky) and lack of resolution into obvious regions of star formation. A small gas-poor contingent of dIs have been found but there is no apparent correlation between dI gas content and either their velocity with respect to the Virgo ICM or their position in the cluster. In general, the velocity distribution of the dIs is flat with only a weak peak that corresponds to the mean velocity of the brighter galaxies in Virgo.

  12. Constraining Dark Matter Through the Study of Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dawson, William Anthony

    2013-03-01

    Context: The majority (~85%) of the matter in the universe is composed of dark matter, a mysterious particle that does not interact via the electromagnetic force yet does interact with all other matter via the gravitational force. Many direct detection experiments have been devoted to finding interactions of dark matter with baryonic matter via the weak force. It is still possible that dark matter interacts with itself via a strong scale force and has a self-scattering cross-section of ~0.5 cm2g -1. In fact such a strong scale scattering force could resolve several outstanding astronomical mysteries: a discrepancy between the cuspy density profiles seen in ΛCDM simulations and the cored density profiles observed in low surface brightness galaxies, dwarf spheroidal galaxies, and galaxy clusters, as well as the discrepancy between the significant number of massive Milky Way dwarf spheroidal halos predicted by ΛCDM and the dearth of observed Milky Way dwarf spheroidal halos. Need: While such observations are in conflict with ΛCDM and suggest that dark matter may self-scatter, each suffers from a baryonic degeneracy, where the observations might be explained by various baryonic processes (e.g., AGN or supernove feedback, stellar winds, etc.) rather than self-interacting dark matter (SIDM). If dark matter lags behind the effectively collisionless galaxies then this is clear evidence that dark matter self-interacts. The expected galaxy-dark matter offset is typically >25 kpc (for cross-sections that would explain the other aforementioned issues with ΛCDM), this is larger than the scales of that are plagued by the baryonic degeneracies. Task: To test whether dark matter self-interacts we have carried out a comprehensive survey of the dissociative merging galaxy cluster DLSCL J0916.2+2951 (also known as the Musket Ball Cluster). This survey includes photometric and spectroscopic observations to quantify the position and velocity of the cluster galaxies, weak

  13. Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia

    2016-09-01

    We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

  14. Turbulence Produced by Tsunamis in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Matsumoto, Tomoaki; Wada, Keiichi

    2004-12-01

    Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T˜ 2--10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the `cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

  15. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0 galaxies in galaxy clusters with log M {sub *} ≲ 10.0 M {sub ☉}.

  16. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    SciTech Connect

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second part focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments

  17. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  18. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  19. VLT/Magellan Spectroscopy of 29 Strong Lensing Selected Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Carrasco, Mauricio; Barrientos, L. Felipe; Anguita, Timo; García-Vergara, Cristina; Bayliss, Matthew; Gladders, Michael; Gilbank, David; Yee, H. K. C.; West, Michael

    2017-01-01

    We present an extensive spectroscopic follow-up campaign of 29 strong lensing (SL) selected galaxy clusters discovered primarily in the Second Red-Sequence Cluster Survey (RCS-2). Our spectroscopic analysis yields redshifts for 52 gravitational arcs present in the core of our galaxy clusters, which correspond to 35 distinct background sources that are clearly distorted by the gravitational potential of these clusters. These lensed galaxies span a wide redshift range of 0.8 ≤ z ≤ 2.9, with a median redshift of zs = 1.8 ± 0.1. We also measure reliable redshifts for 1004 cluster members, allowing us to obtain robust velocity dispersion measurements for 23 of these clusters, which we then use to determine their dynamical masses by using a simulation-based σDM ‑ M200 scaling relation. The redshift and mass ranges covered by our SL sample are 0.22 ≤ z ≤ 1.01 and 5× {10}13≤slant {M}200/{h}70-1 {M}ȯ ≤slant 1.9× {10}15, respectively. We analyze and quantify some possible effects that might bias our mass estimates, such as the presence of substructure, the region where cluster members are selected for spectroscopic follow-up, the final number of confirmed members, and line-of-sight effects. We find that 10 clusters of our sample with Nmem ≳ 20 show signs of dynamical substructure. However, the velocity data of only one system is inconsistent with a uni-modal distribution. We therefore assume that the substructures are only marginal and not of comparable size to the clusters themselves. Consequently, our velocity dispersion and mass estimates can be used as priors for SL mass reconstruction studies and also represent an important step toward a better understanding of the properties of the SL galaxy cluster population.

  20. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  1. Stellar population properties of the most massive globular clusters and ultra-compact dwarf galaxies of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Hilker, Michael

    2017-03-01

    Most ultra-compact dwarf galaxies (UCDs) and very massive globular clusters reside in nearby galaxy clusters or around nearby giant galaxies. Due to their distance (> 4 Mpc) and compactness (r eff < 100 pc) they are barely resolved, and thus it is difficult to obtain their internal properties. Here I present our most recent attempts to constrain the mass function, stellar content and dynamical state of UCDs in the Fornax cluster. Thanks to radial velocity membership assignment of ~ 950 globular clusters (GCs) and UCDs in the core of Fornax, the shape of their mass function is well constrained. It is consistent with the `standard' Gaussian mass function of GCs. Our recent simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that ~ 40% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails. Multi-band UV to optical imaging as well as low to medium resolution spectroscopy revealed that there exist UCDs with youngish ages, (sub-)solar [α/Fe] abundances, and probably He-enriched populations.

  2. A new giant luminous arc gravitational lens associated with a z = 0.62 galaxy cluster, and the environments of distant radio galaxies

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1993-01-01

    In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.

  3. The 2dF Galaxy Redshift Survey: the clustering of galaxy groups

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Baugh, Carlton M.; Eke, Vincent R.; Norberg, Peder; Cole, Shaun; Frenk, Carlos S.; Croton, Darren J.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2004-07-01

    We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of ~ 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than L* galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are 10 times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the ΛCDM model.

  4. Spectroscopic Confirmation of the Existence of Large, Diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean P.; Conroy, Charlie; Geha, Marla; Merritt, Allison; Villaume, Alexa; Zhang, Jielai

    2015-05-01

    We recently identified a population of low surface brightness objects in the field of the z = 0.023 Coma cluster, using the Dragonfly Telephoto Array. Here we present Keck spectroscopy of one of the largest of these “ultra-diffuse galaxies” (UDGs), confirming that it is a member of the cluster. The galaxy has prominent absorption features, including the Ca ii H+K lines and the G-band, and no detected emission lines. Its radial velocity of cz = 6280 ± 120 km s-1 is within the 1σ velocity dispersion of the Coma cluster. The galaxy has an effective radius of 4.3 ± 0.3 kpc and a Sérsic index of 0.89 ± 0.06, as measured from Keck imaging. We find no indications of tidal tails or other distortions, at least out to a radius of ˜ 2{{r}e}. We show that UDGs are located in a previously sparsely populated region of the size—magnitude plane of quiescent stellar systems, as they are ˜6 mag fainter than normal early-type galaxies of the same size. It appears that the luminosity distribution of large quiescent galaxies is not continuous, although this could largely be due to selection effects. Dynamical measurements are needed to determine whether the dark matter halos of UDGs are similar to those of galaxies with the same luminosity or to those of galaxies with the same size.

  5. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  6. Star Clusters in Intermediate-Age Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Miller, Bryan W.; Trancho, G.; Schweizer, F.

    2011-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Star clusters are useful tracers of major star-formation events in galaxies since they are compact, relatively easy to detect, and have properties well described by simple-stellar-population models. Imaging with the Hubble Space Telescope has revealed that young compact star clusters are formed copiously during galaxy mergers, strengthening theories in which giant elliptical galaxies are formed through mergers of spirals. However, the formation and evolution of globular cluster systems is still not well understood. We should be able to observe how cluster systems evolve from the very young systems with power-law luminosity functions to old systems with log-normal luminosity functions like those observed in old elliptical galaxies. Finding intermediate-age cluster systems would constrain theories of cluster formation and destruction (evaporation, shocking, dynamical friction) as well as show the significance of merger events in the histories of galaxies. We present results of combining HST optical photometry with ground-based K-band photometry from NIRI and Flamingos-I on Gemini to study the star cluster systems of five intermediate-age merger remnants. The galaxies were chosen based on blue colors and fine structure such as shells and ripples that are indicative of past interactions. We find evidence for star clusters with ages consistent with the estimated merger ages. The properties of the star clusters systems and implications for galaxy and star cluster formation will be discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada

  7. The Hierarchical Distribution of Young Stellar Clusters in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, Kathryn; Calzetti, Daniela

    2017-01-01

    We investigate the spatial distributions of young stellar clusters in six nearby galaxies to trace the large scale hierarchical star-forming structures. The six galaxies are drawn from the Legacy ExtraGalactic UV Survey (LEGUS). We quantify the strength of the clustering among stellar clusters as a function of spatial scale and age to establish the survival timescale of the substructures. We separate the clusters into different classes, compact (bound) clusters and associations (unbound), and compare the clustering among them. We find that younger star clusters are more strongly clustered over small spatial scales and that the clustering disappears rapidly for ages as young as a few tens of Myr, consistent with clusters slowly losing the fractal dimension inherited at birth from their natal molecular clouds.

  8. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  9. Brightest cluster galaxies in the extended GMRT radio halo cluster sample. Radio properties and cluster dynamics

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Cassano, R.; Giacintucci, S.; Bardelli, S.; Dallacasa, D.; Zucca, E.

    2015-09-01

    Aims: First-ranked galaxies in clusters, usually referred to as brightest cluster galaxies (BCGs), show exceptional properties over the whole electromagnetic spectrum. They are the most massive elliptical galaxies and show the highest probability to be radio loud. Moreover, their special location at the centres of galaxy clusters raises the question of the role of the environment in shaping their radio properties. In the attempt to separate the effect of the galaxy mass and of the environment on their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. Methods: We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS), which consists of 65 clusters in the redshift range 0.2-0.4, with X-ray luminosity LX ≥ 5 × 1044 erg s-1, and quantitative information on their dynamical state from high-quality Chandra imaging. We obtained a statistical sample of 59 BCGs, which we divided into two classes, depending on whether the dynamical state of the host cluster was merging (M) or relaxed (R). Results: Of the 59 BCGs, 28 are radio loud and 31 are radio quiet. The radio-loud sources are favourably located in relaxed clusters (71%), while the reverse is true for the radio-quiet BCGs, which are mostly located in merging systems (81%). The fractional radio luminosity function for the BCGs in merging and relaxed clusters is different, and it is considerably higher for BCGs in relaxed clusters, where the total fraction of radio loudness reaches almost 90%, to be compared to the ~30% in merging clusters. For relaxed clusters, we found a positive correlation between the radio power of the BCGs and the strength of the cool core, consistent with previous studies on local samples. Conclusions: Our study suggests that the radio loudness of the BCGs strongly depends on the cluster dynamics; their fraction is

  10. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    SciTech Connect

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-08-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase ({approx}10%) in detected cluster number counts (due to a {approx}50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in {approx}2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a {approx}55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors.

  11. The Nature of Red-Sequence Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  12. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  13. CO deficiency in galaxies of the Fornax cluster?

    NASA Technical Reports Server (NTRS)

    Horellou, Cathy; Casoli, Fabienne; Dupraz, Christophe

    1993-01-01

    There is ample observational evidence that cluster galaxies are different from those in the field. Interaction with the hot intracluster medium affects the morphology of the galaxies, their gaseous content and possibly their star-formation activity. Tidal encounters between galaxies also play an important role. The atomic component has been investigated in detail for several clusters, among them our neighbor Virgo. With the Swedish-ESO 15 m telescope, we have observed in the 12CO(1-0) transition the 23 brightest spirals and lenticulars of the Formax cluster.

  14. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-08-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec{sup -2}. Light profiles were initially fitted with a Sersic's R {sup 1/n} model, but we found that 205 ({approx}48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n {approx} 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ({approx}0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M{sub R} = -23.8 {+-} 0.6 mag for single profile BCGs and M{sub R} = -24.0 {+-} 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 {+-} 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a{sub single} = 3.29 {+-} 0.06 and a{sub double} = 2.79 {+-} 0.08. Also, the logarithmic slope of the metric luminosity {alpha} is higher in double profile BCGs ({alpha}{sub double} = 0.65 {+-} 0.12) than in single profile BCGs ({alpha}{sub single} = 0.59 {+-} 0.14). The mean isophote outer ellipticity (calculated at {mu} {approx} 24 mag arcsec{sup -2}) is higher in double profile BCGs (e{sub double} = 0.30 {+-} 0.10) than in single profile BCGs (e{sub single} = 0.26 {+-} 0.11). Similarly

  15. Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Alonso, M. V.; da Costa, L. N.; Willmer, C. N. A.; Wegner, G.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2002-06-01

    This paper presents data on the ENEARc subsample of the larger ENEAR survey of nearby early-type galaxies. The ENEARc galaxies belong to clusters and were specifically chosen to be used for the construction of a Dn-σ template. The ENEARc sample includes new measurements of spectroscopic and photometric parameters (redshift, velocity dispersion, line index Mg2, and the angular diameter dn), as well as data from the literature. New spectroscopic data are given for 229 cluster early-type galaxies, and new photometry is presented for 348 objects. Repeat and overlap observations with external data sets are used to construct a final merged catalog consisting of 640 early-type galaxies in 28 clusters. Objective criteria, based on catalogs of groups of galaxies derived from complete redshift surveys of the nearby universe, are used to assign galaxies to clusters. In a companion paper, these data are used to construct the template Dn-σ distance relation for early-type galaxies, which has been used to estimate galaxy distances and derive peculiar velocities for the ENEAR all-sky sample. Based on observations at Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; Cerro Tololo Inter-American Observatory, National Optical Astronomical Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; the European Southern Observatory (ESO), partially under the ESO-ON agreement; the Fred Lawrence Whipple Observatory; the Observatório do Pico dos Dias, operated by the Laboratório Nacional de Astrofísica and the MDM Observatory at Kitt Peak.

  16. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    SciTech Connect

    Bellazzini, M.; Magrini, L.; Mucciarelli, A.; Fraternali, F.; Ibata, R.; Martin, N.; Battaglia, G.; Testa, V.; Fumana, M.; Marchetti, A.; Correnti, M.

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  17. A Study of Four distant, Extremely X-Ray Luminous Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Tucker, Wallace

    1999-01-01

    We identified the extended Einstein IPC X-ray source 1 E 0657-56 with a previously unknown cluster of galaxies at a redshift of z = 0.296. Optical CCD images show the presence of a gravitational arc in this cluster, and galaxy spectra yield a cluster velocity dispersion of 1213(exp +352) - 191 km/s. X-ray data obtained with the ROSAT HRI and ASCA indicate that 1E 0657-56 is a highly luminous cluster in which a merger of subclusters may be occurring. The temperature of the hot gas in 1E 0657-56 is kT = l7.4 +/- 2.5 (keV) , which makes it an unusually hot cluster, with important cosmological implications. Follow-up work with optical, radio and X-ray telescopes is in progress.

  18. The impact of galaxy geometry and mass evolution on the survival of star clusters

    SciTech Connect

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

  19. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  20. CCD photometry of Andromeda IV - Dwarf irregular galaxy or M31 open cluster?

    NASA Technical Reports Server (NTRS)

    Jones, Joseph H.

    1993-01-01

    CCD photometry of Andromeda IV was obtained during discretionary time in August of 1989 at the Canada-France-Hawaii Telescope on Mauna Kea and the data were reduced at CFHT during the summer of 1991. And IV has been catalogued both as a dwarf galaxy and as an open star cluster in M31. The color-magnitude diagrams presented indicate that this object has a young population of stars with a narrow age range, consistent with the characteristics of an open star cluster or stellar association. A radial velocity measurement taken from the literature and analyzed with respect to the rotation curve of M31 indicates this object resides in the disk of the Andromeda Galaxy, strengthening the conclusion that it is indeed a very large open star cluster or a densely populated stellar association rather than a dwarf irregular galaxy.

  1. Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues

    NASA Astrophysics Data System (ADS)

    Old, L.; Wojtak, R.; Mamon, G. A.; Skibba, R. A.; Pearce, F. R.; Croton, D.; Bamford, S.; Behroozi, P.; de Carvalho, R.; Muñoz-Cuartas, J. C.; Gifford, D.; Gray, M. E.; der Linden, A. von; Merrifield, M. R.; Muldrew, S. I.; Müller, V.; Pearson, R. J.; Ponman, T. J.; Rozo, E.; Rykoff, E.; Saro, A.; Sepp, T.; Sifón, C.; Tempel, E.

    2015-05-01

    This paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18-1.08 dex, i.e. a factor of ˜1.5-12), with abundance-matching and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. We do not observe significantly higher scatter for either mock galaxy catalogues. Our results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.

  2. Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues

    SciTech Connect

    Old, L.; Wojtak, R.; Mamon, G. A.; Skibba, R. A.; Pearce, F. R.; Croton, D.; Bamford, S.; Behroozi, P.; de Carvalho, R.; Munoz-Cuartas, J. C.; Gifford, D.; Gray, M. E.; der Linden, A. v.; Merrifield, M. R.; Muldrew, S. I.; Muller, V.; Pearson, R. J.; Ponman, T. J.; Rozo, E.; Rykoff, E.; Saro, A.; Sepp, T.; Sifon, C.; Tempel, E.

    2015-03-26

    Our paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18–1.08 dex, i.e. a factor of ~1.5–12), with abundance-matching and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We also see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. Finally, we did not observe significantly higher scatter for either mock galaxy catalogues. These results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.

  3. Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues

    DOE PAGES

    Old, L.; Wojtak, R.; Mamon, G. A.; ...

    2015-03-26

    Our paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18–1.08 dex, i.e. a factor of ~1.5–12), with abundance-matchingmore » and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We also see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. Finally, we did not observe significantly higher scatter for either mock galaxy catalogues. These results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.« less

  4. Tracing galaxy evolution through resolved stellar populations and star clusters

    NASA Astrophysics Data System (ADS)

    Silva-Villa, E.

    2011-09-01

    Field stars and star clusters contain a big part of the galaxy’s history. To understand galaxy formation and evolution we need then to understand the parts of which galaxies are composed. It has commonly been assumed that most stars formed in clusters. However, the connection between these two systems is not clear, and the fraction of actual star formation happening in clusters is still uncertain. Through this thesis, we aim to use field stars and star clusters to attack different problems regarding galaxy formation and evolution, named: 1. the cluster formation efficiency and its (co-)relation with environment (i.e. the host galaxy), 2. the star formation rate in the arms and inter-arm regions of spiral galaxies, and 3. the indications of a possible interaction between two galaxies observed through their resolved stellar populations. We performed a systematic and homogeneous study over the galaxies NGC45, NGC1313, NGC4395, NGC5236 and NGC7793, where star clusters and field stars are analyze separately. For this aim, we used Hubble Space Telescope observations in the optical bands U, B, V and I, using the Advanced Camera for Surveys and the Wide Field Planetary Camera 2. Standard photometric procedures are use to study the properties of these two main parts of the galaxies. However, incompleteness constrains our results to ages younger than 100 Myr. Following the synthetic CMD method we recovered the star formation history for the last 100 Myr over the five galaxies. Comparing observed clusters properties with simple stellar population models, we estimate ages and masses of star clusters. We observe that the galaxies NGC5236 and NGC1313 show higher star and cluster formation rates, while NGC45, NGC4395 and NGC7793 show lower values. We found that the actual fraction of star formation happening in clusters presents low values (< 10%), contrary to common assumptions, however in agreement with studies in other galaxies. Observations of the surface star formation

  5. A High-Velocity Collision With Our Galaxy's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    What caused the newly discovered supershell in the outskirts of our galaxy? A new study finds evidence that a high-velocity cloud may have smashed into the Milky Ways disk millions of years ago.Mysterious Gas ShellsA single velocity-channel map of the supershell GS040.2+00.670, with red contours marking the high-velocity cloud at its center. [Adapted from Park et al. 2016]The neutral hydrogen gas that fills interstellar space is organized into structures like filaments, loops, and shells. Supershells are enormous shells of hydrogen gas that can have radii of a thousand light-years or more; weve spotted about 20 of these in our own galaxy, and more in nearby dwarfs and spiral galaxies.How do these structures form? One theory is that they result from several supernovae explosions occurring in the same area. But the energy needed to create a supershell is more than 3 x 1052 erg, which corresponds to over 30 supernovae quite a lot to have exploding in the same region.Theres an interesting alternative scenario: the supershells might instead be caused by the impacts of high-velocity clouds that fall into the galactic disk.Velocity data for the compact high-velocity cloud CHVC040. The cloud is moving fast enough to create the supershell observed. [Adapted from Park et al. 2016]The Milky Ways Speeding CloudsHigh-velocity clouds are clouds of mostly hydrogen that speed through the Milky Way with radial velocities that are very different from the material in the galactic disk. The origins of these clouds are unknown, but its proposed that they come from outside the galaxy they might be fragments of a nearby, disrupting galaxy, or they might have originated from flows of accreting gas in the space in between galaxies.Though high-velocity clouds have long been on the list of things that might cause supershells, weve yet to find conclusive evidence of this. But that might have just changed, with a recent discovery by a team of scientists led by Geumsook Park (Seoul National

  6. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  7. OmegaWINGS: spectroscopy in the outskirts of local clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Gullieuszik, M.; Poggianti, B.; Paccagnella, A.; Couch, W. J.; Vulcani, B.; Bettoni, D.; Fritz, J.; Cava, A.; Fasano, G.; D'Onofrio, M.; Omizzolo, A.

    2017-03-01

    Context. Studies of the properties of low-redshift cluster galaxies suffer, in general, from small spatial coverage of the cluster area. WINGS, the most homogeneous and complete study of galaxies in dense environments to date, obtained spectroscopic redshifts for 48 clusters at a median redshift of 0.05, out to an average distance of approximately 0.5 cluster virial radii. The WINGS photometric survey was recently extended by the VST survey OmegaWINGS to cover the outskirts of a subset of the original cluster sample. Aims: In this work, we present the spectroscopic follow-up of 33 of the 46 clusters of galaxies observed with VST over 1 square degree. The aim of this spectroscopic survey is to enlarge the number of cluster members and study the galaxy characteristics and the cluster dynamical properties out to large radii, reaching the virial radius and beyond. Methods: We used the AAOmega spectrograph at AAT to obtain fiber-integrated spectra covering the wavelength region between 3800 and 9000 Å with a spectral resolution of 3.5-6 Å full width at half maximum (FWHM). Observations were performed using two different configurations and exposure times per cluster. We measured redshifts using both absorption and emission lines and used them to derive the cluster redshifts and velocity dispersions. Results: We present here the redshift measurements for 17 985 galaxies, 7497 of which turned out to be cluster members. The sample magnitude completeness is 80% at V = 20. Thanks to the observing strategy, the radial completeness turned out to be relatively constant (90%) within the AAOmega field of view. The success rate in measuring redshifts is 95%, at all radii. Conclusions: We provide redshifts for the full sample of galaxies in OmegaWINGS clusters together with updated and robust cluster redshift and velocity dispersions. These data, publicly accessible through the CDS and VO archives, will enable evolutionary and environmental studies of cluster properties, providing

  8. WITNESSING THE FORMATION OF A BRIGHTEST CLUSTER GALAXY IN A NEARBY X-RAY CLUSTER

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2010-07-10

    The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster.

  9. Clusters of Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nichol, Robert C.

    I review here past and present research on clusters and groups of galaxies within the Sloan Digital Sky Survey (SDSS). I begin with a short review of the SDSS and efforts to find clusters of galaxies using both the photometric and spectroscopic SDSS data. In particular, I discuss the C4 algorithm, which is designed to search for clusters and groups within a seven-dimensional (7-D) data space, i.e., simultaneous clustering in both color and space. The C4 catalog has a well-quantified selection function based on mock SDSS galaxy catalogs constructed from the Hubble Volume simulation. These simulations indicate that the C4 catalog is >90% complete, with <10% contamination, for halos of M200 >1014 Modot at z<0.14. Furthermore, the observed summed r-band luminosity of C4 clusters is linearly related to M200, with <30% scatter at any given halo mass. I also briefly review the selection and observation of luminous red galaxies and demonstrate that these galaxies have a similar clustering strength as clusters and groups of galaxies. I outline a new collaboration planning to obtain redshifts for 10,000 luminous red galaxies at 0.4 clusters and groups of galaxies in the study of galaxy properties as a function of environment. In particular, I discuss the ``star formation rate-density'' and ``morphology-radius'' relations for the SDSS and note that both of these relationships have a critical density (or ``break'') at a projected local galaxy density of ˜1 h75-2 {Mpc-2 (or between 1 to 2 virial radii). One possible physical mechanism to explain this observed critical density is the stripping of warm gas from the halos of infalling spiral galaxies, thus leading to a slow strangulation of star formation in these galaxies. This scenario is consistent with the recent discovery (within the SDSS) of an excess of ``passive'' or ``anemic'' spiral galaxies located

  10. Structures and Components in Galaxy Clusters: Observations and Models

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Churazov, E. M.; Ferrari, C.; Forman, W. R.; Kaastra, J. S.; Klein, U.; Markevitch, M.; de Plaa, J.

    2015-05-01

    Clusters of galaxies are the largest gravitationally bounded structures in the Universe dominated by dark matter. We review the observational appearance and physical models of plasma structures in clusters of galaxies. Bubbles of relativistic plasma which are inflated by supermassive black holes of AGNs, cooling and heating of the gas, large scale plasma shocks, cold fronts, non-thermal halos and relics are observed in clusters. These constituents are reflecting both the formation history and the dynamical properties of clusters of galaxies. We discuss X-ray spectroscopy as a tool to study the metal enrichment in clusters and fine spectroscopy of Fe X-ray lines as a powerful diagnostics of both the turbulent plasma motions and the energetics of the non-thermal electron populations. The knowledge of the complex dynamical and feedback processes is necessary to understand the energy and matter balance as well as to constrain the role of the non-thermal components of clusters.

  11. 60 micron luminosity evolution of rich clusters of galaxies

    SciTech Connect

    Kelly, D.M.; Rieke, G.H. )

    1990-10-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.

  12. 60 micron luminosity evolution of rich clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kelly, Douglas M.; Rieke, George H.

    1990-01-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range.

  13. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  14. The dynamics and evolution of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret; Huchra, John P.

    1987-01-01

    Research was undertaken to produce a coherent picture of the formation and evolution of large-scale structures in the universe. The program is divided into projects which examine four areas: the relationship between individual galaxies and their environment; the structure and evolution of individual rich clusters of galaxies; the nature of superclusters; and the large-scale distribution of individual galaxies. A brief review of results in each area is provided.

  15. Evolutionary status of early-type galaxies in distant poor clusters

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Ziegler, Bodo L.

    2004-07-01

    We introduce our project that investigates the kinematic properties of early-type galaxies in 6 distant poor clusters at z≈0.25. This study represents a continuation of our efforts to understand galaxy evolution in low-density environments. Higher-resolution MOSCA spectra have been obtained at the Calar Alto 3.5-m telescope with which we can measure absorption line strengths and velocity dispersions. In conjunction with our HST/F702W images of all the clusters, we are able to construct the Fundamental Plane of ellipticals and S0 galaxies in poor clusters at a look-back time of ≈3 Gyr. For galaxies outside the HST field, we concentrate our analysis on the Mg-σ and Faber-Jackson relations. With the line strength diagrams age/metallicity distributions can be derived in densities between the field and rich cluster environments. Comparing with our rich clusters at the same cosmic epochs, the dependence of galaxy formation models on the local environment can be tested more quantitatively.

  16. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  17. THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS

    SciTech Connect

    Hansen, Sarah M.; Wechsler, Risa H.; Koester, Benjamin P.

    2009-07-10

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {<=} z {<=} 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r {sub 200} of clusters with mass above 3 x 10{sup 13} h {sup -1} M {sub sun}, the luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25} M{sub i} - 5log{sub 10} h =-19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L {sub BCG} {approx} M {sup 0.3} {sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub logL} {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  18. The Galaxy Content of SDSS Clusters And Groups

    SciTech Connect

    Hansen, Sarah M.; Sheldon, Erin S.; Wechsler, Risa H.; Koester, Benjamin P.; /Chicago U., Astron. Astrophys. Ctr.

    2007-11-09

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of Brightest Cluster Galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {le} z {le} 0.3. The size of the dataset allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r200 of clusters with mass above 3x10{sup 13}h{sup -1}M{sub {circle_dot}}, the luminosity function of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite luminosity function does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25}M{sub i} - 5log{sub 10}h = -19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L{sub BCG} {approx} M{sup 0.3}{sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub log}L {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  19. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Saro, A.; Mohr, J. J.; Benson, B. A.; Bocquet, S.; Capasso, R.; Carlstrom, J. E.; Chiu, I.; Crawford, T. M.; de Haan, T.; Dietrich, J. P.; Gangkofner, C.; Holzapfel, W. L.; McDonald, M.; Rapetti, D.; Reichardt, C. L.

    2017-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 percent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. Allowing for redshift evolution of the form (1 + z)2.5 increases the incompleteness to 5.6 ± 1.0 percent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.

  20. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  1. A 1400-MHz survey of 1478 Abell clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1982-01-01

    Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.

  2. Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Andernach, H.; Kapińska, A. D.; Rudnick, L.; Hardcastle, M. J.; Cotter, G.; Vaughan, S.; Jones, T. W.; Heywood, I.; Wing, J. D.; Wong, O. I.; Matorny, T.; Terentev, I. A.; López-Sánchez, Á. R.; Norris, R. P.; Seymour, N.; Shabala, S. S.; Willett, K. W.

    2016-08-01

    We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z = 0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr = -22.6 and a 1.4 GHz radio luminosity density of L1.4 = 5.5 × 1024 W Hz-1. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley classes I and II. The projected largest angular size of ≈8 arcmin corresponds to 800 kpc and the full length of the source along the curved jets/trails is 1.1 Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301 at 1.2-2.6 × 1043 erg s-1 for assumed intracluster medium temperatures of 1.0-5.0 keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 107 yr in between. This reinforces the idea that an association between RGZ J082312.9+033301 and the newly discovered poor cluster exists.

  3. Galaxy Halo Truncation and Giant Arc Surface Brightness Reconstruction in the Cluster MACSJ1206.2-0847

    NASA Astrophysics Data System (ADS)

    Eichner, Thomas; Seitz, Stella; Suyu, Sherry H.; Halkola, Aleksi; Umetsu, Keiichi; Zitrin, Adi; Coe, Dan; Monna, Anna; Rosati, Piero; Grillo, Claudio; Balestra, Italo; Postman, Marc; Koekemoer, Anton; Zheng, Wei; Høst, Ole; Lemze, Doron; Broadhurst, Tom; Moustakas, Leonidas; Bradley, Larry; Molino, Alberto; Nonino, Mario; Mercurio, Amata; Scodeggio, Marco; Bartelmann, Matthias; Benitez, Narciso; Bouwens, Rychard; Donahue, Megan; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Lahav, Ofer; Medezinski, Elinor; Melchior, Peter; Merten, Julian; Riess, Adam

    2013-09-01

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii—a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m 160W, AB = 19.2 and M B, Vega = -20.7 are σ = 150 km s-1 and r ≈ 26 ± 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of ~5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component.

  4. Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101

    NASA Astrophysics Data System (ADS)

    Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias

    2017-01-01

    Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (i) the velocity dispersion (Mvir), (ii) the caustic mass computation (Mcaustic), and (iii) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift

  5. Detecting galaxy clusters in the DLS and CARS: a Bayesian cluster finder

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Wittman, D.; Benítez, N.

    2011-11-01

    The detection of galaxy clusters in present and future surveys enables measuring mass-to-light ratios, clustering properties or galaxy cluster abundances and therefore, constraining cosmological parameters. We present a new technique for detecting galaxy clusters, which is based on the Matched Filter Algorithm from a Bayesian point of view. The method is able to determine the position, redshift and richness of the cluster through the maximization of a filter depending on galaxy luminosity, density and photometric redshift combined with a galaxy cluster prior. We tested the algorithm through realistic mock galaxy catalogs, revealing that the detections are 100% complete and 80% pure for clusters up to z < 1.2 and richer than λ ≥ 25 (Abell richness ≥ 0). We applied the algorithm to the CFHTLS Archive Research Survey (CARS) data, recovering similar detections as previously published using the same data plus additional clusters that are very probably real. We also applied this algorithm to the Deep Lens Survey (DLS), obtaining the first sample of optical-selected galaxy in this survey. The sample is complete up to redshift 0.7 and we detect more than 780 cluster candidates up to redshift 1.2. We conclude by discussing the differences between previous weak lensing detections in this survey and optical detections in both samples.

  6. Using cluster analysis to organize and explore regional GPS velocities

    USGS Publications Warehouse

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  7. The most massive galaxies in clusters are already fully grown at z ∼ 0.5

    NASA Astrophysics Data System (ADS)

    Oldham, L. J.; Houghton, R. C. W.; Davies, Roger L.

    2017-02-01

    By constructing scaling relations for galaxies in the massive cluster MACSJ0717.5 at z = 0.545 and comparing with those of Coma, we model the luminosity evolution of the stellar populations and the structural evolution of the galaxies. We calculate magnitudes, surface brightnesses and effective radii using Hubble Space Telescope (HST)/ACS images and velocity dispersions using Gemini/GMOS spectra, and present a catalogue of our measurements for 17 galaxies. We also generate photometric catalogues for ∼3000 galaxies from the HST imaging. With these, we construct the colour-magnitude relation, the Fundamental Plane, the mass-to-light versus mass relation, the mass-size relation and the mass-velocity dispersion relation for both clusters. We present a new, coherent way of modelling these scaling relations simultaneously using a simple physical model in order to infer the evolution in luminosity, size and velocity dispersion as a function of redshift, and show that the data can be fully accounted for with this model. We find that (a) the evolution in size and velocity dispersion undergone by these galaxies between z ∼ 0.5 and z ∼ 0 is mild, with Re(z) ∼ (1 + z)-0.40 ± 0.32 and σ(z) ∼ (1 + z)0.09 ± 0.27, and (b) the stellar populations are old, ∼10 Gyr, with a ∼3 Gyr dispersion in age, and are consistent with evolving purely passively since z ∼ 0.5 with Δ log M/L_B = -0.55_{-0.07}^{+0.15} z. The implication is that these galaxies formed their stars early and subsequently grew dissipationlessly so as to have their mass already in place by z ∼ 0.5, and suggests a dominant role for dry mergers, which may have accelerated the growth in these high-density cluster environments.

  8. Small-scale Conformity of the Virgo Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Ran; Lee, Joon Hyeop; Jeong, Hyunjin; Park, Byeong-Gon

    2016-06-01

    We investigate the small-scale conformity in color between bright galaxies and their faint companions in the Virgo Cluster. Cluster member galaxies are spectroscopically determined using the Extended Virgo Cluster Catalog and the Sloan Digital Sky Survey Data Release 12. We find that the luminosity-weighted mean color of faint galaxies depends on the color of adjacent bright galaxy as well as on the cluster-scale environment (gravitational potential index). From this result for the entire area of the Virgo Cluster, it is not distinguishable whether the small-scale conformity is genuine or if it is artificially produced due to cluster-scale variation of galaxy color. To disentangle this degeneracy, we divide the Virgo Cluster area into three sub-areas so that the cluster-scale environmental dependence is minimized: A1 (central), A2 (intermediate), and A3 (outermost). We find conformity in color between bright galaxies and their faint companions (color-color slope significance S ˜ 2.73σ and correlation coefficient {cc}˜ 0.50) in A2, where the cluster-scale environmental dependence is almost negligible. On the other hand, the conformity is not significant or very marginal (S ˜ 1.75σ and {cc}˜ 0.27) in A1. The conformity is not significant either in A3 (S ˜ 1.59σ and {cc}˜ 0.44), but the sample size is too small in this area. These results are consistent with a scenario in which the small-scale conformity in a cluster is a vestige of infallen groups and these groups lose conformity as they come closer to the cluster center.

  9. Detailed modeling of cluster galaxies in free-form lenses

    NASA Astrophysics Data System (ADS)

    Lam, Daniel

    2015-08-01

    The main goal of the Frontier Fields is to characterize the population of high redshift galaxies that are gravitationally lensed and magnified by foreground massive galaxy clusters. The magnification received by lensed images has to be accurately quantified in order to derive the correct science results. The magnification is in turn computed from lens models, which are constructed from various constraints, most commonly the positions and redshifts of multiply-lensed galaxies.The locations and magnification of multiple images that appear near cluster galaxies are very sensitive to the mass distribution of those individual galaxies. In current free-form lens models, they are at best crudely approximated by arbitrary mass halos and are usually being completely neglected. Given sufficient free parameters and iterations, such models may be highly consistent but their predictive power would be rather limited. This shortcoming is particularly pronounced in light of the recent discovery of the first multiply-lensed supernova in the Frontier Fields cluster MACSJ1149. The proximity of its images to cluster galaxies mandates detailed modeling on galaxy-scales, where free-form methods solely based on grid solutions simply fail.We present a hybrid free-form lens model of Abell 2744, which for the first time incorporates a detailed mass component modeled by GALFIT that accurately captures the stellar light distribution of the hundred brightest cluster galaxies. The model better reproduces the image positions than a previous version, which modeled cluster galaxies with simplistic NFW halos. Curiously, this improvement is found in all but system 2, which has two radial images appearing around the BCG. Despite its complex light profile is being captured by GALFIT, the persistent discrepancies suggest considering mass distributions that may be largely offset from the stellar light distribution.

  10. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    NASA Technical Reports Server (NTRS)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; Wollack, Edward J.

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  11. Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering

    SciTech Connect

    Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.

    2006-04-03

    We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.

  12. Infall of nearby galaxies into the Virgo cluster as traced with Hubble space telescope

    SciTech Connect

    Karachentsev, Igor D.; Tully, R. Brent; Wu, Po-Feng; Shaya, Edward J.; Dolphin, Andrew E.

    2014-02-10

    We measured the tip of the red giant branch distances to nine galaxies in the direction to the Virgo cluster using the Advanced Camera for Surveys on the Hubble Space Telescope. These distances put seven galaxies (GR 34, UGC 7512, NGC 4517, IC 3583, NGC 4600, VCC 2037, and KDG 215) in front of Virgo and two galaxies (IC 3023 and KDG 177) likely inside the cluster. Distances and radial velocities of the galaxies situated between us and the Virgo core clearly exhibit the infall phenomenon toward the cluster. In the case of spherically symmetric radial infall, we estimate the radius of the 'zero-velocity surface' to be (7.2 ± 0.7) Mpc, which yields a total mass of the Virgo cluster of (8.0 ± 2.3) × 10{sup 14} M {sub ☉}, in good agreement with its virial mass estimates. We conclude that the Virgo outskirts do not contain significant amounts of dark matter beyond their virial radius.

  13. Morphology of multiple-nucleus brightest cluster galaxies

    SciTech Connect

    Lauer, T.R.

    1988-02-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems. 42 references.

  14. The morphology of multiple-nucleus brightest cluster galaxies

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.

    1988-01-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems.

  15. A GMBCG GALAXY CLUSTER CATALOG OF 55,424 RICH CLUSTERS FROM SDSS DR7

    SciTech Connect

    Hao Jiangang; Annis, James; Johnston, David E.; McKay, Timothy A.; Evrard, August; Siegel, Seth R.; Gerdes, David; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Wechsler, Risa H.; Busha, Michael; Becker, Matthew; Sheldon, Erin

    2010-12-15

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red-sequence plus brightest cluster galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red-sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 deg{sup 2} of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  16. Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT

    SciTech Connect

    Anderson, B.; Zimmer, S.; Conrad, J.; Sánchez-Conde, M.; Gustafsson, M.; Caputo, R. E-mail: stephan.zimmer@fysik.su.se E-mail: michael.gustafsson@theorie.physik.uni-goettingen.de E-mail: rcaputo@ucsc.edu

    2016-02-01

    We report on a search for monochromatic γ-ray features in the spectra of galaxy clusters observed by the Fermi Large Area Telescope. Galaxy clusters are the largest structures in the Universe that are bound by dark matter (DM), making them an important testing ground for possible self-interactions or decays of the DM particles. Monochromatic γ-ray lines provide a unique signature due to the absence of astrophysical backgrounds and are as such considered a smoking-gun signature for new physics. An unbinned joint likelihood analysis of the sixteen most promising clusters using five years of data at energies between 10 and 400 GeV revealed no significant features. For the case of self-annihilation, we set upper limits on the monochromatic velocity-averaged interaction cross section. These limits are compatible with those obtained from observations of the Galactic Center, albeit weaker due to the larger distance to the studied clusters.

  17. FAR-FLUNG GALAXY CLUSTERS MAY REVEAL FATE OF UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A selection of NASA Hubble Space Telescope snapshots of huge galaxy clusters that lie far away and far back in time. These are selected from a catalog of 92 new clusters uncovered during a six-year Hubble observing program known as the Medium Deep Survey. If the distances and masses of the clusters are confirmed by ground based telescopes, the survey may hold clues to how galaxies quickly formed into massive large-scale structures after the big bang, and what that may mean for the eventual fate of the expanding universe. The images are each a combination of two exposures in yellow and deep red taken with Hubble's Wide Field and Planetary Camera 2. Each cluster's distance is inferred from the reddening of the starlight, which is due to the expansion of space. Astronomers assume these clusters all formed early in the history of the universe. HST133617-00529 (left) This collection of spiral and elliptical galaxies lies an estimated 4 to 6 billion light-years away. It is in the constellation of Virgo not far from the 3rd magnitude star Zeta Virginis. The brighter galaxies in this cluster have red magnitudes between 20 and 22 near the limit of the Palomar Sky Survey. The bright blue galaxy (upper left) is probably a foreground galaxy, and not a cluster member. The larger of the galaxies in the cluster are probably about the size of our Milky Way Galaxy. The diagonal line at lower right is an artificial satellite trail. HST002013+28366 (upper right) This cluster of galaxies lies in the constellation of Andromeda a few degrees from the star Alpheratz in the northeast corner of the constellation Pegasus. It is at an estimated distance of 4 billion light-years, which means the light we are seeing from the cluster is as it appeared when the universe was roughly 2/3 of its present age. HST035528+09435 (lower right) At an estimated distance of about 7 to 10 billion light-years (z=1), this is one of the farthest clusters in the Hubble sample. The cluster lies in the

  18. Weakly damped modes in star clusters and galaxies

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  19. Galaxy Population in the Infall Regions of Intermediate Redshift Clusters

    NASA Astrophysics Data System (ADS)

    Verdugo, Miguel; Ziegler, Bodo L.

    2007-05-01

    We investigate 6 clusters of galaxies at intermediate redshift (0.18galaxies. Our Calar Alto MOSCA spectra cover large fields of view reaching out to 2-4 virial radii. This outer region is often called the infall region since here newly arriving galaxies from the surrounding field encounter the special environment of clusters for the first time. We selected 3 fields containing 2 clusters each from the X-ray Dark Cluster Survey (XDC, Gilbank et al. 2004 MNRAS, 348, 551G, G04). Each 40'x 40' field was observed with 7-8 slit-masks yielding 553 low-resolution galaxy spectra (R≈500). The results for the first field (R285) were already published by Gerken et al. (2004A&A, 421, 59G). We select [OII]λ3717 and Hα equivalent widths as indicators of star formation activity. In the analysis, we "averaged" 4 clusters: VMF73 (z=0.254) & VMF74 (z=0.18) in XDCS field R285 and VMF131 (z=0.295) & VMF132 (z=0.246) in field R265. We have found an increase of the star forming activity towards larger cluster-centric distances as well as towards shallower projected galaxy densities. Galaxies in the third field R220 exhibit a complex redshift structure which makes membership determination difficulty and were excluded of the overall analysis. However, we clearly identified the cluster VMF194 (z=0.211) and confirm another cluster at z=0.261 detected by G04. In addition, a group of galaxies with similar coordinates to VMF194 at z=0.243 is significant. We also detected a population of red star-forming galaxies, belonging to the red-sequence of the clusters and even redder. Those galaxies show a moderate star-forming activity and do not show any other spectral peculiarities. We do not detect any post-starburst galaxy nor AGN in our cluster sample.

  20. Intermediate-age globular clusters in four galaxy merger remnants

    SciTech Connect

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based K{sub s} -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIK{sub s} GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ∼1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  1. Intermediate-age Globular Clusters in Four Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ~1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  2. Probing Galaxy Clusters and Substructures using Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Choi, Miyoung; Nguyen, Hoang; King, Lindsay; Lee, Brandyn E.; McCarthy, Ian

    2017-01-01

    Gravitational lensing is one of the most promising methods of analyzing massive astronomical objects such as galaxy clusters. The weak gravitational lensing signal, which is called shear, is a measurement of the weak distortion of background galaxies in the linear regime of the lensing field. Shear analysis effectively estimates the main properties of galaxy clusters such as the mass and scale of the lensing system. The second order gravitational lensing signal, flexion, is dominant in the non-linear regime of the lensing field that bridges the strong and weak lensing regimes. It has also recently arisen as a robust method to detect substructures in galaxy clusters due to its sensitivity to the gradient of convergence and shear field. In this poster we propose that combining the shear and flexion analysis can give more information about the detailed structure of the lensing system.

  3. Violent galaxy evolution in the Frontier Fields clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; McPartland, Conor; Blumenthal, Kelly; Roediger, Elke

    2015-08-01

    In a recent study we used customized morphological selection criteria to identify potential ram-pressure stripping events in shallow HST images of MACS clusters at z=0.3-0.7 and found tantalising evidence of such violent evolution (a) being at least partly triggered by galaxy mergers and (b) causing extensive star formation and thus brightening of the affected galaxies. Due to the limited depth of the HST data used, our project focused (by design and necessity) on the brightest galaxies. We here present results of a similar survey for “jellyfish” galaxies conducted using the much deeper, multi-passband imaging data of the Frontier Fields clusters that allow us to probe much farther into the luminosity function of ram-pressure stripping in some of the most massive and most dynamically disturbed clusters known.

  4. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  5. Galaxy Clusters and Properties in the CFHTLS/VIPERS Survey

    NASA Astrophysics Data System (ADS)

    Gallego Gallego, Sofia Carolina; Murphy, David; Hyazinth Puzia, Thomas

    2015-08-01

    We present our analysis of clusters in the CFHTLS Wide fields using a red-sequence based cluster finding code. The deep five-band photometry and panoramic coverage permits detection of galaxy clusters between z=0 and z~1 over 132 square degrees. We present a cluster catalogue and optical richness estimates as mass proxies, derived cluster properties from a novel template-fitting analysis and cluster redshift measurements utilizing data from the VLT/VIPERS spectroscopic survey.We complement our analysis with studies of mock cluster catalogues generated from N-body simulation lightcones featuring semi-analytic prescriptions of galaxy formation. These provide us with an insight into the performance of the cluster-finding technique, uncertainties in the derived properties of the detected cluster populations and an important comparison of the popular “lambda” optical richness estimator to known dark matter halo properties.This study serves as the perfect precursor to LSST-depth cluster science, providing an important input into how models describe the evolution of clusters and their members as a function of redshift and mass, and the role high-density environments play in galaxy evolution over half the Hubble time.

  6. NON-EQUILIBRIUM ELECTRONS IN THE OUTSKIRTS OF GALAXY CLUSTERS

    SciTech Connect

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.; Nelson, Kaylea E-mail: camille.avestruz@yale.edu

    2015-08-01

    The analysis of X-ray and Sunyaev–Zel’dovich measurements of the intracluster medium (ICM) assumes that electrons are in thermal equilibrium with ions in the plasma. However, in the outskirts of galaxy clusters, the electron–ion equilibration timescale can become comparable to the Hubble time, leading to systematic biases in cluster mass estimates and mass-observable scaling relations. To quantify an upper limit of the impact of non-equilibrium electrons, we use a mass-limited sample of simulated galaxy clusters taken from a cosmological simulation with a two-temperature model that assumes the Spitzer equilibration time for the electrons and ions. We show that the temperature bias is more pronounced in more massive and rapidly accreting clusters. For the most extreme case, we find that the bias is of the order of 10% at half of the cluster virial radius and increases to 40% at the edge of the cluster. Gas in filaments is less susceptible to the non-equilibrium effect, leading to azimuthal variations in the temperature bias at large cluster-centric radii. Using mock Chandra observations of simulated clusters, we show that the bias manifests in ultra-deep X-ray observations of cluster outskirts and quantify the resulting biases in hydrostatic mass and cluster temperature derived from these observations. We provide a mass-dependent fitting function for the temperature bias profile, which can be useful for modeling the effect of electron-ion equilibration in galaxy clusters.

  7. Redshift Measurement of the New Cluster of Galaxies Discovered by Swift

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Goto, Tomotsugu; Tueller, Jack; Mushotzky, Richard

    2009-08-01

    We propose a redshift and velocity dispersion measurement of the new cluster of galaxies discovered by Swift. Swift/BAT hard X- ray all sky survey has been successful in detecting hard X-ray sources in the 15-200 keV band with over 270 AGNs and 7 clusters. One of the few sources without a reasonable identification is SWIFT J0356.2-3413. A 94 ks follow-up observation by the Swift/XRT did not detect hard point sources within the BAT error circle, however there is a clear detection of an extended source (size ~4'). It appears to be a cluster of galaxies and it has an asymmetrical structure with a gas temperature of ~8 keV and a 2-10 keV flux of 4× 10^-13 ergs/sec/cm^2. The hard X-ray emission detected by BAT exceeds this thermal emission which makes this source very important, since an origin of hard X-ray excess emission from galaxy clusters is unclear. The X- ray image indicates a cluster merging. If the redshift z=0.37+/-0.04 derived from an iron line fitting (2σ detection), the temperature is too high to be on the known X-ray L-T relation. However the derived X-ray temperature could be wrong due to the possible cluster merging, which mimics higher gas temperature. We propose to eliminate this ambiguity by measuring (1) the precise redshift and (2) velocity dispersion to find the cluster merging in the new cluster of galaxies.

  8. Early-type Galaxies in the Cluster Abell 2390 at z=0.23

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Ziegler, B. L.

    2003-07-01

    A key question of early-type galaxy evolution is when and within what timescales their stellar populations have been formed. In monolithic collapse models a burst of star formation at high redshift (zform>=2) is followed by a passive evolution of the stellar populations, whereas in the hierachical galaxy formation scenario the assembly timescales for more massive galaxies are longer, resulting in somewhat younger mean ages. To investigate the environmental dependence of this question we obtained high-quality spectra of 51 elliptical and lenticular galaxies in the rich cluster A2390 at z=0.23 with MOSCA at the 3.5-m telescope on Calar Alto Observatory. Our investigation spans a wider range in luminosity (M*B+1) than previous spectroscopic studies at intermediate redshift, which were limited to a small number of the more luminous galaxies (apart from the study of Ziegler et al. 2001 MNRAS, 325, 1571 of the cluster A2218 at z=0.18). The evolution of galaxies in age, metallicity and abundance ratios is explored by analysing absorption line strengths, such as H&beta, Mgb, Fe5270 and Fe5335, in comparison with stellar population models. Velocity dispersions (&sigma) are determined to study the slope, scatter and zeropoint of the Faber-Jackson and Mg-&sigma relations. For a subsample of 14 galaxies where morphological and structural parameters are available from HST observations, we also investigate the evolution of the Fundamental Plane. With our large sample it is possible to look for variations in early-type galaxy evolution as a function of distance from the cluster center as well as for different sub-populations like S0 or Balmer-line enhanced galaxies in a statistically significant way.

  9. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  10. The colour-magnitude relation of elliptical and lenticular galaxies in the ESO Distant Cluster Survey

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Aragón-Salamanca, Alfonso; De Lucia, Gabriella; Jablonka, Pascale; Rudnick, Gregory; Saglia, Roberto; Zaritsky, Dennis

    2011-01-01

    In this paper we study the colour-magnitude relation (CMR) for a sample of 172 morphologically classified elliptical and S0 cluster galaxies from the ESO Distant Cluster Survey (EDisCS) at 0.4 ≲z≲ 0.8. The intrinsic colour scatter about the CMR is very small (<σint>= 0.076) in rest-frame U-V. However, there is a small minority of faint early-type galaxies (7 per cent) that are significantly bluer than the CMR. We observe no significant dependence of σint with redshift or cluster velocity dispersion. Because our sample is strictly morphologically selected, this implies that by the time cluster elliptical and S0 galaxies achieve their morphology, the vast majority have already joined the red sequence. The only exception seems to be the very small fraction of faint blue early types. Assuming that the intrinsic colour scatter is due to differences in stellar population ages, we estimate the galaxy formation redshift zF of each cluster and find that zF does not depend on the cluster velocity dispersion. However, zF increases weakly with cluster redshift within the EDisCS sample. This trend becomes very clear when higher redshift clusters from the literature are included. This suggests that, at any given redshift, in order to have a population of fully formed ellipticals and S0s they needed to have formed most of their stars ≃2-4 Gyr prior to observation. That does not mean that all early-type galaxies in all clusters formed at these high redshifts. It means that the ones we see already having early-type morphologies also have reasonably old stellar populations. This is partly a manifestation of the `progenitor bias', but also a consequence of the fact that the vast majority of the early-type galaxies in clusters (in particular the massive galaxies) were already red (i.e. already had old stellar populations) by the time they achieved their morphology. Elliptical and S0 galaxies exhibit very similar colour scatter, implying similar stellar population ages. The

  11. Constraining gravity at the largest scales through CMB lensing and galaxy velocities

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Alam, Shadab; He, Siyu; Ho, Shirley

    2016-08-01

    We demonstrate a new method to constrain gravity on the largest cosmological scales by combining measurements of cosmic microwave background (CMB) lensing and the galaxy velocity field. EG is a statistic, constructed from a gravitational lensing tracer and a measure of velocities such as redshift-space distortions (RSD), that can discriminate between gravity models while being independent of clustering bias and σ8. While traditionally, the lensing field for EG has been probed through galaxy lensing, CMB lensing has been proposed as a more robust tracer of the lensing field for EG at higher redshifts while avoiding intrinsic alignments. We perform the largest-scale measurement of EG ever, up to 150 Mpc h-1, by cross-correlating the Planck CMB lensing map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample and combining this with our measurement of the CMASS auto-power spectrum and the RSD parameter β. We report EG(z = 0.57) = 0.243 ± 0.060 (stat) ± 0.013 (sys), a measurement in tension with the general relativity (GR) prediction at a level of 2.6σ. Note that our EG measurement deviates from GR only at scales greater than 80 Mpc h-1, scales which have not been probed by previous EG tests. Upcoming surveys, which will provide an order-of-magnitude reduction in statistical errors, can significantly constrain alternative gravity models when combined with better control of systematics.

  12. The Influence of Cluster Mergers on Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Bouy, H.; Egami, E.; Pérez-González, P. G.; Richard, J.; Valtchanov, I.; Walth, G.

    2016-06-01

    The rich environment of galaxy clusters is understood to have a profound effect on the evolution of constituent galaxies. However, even clusters of a similar mass and at fixed redshift are not homogeneous, displaying a range in structural complexity. Here we concentrate on the effect of cluster merging, the most massive dynamic process in the Universe. Two spectacular cluster mergers at z~0.3 are explored: the archetypal Bullet cluster (1E0657-558; Rawle et al. 2012), and the HST Frontier Field, Pandora's cluster (Abell 2744; Rawle et al. 2014, 2016). We present detailed analysis of their total star formation, derived from multi-wavelength observations of both dusty and unobscured activity from Herschel, Spitzer, WISE and GALEX. Examination of the morphologies of individual cluster galaxies reveals striking evidence for transformation and enhanced star formation, triggered by the merger-induced shock front. This includes several galaxies identified as having "jellyfish" morphologies caused by the passing shock. We discuss the implications, and preview future work exploring a large sample of clusters covering a range of dynamic states and redshifts.

  13. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  14. Radio Selected Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Wing, Joshua; Blanton, Elizabeth

    2010-08-01

    Previous studies have shown that three-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD type galaxy at the center of a cluster. We have cross-correlated the Sloan Digital Sky Survey (SDSS) with samples selected from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) catalog and measured the richness of the cluster environments surrounding three- component sources exhibiting both bent and straight lobes. This has lead to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. For both bent- and straight- lobed sources without an optical counterpart it is likely that the radio emission is associated with a galaxy fainter than m_r=22 (the limiting magnitude of the SDSS) and at a redshift higher than z~0.8. We propose to observe a small sub-sample of these sources with the FLAMINGOS instrument on the Mayall 4-m telescope in an attempt to discover if these sources are located in high redshift (z≳0.8) galaxy clusters. In our visually-selected bent radio source sample, 78% of sources with counterparts in the SDSS are associated with clusters.

  15. Gaussian covariance matrices for anisotropic galaxy clustering measurements

    NASA Astrophysics Data System (ADS)

    Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio

    2016-04-01

    Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. Accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two-point statistics. Usually, only a limited set of accurate N-body simulations is available. Thus, assessing the data covariance is not possible or only leads to a noisy estimate. Further, relying on simulated realizations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these points in mind, this work presents a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles') of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges'), we describe the modelling of the covariance for these anisotropic clustering measurements for galaxy samples with a trivial geometry in the case of a Gaussian approximation of the clustering likelihood. As main result of this paper, we give the explicit formulae for Fourier and configuration space covariance matrices. To validate our model, we create synthetic halo occupation distribution galaxy catalogues by populating the haloes of an ensemble of large-volume N-body simulations. Using linear and non-linear input power spectra, we find very good agreement between the model predictions and the measurements on the synthetic catalogues in the quasi-linear regime.

  16. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup –1}) ≤ 7.5, intermediate-age, log (t yr{sup –1}) in [7.5, 8.5], and old samples, log (t yr{sup –1}) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  17. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  18. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

  19. Low-Frequency Radio Observations of Galaxy Cluster Merger Shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2014-10-01

    In a few dozen merging galaxy clusters diffuse extended radio emission has been found, implying the presence of relativistic particles and magnetic fields in the intracluster medium. A major question is how these particles are accelerated up to such extreme energies. In this talk I will present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. Our deep LOFAR and JVLA observations allow a radio spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms.

  20. Study of diffuse light in cD galaxy clusters

    NASA Astrophysics Data System (ADS)

    Scheick, Xania Nettie

    1993-01-01

    Conventionally, the gravitational potential of galaxy clusters has been mapped using the galaxies themselves or x-rays as test particles. Using the intra-cluster medium or diffuse light instead has the obvious advantage in sheer number of particles, i.e. better counting statistics. Analysis of diffuse light in two cD clusters (A2670 and A2029) is described. Deep R-band CCD images of these clusters were procured at the KPNO 36 in. and 2.1 m telescopes. On large scales, the diffuse light is well fit by a de Vaucouleurs' profile. This 'smoothness' is surprising in light of current cluster evolution theory which relies on violent interactions among cluster members. Thus we are motivated to study the diffuse light on small scales, expecting a priori to see clumpiness in the medium due to collisional or tidal stripping mechanisms or the affects of dynamical friction. Using a statistical approach, we have determined the source of the diffuse light to be numerous low luminosity objects. The clumpiness of the diffuse light in both clusters is described by auto correlations of the residual images (after diffuse light has been removed). From this analysis, we can determine a spatial scale of the clumps and attempt to place some constraints on the faint end of the cluster luminosity function. For A2670, we compute a differential luminosity function in the cluster center that suggests real differences in the luminosity function within the cluster center from a universal cluster luminosity function. We measure the V-R color of the cD and cluster galaxies and the color gradient across the halo of A2670. In A2029, we find structures associated with five galaxies suggestive of wakes, i.e. the gravitational response of the medium to galactic passage. The apparent lack of significant small-scale structure poses a curious problem for cluster evolution models.

  1. A morphological classification of clusters of galaxies from Einstein images

    NASA Technical Reports Server (NTRS)

    Jones, C.; Forman, W.

    1982-01-01

    The earliest Uhuru observations showed that cluster X-ray sources were not associated with single individual galaxies but were extended sources. It has only been with the advent of the Einstein X-ray imaging observatory that a first look at cluster X-ray morphology and classification has been possible. The proposed classification system divides clusters into two families, including those with and those without X-ray dominant galaxies. Within each family, the dynamical indicators display a full range of values. One subgroup of clusters is those whose X-ray emission is not regular and which do not contain an X-ray dominant galaxy. One of the brighter, nearer and best studied members of this class is Al367. From the X-ray imaging observations, four clusters have been discovered to have double structure in their surface brightness distributions. The Coma cluster is the archtype of an evolved, fully relaxed cluster. Ellipticals in the Virgo core include M87, M86, and M84. It is concluded that the cluster images are useful in determining the cluster family and the cluster's dynamical state.

  2. Interpretation of the Stephan Quintet Galaxy Cluster using Hydro-Gravitational-Dynamics: Viscosity and Fragmentation

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Schild, Rudolph E.

    2011-10-01

    Stephan's Quintet (SQ) is a compact group of galaxies that has been well studied since its discovery in 1877 but is mysterious using cold dark mat- ter hierarchical clustering cosmology (CDMHCC). Anomalous red shifts z = (0.0027, 0.019, 0.022, 0.022, 0.022) among galaxies in SQ either reduce it to a Trio with two highly improbable intruders from CDMHCC or support the Arp (1973) hypothesis that its red shifts are intrinsic. An alternative is provided by the Gib- son 1996-2006 hydro-gravitational-dynamics (HGD) theory where superclusters, clusters and galaxies all originate by gravitational fragmentation in the super- viscous plasma epoch and at planetary and star cluster mass scales in the pri- mordial gas of the expanding universe. By this fluid-mechanical cosmology, the SQ galaxies gently separate and remain precisely along a line of sight because of perspective and the small transverse velocities permitted by their sticky viscous- gravitational beginnings. Star and gas bridges and young-globular-star-cluster (YGC) trails observed by the Hubble Space Telescope are triggered as SQ galax- ies separate through viscous baryonic-dark-matter halos of dark proto-globular- cluster (PGC) clumps of frozen Earth-mass primordial-fog-particles (PFPs).

  3. Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly

    2016-01-01

    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.

  4. X-ray morphological study of galaxy cluster catalogues

    NASA Astrophysics Data System (ADS)

    Democles, Jessica; Pierre, Marguerite; Arnaud, Monique

    2016-07-01

    Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.

  5. Substructure in Galaxy Clusters Identification through Six Morphology Parameters

    NASA Astrophysics Data System (ADS)

    Parekh, Viral

    2011-08-01

    Recent spectral and spatial X-ray observations of galaxy clusters suggests subclustering and merging in many clusters.Hence galaxy clusters can be grouped into two categories; relaxed and non-relaxed clusters.We have investigated the use of six morphological parameters (Gini, Asymmetry, M_{20}, Concentration, Ellipticity, Smoothness and Gini 2nd order) to differentiate between relaxed and non-relaxed scenarios.We initially simulated different relaxed and non-relaxed morphologies with multiple beta profiles and then also simulated these clusters for Chandra observation using the MARX simulator software.Finally,we applied our method to a different redshift sample of clusters from the Chandra archive. In this talk I will present the promising results from the six morphological parameter calculations.

  6. Featured Image: A Galaxy Plunges Into a Cluster Core

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    The galaxy that takes up most of the frame in this stunning image (click for the full view!) is NGC 1427A. This is a dwarf irregular galaxy (unlike the fortuitously-located background spiral galaxy in the lower right corner of the image), and its currently in the process of plunging into the center of the Fornax galaxy cluster. Marcelo Mora (Pontifical Catholic University of Chile) and collaborators have analyzed observations of this galaxy made by both the Very Large Telescope in Chile and the Hubble Advanced Camera for Surveys, which produced the image shown here as a color composite in three channels. The team worked to characterize the clusters of star formation within NGC 1427A identifiable in the image as bright knots within the galaxy and determine how the interactions of this galaxy with its cluster environment affect the star formation within it. For more information and the original image, see the paper below.Citation:Marcelo D. Mora et al 2015 AJ 150 93. doi:10.1088/0004-6256/150/3/93

  7. Constraints on the alignment of galaxies in galaxy clusters from ~14 000 spectroscopic members

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Hoekstra, Henk; Cacciato, Marcello; Viola, Massimo; Köhlinger, Fabian; van der Burg, Remco F. J.; Sand, David J.; Graham, Melissa L.

    2015-03-01

    Torques acting on galaxies lead to physical alignments, but the resulting ellipticity correlations are difficult to predict. As they constitute a major contaminant for cosmic shear studies, it is important to constrain the intrinsic alignment signal observationally. We measured the alignments of satellite galaxies within 90 massive galaxy clusters in the redshift range 0.05 galaxies with spectroscopic redshifts with high-quality data from the Canada-France-Hawaii Telescope. We used phase-space information to select 14 576 cluster members, 14 250 of which have shape measurements and measured three different types of alignment: the radial alignment of satellite galaxies toward the brightest cluster galaxies (BCGs), the common orientations of satellite galaxies and BCGs, and the radial alignments of satellites with each other. Residual systematic effects are much smaller than the statistical uncertainties. We detect no galaxy alignment of any kind out to at least 3r200. The signal is consistent with zero for both blue and red galaxies, bright and faint ones, and also for subsamples of clusters based on redshift, dynamical mass, and dynamical state. These conclusions are unchanged if we expand the sample with bright cluster members from the red sequence. We augment our constraints with those from the literature to estimate the importance of the intrinsic alignments of satellites compared to those of central galaxies, for which the alignments are described by the linear alignment model. Comparison of the alignment signals to the expected uncertainties of current surveys such as the Kilo-Degree Survey suggests that the linear alignment model is an adequate treatment of intrinsic alignments, but it is not clear whether this will be the case for larger surveys. Table is available in electronic form at

  8. THE FATE OF STELLAR MASS LOSS IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Voit, G. Mark; Donahue, Megan

    2011-09-10

    Star formation within the central galaxies of galaxy clusters is often interpreted as being fueled by cooling of the hot intracluster medium. However, the star-forming gas is dusty, and Spitzer spectra show that the dust properties are similar to those in more normal star-forming environments, in which the dust has come from the winds of dying stars. Here we consider whether the primary source of the star-forming gas in central cluster galaxies could be normal stellar mass loss. We show that the overall stellar mass-loss rate in a large central galaxy ({approx}4-8 M{sub sun} yr{sup -1}) is at least as large as the observed star formation rates in all but the most extreme cases and must be included in any assessment of the gas-mass budget of a central cluster galaxy. We also present arguments suggesting that the gas shed by stars in galaxy clusters with high core pressures and short central cooling times may remain cool and distinct from its hot surroundings, thereby preserving the dust within it.

  9. HUBBLE CAPTURES VIEW OF SUPERNOVA BLAST IN REMOTE GALAXY CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In March 1996, the Hubble Space Telescope's Wide Field and Planetary Camera 2 just happened to be pointed at the faraway galaxy cluster MS1054-0321 when it captured the light from an exploding star, called supernova 1996CL. The cluster is 8 billion light-years from Earth. The Hubble telescope can clearly distinguish the supernova light from the glow of its parent galaxy. The larger image on the left shows the entire cluster of galaxies. The galaxy where the supernova was discovered is located in the boxed area. The bright knot of light from the supernova and the fainter glow from the parent galaxy are shown in the inset image on the right. The arrow points to the light from the supernova explosion. The supernova was discovered by members of the Supernova Cosmology Project, led by Saul Perlmutter of Lawrence Berkeley Laboratory in California. Perlmutter and his team made this discovery using images from the Hubble telescope and ground-based observatories. The Hubble data were furnished by Megan Donahue of the Space Telescope Science Institute. Donahue was using the Hubble telescope to study galaxy cluster MS1054-0321. Members of the Supernova Project use ground-based telescopes to search for distant supernovae, such as 1996CL, by comparing multiple, wide-field images of galaxies and clusters of galaxies taken at different times. Supernovae are named for the year and the order in which they are found. Supernova 1996CL is a Type Ia supernova. Exploding stars of this type are particularly useful for cosmology because they share a standard maximum brightness. By measuring this brightness, astronomers can determine a Type Ia's distance from Earth. Astronomers use this information to measure the expansion rate of the universe.

  10. Environmental Dependence of the Evolution of Early-Type Galaxies in Clusters at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Ziegler, Bodo L.

    2003-07-01

    Understanding the formation and evolution of early-type galaxies and their stellar populations is one of the central problems in astrophysics. Although numerous studies on early-type galaxies in the local universe have been performed to address this question, the key question, when and within what timescales the stellar populations have been formed, has not yet answered sufficiently. Monolithic collapse models predict an intense burst of star formation at high redshift (zf>=2) and a following passive evolution of the stellar populations. The picture of hierachical galaxy formation (so-called 'bottom-up universe') presumes longer assembly timescales for the more massive galaxies with merging of galaxies and the infall of new cold gas from a galaxy's halo being the main drivers. Thus, galaxies formed through accumulation of small structures result in somewhat younger mean ages. In order to explore the evolution of galaxies, it it necessary to explore both the morphological evolution as well as the evolution of the luminosities and the mass-to-light (M/L) ratios of the galaxies. One of the most powerful tools is the Fundamental Plane (FP) of early-type galaxies. In a three dimensional parameter space, defined by three observables, the effective radius Re, effective surface brightness mue and velocity dispersion sigma, the FP establishes a tight correlation (Djorgovski & Davis 1987; Dressler et al. 1987). We have conducted a study on early-type galaxies in Abell 2390 at intermediate redshift. Observations based on Multi-Object-Spectroscopy with MOSCA at the 3.5-m Calar Alto telescope, deep UBi ground-based imaging with the 5.1-m Hale telescope and HST photometry in the F555W and F814W filter bands yield a sample of N=51 early-type galaxies in the rich cluster Abell 2390 at a redhift z=0.23. Our investigation spans both a broad range in luminosity (-19.3>=MB>=-22.3) and a wide field of view (10'x10'). One of our main goals is to investigate possible differences between

  11. Baryon content and dynamic state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wang, D.

    2016-06-01

    We are carrying out a panchromatic observing program to study the baryon content and dynamic state of galaxy clusters. In this talk, I will present results primarily from XMM-Newton observations of optically-selected clusters in the redshift range of 0.1-0.4. These clusters are selected because of their fortuitous alignment with background far-UV-bright QSOs, which thus allows for Ly-alpha and O VI absorption line spectroscopy with HST/COS, probing physical processes of the evolving intracluster medium, freshly accreted from the intergalactic medium and/or stripped out of individual galaxies, as well as the gaseous halos of individual cluster galaxies. Interestingly, such clusters tend to be dynamically young and often consist of merging subcluster pairs at similar redshifts. These subclusters themselves typically show substantial substructures, including strongly distorted radio lobes, as well as large position offsets between the diffuse X-ray centroids and the brightest galaxies. A comparison of the hot gas and stellar masses of each cluster with the expected cosmological baryonic mass fraction indicates a significant room for other gas components. I will also briefly examine the limitations of both optically and X-ray selected clusters, as well as how they may be used in a complementary fashion.

  12. The Ubiquity of Coeval Starbursts in Massive Galaxy Cluster Progenitors

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.

    2016-06-01

    The universe’s largest galaxy clusters likely built the majority of their massive >1011 M {}⊙ galaxies in simultaneous, short-lived bursts of activity well before virialization. This conclusion is reached based on emerging data sets for z\\gt 2 proto-clusters and the characteristics of their member galaxies, in particular, rare starbursts and ultraluminous active galactic nuclei (AGN). The most challenging observational hurdle in identifying such structures is their very large volumes, ˜104 comoving Mpc3 at z\\gt 2, subtending areas of approximately half a degree on the sky. Thus, the contrast afforded by an overabundance of very rare galaxies in comparison to the background can more easily distinguish overdense structures from the surrounding, normal density field. Five 2≲ z≲ 3 proto-clusters from the literature are discussed in detail and are found to contain up to 12 dusty starbursts or luminous AGN galaxies each, a phenomenon that is unlikely to occur by chance even in overdense environments. These are contrasted with three higher-redshift (4≲ z≲ 5.5) dusty star-forming galaxy (DSFG) groups, whose evolutionary fate is less clear. Measurements of DSFGs’ gas depletion times suggest that they are indeed short-lived on ˜100 Myr timescales, and accordingly the probability of finding a structure containing more than 8 such systems is ˜0.2%, unless their “triggering” is correlated on very large spatial scales, ˜10 Mpc across. The volume density of DSFG-rich proto-clusters is found to be comparable to all of the >1015 M {}⊙ galaxy clusters in the nearby universe, which is a factor of five larger than expected in some simulations. Some tension still exists between measurements of the volume density of DSFG-rich proto-clusters and the expectation that they are generated via short-lived episodes, as the latter suggests that only a fraction (\\lt \\tfrac{1}{2}) of all proto-clusters should be rich with DSFGs. However, improved observations of proto-clusters

  13. The K-band luminosity functions of cluster galaxies

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto

    2017-03-01

    We derive the galaxy luminosity function in the Ks band for galaxies in 24 clusters to provide a local reference for higher redshift studies and to analyse how and if the luminosity function varies according to environment and cluster properties. We use new, deep K-band imaging and match the photometry to available redshift information and to optical photometry from the SDSS or the UKST/POSS: More than 80 per cent of the galaxies to K ∼ 14.5 have measured redshifts. We derive composite luminosity functions, for the entire sample and for cluster subsamples. We consider the luminosity functions for red-sequence and blue cloud galaxies. The full composite luminosity function has K* = 12.79 ± 0.14 (MK = -24.81) and α = -1.41 ± 0.10. We find that K* is largely unaffected by the environment, but that the slope α increases towards lower mass clusters and clusters with Bautz-Morgan type < II. The red-sequence luminosity function seems to be approximately universal (within errors) in all environments: It has parameters K* = 13.16 ± 0.15 (MK = -24.44) and α = -1.00 ± 0.12 (for all galaxies). Blue galaxies do not show a good fit to a Schechter function, but the best values for its parameters are K* = 13.51 ± 0.41 (MK = -24.09) and α = -1.60 ± 0.29: We do not have enough statistics to consider environmental variations for these galaxies. We find some evidence that K* in clusters is brighter than in the field and α is steeper, but note that this comparison is based (for the field) on 2MASS photometry, while our data are considerably deeper.

  14. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-06-10

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  15. Generalizing MOND to explain the missing mass in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Hodson, Alistair O.; Zhao, Hongsheng

    2017-02-01

    Context. MOdified Newtonian Dynamics (MOND) is a gravitational framework designed to explain the astronomical observations in the Universe without the inclusion of particle dark matter. MOND, in its current form, cannot explain the missing mass in galaxy clusters without the inclusion of some extra mass, be it in the form of neutrinos or non-luminous baryonic matter. We investigate whether the MOND framework can be generalized to account for the missing mass in galaxy clusters by boosting gravity in high gravitational potential regions. We examine and review Extended MOND (EMOND), which was designed to increase the MOND scale acceleration in high potential regions, thereby boosting the gravity in clusters. Aims: We seek to investigate galaxy cluster mass profiles in the context of MOND with the primary aim at explaining the missing mass problem fully without the need for dark matter. Methods: Using the assumption that the clusters are in hydrostatic equilibrium, we can compute the dynamical mass of each cluster and compare the result to the predicted mass of the EMOND formalism. Results: We find that EMOND has some success in fitting some clusters, but overall has issues when trying to explain the mass deficit fully. We also investigate an empirical relation to solve the cluster problem, which is found by analysing the cluster data and is based on the MOND paradigm. We discuss the limitations in the text.

  16. Search for Galaxy-ICM Interaction in Rich Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Inada, N.; Konami, S.; Kodama, T.; Nakazawa, K.; Kawaharada, M.; Makishima, K.

    2012-05-01

    In a rich cluster of galaxies, hundred of member galaxies swim in the intra-cluster hot plasma with transonic speed. Since the moving galaxies carry their own inter-stellar plasma and possibly inter-stellar magnetic field, they may interact with the cluster plasma in form of ram pressure and/or magnetohydrodynamic turbulence. Such interaction will gradually transfer energy and momentum from galaxies to the cluster plasmas. Hence, the plasmas will be heated against radiative loss, while the stellar component is expected to become more and more concentrated towards cluster center. To verify this conjecture, we studied the "optical-light vs. ICM-mass ratio" profile for a sample of 34 relaxed clusters with z=0.1-0.9. Using optical data obtained with the UH88 telescope and X-ray data with XMM-Newton and Chandra, we calculated the radially-integrated optical luminosity profiles and projected ICM mass profiles, respectively. We found that the light-to-ICM ratio profiles drop more steeply outwards in low redshift clusters. According a K-S test, the evolution is significant at >90% confidence level. By assessing systematic errors and biases, we found none of them is significant against the observed evolution. Furthermore, other astrophysical effects, e.g., dynamical friction, are estimated to be insufficient to explain the observation. This result provides important support for our view of galaxy-plasma interaction.

  17. Collisions and Mergers of Galaxies in Clusters: Tidal Streams and Mass Loss

    NASA Astrophysics Data System (ADS)

    Lamb, S. A.; Hearn, N. C.; Van Schelt, J. A.; Marinova, I. S.

    2005-12-01

    We report the results of a series of moderately high-resolution N-body simulations of collision and subsequent merger of pairs of comparable mass galaxies that have been chosen to represent typical members of galaxy clusters. The model disk galaxies have dark matter halos approximately four times more massive than the combined stellar mass, and have disk-bulge ratios similar to either Sab or S0 galaxies. Both disk-disk galaxy collisions and elliptical-disk galaxy collisions have been investigated, and their long-term evolution to a merged state followed. We have used the tree-gravity part of the 'Tillamook' N-body code of Hearn (2002, Ph.D Thesis, UIUC), with between 250,000 and a million particles. We simulate the merger of galaxies approaching at nearly the escape velocity with a range of impact parameters that lead to both slightly off-center and glancing collisions. Following these mergers, we find that by a time of approximately 2 Gyr past closest initial approach, a central high-density region has formed in the combined dark matter halo with a radius of approximately 80 kpc, if we scale our model disk galaxies to the mass and radius of the Milky Way. Within the new, asymmetric, extended dark matter halos formed in the mergers, are long-lived streams, 'fans', and shells of stellar material. Most of the dark matter remains in the region occupied by luminous matter throughout the simulation, but some amount is spread to very large radii and between 20% and 30% would be lost to the overall potential in a cluster. (We acknowledge support from DOE LLNL B506657. The simulations were performed on the Turing Computer Cluster at UIUC.)

  18. Cosmological simulations of isotropic conduction in galaxy clusters

    SciTech Connect

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  19. Star Formation in Galaxy Clusters Over the Past 10 Billion Years

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy

    2012-01-01

    Galaxy clusters are the largest gravitationally bound systems in the universe and include the most massive galaxies in the universe; this makes galaxy clusters ideal laboratories for disentangling the nature versus nurture aspect of how galaxies evolve. Understanding how galaxies form and evolve in clusters continues to be a fundamental question in astronomy. The ages and assembly histories of galaxies in rich clusters test both stellar population models and hierarchical formation scenarios. Is star formation in cluster galaxies simply accelerated relative to their counterparts in the lower density field, or do cluster galaxies assemble their stars in a fundamentally different manner? To answer this question, I review multi-wavelength results on star formation in galaxy clusters from Coma to the most distant clusters yet discovered at look-back times of 10 billion years (z 2).

  20. Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. I. Data-Model Comparison and Evolution of Galaxy Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.

  1. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  2. Dynamics of 10 clusters of galaxies with substructures

    SciTech Connect

    Lakhchaura, Kiran; Singh, K. P.

    2014-06-01

    We present a detailed Chandra study of a sample of 10 clusters of galaxies selected based on the presence of substructures in their optical images. The X-ray surface brightness maps of most of these clusters show anisotropic morphologies, especially in the central regions. A total of 22 well resolved significantly bright X-ray peaks (corresponding with high-density regions) are seen in the central parts (within r{sub c} /2) of the clusters. Multiple peaks are seen in central parts of six clusters. We found 11 peaks to have optical counterparts (10 coinciding with the brightest cluster galaxies of the 10 clusters and 1 coinciding with the second brightest galaxy in A539). For most of the clusters, the optical substructures detected in the previous studies are found to be outside the field of view of Chandra. In the spectroscopically produced two-dimensional temperature maps, significantly lower temperatures are seen at the locations of three peaks (two in A539 and one in A376). The centers of five clusters in our sample also host regions of higher temperature compared to the ambient medium, indicating the presence of galaxy scale mergers. The X-ray luminosity, gas mass, and central cooling time estimates for all the clusters are presented. The radial X-ray surface-brightness profiles of all but one of the clusters are found to be best-fitted with a double-β model, pointing toward the presence of double-phased central gas due to cool cores. The cooling time estimates of all the clusters, however, indicate that none of them hosts a strong cool core, although the possibility of weak cool cores cannot be ruled out.

  3. Stellar velocity dispersion in dissipative galaxy mergers with star formation

    SciTech Connect

    Stickley, Nathaniel R.; Canalizo, Gabriela

    2014-05-01

    In order to better understand stellar dynamics in merging systems, such as NGC 6240, we examine the evolution of central stellar velocity dispersion (σ{sub *}) in dissipative galaxy mergers using a suite of binary disk merger simulations that include feedback from stellar formation and active galactic nuclei (AGNs). We find that σ{sub *} undergoes the same general stages of evolution that were observed in our previous dissipationless simulations: coherent oscillation, then phase mixing, followed by dynamical equilibrium. We also find that measurements of σ{sub *} that are based only upon the youngest stars in simulations consistently yield lower values than measurements based upon the total stellar population. This finding appears to be consistent with the so-called 'σ{sub *} discrepancy', observed in real galaxies. We note that quasar-level AGN activity is much more likely to occur when σ{sub *} is near its equilibrium value rather than during periods of extreme σ{sub *}. Finally, we provide estimates of the scatter inherent in measuring σ{sub *} in ongoing mergers.

  4. Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest

  5. Hubble tracks down a galaxy cluster's dark matter

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Unique mass map hi-res Size hi-res: 495 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Unique mass map This is a mass map of galaxy cluster Cl0024+1654 derived from an extensive Hubble Space Telescope campaign. The colour image is made from two images: a dark-matter map (the blue part of the image) and a 'luminous-matter' map determined from the galaxies in the cluster (the red part of the image). They were constructed by feeding Hubble and ground-based observations into advanced mathematical mass-mapping models. The map shows that dark matter is present where the galaxies clump together. The mass of the galaxies is shown in red, the mass of the dark matter in blue. The dark matter behaves like a 'glue', holding the cluster together. The dark-matter distribution in the cluster is not spherical. A secondary concentration of dark-matter mass is shown in blue to the upper right of the main concentration. Sky around galaxy cluster Cl0024+1654 hi-res Size hi-res: 3742 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Sky around galaxy cluster Cl0024+1654 This is a 2.5-degree field around galaxy cluster Cl0024+1654. The cluster galaxies are visible in the centre of the image in yellow. The image is a colour composite constructed from three Digitized Sky Survey 2 images: Blue (shown in blue), Red (shown in green), and Infrared (shown in red). HST observes shapes of more than 7000 faint background galaxies hi-res Size hi-res: 5593 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Hubble observes shapes of more than 7000 faint background galaxies Five days of observations produced the altogether 39 Hubble Wide Field and Planetary Camera 2 (WFPC2) images required to map the mass of the galaxy cluster Cl0024+1654. Each WFPC2 image has a size of about 1/150 the diameter of the full Moon. In

  6. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    SciTech Connect

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L. E-mail: rwechsler@stanford.edu

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  7. Comparing the clustering of galaxies and galaxy group by using the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Brunner, R. J.

    2014-01-01

    By using the angular two-point correlation function, we measure the clustering strength of a clean sample of galaxies (explored in Wang, Brunner, & Dolence 2013) for the Sloan Digital Sky Survey Data Release Seven. By using these same data, we first find isolated pairs, triplets, quads, and larger groups of galaxies, and subsequently measure the clustering of these subsamples. We find the clustering strength increases with groups size, which supports the halo model of galaxy clustering and demonstrates the efficacy of our isolated group catalog for general studies such as the galaxy merger rate. Finally, we explore the effects of galaxy spectral type and photometric redshift on the clustering behavior of these galaxy group samples. References: Blake, C., Collister, A., Lahav, O. 2008, MNRAS, 385, 1257 Hickson, P. 1982, ApJ, 255, 382 Ross, A. J., Brunner, R. J. 2009, MNRAS, 399, 878 Wang Y., Brunner R. J., Dolence J. C. 2013, MNRAS, 432, 1961 Zehavi, I., et al. 2004, ApJ, 608, 16

  8. Super Star Clusters in the Antenna Galaxies

    NASA Video Gallery

    Zooming through the nighttime sky into the constellation Corvus the crow, deeper into the Hubble's Advanced Camera for Surveys image of the Antennae galaxies. The "stellar fireworks" contain brilli...

  9. A simulation of the intracluster medium with feedback from cluster galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Christopher A.; Evrard, August E.

    1994-01-01

    We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta

  10. Optical bias and hierarchical clustering. [Of galaxies

    SciTech Connect

    Bonometto, S.A.; Lucchin, F.; Matarrese, S.

    1987-12-01

    The present transfer of statistical results for biased theories of galaxy origin to a direct analysis of the celestial sphere's luminosity field notes that magnitude-limited galaxy catalogs are interpretable as sets of luminosity peaks bypassing suitable luminosity limits. The relationship between this view and that based on the Limber equation is discussed, and a tentative explanation is proposed for peculiarities arising in observed spatial correlations. Zwicky catalog data appear to confirm the validity of the concepts presented. 30 references.

  11. THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY

    SciTech Connect

    Dressler, Alan; Oemler, Augustus Jr.; Poggianti, Bianca M.; Vulcani, Benedetta; Gladders, Michael D.; Abramson, Louis

    2013-06-10

    The IMACS Cluster Building Survey (ICBS) provides spectra of {approx}2200 galaxies 0.31 < z < 0.54 in five rich clusters (R {approx}< 5 Mpc) and the field. Infalling, dynamically cold groups with tens of members account for approximately half of the supercluster population, contributing to a growth in cluster mass of {approx}100% by the present day. The ICBS spectra distinguish non-star-forming (PAS) and poststarburst (PSB) from star-forming galaxies-continuously star-forming (CSF) or starbursts (SBH or SBO), identified by anomalously strong H{delta} absorption or [O II] emission. For the infalling cluster groups and similar field groups, we find a correlation between PAS+PSB fraction and group mass, indicating substantial ''preprocessing'' through quenching mechanisms that can turn star-forming galaxies into passive galaxies without the unique environment of rich clusters. SBH + SBO starburst galaxies are common, and they maintain an approximately constant ratio (SBH+SBO)/CSF Almost-Equal-To 25% in all environments-from field, to groups, to rich clusters. Similarly, while PSB galaxies strongly favor denser environments, PSB/PAS Almost-Equal-To 10%-20% for all environments. This result, and their timescale {tau} {approx} 500 Myr, indicates that starbursts are not signatures of a quenching mechanism that produces the majority of passive galaxies. We suggest instead that starbursts and poststarbursts signal minor mergers and accretions, in star-forming and passive galaxies, respectively, and that the principal mechanisms for producing passive systems are (1) early major mergers, for elliptical galaxies, and (2) later, less violent processes-such as starvation and tidal stripping, for S0 galaxies.

  12. Galaxy clustering with photometric surveys using PDF redshift information

    NASA Astrophysics Data System (ADS)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  13. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  14. Galaxy clustering with photometric surveys using PDF redshift information

    SciTech Connect

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are $\\Delta z=0.1$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.

  15. INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION

    SciTech Connect

    Hao Jiangang; Kubo, Jeffrey M.; Feldmann, Robert; Annis, James; Johnston, David E.; Lin Huan; McKay, Timothy A.

    2011-10-10

    We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure ({>=}90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant ({>=}3{sigma}) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.

  16. On the Diffuse Non-thermal Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Donnert, J.

    2011-07-01

    A number of galaxy clusters show complex radio emission not associable with optical counterparts. These objects are commonly classified as radio relics, radio mini halos and giant radio halos. The latter are diffuse Mpc-sized objects centred on the intra-cluster medium (ICM) and are commonly observed in merging clusters. In this work we investigate the formation of radio halos by means of astrophysical numerical simulations. Radio halos (RH) are observed in the GHz regime and show a complex broken power-law emission spectrum. This points to a population of relativistic electrons (CRe) interacting with the magnetic field present in the intra-cluster medium and emitting radio synchrotron radiation. Furthermore RH are transient phenomena, as inferred from the bimodal distribution of radio bright and radio quiet clusters found early on. Their scaling relations with thermal cluster observables breaks the self-similar model established from X-ray observations. In general, relativistic particles are injected strongly localised by shocks and galactic outflows into the ICM with a power-law spectrum. They are then subject to energy losses via inverse Compton, synchrotron, bremsstrahlung and Coulomb processes. This results in a limited lifetime of cosmic-ray electrons at synchrotron bright energies in the intra-cluster medium of ≈ 10^8 yrs. However, due to their interaction with the complex magnetic field of the ICM, it can be shown that cosmic-ray electrons have their effective diffusion speed limited to the Alven velocity in the thermal plasma. This poses a problem on the formation of radio halos, because it is unclear how the cluster-wide synchrotron bright population of CRe, necessary to make a radio halo, can be maintained under these conditions. Currently two competing models are heavily discussed to solve this problem. Hadronic (secondary) models consider the hadronic interaction of relativistic protons (CRp) with the thermal gas of the ICM. In contrast to CR

  17. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Norberg, Peder; Baugh, Carlton M.; Hawkins, Ed; Maddox, Steve; Peacock, John A.; Cole, Shaun; Frenk, Carlos S.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2001-11-01

    We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range 0.1<(r/h-1Mpc)<10. The clustering of L*(MbJ-5log10h=-19.7) galaxies in real space is well-fitted by a correlation length r0=4.9+/-0.3h-1Mpc and power-law slope γ=1.71+/-0.06. The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M*, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between MbJ-5log10h=-18 and -22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L* galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.

  18. Clustering Effect on the Number Count of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Yamashita, K.

    1992-08-01

    We have tested the cosmological model of Ω0 = 1 and Λ = 0 against the faint galaxy number count taking the clustering effect of galaxies into account. The evolution of the large scale structure is simulated numerically by means of the particle mesh method in three dimensional space. We use 643 particles and the same number of mesh cells. We have found that the flat Friedmann-Robertson-Walker model without the cosmological constant does not explain the excess of the number count observed by Tyson even if the clustering effect is taken into account, provided the cluster size and the correlation length among clusters are less than the simulation box size of 128 h-1 Mpc. The clustering on scales larger than 128 h-1 Mpc is also considered.

  19. The Alignment effect of brightest cluster galaxies in the SDSS

    SciTech Connect

    Kim, R. S. J.; Annis, J.; Strauss, M. A.; Lupton, R. H.; Bahcall, N. A.; Gunn, J. E.; Kepner, J. V.; Postman, M.

    2001-10-01

    One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members: we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0clusters). However, we have developed a framework by which we can examine many more clusters in an automated fashion for the upcoming SDSS cluster catalogs, which will provide us with better statistics for systematic investigations of the alignment with redshift, richness and morphology of both the cluster and the BCG.

  20. Searching for galaxy clusters in the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-02-01

    Aims: In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. Methods: The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. Results: We obtained 1858 candidate clusters with redshift 0 cluster catalogs shows that we match more than 50% of the clusters (77% in the case of the redMaPPer catalog). We also cross-matched our cluster catalog with the Abell clusters, and clusters found by XMM and in the Planck-SZ survey; however, only a small number of them lie inside the KiDS area currently available. The catalog is available at http://kids.strw.leidenuniv.nl/DR2 and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A107

  1. DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Finn, Rose A.; Desai, Vandana; Rudnick, Gregory; Poggianti, Bianca; Bell, Eric F.; Hinz, Joannah; Zaritsky, Dennis; Jablonka, Pascale; Milvang-Jensen, Bo; Moustakas, John; Rines, Kenneth E-mail: jmoustakas@ucsd.ed

    2010-09-01

    We present Spitzer MIPS 24 {mu}m observations of sixteen 0.4 < z < 0.8 galaxy clusters drawn from the ESO Distant Cluster Survey. This is the first large 24 {mu}m survey of clusters at intermediate redshift. The depth of our imaging corresponds to a total IR luminosity of 8 x 10{sup 10} L{sub sun}, just below the luminosity of luminous infrared galaxies (LIRGs), and 6{sup +1}{sub -1}% of M{sub V} < -19 cluster members show 24 {mu}m emission at or above this level. We compare with a large sample of coeval field galaxies and find that while the fraction of cluster LIRGs lies significantly below that of the field, the IR luminosities of the field and cluster galaxies are consistent. However, the stellar masses of the EDisCS LIRGs are systematically higher than those of the field LIRGs. A comparison with optical data reveals that {approx}80% of cluster LIRGs are blue and the remaining 20% lie on the red sequence. Of LIRGs with optical spectra, 88{sup +4} {sub -5}% show [O II] emission with EW([O II]) > 5 A, and {approx}75% exhibit optical signatures of dusty starbursts. On average, the fraction of cluster LIRGs increases with projected clustercentric radius but remains systematically lower than the field fraction over the area probed (<1.5x R {sub 200}). The amount of obscured star formation declines significantly over the 2.4 Gyr interval spanned by the EDisCS sample, and the rate of decline is the same for the cluster and field populations. Our results are consistent with an exponentially declining LIRG fraction, with the decline in the field delayed by {approx}1 Gyr relative to the clusters.

  2. MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV-ZEL'DOVICH EFFECT AND X-RAY PEAKS

    SciTech Connect

    Molnar, Sandor M.; Hearn, Nathan C.; Stadel, Joachim G.

    2012-03-20

    Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high-resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were about 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal, and therefore the offset between the SZ and X-ray peaks, change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak-lensing observations of the merging galaxy cluster CL0152-1357, we find that a large relative velocity of 4800 km s{sup -1} is necessary to explain the observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.

  3. On the dynamical state of galaxy clusters: insights from cosmological simulations - II.

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Power, Chris; Borgani, Stefano; Knebe, Alexander; Lewis, Geraint F.; Murante, Giuseppe; Poole, Gregory B.

    2017-01-01

    Using a suite of cosmology simulations of a sample of >120 galaxy clusters with log (MDM, vir) ≤ 14.5. We compare clusters that form in purely dark matter (DM) run and their counterparts in hydro-runs and investigate four independent parameters that are normally used to classify dynamical state. We find that the virial ratio η in hydro-dynamical runs is ˜10 per cent lower than in the DM run, and there is no clear separation between the relaxed and unrelaxed clusters for any parameter. Further, using the velocity dispersion deviation parameter ζ, which is defined as the ratio between cluster velocity dispersion σ and the theoretical prediction σ _t = √{G M_{total}/R}, we find that there is a linear correlation between the virial ratio η and this ζ parameter. We propose to use this ζ parameter, which can be easily derived from observed galaxy clusters, as a substitute of the η parameter to quantify the cluster dynamical state.

  4. Clustering of GPS velocities in the Mojave Block, southeastern California

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  5. Velocity dispersions in galaxies. I - The E7 galaxy NGC 7332.

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Chevalier, R. A.

    1972-01-01

    A coude spectrum of the E7 galaxy NGC 7332 with 0.9 A-resolution from 4186 to 4364 A was obtained with the Princeton SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 (plus or minus 20) km/sec with the best fit at G8 III. The dispersion appears to be constant within plus or minus 35 km/sec out to 1.4 kpc. After correction for projection, the rotation curve has a slope of 0.18 km/sec per pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 140 billion solar masses if the mass-to-light ratio is constant throughout the galaxy.

  6. Radial velocities in the globular cluster ω Centauri

    NASA Astrophysics Data System (ADS)

    Reijns, R. A.; Seitzer, P.; Arnold, R.; Freeman, K. C.; Ingerson, T.; van den Bosch, R. C. E.; van de Ven, G.; de Zeeuw, P. T.

    2006-01-01

    We have used the ARGUS multi-object spectrometer at the CTIO 4 m Blanco telescope to obtain 2756 radial velocity measurements for 1966 individual stars in the globular cluster ω Centauri brighter than blue photographic magnitude of about 16.5. Of these, 1589 stars are cluster members. A comparison with two independent radial velocity studies, carried out by Suntzeff & Kraft and by Mayor et al., demonstrates that the median error of our measurements is below 2 km s-1 for the stars brighter than B-magnitude 15, which constitute the bulk of the sample. The observed velocity dispersion decreases from about 15 km s-1 in the inner few arcmin to about 6 km s-1 at a radius of 25'. The cluster shows significant rotation, with a maximum amplitude of about 6 km s-1 in the radial zone between 6' and 10'. In a companion paper by van de Ven et al., we correct these radial velocities for the perspective rotation caused by the space motion of the cluster, and combine them with the internal proper motions of nearly 8000 cluster members measured by van Leeuwen et al., to construct a detailed dynamical model of ω Centauri and to measure its distance.

  7. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    SciTech Connect

    Hudson, Michael J.; Harris, Gretchen L.; Harris, William E.

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  8. A Snapshot Survey of The Most Massive Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    2007-07-01

    We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterisation of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date - reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.

  9. QSO clustering - II. The correlation function of IRAS seyfert galaxies.

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Shanks, T.

    1994-12-01

    We investigate the clustering properties of 192 Seyfert galaxies from the IRAS all-sky survey. Using the spatial correlation function, we detect evidence of Seyfert clustering at the 2σ confidence level at < 10 h^-1^ Mpc separations, and at the 3{SIGMA} level at < 20 h^-1^ Mpc separations. Comparison of the QSO correlation function amplitude at high redshifts, z = 1.4, with that of Seyferts below 10 h^-1^ comoving Mpc leads us to reject the stable model of AGN clustering evolution at the 4σ level, whereas a comoving model where QSOs randomly sample the galaxy distribution is more consistent. The main uncertainty here now lies in the statistical error on the amplitude of the clustering in the faint QSO surveys at z = 1.4. The Seyfert-QDOT cross-correlation function is measured to be approximately a factor of 2 higher than the QDOT galaxy autocorrelation function, suggesting an enhanced environment for Seyferts with respect to IRAS galaxies, but it is not clear whether this is also the case with respect to optical galaxies. We conclude that the comoving model is probably favoured overall, at least on the r < 10 h^-1^ Mpc scales investigated here, but it is not yet possible to rule out intermediate models: for example, an enhanced-environment, stable model with ξ(r)=(r/3)^-1.8^ at z = 1.4, which is statistically consistent with the faint QSO data.

  10. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  11. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  12. Galaxy Clusters, Near and Far, Have a Lot in Common

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these