Science.gov

Sample records for galaxy cluster velocities

  1. Velocity correlations of galaxy clusters

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Bahcall, Neta A.; Gramann, Mirt

    1994-01-01

    We determine the velocity correlation function, pairwise peculiar velocity difference, and rms pairwise peculiar velocity dispersion of rich clusters of galaxies, as a function of pair separation, for three cosmological models: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models (all flat and Cosmic Background Explorer (COBE)-normalized). We find that close cluster pairs, with separation r is less than or equal to 10/h Mpc, exhibit strong attractive peculiar velocities in all models; the cluster pairwise velocities depend sensitively on the model. The mean pairwise attractive velocity of clusters on 5/h Mpc scale ranges from approximately 1700 km/s for Omega = 1 CDM to approximately 1000 km/s for PBI to approximately 700 km/s for Omega = 0.3 CDM. The small-scale pairwise velocities depend also on cluster mass: richer, more massive clusters exhibit stronger attractive velocities than less massive clusters. On large scales, from approximately 20 to 200/h Mpc, the cluster peculiar velocities are increasingly dominated by bulk and random motions; they are independent of cluster mass. The cluster velocity correlation function is negative on small scales for Omega = 1 and Omega = 0.3 CDM, indicating strong pairwise motion relative to bulk motion on small scales; PBI exhibits relatively larger bulk motions. The cluster velocity correlation function is positive on very large scales, from r approximately 10/h Mpc to r approximately 200/h Mpc, for all models. These positive correlations, which decrease monotonically with scale, indicate significant bulk motions of clusters up to approximately 200/h Mpc. The strong dependence of the cluster velocity functions on models, especially at small separations, makes them useful tools in constraining cosmological models when compared with observations.

  2. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  3. A future test of gravitation using galaxy cluster velocities

    SciTech Connect

    Kosowsky, Arthur; Bhattacharya, Suman

    2009-09-15

    The accelerating expansion of the Universe at recent epochs has called into question the validity of general relativity on cosmological scales. One probe of gravity is a comparison of expansion history of the Universe with the history of structure growth via gravitational instability: general relativity predicts a specific relation between these two observables. Here we show that the mean pairwise streaming velocity of galaxy clusters provides a useful method of constraining this relation. Galaxy cluster velocities can be measured via the kinetic Sunyaev-Zeldovich distortion of the cosmic microwave background radiation. Future surveys can provide large enough catalogs of cluster velocities to discriminate between general relativity and other proposed gravitational theories.

  4. The relation between velocity dispersion and central galaxy density in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, N. A.

    1981-01-01

    A correlation between cluster velocity dispersion and average central galaxy density is reported. The correlation covers the range from rich clusters to small groups of galaxies, or, in terms of velocity dispersion, from v sub r approximately 1500 to approximately 100 km/s. This result is useful for estimating unknown velocity dispersions in clusters with the aid of the relatively easily determined 0.5 Mpc central galaxy density parameter. When combined with the virial theorem, the above relation also suggests that the mass-to-light ratio of galaxy systems increases with the system's velocity dispersion.

  5. Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND

    NASA Astrophysics Data System (ADS)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W.

    2013-07-01

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in ΛCDM simulations. The bulk motions of clusters attain ~1000 km s-1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for "pink elephants" like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  6. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    SciTech Connect

    Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W. E-mail: stacy.mcgaugh@case.edu E-mail: angus.gz@gmail.com

    2013-07-20

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  7. New measurements of radial velocities in clusters of galaxies. II

    NASA Astrophysics Data System (ADS)

    Proust, D.; Mazure, A.; Sodre, L.; Capelato, H.; Lund, G.

    1988-03-01

    Heliocentric radial velocities are determined for 100 galaxies in five clusters, on the basis of 380-518-nm observations obtained using a CCD detector coupled by optical fibers to the OCTOPUS multiobject spectrograph at the Cassegrain focus of the 3.6-m telescope at ESO La Silla. The data-reduction procedures and error estimates are discussed, and the results are presented in tables and graphs and briefly characterized.

  8. Dwarf galaxies in the Coma cluster - I. Velocity dispersion measurements

    NASA Astrophysics Data System (ADS)

    Kourkchi, E.; Khosroshahi, H. G.; Carter, D.; Karick, A. M.; Mármol-Queraltó, E.; Chiboucas, K.; Tully, R. B.; Mobasher, B.; Guzmán, R.; Matković, A.; Gruel, N.

    2012-03-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is -21 < MR < -15 mag. This paper (Paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using penalized pixel fitting (PPXF) and using the calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation (L∝σα) and find that the slope of the relation is α= 1.99 ± 0.14 for galaxies brighter than MR≃-16 mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in Paper II.

  9. Globular Clusters and Dark Satellite Galaxies through the Stream Velocity

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar; Narayan, Ramesh

    2014-08-01

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 105-2.5 × 106 M ⊙ (105-4 × 106 M ⊙) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  10. GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

    SciTech Connect

    Naoz, Smadar; Narayan, Ramesh

    2014-08-10

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 10{sup 5}-2.5 × 10{sup 6} M {sub ☉} (10{sup 5}-4 × 10{sup 6} M {sub ☉}) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  11. Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution

    NASA Astrophysics Data System (ADS)

    Einasto, M.; Vennik, J.; Nurmi, P.; Tempel, E.; Ahvensalmi, A.; Tago, E.; Liivamägi, L. J.; Saar, E.; Heinämäki, P.; Einasto, J.; Martínez, V. J.

    2012-04-01

    Context. The study of the signatures of multimodality in groups and clusters of galaxies, an environment for most of the galaxies in the Universe, gives us information about the dynamical state of clusters and about merging processes, which affect the formation and evolution of galaxies, groups and clusters, and larger structures - superclusters of galaxies and the whole cosmic web. Aims: We search for the presence of substructure, a non-Gaussian, asymmetrical velocity distribution of galaxies, and large peculiar velocities of the main galaxies in clusters with at least 50 member galaxies, drawn from the SDSS DR8. Methods: We employ a number of 3D, 2D, and 1D tests to analyse the distribution of galaxies in clusters: 3D normal mixture modelling, the Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests, as well as the Anscombe-Glynn and the D'Agostino tests. We find the peculiar velocities of the main galaxies, and use principal component analysis to characterise our results. Results: More than 80% of the clusters in our sample have substructure according to 3D normal mixture modelling, and the Dressler-Shectman (DS) test shows substructure in about 70% of the clusters. The median value of the peculiar velocities of the main galaxies in clusters is 206 km s-1 (41% of the rms velocity). The velocities of galaxies in more than 20% of the clusters show significant non-Gaussianity. While multidimensional normal mixture modelling is more sensitive than the DS test in resolving substructure in the sky distribution of cluster galaxies, the DS test determines better substructure expressed as tails in the velocity distribution of galaxies (possible line-of-sight mergers). Richer, larger, and more luminous clusters have larger amount of substructure and larger (compared to the rms velocity) peculiar velocities of the main galaxies. Principal component analysis of both the substructure indicators and the physical parametres of clusters shows that galaxy clusters

  12. A comparison between observed and analytical velocity dispersion profiles of 20 nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.

    2014-05-01

    We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.

  13. Velocity Bias from Merging in Clusters of Galaxies: The beta < 1 Problem

    NASA Astrophysics Data System (ADS)

    Fusco-Femiano, R.; Menci, N.

    1995-08-01

    We study the evolution of the galaxy velocity distribution in galaxy clusters under binary aggregations. Starting with an initial Maxwell distribution, we solve the complete Boltzmann-Liouville equation including collisions. We find an asymptotic distribution characterized by a galaxy velocity dispersion smaller than that of the dark matter. This is due to the transfer from orbital to internal energy occurring in galaxy merging, which is not completely balanced by the galaxy response to the cluster gravitational field. As a consequence, the value of the parameter β that enters in the standard hydrostatic isothermal β-model is less than 1, as determined from the fits to the X-ray surface brightness data. The result is robust with respect to different shapes of the cluster mass distribution. The dependence of β on the cluster velocity dispersion and size is computed and discussed.

  14. Velocity segregation effects in galaxy clusters at 0.4 ≲ z ≲ 1.5

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Girardi, M.; Biviano, A.; Borgani, S.; Annunziatella, M.; Nonino, M.

    2016-11-01

    Aims: Our study is meant to extend our knowledge of the galaxy color and luminosity segregation in velocity space (VCS and VLS, respectively), to clusters at intermediate and high redshift. Methods: Our sample is a collection of 41 clusters in the 0.4 ≲ z ≲ 1.5 redshift range for a total of 4172 galaxies, 1674 of which are member galaxies of the clusters within 2R200 with photometric or spectroscopic information, as taken from the literature. We perform homogeneous procedures to select cluster members, compute global cluster properties, in particular the line-of-sight (LOS) velocity dispersion σV, and separate blue from red galaxies. Results: We find evidence of VCS in clusters out to z ≃ 0.8 (at the 97-99.99% confidence level, depending on the test), in the sense that the blue galaxy population has a 10-20% larger σV than the red galaxy population. Poor or no VCS is found in the high-z sample at z ≥ 0.8. For the first time, we detect VLS in non-local clusters and confirm that VLS only affects the very luminous galaxies; brighter galaxies have lower velocities. The threshold magnitude of VLS is m3 + 0.5, where m3 is the magnitude of the third brightest cluster galaxy. Current data suggest that the threshold value moves to fainter magnitudes at higher redshift. We also detect (marginal) evidence of VLS for blue galaxies. Conclusions: We conclude that segregation effects can be important tracers of the galaxy evolution and cluster assembly when they are studied up to distant clusters. We also discuss the evidence of VCS at high redshift, which is poor or absent.

  15. The kinetic evolution and velocity distribution of gravitational galaxy clustering

    NASA Astrophysics Data System (ADS)

    Saslaw, William C.; Chitre, S. M.; Itoh, Makoto; Inagaki, Shogo

    1990-12-01

    The spatial statistical distribution function for quasi-equilibrium gravitational clustering in an expanding universe is derived from more general assumptions than before, without needing an earlier Ansatz. Then, it is shown how this statistical distribution is related to the kinetic development of the BBGKY hierarchy and how to obtain an analytic descriptioin for the time evolution of an initial Poisson distribution. From general principles, an analytic velocity distribution function for quasi-equilibrium gravitational clustering is also derived. It has no free parameters. Comparison with N-body experiments shows excellent agreement.

  16. The Velocity Dispersion Function of Very Massive Galaxy Clusters: Abell 2029 and Coma

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Geller, Margaret J.; Zahid, H. Jabran; Fabricant, Daniel G.; Diaferio, Antonaldo; Rines, Kenneth J.

    2017-04-01

    Based on an extensive redshift survey for galaxy clusters Abell 2029 and Coma, we measure the luminosity functions (LFs) and stellar mass functions (SMFs) for the entire cluster member galaxies. Most importantly, we measure the velocity dispersion functions (VDFs) for quiescent members. The MMT/Hectospec redshift survey for galaxies in A2029 identifies 982 spectroscopic members; for 838 members, we derive the central velocity dispersion from the spectroscopy. Coma is the only other cluster surveyed as densely. The LFs, SMFs, and VDFs for A2029 and Coma are essentially identical. The SMFs of the clusters are consistent with simulations. The A2029 and Coma VDFs for quiescent galaxies have a significantly steeper slope than those of field galaxies for velocity dispersion ≲ 100 {km} {{{s}}}-1. The cluster VDFs also exceed the field at velocity dispersion ≳ 250 {km} {{{s}}}-1. The differences between cluster and field VDFs are potentially important tests of simulations and of the formation of structure in the universe.

  17. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    SciTech Connect

    Ruel, J.; Bayliss, M.; Bazin, G.; Bocquet, S.; Brodwin, M.; Foley, R. J.; Stalder, B.; Ashby, M. L. N.; Aird, K. A.; Armstrong, R.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; and others

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.

  18. Velocity distributions in galaxy clusters - How to combine different normality tests

    NASA Astrophysics Data System (ADS)

    Sampaio, F. S.; Ribeiro, A. L. B.

    2014-02-01

    We study 416 galaxy systems with more than 7 members selected from the 2MASS catalog. We applied five well known normality tests to the velocity distributions of these systems to distinguish Gaussian and non-Gaussian clusters. Using controlled samples, we estimated type I and II errors for each test. We verified that individual tests minimize the chances of classifying a Gaussian system as non-Gaussian, while the Fisher’s meta-analysis method, a procedure to combine p-values from several statistical tests, minimizes the chances of classifying a non-Gaussian system as Gaussian. Taking the positive elements of each method and also including a modality analysis of the velocity distribution, we defined objective criteria to split up the sample into Gaussian and non-Gaussian clusters. Our analysis indicates that 50-58% of groups have Gaussian distribution, a lower fraction than that we found using individual normality tests, 71-87%. We also found that some properties of galaxy clusters are significantly different between Gaussian and non-Gaussian systems. For instance, non-Gaussian clusters have larger radii and contain more galaxies than Gaussian clusters. Finally, we discussed the importance of choosing the adequate methodology to classify galaxy systems from their velocity distributions and also the dependence of the results on the criteria used to identify clusters in galaxy surveys.

  19. Estimating Cosmological Parameters and Cluster Masses through Escape Velocity Measurements in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gifford, Daniel William

    2016-08-01

    Galaxy clusters are large virialized structures that exist at the intersection of filaments of matter that make up the cosmic web. Due to their hierarchical growth history, they are excellent probes of the cosmology that governs our universe. Here, we aim to use clusters to better constrain cosmological parameters by systematically studying the uncertainties on galaxy cluster mass estimation for use in a halo mass function analysis. We find that the caustic technique is capable on average of recovering unbiased cluster masses to within 30% for well sampled systems. We also quantify potential statistical and systematic biases due to observational challenges. To address statistical biases in the caustic technique, we developed a new stacking algorithm to measure the average cluster mass for a single stack of projected cluster phase-spaces. By varying the number of galaxies and number of clusters we stack, we find that the single limited value is the total number of galaxies in the stack opening up the possibility for self-calibrated mass estimates of low mass or poorly sampled clusters in large surveys. We then utilize the SDSS-C4 catalog of galaxy clusters to place some of the tightest galaxy cluster based constraints on the matter density and power spectrum normalization for matter in our universe.

  20. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Zheng, Zheng; Zehavi, Idit; Dawson, Kyle; Skibba, Ramin A.; Tinker, Jeremy L.; Weinberg, David H.; White, Martin; Schneider, Donald P.

    2015-01-01

    We present the measurements and modelling of the projected and redshift-space clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 11. For a volume-limited luminous red galaxy sample in the redshift range of 0.48 < z < 0.55, we perform halo occupation distribution modelling of the small- and intermediate-scale (0.1-60 h-1 Mpc) projected and redshift-space two-point correlation functions, with an accurate model built on high-resolution N-body simulations. To interpret the measured redshift-space distortions, the distribution of galaxy velocities must differ from that of the dark matter inside haloes of ˜1013-1014 h-1 M⊙, i.e. the data require the existence of galaxy velocity bias. Most notably, central galaxies on average are not at rest with respect to the core of their host haloes, but rather move around it with a 1D velocity dispersion of 0.22^{+0.03}_{-0.04} times that of the dark matter, implying a spatial offset from the centre at the level of ≲1 per cent of the halo virial radius. The luminous satellite galaxies move more slowly than the dark matter, with velocities 0.86^{+0.08}_{-0.03} times those of the dark matter, which suggests that the velocity and spatial distributions of these satellites cannot both be unbiased. The constraints mainly arise from the Fingers-of-God effect at non-linear scales and the smoothing to the Kaiser effect in the translinear regime; the robustness of the results is demonstrated by a variety of tests. We discuss the implications of the existence of galaxy velocity bias for investigations of galaxy formation and cosmology.

  1. The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Cisewski, J.; Price, L. C.

    2017-01-01

    We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight velocities, v, or velocity dispersions are used to infer cluster masses, M, to quantify the halo mass function (HMF), {dn}(M)/d{log}(M), which is strongly affected by mass measurement errors. In our new method, the probability distributions of velocities for each cluster in the sample are summed to create a new statistic called the velocity distribution function (VDF), {dn}(v)/{dv}. The VDF can be measured more directly and precisely than the HMF and can be robustly predicted with cosmological simulations that capture the dynamics of subhalos or galaxies. We apply these two methods to realistic (ideal) mock cluster catalogs with (without) interlopers and forecast the bias and constraints on the matter density parameter Ωm and the amplitude of matter fluctuations σ8 in flat ΛCDM cosmologies. For an example observation of 200 massive clusters, the VDF with (without) interloping galaxies constrains the parameter combination {σ }8 {{{Ω }}}m0.29(0.29)=0.589+/- 0.014 (0.584+/- 0.011) and shows only minor bias. However, the HMF with interlopers is biased to low Ωm and high σ8 and the fiducial model lies well outside of the forecast constraints, prior to accounting for Eddington bias. When the VDF is combined with constraints from the cosmic microwave background, the degeneracy between cosmological parameters can be significantly reduced. Upcoming spectroscopic surveys that probe larger volumes and fainter magnitudes will provide clusters for applying the VDF as a cosmological probe.

  2. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    SciTech Connect

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-08-10

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  3. Primordial inhomogeneities in the expanding universe. I - Density and velocity distributions of galaxies in the vicinities of rich clusters

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1979-01-01

    The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.

  4. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters

    SciTech Connect

    Becker, M.R.; McKay, T.A.; Koester, B.; Wechsler, R.H.; Rozo, E.; Evrard, A.; Johnston, D.; Sheldon, E.; Annis, J.; Lau, E.; Nichol, R.; Miller, C.; /Michigan U.

    2007-06-05

    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.

  5. The SLUGGS Survey: A Catalog of Over 4000 Globular Cluster Radial Velocities in 27 Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Alabi, Adebusola; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Foster, Caroline; Usher, Christopher; Spitler, Lee; Bellstedt, Sabine; Pastorello, Nicola; Villaume, Alexa; Wasserman, Asher; Pota, Vincenzo

    2017-03-01

    Here, we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 < log {M}* /M ⊙ < 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10 m telescope. Radial velocities are measured using the calcium triplet lines, with a velocity accuracy of ±10–15 km s‑1. We use phase space diagrams (i.e., velocity–position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass, in a similar manner to the Faber–Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.

  6. Constraining the galaxy mass content in the core of A383 using velocity dispersion measurements for individual cluster members

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Zitrin, A.; Geller, M. J.; Grillo, C.; Mercurio, A.; Greisel, N.; Halkola, A.; Suyu, S. H.; Postman, M.; Rosati, P.; Balestra, I.; Biviano, A.; Coe, D.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2015-02-01

    We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with Multiple Mirror Telescope Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17 per cent in terms of the image reproduction χ2, or 20 per cent in terms of the rms. The constraints on the mass parameters improve by ˜10 per cent for the DH, while for the galaxy component, they are refined correspondingly by ˜50 per cent, including the galaxy halo truncation radius. For an L* galaxy with M^{*}B=-20.96, for example, we obtain best-fitting truncation radius r_tr^{*}=20.5^{+9.6}_{-6.7} kpc and velocity dispersion σ* = 324 ± 17 km s-1. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on rtr of two nearby cluster members, which have measured velocity dispersions, by more than ˜30 per cent. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available.

  7. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  8. Quasars in rich galaxy clusters

    NASA Technical Reports Server (NTRS)

    Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    The evolution of AGN activity in rich clusters of galaxies is found to be approximately 5 times more rapid than that in poor clusters. This rapid evolution may be driven by evolution in the dynamics of galaxy cluster cores. Results from our spectroscopic studies of galaxies associated with quasars are consistent with this scenario, in that bright AGN are preferentially found in regions of lower velocity dispersion. Alternately, the evolution may be driven by formation of a dense intra-cluster medium (ICM). Galaxies close to quasars in rich cluster cores are much bluer (presumably gas rich) than galaxies in the cores of other rich clusters, in support of this model.

  9. Radial velocities of galaxies in the cluster Klemola 22 from observations with OPTOPUS, the ESO multiple object spectroscopy facility

    NASA Astrophysics Data System (ADS)

    Cristiani, S.; D'Odorico, S.; de Souza, R.; Lund, G.; Quintana, H.

    1987-06-01

    This paper presents the first results obtained with the ESO multiple fiber spectroscopic facility (OPTOPUS). Radial velocities and magnitudes are given for 44 galaxies in the cluster Klemola 22. The average redshift is 16160 km s-1 and the velocity dispersion 742 km s-1. The galaxy Kle 22/17 shows strong emission lines of [O III], with a FWHM of 850 km s-1, and is classified as a type 2 Seyfert. From these observations, the average efficiency of OPTOPUS, including telescope, spectrograph and detector, is computed as 1 detected photoelectron Å-1s-1 for an object of 15 B magnitude.

  10. Investigating the Relation between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters

    NASA Astrophysics Data System (ADS)

    de Carvalho, R. R.; Ribeiro, A. L. B.; Stalder, D. H.; Rosa, R. R.; Costa, A. P.; Moura, T. C.

    2017-09-01

    We investigate the dependence of stellar population properties of galaxies on group dynamical stage for a subsample of the Yang catalog. We classify groups according to their galaxy velocity distribution into Gaussian (G) and Non-Gaussian (NG). Using two totally independent approaches, we have shown that our measurement of Gaussianity is robust and reliable. Our sample covers Yang’s groups in the redshift range 0.03 ≤slant z ≤slant 0.1, with mass ≥slant {10}14{M}⊙ . The new method, called Hellinger Distance, to determine whether a group has a velocity distribution Gaussian or NG is very effective in distinguishing between the two families. NG groups present halo masses higher than the G ones, confirming previous findings. Examining the skewness and kurtosis of the velocity distribution of G and NG groups, we find that faint galaxies in NG groups are mainly infalling, for the first time, into the groups. We show that considering only faint galaxies in the outskirts; those in NG groups are older and more metal-rich than those in G groups. Also, examining the Projected Phase Space of cluster galaxies, we see that bright and faint galactic systems in G groups are in dynamical equilibrium—which does not seem to be the case in NG groups. These findings suggest that NG systems have a higher infall rate, assembling more galaxies that have experienced preprocessing before entering the group.

  11. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Merritt, Allison; Mowla, Lamiya; Romanowsky, Aaron; Zhang, Jielai

    2016-09-01

    Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these ultra-diffuse galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here, we present the stellar kinematics of Dragonfly 44, one of the largest Coma UDGs, using a 33.5 hr integration with DEIMOS on the Keck II telescope. We find a velocity dispersion of σ ={47}-6+8 {km} {{{s}}}-1, which implies a dynamical mass of {M}{dyn}(\\lt {r}1/2)={0.7}-0.2+0.3× {10}10 {M}⊙ within its deprojected half-light radius of {r}1/2=4.6+/- 0.2 {kpc}. The mass-to-light ratio is M/{L}I(\\lt {r}1/2)={48}-14+21 {M}⊙ /{L}⊙ , and the dark matter fraction is 98% within {r}1/2. The high mass of Dragonfly 44 is accompanied by a large globular cluster population. From deep Gemini imaging taken in 0\\buildrel{\\prime\\prime}\\over{.} 4 seeing we infer that Dragonfly 44 has {94}-20+25 globular clusters, similar to the counts for other galaxies in this mass range. Our results add to other recent evidence that many UDGs are “failed” galaxies, with the sizes, dark matter content, and globular cluster systems of much more luminous objects. We estimate the total dark halo mass of Dragonfly 44 by comparing the amount of dark matter within r=4.6 {kpc} to enclosed mass profiles of NFW halos. The enclosed mass suggests a total mass of ˜ {10}12 {M}⊙ , similar to the mass of the Milky Way. The existence of nearly dark objects with this mass is unexpected, as galaxy formation is thought to be maximally efficient in this regime.

  12. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.; Gaspari, M.; Schekochihin, A. A.; Lau, E. T.; Nagai, D.; Nelson, K.; Parrish, I. J.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  13. Effect of relative velocity and density perturbations between baryons and dark matter on the clustering of galaxies

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian

    2016-09-01

    Prerecombination acoustic oscillations induce nonadiabatic perturbations between baryons and dark matter, corresponding to a constant relative-density δb c and decaying relative-velocity perturbation vb c . Due to their significant large-scale correlations and prominent baryon acoustic oscillation (BAO) features, these modes are potentially important for the use of the BAO as standard ruler. We present a complete treatment of the effects of the baryon-cold dark matter perturbations on galaxy clustering in the context of a rigorous perturbative bias expansion. The leading effects are proportional to δb c and θb c=∂ivbc i. We estimate the magnitude of these terms through the excursion set approach. The contribution from vbc 2, which has attracted significant attention recently, contributes at subleading (one-loop) order. The relative-density contribution δb c is expected to be by far the largest contribution. We also point out contributions to the galaxy velocity bias, the largest of which is simply vb c, leading to a term ∝μ2θb c in the redshift-space galaxy power spectrum Pgs(k ,μ ). Complete expressions of the galaxy power spectrum at one-loop order are given, which contain several new terms.

  14. The Rotation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tovmassian, H. M.

    2015-09-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher than the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b > 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy, which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60%, and clusters of BMI type with dominant cD galaxy, ≈ 35% . The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not experience mergings with other clusters and groups of galaxies, as a result of which the rotation was prevented.

  15. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  16. PROSPECTS FOR MEASURING THE RELATIVE VELOCITIES OF GALAXY CLUSTERS IN PHOTOMETRIC SURVEYS USING THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Keisler, Ryan; Schmidt, Fabian E-mail: fabians@astro.princeton.edu

    2013-03-10

    We consider the prospects for measuring the pairwise kinetic Sunyaev-Zel'dovich (kSZ) signal from galaxy clusters discovered in large photometric surveys such as the Dark Energy Survey (DES). We project that the DES cluster sample will, in conjunction with existing mm-wave data from the South Pole Telescope (SPT), yield a detection of the pairwise kSZ signal at the 8{sigma}-13{sigma} level, with sensitivity peaking for clusters separated by {approx}100 Mpc distances. A next-generation version of SPT would allow for a 18{sigma}-30{sigma} detection and would be limited by variance from the kSZ signal itself and the residual thermal Sunyaev-Zel'dovich (tSZ) signal. Throughout our analysis, we assume photometric redshift errors that wash out the signal for clusters separated by {approx}<50 Mpc; a spectroscopic survey of the DES sample would recover this signal and allow for a 26{sigma}-43{sigma} detection, and would again be limited by kSZ/tSZ variance. Assuming a standard model of structure formation, these high-precision measurements of the pairwise kSZ signal will yield detailed information on the gas content of the galaxy clusters. Alternatively, if the gas can be sufficiently characterized by other means (e.g., using tSZ, X-ray, or weak lensing), then the relative velocities of the galaxy clusters can be isolated, thereby providing a precision measurement of gravity on 100 Mpc scales. We briefly consider the utility of these measurements for constraining theories of modified gravity.

  17. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  18. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  19. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  20. THE HIGH-VELOCITY SYSTEM: INFALL OF A GIANT LOW-SURFACE-BRIGHTNESS GALAXY TOWARD THE CENTER OF THE PERSEUS CLUSTER

    SciTech Connect

    Yu, Alice P.-Y.; Lim, Jeremy; Chan, Jeffrey C.-C.; Ohyama, Youichi; Broadhurst, T.

    2015-12-01

    The high-velocity system (HVS) lies just north-west of the center and is moving at a speed of 3000 km s{sup −1} toward NGC 1275, the central giant elliptical galaxy in the Perseus cluster. We report imaging spectroscopy of the HVS in Hα and [N ii] that resolves both the nature of this galaxy and its physical relationship with NGC 1275. The HVS exhibits a distorted disk having a projected rotational velocity that rises steadily to ∼200 km s{sup −1} at a radius of ∼12 kpc, the same maximal extent detectable in neutral gas and dust. We discover highly blueshifted emission at relative velocities of up to ∼800 km s{sup −1} distributed throughout and confined almost entirely within the projected area of the disk, tracing gas stripped by ram pressure. The distribution of the stripped gas implies that the HVS is moving essentially along our sightline closely toward the center of NGC 1275. We show that the speed of the HVS is consistent with it having fallen from rest at the virial radius of the Perseus cluster and reached ∼100 kpc from the cluster center. Despite having an overall metallicity (inferred from [N ii]/Hα) significantly lower than that of star-forming disk galaxies, the HVS exhibits a current star formation rate of ∼3.6 M{sub ⊙} yr{sup −1} and numerous young star clusters projected against giant H ii regions. The evidence assembled implicates a progenitor giant low-surface-brightness galaxy that, because of galaxy harassment and/or the cluster tidal field, has developed two prominent spiral arms along which star formation is strongly elevated.

  1. Binary Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Ip, Peter Shun Sang

    1994-01-01

    CCD images of the binary-rich clusters of galaxies A373, A408, A667, A890, and A1250 taken at the Canada-France-Hawaii telescope show that about half the binary galaxies' are actually star-galaxy or star-star pairs. These clusters are not binary-rich. N-body simulations are used to study the effect of static cluster potentials on binary and single galaxies. The softening procedure is discussed in detail. Since Plummer softening is not self-consistent, and since the force laws for various other density models are similar to each other, uniform-density softening is used. The choice of the theoretical galaxy model in terms of the potential at various locations. A fixed cluster potential cannot stabilize binary galaxies against merger, but can disrupt even quite tightly bound binaries. A moderately good predictor of whether a binary merges or disrupts is the mean torque over a quarter of the initial binary period. But the dynamics of the situation is quite complicated, and depends on an interplay between the motion of the binary through the cluster and the absorption of orbital energy by the galaxies. There is also a substantial amount of mass loss. Simulations of single galaxies in cluster show that this mass loss is due mainly to the cluster potential, and not to an interplay between the merging binary and the cluster. This mass loss is driven partially by virial equilibrium responding to the initial tidal truncation by the cluster. Besides verifying some general results of mass loss from satellite systems in the tidal field of larger bodies, it was found that the galaxy loses mass at an exponential rate.

  2. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  3. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  4. Constraining galaxy cluster velocity field with the thermal Sunyaev-Zel'dovich and kinematic Sunyaev-Zel'dovich cross-bispectrum

    NASA Astrophysics Data System (ADS)

    Hurier, G.

    2017-08-01

    The Sunyaev-Zel'dovich (SZ) effects are produced by the interaction of cosmic microwave background (CMB) photons with the ionized and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. The two main effects are the thermal SZ (tSZ) produced by thermal pressure inside galaxy clusters and the kinematic SZ (kSZ) produced by peculiar motion of galaxy clusters compared to CMB rest-frame. The kSZ effect is particularly challenging to measure as it follows the same spectral behavior as the CMB, and consequently cannot be separated from the CMB using spectral considerations. In this paper, we explore the feasibility of detecting the kSZ through the computation of the tSZ-CMB-CMB cross-correlation bispectrum for current and future CMB experiments. We conclude that the next generation of CMB experiments will offer the possibility to detect the tSZ-kSZ-kSZ bispectrum at high signal-to-noise ration (S/N). This measurement will constraints the intra-cluster dynamics and the velocity field of galaxy cluster that is extremely sensitive to the growth rate of structures and thus to dark energy properties. Additionally, we also demonstrate that the tSZ-kSZ-kSZ bispectrum can be used to break the degeneracies between the mass-observable relation and the cosmological parameters to set tight constraints, up to 4%, on the Y - M relation calibration.

  5. THE STRUCTURE OF 2MASS GALAXY CLUSTERS

    SciTech Connect

    Blackburne, Jeffrey A.; Kochanek, Christopher S.

    2012-01-01

    We use a sample of galaxies from the Two Micron All Sky Survey Extended Source Catalog to refine a matched filter method of finding galaxy clusters that takes into account each galaxy's position, magnitude, and redshift if available. The matched filter postulates a radial density profile, luminosity function, and line-of-sight velocity distribution for cluster galaxies. We use this method to search for clusters in the galaxy catalog, which is complete to an extinction-corrected K-band magnitude of 13.25 and has spectroscopic redshifts for roughly 40% of the galaxies, including nearly all brighter than K = 11.25. We then use a stacking analysis to determine the average luminosity function, radial distribution, and velocity distribution of cluster galaxies in several richness classes, and use the results to update the parameters of the matched filter before repeating the cluster search. We also investigate the correlations between a cluster's richness and its velocity dispersion and core radius using these relations to refine priors that are applied during the cluster search process. After the second cluster search iteration, we repeat the stacking analysis. We find a cluster galaxy luminosity function that fits a Schechter form, with parameters M{sub K*} - 5log h = -23.64 {+-} 0.04 and {alpha} = -1.07 {+-} 0.03. We can achieve a slightly better fit to our luminosity function by adding a Gaussian component on the bright end to represent the brightest cluster galaxy population. The radial number density profile of galaxies closely matches a projected Navarro-Frenk-White profile at intermediate radii, with deviations at small radii due to well-known cluster centering issues and outside the virial radius due to correlated structure. The velocity distributions are Gaussian in shape, with velocity dispersions that correlate strongly with richness.

  6. Galaxy clusters as hydrodynamics laboratories

    NASA Astrophysics Data System (ADS)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  7. Coma cluster of galaxies

    NASA Image and Video Library

    1999-12-02

    Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.

  8. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  9. Dust in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Polikarpova, O. L.; Shchekinov, Yu. A.

    2017-02-01

    The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d / S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100-300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1-3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

  10. Understanding Galaxy Cluster MKW10

    NASA Astrophysics Data System (ADS)

    Sanders, Tim; Henry, Swain; Coble, Kimberly A.; Rosenberg, Jessica L.; Koopmann, Rebecca A.

    2015-01-01

    As part of the Undergraduate ALFALFA Team (UAT), we are studying the galaxy cluster MKW 10 (RA = 175.454, Dec = 10.306, z ~ 0.02), a poor cluster with a compact core in which tidal interactions have occurred. This cluster has been observed in HI and Hα. We used SDSS and NED to search for optical counterparts. By comparing data at multiple wavelengths, we hope to understand the structure, environment, and star formation history of this cluster. Following the techniques of others involved in the groups project and using the program TOPCAT to manipulate the data, we explored both the spatial and velocity distributions to determine cluster membership. We have determined that this cluster consists of 11 galaxies, mostly spiral in shape. Chicago State University is new the UAT and we began our work after taking part in the winter workshop at Arecibo.This work was supported by: Undergraduate ALFALFA Team NSF Grant AST-1211005 and the Illinois Space Grant Consortium.

  11. On the masses and relative velocities of galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1975-01-01

    A critical analysis of the observations made by Einasto et al. and Ostriker et al. (1974) regarding the masses of galaxies is presented. The criticism centers on the assumption of gravitational binding in calculating the masses. Suppositions regarding halos surrounding galaxies; noncircular motions in outer spirals; physical bindings between our Galaxy and the six dwarf elliptical galaxies near it; and the masses of double galaxies and clusters are analyzed, and it is concluded that there is no independent observational evidence that the masses in these cases are very much larger than those derived in the investigation of single galaxies. Relative and random velocities within and between galaxies are discussed, and no indication is found for equipartition of energy between systems of different masses or for alteration of velocity dispersion by the formation and evolution of physical groupings, except for the rich clusters.

  12. The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Churazov, E.; Nagai, D.; Lau, E. T.; Zhuravleva, I.

    2014-09-01

    Exploring the power spectrum of fluctuations and velocities in the intracluster medium (ICM) can help us to probe the gas physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with the ICM thermodynamic perturbations. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For a low 3D Mach number M ~ 0.25, gravity waves mainly drive entropy perturbations, which are traced by preferentially tangential turbulence. For M> 0.5, sound waves start to significantly contribute and pass the leading role to compressive pressure fluctuations, which are associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting toward isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number, M1D ~ δρ/ρ. This linear relation allows us to easily convert between gas motions and ICM perturbations (δρ/ρ< 1), which can be exploited by the available Chandra, XMM data and by the forthcoming Astro-H mission. At intermediate and small scales (10-100 kpc), the turbulent velocities develop a tight Kolmogorov cascade. The thermodynamic perturbations (which can be generally described by log-normal distributions) act as effective tracers of the velocity field, in broad agreement with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive features induce a flattening in the cascade of the perturbations. Thermal conduction, on the other hand, acts to damp the thermodynamic

  13. Arms pattern speed of galaxies in clusters

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Dottori, H.; Reichert, D.

    We aim to study arm pattern speed and consequently pattern resonances in galaxies of clusters. If the perturbation of cluster galaxies is mainly produced by the interaction with the cluster ambient the pattern speed might well depend on the history of the galaxy orbit within the cluster. We are trying to determine if this constrain exist. We use published data cube of HII regions velocity fields (Asram et al. 1992, Garrido et al. 2004, 2005) and 2-mass images to apply the Tremaine-Weinberg (1984)method to determine pattern speed in barred galaxies. The use of a 2-mass image to obtain the galaxies brightness distribution is justified since it traces the distribution of disk stars and consequently the position of the original perturbation that influence the velocity field of all the matter, including that of the HII regions. First results for the Pegasus cluster indicates that NGC 7536 and NGC 7593 present pattern speeds Ω_p= 26±3 km/sec/kpc and 41±4km/sec/kpc with correlation coefficient of 0.97 and 0.99 respectively. A third galaxy, NGC 7643, presents a quite noisy vs , that does not allow to determine a reliable pattern speed, indicating probably that the perturbation is to weak in this galaxy as to be detected with T-W method.

  14. The Circular Velocity Function of Group Galaxies

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-01

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v c <~ 200 km s-1. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v c estimators, we find no transition from field to ΛCDM-shaped CVF above v c = 50 km s-1 as a function of group halo mass. All groups with 12.4 <~ log M halo/M ⊙ <~ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v c compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v c slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  15. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  16. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-09-28

    Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...

  17. The spiral density-wave structure of our own Galaxy as traced by open clusters: Least-squares analysis of line-of-sight velocities

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Lin, Chien-Cheng; Ngeow, Chow-Choong; Jiang, Ing-Guey

    2014-05-01

    The rotation about the Galactic center of open clusters belonging to the thin component of the Milky Way Galaxy is studied on the basis of line-of-sight velocities and positions for 169 nearby objects taken from the literature. The minor second-order effects caused by the Lin-Shu-type density waves are taken into account by using the least-squares numerical method. Even preliminary, the physical interpretation of the results obtained in this manner shows that (i) among several Fourier modes of collective oscillations developing in the solar neighborhood the one-armed m=1 spiral mode is the main one; the Galaxy has thus significant lopsidedness in the stellar distribution at large radii, (ii) the Sun is located between the major trailing spiral-arm segments in Carina-Sagittarius and Perseus, closer to the outer Perseus one, (iii) the local Cygnus-Orion segment is not a part of the dominant spiral arm but is a minor one, which is due to a secondary Fourier harmonic of the Galaxy’s oscillations, (iv) the pitch angle of the dominant density-wave pattern in the solar vicinity seems to be relatively small, of the order of 7°, and the wavelength (the radial distance between spiral arms) of the m=1 pattern is about 6 kpc, (v) the Galactocentric distance where the velocities of disk rotation and of the spiral density wave (the corotation radius) coincide is located outside of the solar circle; thus, a pattern angular speed lower than the local angular rotation velocity, and finally (vi) the spiral arms of the Galaxy do not represent small deviations of the surface density and gravitational potential from a basic distribution that is axisymmetric in the mean.

  18. The fundamental plane of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    D'Onofrio, M.; Bettoni, D.; Bindoni, D.; Cava, A.; Fasano, G.; Marziani, P.; Moles, M.; Moretti, A.; Poggianti, B. M.; Varela, J.

    2013-04-01

    We have analyzed the growth curves and the surface brightness light profiles of the clusters of the WINGS sample (Fasano et al. 2006) in the B and V bands, measuring the effective radii, the effective surface brightnesses and the total luminosities of our clusters. The similarly of the radial surface brightness profiles of early-type galaxies (ETGs) and clusters indicate that within r200 almost all clusters are virialized structures. The total luminosities L_B of clusters are found to correlate with the X-ray luminosity L_X, following approximately the same relation measured for galaxies by Eskridge et al. (1995). By coupling the photometric data with the central velocity dispersions, derived from the radial velocities of the galaxies measured by Cava et al. (2009), we were able to fit the fundamental plane (FP) of clusters of galaxies. We find that it has approximately the same slope of the FPs of early-type galaxies (ETGs) and globular clusters (GCs), but differs from them in the zero-point. This behavior can be easily explained in terms of a different contribution of dark matter (DM).

  19. The Dynamical Equilibrium of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Yee, H. K. C.; Ellingson, E.; Morris, S. L.; Abraham, R.; Gravel, P.; Pritchet, C. J.; Smecker-Hane, T.; Hartwick, F. D. A.; Hesser, J. E.; Hutchings, J. B.; Oke, J. B.

    1997-02-01

    If a galaxy cluster is effectively in dynamical equilibrium, then all galaxy populations within the cluster must have distributions in velocity and position that individually reflect the same underlying mass distribution, although the derived virial masses can be quite different. Specifically, within the Canadian Network for Observational Cosmology cluster sample, the virial radius of the red galaxy population is, on the average, a factor of 2.05 +/- 0.34 smaller than that of the blue population. The red galaxies also have a smaller rms velocity dispersion, a factor of 1.31 +/- 0.13 within our sample. Consequently, the virial mass calculated from the blue galaxies is 3.5 +/- 1.3 times larger than from the red galaxies. However, applying the Jeans equation of stellar hydrodynamic equilibrium to the red and blue subsamples separately gives statistically identical cluster mass profiles. This is strong evidence that these clusters are effectively equilibrium systems and therefore demonstrates empirically that the masses in the virialized region are reliably estimated using dynamical techniques.

  20. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  1. The Distances to Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scodeggio, Marco

    1997-12-01

    The properties of the Fundamental Plane (FP) of E and S0 galaxies are analyzed using a sample of early-type galaxies in s nearby clusters of galaxies. I band CCD observations are presented for 631 galaxies in the A262, Cancer, A1367, Coma, Pegasus, and A2634 clusters, and in the NGC 383 and NGC 507 groups. Medium dispersion spectroscopic observations are presented for a sub-set composed of 212 galaxies. Combining this data-set with data taken from the literature, gives a FP sample of 294 galaxies. The clusters are chosen to span as large as possible a range of environmental conditions, from a rich, relaxed, X-ray luminous cluster like Coma, to rather poor groups of galaxies like the NGC 383 group. They are also chosen among the clusters that have the largest available samples of Tully-Fisher (TF) measurements, to allow an accurate comparison of the distance scales obtained using the FP and TF relations independently. Both selection criteria are aimed at quantifying the possible presence of environmental effects on the FP relation. The scatter observed around the FP template implies that the distance to a single galaxy can be obtained, using the FP, with a 22% uncertainty (a 0.48 mag uncertainty on the galaxy distance modulus). The peculiar velocity estimates for the 8 clusters in the sample are all small, consistent with the clusters being at rest in the Cosmic Microwave Background reference frame. Monte Carlo simulations are used to quantify the effects of sample selection and measurement uncertainties on the FP template, and correct the resulting biases. After these corrections are applied, it is found that the properties of the FP do not change significantly as a function of the cluster richness, or as a function of the galaxy position within the cluster. Moreover there is very good agreement between the distance measurements obtained using the FP relation, and those obtained using the TF relation. These results are used to derive an upper limit of 5% on

  2. Globular cluster systems in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Nantais, Julie Beth

    We have performed a comprehensive spectroscopic and photometric analysis of the M81 globular cluster system, using Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging in the B, V, and I bands and 74 globular cluster spectra from Hectospec at the MMT. We have also performed a small spectroscopic study of the NGC 300 globular cluster system using the Boller & Chivens (B&C) Spectrograph on the Baade Telescope in Chile. We confirm 9 probable globular clusters in NGC 300 and 3 possible clusters with very low radial velocities. For our full NGC 300 cluster sample, plus one cluster from the literature, we find a mean [Fe/H] = --0.94 +/- 0.15; without the 3 "possible" clusters we find a mean [Fe/H] = --0.98 +/- 0.12. We identify over 200 globular cluster candidates in HST I-band imaging, and spectroscopically confirm 62 new globular clusters in M81. The M81 globular cluster system shows marginal evidence for a bimodal metallicity distribution. The mean metallicity of 107 confirmed M81 globular clusters is [Fe/H] = 1.06 +/- 0.07. The M81 globular cluster system shows significant rotation, at 108 +/- 22 km s-1. There is evidence for a metallicity gradient among the metal-poor clusters. We perform HST ACS BV I photometry and radial profile fitting on 85 spectroscopically confirmed globular clusters, 136 "good" globular cluster candidates, and 198 other star cluster candidates. The globular cluster luminosity function peaks at V0 ˜20.26. The properties of the M81 globular cluster system are very similar to those of the Milky Way and M31, suggesting a similar origin for all three galaxies. Our understanding of the origins of spiral galaxy globular cluster systems would be vastly improved by comprehensive studies of low-mass and late-type spiral galaxies, including HST I-band imaging to identify globular cluster candidates for spectroscopic confirmation.

  3. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    DOE PAGES

    Bocquet, S.; Saro, A.; Mohr, J. J.; ...

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data setmore » (SZ clusters+σv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the eΣxpansion and the growth

  4. Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion σ v and X-Ray Y X Measurements

    NASA Astrophysics Data System (ADS)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; de Haan, T.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σ v ) and 16 X-ray Y X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ v and Y X are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data set (SZ clusters+σ v +Y X) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m ν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m ν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y X calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find ∑m ν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = -1.007 ± 0.065, demonstrating that the expansion and the growth

  5. Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities

    NASA Astrophysics Data System (ADS)

    Anderson, Michael E.; Sunyaev, Rashid

    2016-07-01

    Non-thermal pressure from turbulence and bulk flows is a fundamental ingredient in hot gaseous haloes, and in the intracluster medium, it will be measured through emission line kinematics with calorimeters on future X-ray spacecraft. In this paper, we present a complementary method for measuring these effects, using forbidden FUV emission lines of highly ionized Iron which trace 107 K gas. The brightest of these is [Fe XXI] λ1354.1. We search for these lines in archival Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectra from the well-known elliptical galaxies M87 and NGC4696, which harbor large reservoirs of 107 K gas. We report a 2.2σ feature which we attribute to [Fe XXI] from a filament in M87, and positive residuals in the nuclei of M87 and NGC4696, for which the 90 per cent upper limits on the line flux are close to the predicted fluxes based on X-ray observations. In a newer reduction of the data from the Hubble Spectroscopic Legacy Archive, these limits become tighter and the [Fe XXI] feature reaches a formal significance of 5.3σ, neglecting uncertainty in fitting the continuum. Using our constraints, we perform emission measure analysis, constraining the characteristic path length and column density of the ˜107 K gas. We also examine several sightlines towards filaments or cooling flows in other galaxy clusters, for which the fraction of gas at 107 K is unknown, and place upper limits on its emission measure in each case. A medium-resolution HST-COS observation of the M87 filament for ˜10 orbits would confirm our detection of [Fe XXI] and measure its width.

  6. GALAXY COLLISIONS IN DISTANT CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The group of galaxies -- or 'galaxy cluster' -- catalogued as MS1054-03 is 8 billion light-years away, one of the most distant known so far. Although hundreds of galaxies appear in the NASA/ESA Hubble Space Telescope image, a European-led team of astronomers has studied in detail 81 galaxies that certainly belong to the cluster, 13 of which are remnants of recent collisions or pairs of colliding galaxies. This is by far the largest number of colliding galaxies ever found in a cluster. The picture is actually a 'mosaic' of images, so that astronomers can have a much wider view of the distant cluster. This is why the colliding galaxies, mostly located in clumps in the outskirts of the cluster, had not been discovered so far. In the image, streams of stars can be seen being pulled out of the galaxies, a consequence of the huge tidal forces in action. The red color of most of the merger remnants means that the stars are old and not much star formation has 'recently' taken place. The observations with the Hubble were made in May 1998. The 10-meter Keck telescope in Hawaii was used to confirm that the colliding galaxies were part of the cluster. Photo Credits: Pieter van Dokkum, Marijn Franx (University of Groningen/Leiden), ESA and NASA

  7. Astrophysics of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ettori, Stefano

    2016-07-01

    As the nodes of the cosmic web, clusters of galaxies trace the large-scale distribution of matter in the Universe. They are thus privileged sites in which to investigate the complex physics of structure formation. However, the complete story of how these structures grow, and how they dissipate the gravitational and non-thermal components of their energy budget over cosmic time, is still beyond our grasp. Most of the baryons gravitationally bound to the cluster's halo is in the form of a diffuse, hot, metal-enriched plasma that radiates primarily in the X-ray band. X-ray observations of the evolving cluster population provide a unique opportunity to address such fundamental open questions as: How do hot diffuse baryons accrete and dynamically evolve in dark matter potentials? How and when was the energy that we observe in the ICM generated and distributed? Where and when are heavy elements produced and how are they circulated? We will present the ongoing activities to define the strategy on how an X-ray observatory with large collecting area and an unprecedented combination of high spectral and angular resolution, such as Athena, can address these questions.

  8. The cluster of galaxies Abell 376

    NASA Astrophysics Data System (ADS)

    Proust, D.; Capelato, H. V.; Hickel, G.; Sodré, L., Jr.; Lima Neto, G. B.; Cuevas, H.

    2003-08-01

    We present a dynamical analysis of the galaxy cluster Abell 376 based on a set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence observatories and completed with data from the literature. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as well as some properties of the cluster. We obtained an improved mean redshift value z = 0.0478+0.005-0.006 and velocity dispersion sigma = 852+120-76 km s-1. Our analysis indicates that inside a radius of ~ 900 h70-1 kpc ( ~ 15 arcmin) the cluster is well relaxed without any remarkable features and the X-ray emission traces fairly well the galaxy distribution. A possible substructure is seen at 20 arcmin from the centre towards the Southwest direction, but is not confirmed by the velocity field. This SW clump is, however, kinematically bound to the main structure of Abell 376. A dense condensation of galaxies is detected at 46 arcmin (projected distance 2.6 h70-1 Mpc) from the centre towards the Northwest and analysis of the apparent luminosity distribution of its galaxies suggests that this clump is part of the large scale structure of Abell 376. X-ray spectroscopic analysis of ASCA data resulted in a temperature kT = 4.3 +/- 0.4 keV and metal abundance Z = 0.32 +/- 0.08 Zsun. The velocity dispersion corresponding to this temperature using the TX-sigma scaling relation is in agreement with the measured galaxies velocities. Based on observations made Haute-Provence and Pic du Midi Observatories (France). Table 1 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/31

  9. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    NASA Astrophysics Data System (ADS)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, i.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  10. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    SciTech Connect

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A. E-mail: wirth@keck.hawaii.edu

    2014-05-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  11. THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS

    SciTech Connect

    Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E. E-mail: heinz@astro.ugto.mx E-mail: k.alamo@astrosmo.unam.mx

    2009-06-15

    A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that {approx}92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.

  12. Is the velocity-distance relation for galaxies linear?

    PubMed

    van den Bergh, S

    1993-06-01

    Diameters of ScI galaxies, the luminosities of supernovae of type Ia at maximum light, and the brightness of central galaxies in rich clusters are examined as potential yardsticks or standard candles for study of the velocity-distance relationship. Both supergiant ScI galaxies and supernovae Ia (which have luminosities that differ by up to a factor of approximately 10) are found to be unsuitable for such a study. The remarkably small luminosity dispersion of first-ranked cluster galaxies (which is not yet understood physically) suggests that deviations from a linear velocity-distance relationship are less, approximately 20% out to red shifts of approximately 40,000 km.s-1.

  13. Is the velocity-distance relation for galaxies linear?

    PubMed Central

    van den Bergh, S

    1993-01-01

    Diameters of ScI galaxies, the luminosities of supernovae of type Ia at maximum light, and the brightness of central galaxies in rich clusters are examined as potential yardsticks or standard candles for study of the velocity-distance relationship. Both supergiant ScI galaxies and supernovae Ia (which have luminosities that differ by up to a factor of approximately 10) are found to be unsuitable for such a study. The remarkably small luminosity dispersion of first-ranked cluster galaxies (which is not yet understood physically) suggests that deviations from a linear velocity-distance relationship are less, approximately 20% out to red shifts of approximately 40,000 km.s-1. Images Fig. 1 PMID:11607389

  14. The radius-dependence of velocity dispersion in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Binney, J.

    1980-01-01

    The equations of stellar hydrodynamics are used to derive the radial variation of velocity dispersion in galaxies whose mass-to-light ratios are constant and whose brightness profiles obey the r to the 1/4 law. It is found that the projected central velocity dispersion in such a system should be about 40 percent lower than the peak velocity dispersion. The observability and physical interpretation of this phenomenon is discussed. There is some evidence that a similar effect has been observed in the structure of rich clusters of galaxies.

  15. Luminosity Functions Of Xxl Clusters Galaxies

    NASA Astrophysics Data System (ADS)

    Ricci, Marina; Maurogordato, Sophie; Benoist, Christophe; XXL Consortium

    2017-06-01

    The galaxy luminosity function (LF) is a powerful statistical tool to investigate galaxy evolution. In particular the study of cluster galaxies LFs gives information about environmental effects and how galaxies populate their parent dark matter halos. In this poster we present our work on the galaxy LF of X-ray detected galaxy clusters from the XXL survey. The sample consists of 173 galaxy groups/clusters spanning a wide range in both mass (M500 from 1013 to 1015 solar masses ) and redshit (0.03 < z < 1.22). The main goal is to investigate the effect of evolution and cluster masses on the luminosity distribution of cluster galaxies.

  16. CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847

    NASA Astrophysics Data System (ADS)

    Biviano, A.; Rosati, P.; Balestra, I.; Mercurio, A.; Girardi, M.; Nonino, M.; Grillo, C.; Scodeggio, M.; Lemze, D.; Kelson, D.; Umetsu, K.; Postman, M.; Zitrin, A.; Czoske, O.; Ettori, S.; Fritz, A.; Lombardi, M.; Maier, C.; Medezinski, E.; Mei, S.; Presotto, V.; Strazzullo, V.; Tozzi, P.; Ziegler, B.; Annunziatella, M.; Bartelmann, M.; Benitez, N.; Bradley, L.; Brescia, M.; Broadhurst, T.; Coe, D.; Demarco, R.; Donahue, M.; Ford, H.; Gobat, R.; Graves, G.; Koekemoer, A.; Kuchner, U.; Melchior, P.; Meneghetti, M.; Merten, J.; Moustakas, L.; Munari, E.; Regős, E.; Sartoris, B.; Seitz, S.; Zheng, W.

    2013-10-01

    Aims: We constrain the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 CLASH cluster MACS J1206.2-0847, using the projected phase-space distribution of cluster galaxies in combination with gravitational lensing. Methods: We use an unprecedented data-set of ≃600 redshifts for cluster members, obtained as part of a VLT/VIMOS large program, to constrain the cluster mass profile over the radial range ~0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. Results: The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200 = (1.4 ± 0.2) × 1015 M⊙ and concentration c200 = 6 ± 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. Conclusions: This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual

  17. The KMOS Galaxy Clusters Project

    NASA Astrophysics Data System (ADS)

    Davies, Roger L.; Beifiori, A.; Bender, R.; Cappellari, M.; Chan, J.; Houghton, R.; Mendel, T.; Saglia, R.; Sharples, R.; Stott, J.; Smith, R.; Wilman, D.

    2015-04-01

    KMOS is a cryogenic infrared spectrograph fed by twentyfour deployable integral field units that patrol a 7.2 arcminute diameter field of view at the Nasmyth focus of the ESO VLT. It is well suited to the study of galaxy clusters at 1 < z < 2 where the well understood features in the restframe V-band are shifted into the KMOS spectral bands. Coupled with HST imagining, KMOS offers a window on the critical epoch for galaxy evolution, 7-10 Gyrs ago, when the key properties of cluster galaxies were established. We aim to investigate the size, mass, morphology and star formation history of galaxies in the clusters. Here we describe the instrument, discuss the status of the observations and report some preliminary results.

  18. MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σ {sub v} AND X-RAY Y {sub X} MEASUREMENTS

    SciTech Connect

    Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2015-02-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg{sup 2} of the survey along with 63 velocity dispersion (σ {sub v}) and 16 X-ray Y {sub X} measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ {sub v} and Y {sub X} are consistent at the 0.6σ level, with the σ {sub v} calibration preferring ∼16% higher masses. We use the full SPT{sub CL} data set (SZ clusters+σ {sub v}+Y {sub X}) to measure σ{sub 8}(Ω{sub m}/0.27){sup 0.3} = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m {sub ν} = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m {sub ν} further reconciles the results. When we combine the SPT{sub CL} and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y {sub X} calibration and 0.8σ higher than the σ {sub v} calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω{sub m} = 0.299 ± 0.009 and σ{sub 8} = 0.829 ± 0.011. Within a νCDM model we find ∑m {sub ν} = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation

  19. A Multivariate Analysis of Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Djorgovski, S.

    1993-05-01

    We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.

  20. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  1. Constraining the Mass of A Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Cemenenkoff, Nicholas; Rines, Kenneth J.; Geller, Margaret J.; Diaferio, Antonaldo

    2017-01-01

    Accurate cluster masses are critical for understanding dark matter and for using clusters to constrain cosmological parameters. We use the observed surface number density profile and velocity dispersion profile of galaxies in the Coma cluster to constrain its mass profile via Jeans analysis. In particular, we evaluate the robustness of the mass estimate M_200 by using different parametric forms for the distribution of mass and galaxies as well as different models of the orbital anisotropy parameter β (r) . Allowing for variation between the scale radii of the mass profile and the galaxy profile (i.e. relaxing the assumption that galaxies trace mass) does not significantly change the estimate of M 200 . We use a Bayesian approach to construct probability distribution functions of M 200, scale radius, and beta via Markov Chain Monte Carlo (MCMC) sampling. We apply this approach to ensemble clusters stacked by either their Sunyaev-Zel'dovich (SZ) signals or X-ray luminosities to measure the scaling relations of dynamical mass estimates with these mass proxies. Specifically, we test the hypothesis that the apparent deficit of SZ clusters (compared to predictions based on observations of the microwave background) can be explained by a bias of ˜ 60% in the normalization of the scaling relation between SZ signal and mass.

  2. The Cluster of Galaxies Surrounding Cygnus A

    NASA Astrophysics Data System (ADS)

    Owen, Frazer N.; Ledlow, Michael J.; Morrison, Glenn E.; Hill, John M.

    1997-10-01

    We report optical imaging and spectroscopy of 41 galaxies in a 22' square region surrounding Cygnus A. The results show that there is an extensive rich cluster associated with Cyg A of Abell richness of at least 1 and possibly as high as 4. The velocity histogram has two peaks, one centered on Cyg A and a more significant peak redshifted by about 2060 km s-1 from the velocity of Cyg A. The dynamical centroid of the spatial distribution is also shifted somewhat to the northwest. However, statistical tests show only weak evidence that there are two distinct clusters. The entire system has a velocity dispersion of 1581 km s-1, which is slightly larger than other, well-studied examples of rich clusters.

  3. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  4. Gravitational lensing by clusters of galaxies - Constraining the mass distribution

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).

  5. The motions of clusters and group of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Gramann, Mirt; Cen, Renyue

    1994-01-01

    The distributions of peculiar velocities of rich clusters and of groups of galaxies are investigated for different cosmological models and are compared with observations. Four cosmological models are studied: standard cold dark matter (CDM) (omega = 1); low-density CDM (omega = 0.3); hot dark matter (HDM) (omega = 1); and primeval baryonic isocurvature (PBI) (omega = 0.3). All models are normalized to the microwave background fluctuations observed by Cosmic Background Explorer (COBE). We find that rich clusters of galaxies exhibit a Maxwellian distribution of peculiar velocities in all models, as expected from a Gaussian initial density field. The clusters appear to be fundamental and efficient tracers of the large-scale velocity field. The cluster three-dimensional velocity distribution typically peaks at v approximately 600 km/s and extends to high cluster velocities of v approximately 2000 km/s. The low-density CDM model exhibits somewhat lower velocities: it peaks at approximately 400 km/s and extends to approximately 1200 km/s. Approximately 10% (approximately 1% for low-density CDM) of all model rich clusters move with high peculiar velocities of V greater than or = 10(exp 3) km/s. The highest velocity clusters frequently originate in dense superclusters. The model velocity distributions of rich clusters are compared with the model velocity distributions of small groups of galaxies, and of the total matter. The group velocity distribution is, in general, similar to the velocity distribution of the rich clusters. The matter velocity distribution is similar to that of the rich clusters for the omega = 0.3 models; these models exhibit Maxwellian velocity distributions for clusters, for groups, and for matter that are all similar to one another. The mass distribution in the omega = 1 models, however, exhibits a longer tail of high velocities than do the clusters. This high-velocity tail originates mostly from the high velocities that exist within rich clusters

  6. Galaxy Cluster IDCS J1426

    NASA Image and Video Library

    2016-01-07

    Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multi-wavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light detected by the Spitzer Space Telescope in red. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how such megastructures formed and evolved early in the universe. The light astronomers observed from IDCS 1426 began its journey to Earth when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early time. First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance. Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive. New data from the Chandra X-ray Observatory confirm the galaxy cluster's mass and show that about 90 percent of this mass is in the form of dark matter -- the mysterious substance that has so far been detected only through its gravitational pull on normal matter composed of atoms. http://photojournal.jpl.nasa.gov/catalog/PIA20063

  7. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.

  8. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  9. Brightest Cluster Galaxies at the Present Epoch

    NASA Astrophysics Data System (ADS)

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-01

    We have obtained photometry and spectroscopy of 433 z <= 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω m = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the Lm -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, Lm , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter "metric plane" relation using α and σ together gives the best prediction of Lm , with 0.21 mag residuals. The distribution of projected spatial offsets, rx of BCGs from the X-ray-defined cluster center is a steep γ = -2.33 power law over 1 < rx < 103 kpc. The median offset is ~10 kpc, but ~15% of the BCGs have rx > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV 1|/σ c follows an exponential distribution with scale length 0.39 ± 0.03. Both Lm and α increase with σ c . The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on Lm . Likewise, residuals from the metric plane show no correlation with either the spatial or velocity offset from the cluster center. The

  10. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    SciTech Connect

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from the metric plane

  11. Galaxy Pairwise Velocity Distributions on Nonlinear Scales

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Geller, Margaret J.

    1996-08-01

    The redshift-space correlation function ξ_s_ for projected galaxy separations <~ 1 h^-1^ Mpc can be expressed as the convolution of the real-space correlation function with the galaxy pairwise velocity distribution function (PVDF). An exponential PVDF yields the best fit to the ξ_s_ measured from galaxy samples of different redshift surveys. We show that this exponential PVDF is not merely a fitting function but arises from well-defined gravitational processes. Two ingredients conspire to yield a PVDF with a nearly exponential shape: (1) the number density n(σ) of systems with velocity dispersion σ and (2) the unrelaxed dynamical state of most galaxy systems. The former ingredient determines the exponential tail, and the latter determines the central peak of the PVDF. We examine a third issue: the transfer of orbital kinetic energy to galaxy internal degrees of freedom. Although this effect is of secondary importance for the PVDF exponential shape, it is detectable in galaxy groups, which indicates that galaxy merging is an ongoing process in the present universe. We compare the ξ_s_ measured on nonlinear scales from galaxy samples of the Center for Astrophysics redshift surveys with different models of the PVDF convolved with the measured real-space correlation function. This preliminary comparison indicates that the agreement between model and observations depends strongly on both the underlying cosmological model and the internal dynamics of galaxy systems. Neither parameter dominates. Moreover, the agreement depends sensitively on the accuracy of the galaxy position and velocity measurements. We expect that ξ_s_ will pose further constraints on the model of the universe and will improve the knowledge of the dynamics of galaxy systems on very small scales if we improve (1) the galaxy coordinate determination and (2) the measurement of relative velocities of galaxies with small projected separation. In fact, the redshift-space correlation function

  12. Galaxy clusters: Radio relics from fossil electrons

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, Melanie

    2017-01-01

    The detection of a tailed radio galaxy in a galaxy cluster conjoined to a region of diffuse radio emission confirms that radio galaxies provide the energetic electrons needed to explain the origin of this enigmatic emission.

  13. Galaxy Evolution in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, U.; Hill, J. M.

    2000-12-01

    We present the first results of a study of the morphological and spectral evolution of galaxies within the dense cores of distant clusters at redshifts between z=0.4 and 1. The morphology, colors, concentration index, and asymmetry parameters of these cluster members are compared by using a combination of deep HST NICMOS and WFPC2 imaging, covering the rest-frame U and J bands. We also discuss the influence of dust obscuration on the derived measurements. Of particular interest is the morphology of galaxies at near-infrared wavelengths in rich clusters which show an excess of blue galaxies (Butcher-Oelmer effect), namely Abell 851 (z=0.4) and CL 1603+43 (z=0.92). We focus our study on optical/near-infrared measurements of galaxy asymmetry and central concentration, derived from a large number (>400) of objects detected within the core of Abell 851. The sensitivity and reliability of these parameters for galaxy classification and physical diagnostic purposes are tested. In conjunction with the use of recent source extraction software we are able to establish a fast, robust, and highly automated procedure of mapping the structural parameters of large galaxy samples. This work is supported by NASA, under contract NAS5-26555.

  14. Reconstructing the projected gravitational potential of galaxy clusters from galaxy kinematics

    NASA Astrophysics Data System (ADS)

    Sarli, Eleonora; Meyer, Sven; Meneghetti, Massimo; Konrad, Sara; Majer, Charles L.; Bartelmann, Matthias

    2014-10-01

    We have developed a method for reconstructing the two-dimensional, projected gravitational potential of galaxy clusters from observed line-of-sight velocity dispersions of cluster galaxies. It is the second in an intended series of papers aiming at a unique reconstruction method for cluster potentials that combine lensing, X-ray, Sunyaev-Zel'dovich and kinematic data. The observed galaxy velocity dispersions are deprojected using the Richardson-Lucy algorithm. The obtained radial velocity dispersions are then related to the gravitational potential by using the tested assumption of a polytropic relation between the effective galaxy pressure and the density. Once the gravitational potential is obtained in three dimensions, projection along the line of sight yields the two-dimensional potential. For simplicity we adopt spherical symmetry and a known profile for the anisotropy parameter of the galaxy velocity dispersions. We tested the method with a numerically simulated galaxy cluster and the galaxies identified therein and performed the reconstruction for three different lines of sight. We extracted a projected velocity-dispersion profile from the simulated cluster and passed it through our algorithm, showing that the deviation between the true and the reconstructed gravitational potential is ≲10% within ≈ 1.5 h-1 Mpc from the cluster centre.

  15. Percolation technique for galaxy clustering

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  16. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  17. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  18. Predicting the peculiar velocities of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Sharpe, Jacob; Rowan-Robinson, Michael; Canavezes, A.; Saunders, W.; Efstathiou, G.; Frenk, C.; Keeble, O.; McMahon, R. G.; Maddox, S.; Oliver, S. J.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-06-01

    We use the Least Action Principle to predict the peculiar velocities of PSC-z galaxies inside (cz = 2000 kms^{-1}). Linear theory is used to account for tidal effects to (cz = 15000 kms^{-1}), and we iterate galaxy positions to account for redshift distortions. As the Least Action Principle is valid beyond Linear theory, we can predict reliable velocities even for very nearby galaxies (ie cz <= 500 kms^{-1}). These predicted peculiar velocities are then compared with the observed velocities of 12 galaxies with Cepheid distances. The combination of the PSC-z galaxy survey (with its large sky coverage and uniform selection), with the accurate Cepheid distances, makes this comparison relatively free from systematic effects. We find that galaxies are good tracers of the mass, even at small (<= 10 h^{-1}Mpc) scales; and under the assumption of no biasing, β <= 0.75 (at 90% confidence). We use the reliable predicted peculiar velocities to estimate (H0) from the local volume without ``stepping up'' the distance ladder, finding a confidence range of 65-75 kms^{-1}Mpc^{-1} (at 90% confidence).

  19. Cosmology with Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano

    I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.

  20. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  1. Nonthermal Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Storm, Emma

    Galaxy clusters are the most massive gravitationally-bound objects in the universe. The bulk of the mass in a cluster is dark matter, while the dominant baryonic component is a thermal, X-ray emitting plasma. Radio observations of diffuse synchrotron emission indicate that galaxy clusters host a population of cosmic rays; however, the nature of this nonthermal component is not well-understood. In this dissertation, I investigate three sources of nonthermal emission in galaxy clusters. The first is star formation in galaxies, which is correlated to gamma-ray emission. I derive lower limits on the gamma-ray emission for nearby clusters by considering the emission from star formation in cluster galaxies. These lower limits sit about an order of magnitude below current upper limits on gamma rays in clusters and will be an important contributor to gamma-ray emission as upper limits improve over time. Dark matter annihilation, which produces relativistic particles that can result in a broad spectrum of emission in cluster environments, is another source of nonthermal emission. I use nondetections and marginal detections of diffuse radio emission in clusters to constrain dark matter annihilation. I derive limits on the annihilation cross section that are competitive with limits from the nondetection of gamma rays in clusters and show that the best objects for study in the radio are different than those in gamma rays, indicating that dark matter searches in the radio can be complementary to searches in other energy bands. I also investigate the cosmic ray population in the merging cluster A2319, which hosts a previously detected radio halo. I present new observations which reveal a two-component radio halo: a 2 Mpc region that extends far past the observable X-ray emission, and an 800 kpc "core" that is bounded by the X-ray cold front. I speculate on the origins of this structure, and show that a hadronic origin for this radio halo is disfavored. Finally, I discuss current

  2. Algorithms for Finding Substructure in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Delworth, Natalie; Wilcots, Eric M.

    2017-01-01

    In order to better understand the role of environment in determining the properties of galaxies, we present statistical approaches to identifying substructure in galaxy clusters and groups. A subgroup is composed of a set of galaxies within a galaxy cluster that share similar attributes. To create subgroups from galaxies in a cluster, we explored several different clustering algorithms: Agglomerative Hierarchical Clustering, Spectral Clustering, and K-Means Clustering. We evaluate the strengths and weaknesses of these algorithms by applying them both to data from the Antlia Cluster, as well as to output from simulated galaxy clusters. We also examined how subgroups and the properties of the galaxies in those subgroups changed over time through analysis of data from simulations that extend over a long time scale. We synthesize these results to provide a perspective on how these analyses contribute to our understanding of galactic evolution.

  3. Galaxy luminosity functions in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Bettoni, D.; Poggianti, B. M.; Fasano, G.; Varela, J.; D'Onofrio, M.; Vulcani, B.; Cava, A.; Fritz, J.; Couch, W. J.; Moles, M.; Kjærgaard, P.

    2015-09-01

    Aims: Using V band photometry of the WINGS survey, we derive galaxy luminosity functions (LF) in nearby clusters. This sample is complete down to MV = -15.15, and it is homogeneous, thus facilitating the study of an unbiased sample of clusters with different characteristics. Methods: We constructed the photometric LF for 72 out of the original 76 WINGS clusters, excluding only those without a velocity dispersion estimate. For each cluster we obtained the LF for galaxies in a region of radius = 0.5 × r200, and fitted them with single and double Schechter's functions. We also derive the composite LF for the entire sample, and those pertaining to different morphological classes. Finally, we derive the spectroscopic cumulative LF for 2009 galaxies that are cluster members. Results: The double Schechter fit parameters are correlated neither with the cluster velocity dispersion nor with the X-ray luminosity. Our median values of the Schechter's fit slope are, on average, in agreement with measurements of nearby clusters, but are less steep that those derived from large surveys, such as the SDSS. Early-type galaxies out number late-types at all magnitudes, but both early and late types contribute equally to the faint end of the LF. Finally, the spectroscopic LF is in excellent agreement with the one derived for A2199, A85 and Virgo, and with the photometric LF at the bright magnitudes (where both are available). Conclusions: There is a large spread in the LF of different clusters, however, this spread is not caused by correlation of the LF shape with cluster characteristics such as X-ray luminosity or velocity dispersions. The faint end is flatter than previously derived (αf = -1.7), which is at odds with that predicted from numerical simulations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. Progs. ID 67.A-0030, 68.A-0139, and 69.A-0119.Table 1 and full Fig. 1 (Fig. A.1) are available in

  4. Galaxy Populations and Evolution in Clusters IV Deep H 1 Observations of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Conselice, Christopher J.; ONeil, Karen; Gallagher, John S.; Wyse, Rosemary F. G.

    2003-01-01

    In this paper we present deep Arecibo H I and WIYN optical observations of Virgo Cluster dwarf elliptical galaxies. Based on this data we argue that a significant fraction of low-mass galaxies in the Virgo Cluster recently underwent evolution. Our new observations consist of H I 21 cm line observations for 22 classified dE galaxies with optical radial velocities consistent with membership in the Virgo Cluster. Cluster members VCC 390 and VCC 1713 are detected with H 1 masses M H1= 6 x 10 sup 7 and 8 x 10 sup 7 M , respectively, while MH I values in the remaining 20 dE galaxies have upper limits as low as about 5 x 1O sup 5 M. We combine our results with those for 26 other Virgo Cluster dE galaxies with H 1 observations in the literature, seven of which have H I detection claims.

  5. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  6. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  7. Velocity anisotropy in tidally limited star clusters

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2016-02-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, rh/rJ, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of rh/rJ, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 rJ and 0.4 rJ, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent relaxation phase. In both cases, as a cluster continues its evolution and loses mass, the anisotropy eventually starts to decrease and the system evolves towards an isotropic velocity distribution. However, in order to completely erase the strong anisotropy developed by these compact systems during their evolution, they must be in the advanced stages of their evolution and lose a large fraction of their initial mass. Clusters that are initially isotropic and characterized by larger initial values of rh/rJ, on the other hand, never develop a significant radial anisotropy.

  8. Deep spectroscopy in nearby galaxy clusters - III. Orbital structure of galaxies in Abell 85

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Agulli, I.; Diaferio, A.; Dalla Vecchia, C.

    2017-06-01

    Galaxies in clusters are strongly affected by their environment. They evolve according to several physical mechanisms that are active in clusters. Their efficiency can strongly depend on the orbital configuration of the galaxies. Our aim is to analyse the orbits of the galaxies in the cluster Abell 85, based on the study of the galaxy velocity anisotropy parameter. We have solved the Jeans equation under the assumption that the galaxies in A 85 are collisionless objects, within the spherically symmetric gravitational potential of the virialized cluster. The mass of the cluster was estimated with X-ray and caustic analyses. We find that the anisotropy profile of the full galaxy population in A 85 is an increasing monotonic function of the distance from the cluster centre: on average, galaxies in the central region (r/r200 < 0.3) are on isotropic orbits, while galaxies in the outer regions are on radial orbits. We also find that the orbital properties of the galaxies strongly depend on their stellar colour. In particular, blue galaxies are on less radial orbits than red galaxies. The different families of cluster galaxies considered here have the pseudo phase-space density profiles Q(r) and Qr(r) consistent with the profiles expected in virialized dark matter haloes in N-body simulations. This result suggests that the galaxies in A 85 have reached dynamical equilibrium within the cluster potential. Our results indicate that the origin of the blue and red colours of the different galaxy populations is the different orbital shape rather than the accretion time.

  9. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  10. Cluster Physics with Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor

    Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard ΛCDM model, where the total density is dominated by the cosmological constant (Λ) and the matter density by cold dark matter (CDM), structure formation is hierarchical, and clusters grow mostly by merging. Mergers of two massive clusters are the most energetic events in the universe after the Big Bang, hence they provide a unique laboratory to study cluster physics. The two main mass components in clusters behave differently during collisions: the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulence are developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thus our review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clusters is to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses. New high spatial and spectral resolution ground and space based telescopes will come online in the near future. Motivated by these new opportunities, we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  11. Radial velocities of remote globular clusters - stalking the missing mass

    SciTech Connect

    Peterson, R.C.

    1985-10-01

    Measurements good to 25 km/s are presented of radial velocities of five remote galactic globular clusters, based on aperture-plate spectra of individual stars at 3.0 A resolution. Velocities with respect to the galactic rest-frame of two individual systems, Eridanus and Palomar 14, are large enough to suggest a total mass for the Galaxy of 1 trillion solar masses. A similar mass is inferred from the average of the galactocentric distance times velocity squared. 36 references.

  12. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Masters, Craig E.; Ashman, Keith M. E-mail: ashmank@umkc.ed

    2010-12-10

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  13. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Lund, G.; Capelato, H.

    1987-03-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  14. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Capelato, H. V.; Lund, G.

    1988-04-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  15. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    SciTech Connect

    Cowie, L.L.; Hu, E.M.

    1986-06-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation. 14 references.

  16. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  17. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  18. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2016-01-01

    Galaxy clusters are a rich source of information for examining fundamental astrophysical processes and cosmological parameters, however, employing clusters as cosmological probes requires accurate mass measurements derived from cluster observables. We study dynamical mass measurements of galaxy clusters contaminated by interlopers, and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create a mock catalog from Multidark's publicly-available N-body MDPL1 simulation where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. The presence of interlopers in the catalog produces a wide, flat fractional mass error distribution, with width = 2.13. We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (width = 0.67). Remarkably, SDM applied to contaminated clusters is better able to recover masses than even a scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  19. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  20. Galaxy formation through hierarchical clustering

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  1. Galaxy formation through hierarchical clustering

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  2. Spiral galaxies in clusters. III. Gas-rich galaxies in the Pegasus I cluster of galaxies

    SciTech Connect

    Bothun, G.D.; Schommer, R.A.; Sullivan, W.T. III

    1982-05-01

    We report the results of a 21-cm and optical survey of disk galaxies in the vicinity of the Pegasus I cluster of galaxies. The color--gas content relation (log(M/sub H//L/sub B/) vs (B-V)/sup T//sub 0/ ) for this particular cluster reveals the presence of a substantial number of blue, gas-rich galaxies. With few exceptions, the disk systems in Pegasus I retain large amounts of neutral hydrogen despite their presence in a cluster. This directly shows that environmental processes have not yet removed substantial amounts of gas from these disk galaxies. We conclude that the environment has had little or no observable effect upon the evolution of disk galaxies in Pegasus I. The overall properties of the Pegasus I spirals are consistent with the suggestion that this cluster is now at an early stage in its evolution.

  3. Evidence for a low-density universe from the relative velocities of galaxies

    PubMed

    Juszkiewicz; Ferreira; Feldman; Jaffe; Davis

    2000-01-07

    The motions of galaxies can be used to constrain the cosmological density parameter Omega and the clustering amplitude of matter on large scales. The mean relative velocity of galaxy pairs, estimated from the Mark III survey, indicates that Omega = 0.35(-0.25)(+0.35). If the clustering of galaxies is unbiased on large scales, Omega = 0. 35 +/- 0.15, so that an unbiased Einstein-de Sitter model (Omega = 1) is inconsistent with the data.

  4. On the formation of cD galaxies and their parent clusters

    NASA Astrophysics Data System (ADS)

    Tovmassian, Hrant M.; Andernach, Heinz

    2012-12-01

    In order to study the mechanism of the formation of cD galaxies, we search for possible dependencies between the K-band luminosity of cD galaxies and the parameters of their host clusters which we select to have a dominant cD galaxy, corresponding to a cluster morphology of Bautz-Morgan type I (BM I). As a comparison sample we use cD galaxies in clusters where they are not dominant, which we define here as non-BM I (NBMI) type clusters. We find that for 71 BM I clusters the absolute K-band luminosity of cD galaxies depends on the cluster richness, but less strongly on the cluster velocity dispersion. Meanwhile, for 35 NBMI clusters the correlation between cD luminosity and cluster richness is weaker, and is absent between cD luminosity and velocity dispersion. In addition, we find that the luminosity of the cD galaxy hosted in BM I clusters tends to increase with the cD's peculiar velocity with respect to the cluster mean velocity. In contrast, for NBMI clusters the cD luminosity decreases with increasing peculiar velocity. Also, the X-ray luminosity of BM I clusters depends on the cluster velocity dispersion, while in NBMI clusters such a correlation is absent. These findings favour the cannibalism scenario for the formation of cD galaxies. We suggest that cD galaxies in clusters of BM I type were formed and evolved preferentially in one and the same cluster. In contrast, cD galaxies in NBMI-type clusters were either originally formed in clusters that later merged with groups or clusters to form the current cluster, or are now in the process of merging.

  5. Lopsidedness of cluster galaxies in modified gravity

    SciTech Connect

    Wu, Xufen; Zhao, HongSheng; Famaey, Benoit E-mail: hz4@st-andrews.ac.uk

    2010-06-01

    We point out an interesting theoretical prediction for elliptical galaxies residing inside galaxy clusters in the framework of modified Newtonian dynamics (MOND), that could be used to test this paradigm. Apart from the central brightest cluster galaxy, other galaxies close enough to the centre experience a strong gravitational influence from the other galaxies of the cluster. This influence manifests itself only as tides in standard Newtonian gravity, meaning that the systematic acceleration of the centre of mass of the galaxy has no consequence. However, in the context of MOND, a consequence of the breaking of the strong equivalence principle is that the systematic acceleration changes the own self-gravity of the galaxy. We show here that, in this framework, initially axisymmetric elliptical galaxies become lopsided along the external field's direction, and that the centroid of the galaxy, defined by the outer density contours, is shifted by a few hundreds parsecs with respect to the densest point.

  6. The Effects of Substructure on Dynamical Studies of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bird, Christina M.

    1994-12-01

    Ongoing optical and X-ray studies of clusters of galaxies reveal that deviations from a smooth, relaxed distribution of galaxies and gas are common, if not ubiquitous. The claim has been made that in most cases, the ``contaminating'' structures are only a small fraction of the total mass of the system, and therefore that their effect on dynamical analyses can be ignored. In this poster I will demonstrate that even when the contaminating subclusters are low mass (and unlikely to have a significant effect on the overall cluster gravitational potential), their presence can greatly modify kinematic and dynamical quantities, such as the velocity dispersion and projected mass estimator. In addition I present distributions of velocity dispersion and dynamical masses for clusters which possess central dominant galaxies, and a re-evaluation of the velocity dispersion-temperature correlation based on this dataset.

  7. Construction of luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Godłowski, Włodzimierz; Popiela, Joanna; Bajan, Katarzyna; Biernacka, Monika; Flin, Piotr; Panko, Elena

    2015-02-01

    The luminosity function is an important quantity for analysis of large scale structure statistics, interpretation of galaxy counts (Lin & Kirshner 1996). We investigate the luminosity function of galaxy clusters. This is performed by counting the brightness of galaxies belonging to clusters in PF Catalogue. The obtained luminosity function is significantly different than that obtained both for optical and radiogalaxies (Machalski & Godowski 2000). The implications of this result for theories of galaxy formation are discussed as well.

  8. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  9. Galaxy evolution in clusters since z~1

    NASA Astrophysics Data System (ADS)

    Aragon-Salamanca, Alfonso

    2010-09-01

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  10. Galaxy Evolution in Clusters Since z ~ 1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  11. Characterization of the velocity anisotropy of accreted globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Sills, A.; Miholics, M.

    2017-10-01

    Galactic globular clusters (GCs) are believed to have formed in situ in the Galaxy as well as in dwarf galaxies later accreted on to the Milky Way. However, to date, there is no unambiguous signature to distinguish accreted GCs. Using specifically designed N-body simulations of GCs evolving in a variety of time-dependent tidal fields (describing the potential of a dwarf galaxy-Milky Way merger), we analyse the effects imprinted on the internal kinematics of an accreted GC. In particular, we look at the evolution of the velocity anisotropy. Our simulations show that at early phases, the velocity anisotropy is determined by the tidal field of the dwarf galaxy and subsequently the clusters will adapt to the new tidal environment, losing any signature of their original environment in a few relaxation times. At 10 Gyr, GCs exhibit a variety of velocity anisotropy profiles, namely, isotropic velocity distribution in the inner regions and either isotropy or radial/tangential anisotropy in the intermediate and outer regions. Independent of an accreted origin, the velocity anisotropy primarily depends on the strength of the tidal field cumulatively experienced by a cluster. Tangentially anisotropic clusters correspond to systems that have experienced stronger tidal fields and are characterized by higher tidal filling factor, r50/rj ≳ 0.17, higher mass-loss ≳ 60 per cent and relaxation times trel ≲ 109 Gyr. Interestingly, we demonstrate that the presence of tidal tails can significantly contaminate the measurements of velocity anisotropy when a cluster is observed in projection. Our characterization of the velocity anisotropy profiles in different tidal environments provides a theoretical benchmark for the interpretation of the unprecedented amount of three-dimensional kinematic data progressively available for Galactic GCs.

  12. PECULIAR VELOCITIES OF GALAXIES IN THE LEO SPUR

    SciTech Connect

    Karachentsev, Igor D.; Makarova, Lidia N.; Makarov, Dmitry I.; Tully, R. Brent; Rizzi, Luca

    2015-06-01

    The Hubble Space Telescope Advanced Camera for Surveys has been used to determine accurate distances for the spiral galaxy NGC 2683 and 12 other galaxies in a zone of the “local velocity anomaly” from luminosity measurements of the brightest red giant branch stars. These galaxies lie in the Leo Spur, the nearest filament beyond our Local Sheet. The new accurate distance measurements confirm that galaxies along the Leo Spur are more distant than expected from uniform cosmic expansion, and hence have large and peculiar velocities toward us. The motions are generally explained by a previously published model that posits that the Local Sheet is descending at 259 km s{sup −1} toward the south supergalactic pole due to expansion of the Local Void and is being attracted toward the Virgo Cluster at 185 km s{sup −1}. With the standard ΛCDM cosmology, an empty void expands at 16 km s{sup −1} Mpc{sup −1}, so a motion of 259 km s{sup −1} requires the Local Void to be impressively large and empty. Small residuals from the published model can be attributed to an upward push toward the north supergalactic pole by the expansion of the Gemini–Leo Void below the Leo Spur. The Leo Spur is sparsely populated, but among its constituents there are two associations that contain only dwarf galaxies.

  13. Evolution of the BCG in Disturbed Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ardila, Felipe; Strauss, Michael A.; Lauer, Tod R.; Postman, Marc

    2017-01-01

    The present paradigm in cosmology tells us that large-scale structures grow hierarchically. This suggests that galaxy clusters grow by accreting mass and merging with other clusters, a process which should be detectable by the presence of substructure within a cluster. Using the Dressler-Shectman (DS) three-dimensional test for dynamical substructure, we determined which clusters showed evidence for disturbance from a set of 227 Abell clusters from Lauer et al. (2014) with at least 50 member galaxies and spectroscopic redshifts, z < 0.08. Our results show that 155 (68.2%) of the clusters showed evidence for substructure at ≥ 95% confidence, while 72 did not. Kolmogorov-Smirnov tests suggest that the two populations of clusters (those with and without detected substructure) are significantly different in their distributions of BCG luminosities (Lm), but not in their BCG stellar velocity dispersions (σ), their BCG spatial offsets from the x-ray centers of the clusters, their BCG velocity offsets from the mean cluster velocity, the logarithmic slopes of their BCG photometric curves of growth (α), their cluster velocity dispersions, or their luminosity differences between the BCG and the second-ranked galaxy in the cluster (M2). Similarly, no significant difference was found in the fitting of the Lm-α-σ metric plane for BCGs of clusters with substructure compared those in which there is not substructure. This is surprising since our hierarchical growth models suggest that some of these BCG/cluster properties would be affected by a disturbance of the cluster, indicating that our understanding of how BCGs evolve with their clusters is incomplete and we should explore other ways to probe the level of disturbance.

  14. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  15. Galaxy cluster mass estimation from stacked spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Evrard, August E.; Rozo, Eduardo; Rykoff, Eli S.; Wechsler, Risa H.

    2016-08-01

    We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, Mσ(λ), derived from stacked pairwise spectroscopy of clusters with richness λ. Using ˜130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with mi < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes ˜60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find = ln (M30) + αm ln (λ/30) with M30 = 1.56 ± 0.35 × 1014 M⊙ and αm = 1.31 ± 0.06stat ± 0.13sys. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

  16. ROSAT Discovers Unique, Distant Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  17. On the velocity fields of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Statler, Thomas S.

    1991-01-01

    A family of self-consistent maximum entropy dynamical models is presented for the triaxial 'perfect ellipsoids'. These models are projected in different viewing geometries to explore the possible morphologies of the 2D radial-velocity fields of elliptical galaxies. It is found that, typically, about half the time an 'ordinary' velocity field is seen with a mixture of major- and minor-axis rotation. For other lines of sight, the velocity fields are more complicated, showing multiple peaks, steep gradients, strongly twisted contours, or kinematically distinct or counter-rotating cores. The origin of each of these velocity field morphologies is explained in terms of competing contributions from the major families of tube orbits.

  18. Investigations of galaxy clusters using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  19. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  20. Extensive Globular Cluster Systems Associated with Ultra Diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Abraham, Roberto; Romanowsky, Aaron J.; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Lokhorst, Deborah; Merritt, Allison; Mowla, Lamiya; Zhang, Jielai

    2017-07-01

    We present Hubble Space Telescope (HST) imaging of two ultra diffuse galaxies (UDGs) with measured stellar velocity dispersions in the Coma cluster. The galaxies, Dragonfly 44 and DFX1, have effective radii of 4.7 kpc and 3.5 kpc and velocity dispersions of {47}-6+8 km s-1 and {30}-7+7 km s-1, respectively. Both galaxies are associated with a striking number of compact objects, tentatively identified as globular clusters: {N}{gc}=74+/- 18 for Dragonfly 44 and {N}{gc}=62+/- 17 for DFX1. The number of globular clusters is much higher than expected from the luminosities of the galaxies but is consistent with expectations from the empirical relation between dynamical mass and globular cluster count defined by other galaxies. Combining our data with previous HST observations of Coma UDGs we find that UDGs have a factor of {6.9}-2.4+1.0 more globular clusters than other galaxies of the same luminosity, in contrast to a recent study of a similar sample by Amorisco et al., but consistent with earlier results for individual galaxies. The Harris et al. relation between globular cluster count and dark matter halo mass implies a median halo mass of {M}{halo}˜ 1.5× {10}11 {M}⊙ for the sixteen Coma UDGs that have been observed with HST so far, with the largest and brightest having {M}{halo}˜ 5× {10}11 {M}⊙ .

  1. Studying the diverse nature of faint galaxies in nearby clusters of the WINGS sample

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Kjærgaard, P.; Milvang-Jensen, B.; D'Onofrio, M.; Moretti, A.; Poggianti, B. M.; Fasano, G.; Moles, M.

    2011-03-01

    We present the first results of our X-shooter observations for a sample of dwarf (-17 galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher-z star-forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early-type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early-type galaxies.

  2. The Radio Properties of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.

    2014-09-01

    Energetic feedback from the Active Galactic Nucleus (AGN) of the Brightest Cluster Galaxy (BCG) is required to prevent catastrophic cooling of the intra-cluster medium (ICM) in galaxy clusters. Evidence for this is seen through the inflation of cavities in the ICM by AGN-launched, radio-emitting jets, and understanding this process is an active area of research. Radio observations play an integral role in this, as they trace the active stages of the feedback cycle. Understanding the radio properties of BCGs is therefore paramount for understanding both galaxy clusters and AGN feedback processes globally. Within this thesis, the BCGs in a large (>700) sample of X-ray selected clusters are studied. We observe these BCGs with a wide variety of facilities, building a census of their radio properties across a range of frequencies, timescales and angular resolutions. Radio spectral energy distributions (SEDs) are built for over 200 BCGs, and then decomposed into two components; a core, attributable to ongoing nuclear activity, and a non-core, attributable to historical accretion. Both components are not only more common, but also significantly more powerful in cool-core (CC) clusters than non-cool core (NCC) clusters. However, it is the presence of an active core that shows BCGs in CC clusters are constantly `on' - explaining how they regulate their environments over gigayear timescales. We observe 35 currently active BCGs at high (15-353 GHz) radio frequencies, and monitor their variability. Self-absorbed, active components are found to be common at high frequency. Little variability is seen on < year timescales, although longer term variation of ~10% annually over few-decade timescales is observed. Evidence is presented for a hitherto unseen component in BCG spectra that may be attributable to a naked Advection Dominated Accretion Flow (ADAF). The milli-arcsecond scale radio properties of 59 sources are studied, with a large range of morphologies recovered although no

  3. Does faint galaxy clustering contradict gravitational instability?

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1992-01-01

    It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.

  4. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  5. Galaxy and mass assembly (GAMA): projected galaxy clustering

    NASA Astrophysics Data System (ADS)

    Farrow, D. J.; Cole, Shaun; Norberg, Peder; Metcalfe, N.; Baldry, I.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Hopkins, A. M.; Lacey, Cedric G.; Liske, J.; Loveday, Jon; Palamara, David P.; Robotham, A. S. G.; Sridhar, Srivatsan

    2015-12-01

    We measure the projected two-point correlation function of galaxies in the 180 deg2 equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and 0.5. To do this, we further develop the Cole method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ˜3 h-1 Mpc. We compare to two different versions of the GALFORM galaxy formation model, Lacey et al. (in preparation) and Gonzalez-Perez et al., and find that the models reproduce the trend of stronger clustering for more massive galaxies. However, the models underpredict the clustering of blue galaxies, can incorrectly predict the correlation function on small scales and underpredict the clustering in our sample of galaxies with {˜ } 3 Lr^*. We suggest possible avenues to explore to improve these clustering predictions. The measurements presented in this paper can be used to test other galaxy formation models, and we make the measurements available online to facilitate this.

  6. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    SciTech Connect

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-04-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.

  7. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-02-20

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  8. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  9. Clustering of galaxies in brane world models

    NASA Astrophysics Data System (ADS)

    Hameeda, Mir; Faizal, Mir; Ali, Ahmed Farag

    2016-04-01

    In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies. We also analyse the effect of extra dimensions on the two-point functions between galaxies.

  10. Dark matter and the dynamics of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Evrard, August E.

    The dynamics of galaxy clustering is investigated in simulations of the large scale structure of the universe. Emphasis is placed on determining the accuracy of virial mass estimates, and therefore of the mean mass density in the universe. For galaxies modelled as point masses, the virial theorem yields mass estimates accurate to within a factor of 2 for a wide range of clustered systems. The point mass approximation, however, is incapable of reproducing observed small scale clustering behavior and is unrealistic in view of the observational and theoretical evidence for dominant amounts of dark matter around individual galaxies and in clusters. Simulations of the large scale clustering of galaxies with massive dark halos are then performed for both a critically dense and open universe. The extended mass distribution and dynamical friction, both absent in the point mass models, conspire to reduce galactic peculiar velocities on clustered scales and enhance galaxy correlations at small separations. The median virial mass estimates of galaxy groups systematically underestimate the total mass present by at least a factor of 3.

  11. ORIENTATION OF BRIGHTER GALAXIES IN NEARBY GALAXY CLUSTERS

    SciTech Connect

    Panko, E.; Juszczyk, T.; Flin, P. E-mail: sfflin@cyf-kr.edu.pl

    2009-12-15

    A sample of 6188 nearby galaxy structures, complete to r{sub F} = 18fm3 and containing at least 10 members each, was the observational basis for an investigation of the alignment of bright galaxies with the major axes for the parent clusters. The distribution of position angles for galaxies within the clusters, specifically the brightest, the second brightest, the third, and the tenth brightest galaxies was tested for isotropy. Galaxy position angles appear to be distributed isotropically, as are the distributions of underlying cluster structure position angles. The characterization of galaxy structures according to richness class also appears to be isotropic. Characterization according to BM types, which are known for 1056 clusters, is more interesting. Only in the case of clusters of BM type I is there an alignment of the brightest cluster member with the major axis of the parent cluster. The effect is observed at the 2 significance level. In other investigated cases the distributions are isotropic. The results confirm the special role of cD galaxies in the origin/evolution of large-scale structures.

  12. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  13. Brightest cluster galaxies as standard candles

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Lauer, Tod R.

    1995-01-01

    We investigate the use of brightest cluster galaxies (BCGs) as standard candles for measuring galaxy peculiar velocities on large scales. We have obtained precise large-format CCD surface photometry and redshifts for an all-sky, volume-limited (z less than or = 0.05) sample of 199 BCG. We reinvestigate the Hoessel (1980) relationship between the metric luminosity, L(sub m), within the central 10 kpc/h of the BCGs and the logarithmic slope of the surface brightness profile, alpha. The L(sub m)-alpha relationship reduces the cosmic scatter in L(sub m) from 0.327 mag to 0.244 mag, yielding a typical distance accuracy of 17% per BCG. Residuals about the L(sub m)-alpha relationship are independent of BCG luminosity, BCG B - R(sub c) color, BCG location within the host cluster, and richness of the host cluster. The metric luminosity is independent of cluster richness even before correcting for its dependence on alpha, which provides further evidence for the unique nature of the BCG luminosity function. Indeed, the BCG luminosity function, both before and after application of the alpha-correction, is consistent with a single Gaussian distribution. Half the BCGs in the sample show some evidence of small color gradients as a function of radius within their central 50 kpc/h regions but with almost equal numbers becoming redder as becoming bluer. However, with the central 10 kpc/h the colors are remarkably constant -- the mean B - R(sub c) color is 1.51 with a dispersion of only 0.06 mag. The narrow photometric and color distributions of the BCGs, the lack of 'second-parameter' effects, as well as the unique rich cluster environment of BCGs, argue that BCGs are the most homogeneous distance indicators presently available for large-scale structure research.

  14. Brightest cluster galaxies as standard candles

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Lauer, Tod R.

    1995-01-01

    We investigate the use of brightest cluster galaxies (BCGs) as standard candles for measuring galaxy peculiar velocities on large scales. We have obtained precise large-format CCD surface photometry and redshifts for an all-sky, volume-limited (z less than or = 0.05) sample of 199 BCG. We reinvestigate the Hoessel (1980) relationship between the metric luminosity, L(sub m), within the central 10 kpc/h of the BCGs and the logarithmic slope of the surface brightness profile, alpha. The L(sub m)-alpha relationship reduces the cosmic scatter in L(sub m) from 0.327 mag to 0.244 mag, yielding a typical distance accuracy of 17% per BCG. Residuals about the L(sub m)-alpha relationship are independent of BCG luminosity, BCG B - R(sub c) color, BCG location within the host cluster, and richness of the host cluster. The metric luminosity is independent of cluster richness even before correcting for its dependence on alpha, which provides further evidence for the unique nature of the BCG luminosity function. Indeed, the BCG luminosity function, both before and after application of the alpha-correction, is consistent with a single Gaussian distribution. Half the BCGs in the sample show some evidence of small color gradients as a function of radius within their central 50 kpc/h regions but with almost equal numbers becoming redder as becoming bluer. However, with the central 10 kpc/h the colors are remarkably constant -- the mean B - R(sub c) color is 1.51 with a dispersion of only 0.06 mag. The narrow photometric and color distributions of the BCGs, the lack of 'second-parameter' effects, as well as the unique rich cluster environment of BCGs, argue that BCGs are the most homogeneous distance indicators presently available for large-scale structure research.

  15. Cluster X-Ray Substructure and Radio Galaxy Correlations

    NASA Astrophysics Data System (ADS)

    Ledlow, M. J.; Burns, J. O.

    1994-12-01

    Current wisdom suggests that X-ray substructure in the intracluster medium (ICM) is fairly common in galaxy clusters. This substructure takes the form of elongations, isophotal twisting, asymmetries, and sub-clumping. Substructure is also frequently present in kinematical analysis of the galaxy velocity and spatial distributions. These features include bimodality, kurtosis or skewness, and non-Gaussian velocity distributions. Consistent with the observations, Hydro/N-Body simulations suggest that cluster-subcluster mergers may be the culprit to explain these features in the ICM gas distribution, and would indicate that many clusters, even at the present epoch, are still undergoing significant dynamical evolution. From a sample of X-ray images from the Einstein satellite and, more recently, the ROSAT mission, Burns et al. (1994) found a significant correlation between the positions of radio galaxies and subclumps within the cluster-scale X-ray emission. Burns et al. have suggested that radio galaxies reside in the residue of cluster/sub-cluster merging sites, and may therefore act as pointers to clusters with ongoing and intersting dynamical activity. We are following up these ideas with a detailed substructure analysis, and a comparison to a sample of clusters without radio galaxies. In order to determine the signficance of substructure, we have reanalyzed the X-ray images using a Bootstrap-Resampling Monte-Carlo technique. In this method, asymmetries, elongations, and other forms of substructure are evaluated using a moment-analysis similar to M{o}hr et al. (1994), with the advantage that we need not assume apriori any specific substructure-free model for the source (\\ie\\ a Beta-model). The significance of individual features is determined solely from a comparison to statistical fluctuations (including noise) of the actual data. Using this technique, we place limits on the fraction of clusters with significant substructure and test the radio galaxy

  16. The Dependence of Cluster Galaxy Properties on the Central Entropy of their Host Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Ko, Jongwan; Hwang, Ho Seong; Edge, Alastair C.; Lee, Joon Hyeop; Lee, Jong Chul; Jeong, Hyunjin

    2017-02-01

    We present a study of the connection between brightest cluster galaxies (BCGs) and their host galaxy clusters. Using galaxy clusters at 0.1< z< 0.3 from the Hectospec Cluster Survey (HeCS) with X-ray information from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), we confirm that BCGs in low central entropy clusters are well aligned with the X-ray center. Additionally, the magnitude difference between BCG and the second brightest galaxy also correlates with the central entropy of the intracluster medium. From the red-sequence (RS) galaxies, we cannot find significant dependence of RS color scatter and stellar population on the central entropy of the intracluster medium of their host cluster. However, BCGs in low-entropy clusters are systematically less massive than those in high-entropy clusters, although this is dependent on the method used to derive the stellar mass of BCGs. In contrast, the stellar velocity dispersion of BCGs shows no dependence on BCG activity and cluster central entropy. This implies that the potential of the BCG is established earlier and the activity leading to optical emission lines is dictated by the properties of the intracluster medium in the cluster core.

  17. The APM Galaxy Survey - V. Catalogues of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Efstathiou, G.

    1997-08-01

    We describe the construction of catalogues of galaxy clusters from the APM Galaxy survey using an automated algorithm based on Abell-like selection criteria. We investigate the effects of varying several parameters in our selection algorithm, including the magnitude range and radius from the cluster centre used to estimate the cluster richnesses. We quantify the accuracy of the photometric distance estimates by comparing them with measured redshifts, and we investigate the stability and completeness of the resulting catalogues. We find that the angular correlation functions for different cluster catalogues are in good agreement with one another, and are also consistent with the observed amplitude of the spatial correlation function of rich clusters.

  18. Excess Of Post-Starburst Galaxies In Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina

    2017-06-01

    I present a study on the impact of environment on galaxy evolution in distant galaxy clusters between redshifts 0.5 and 1.0. We find candidate galaxy clusters by applying a friends-of-friends algorithm to the deep photometric data of the UKIDSS Ultra-Deep Survey. Through studying the stellar mass functions, we reveal a strong excess of low-mass rapidly-quenched galaxies in cluster environments compared to the field. This indicates that low-mass objects are preferentially quenched in dense environments. I also show the radial distribution of different galaxy populations as a function of cluster-centric distance, which provides insight about where this environmental quenching is taking place and its timescale. Finally, I explain how these results, taken together, point to the existence of two environmental quenching pathways (fast and slow), operating on different timescales. Fast quenching acts on galaxies with high sSFR, switching them off on timescales shorter than the cluster dynamical time, and is more efficient for quenching low-mass galaxies. In contrast, slow quenching affects galaxies with moderate sSFR regardless of their stellar mass, acting on longer timescales.

  19. Excess of Post-Starburst Galaxies in Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Hatch, Nina; Almaini, Omar; Wild, Vivienne

    2017-07-01

    I present a study on the impact of environment on galaxy evolution in distant galaxy clusters between redshifts 0.5 and 1.0. We find candidate galaxy clusters by applying a friends-of-friends algorithm to the deep photometric data of the UKIDSS Ultra-Deep Survey. Through studying the stellar mass functions, we reveal a strong excess of low-mass rapidly-quenched galaxies in cluster environments compared to the field. This indicates that low-mass objects are preferentially quenched in dense environments. I also show the radial distribution of different galaxy populations as a function of cluster-centric distance, which provides insight about where this environmental quenching is taking place and its timescale. Finally, I explain how these results, taken together, point to the existence of two environmental quenching pathways (fast and slow), operating on different timescales. Fast quenching acts on galaxies with high sSFR, switching them off on timescales shorter than the cluster dynamical time, and is more efficient for quenching low-mass galaxies. In contrast, slow quenching affects galaxies with moderate sSFR regardless of their stellar mass, acting on longer timescales.

  20. N-Body Simulations of Galaxies in the Cluster Environment

    NASA Astrophysics Data System (ADS)

    Humphrey, Nicholas; Berrington, R. C.

    2010-01-01

    We present numerous N-body simulations of galaxy clusters consisting of up to 600,000 total particles and 50 galaxies each to characterize the evolution of galaxies in the cluster environment. These simulations were run on the Ball State University (BSU) College of Science and Humanities (CSH) 64-node Beowulf Cluster. Because the velocity dispersion (σ) is a tracer of a galaxies’ potential well and therefore its mass, we will use it to examine the mass evolution of the galaxies in the simulations by fitting a function to the σ of the galaxies. The strength of this function is its direct comparison to observational data. We further investigate the evolution of the galaxy structure parameters through the use of projected mass radii and line-of-sight (LOS) σ. Additionally, we discuss the use of alternate orbital parameters such as Vesc to investigate the potential wells of the galaxies. Our goal is to isolate the mass and luminosity evolution from the environmental effects on the evolution of elliptical galaxies. This project is a subset of a continuing study whose intent is to combine observational data with numerical techniques to study the effects of a galaxies’ environment on its mass evolution and internal dynamics.

  1. High velocity clouds in nearby disk galaxies

    NASA Technical Reports Server (NTRS)

    Schulman, Eric; Bregman, Joel N.; Roberts, Morton S.; Brinks, Elias

    1993-01-01

    Clouds of neutral hydrogen in our galaxy with the absolute value of v greater than 100 km/s cover approximately 10 percent of the sky to a limiting column density of 1 x 10(exp 18) cm(exp -2). These high velocity clouds (HVCs) may dominate the kinetic energy of neutral hydrogen in non-circular motion, and are an important though poorly understood component of galactic gas. It has been suggested that the HVCs can be reproduced by a combination of three phenomena: a galactic fountain driven by disk supernovae which would account for most of the HVCs, material tidally torn from the Magellanic Clouds, and an outer arm complex which is associated with the large scale structure of the warped galactic disk. We sought to detect HVCs in external galaxies in order to test the galactic fountain model.

  2. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  3. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  4. Galaxy evolution in clusters since z=1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  5. Low mass galaxy clusters and galaxy morphology evolution

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, J. L.; Órdenes, Y.; Ramos, F.; Alonso, M. V.; Cuevas, H.; García Lambas, D.; Ramírez, A.

    We present preliminary results about the galaxy morphology evolution in three low mass galaxy clusters: RX J0533.9-5809 ([VMF98]046, z 0.198), RX J1204.3-0350 ([VMF98]113, z 0.261) and RX J0533.8-5746 ([VMF98]045, z 0.295). Full photometric catalogues were created using SExtractor v2.8.0. Also, photometric redshifts (z phot ) were obtained for all the object classified as galaxies, using the ANNz code. Color-Magnitude Diagrams (CMD) were generated for those galaxies clas- sified as cluster members. Clear Red Cluster Sequences (RCS) with a me- dian slopes of -0.03 are observed for all the tree clusters. Based on the RCS best fit, a blue and a red population of galaxies were defined, observ- ing that the color distribution of the cluster [VMF98]045 is well fitted by a double Gaussian function (2 0.2), while the clusters [VMF98]046 and [VMF98]113 presents a third population between the blue and red peak dis- tributions. These preliminary results would show the existence of a possible transi- tion population between the blue and the red population in these low mass galaxy clusters at low redshifts.

  6. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  7. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Armandroff, T. E.; Da Costa, G. S.

    1986-01-01

    The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.

  8. Most Massive Globular Cluster in Our Galaxy

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  9. Clustering of galaxies with dynamical dark energy

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Upadhyay, Sudhaker; Hameeda, Mir; Faizal, Mir

    2017-07-01

    In this paper, we study thermodynamics of the cluster of galaxies under the effect of dynamical dark energy. We evaluate the configurational integral for interacting system of galaxies in an expanding Universe by including the effects produced by the varying Λ. The gravitational partition function is obtained using this configuration integral. We obtain thermodynamics quantities in canonical ensemble which depend on time and investigate the second law of thermodynamics. We also calculate the distribution function in grand canonical ensemble. The time evolution of the clustering parameter of galaxies is investigated for the time-dependent (dynamical) dark energy. We conclude that the second law of thermodynamics is valid for the total system of cluster of galaxies and dynamical dark energy. We calculate the correlation function and show that our model is very close to Peebles's power law, in agreement with the N-body simulation. It is observed that thermodynamics quantities depend on the modified clustering parameter for this system of galaxies.

  10. A simple recipe for estimating masses of elliptical galaxies and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.

    2013-04-01

    We discuss a simple and robust procedure to evaluate the mass/circular velocity of massive elliptical galaxies and clusters of galaxies. It relies only on the surface density and the projected velocity dispersion profiles of tracer particles and therefore can be applied even in case of poor or noisy observational data. Stars, globular clusters or planetary nebulae can be used as tracers for mass determination of elliptical galaxies. For clusters the galaxies themselves can be used as tracer particles. The key element of the proposed procedure is the selection of a ``sweet'' radius R_sweet, where the sensitivity to the unknown anisotropy of the tracers' orbits is minimal. At this radius the surface density of tracers declines approximately as I(R)∝ R-2, thus placing R_sweet not far from the half-light radius of the tracers R_eff. The procedure was tested on a sample of cosmological simulations of individual galaxies and galaxy clusters and then applied to real observational data. Independently the total mass profile was derived from the hydrostatic equilibrium equation for the gaseous atmosphere. Mismatch in mass profiles obtained from optical and X-ray data is used to estimate the non-thermal contribution to the gas pressure and/or to constrain the distribution of tracers' orbits.

  11. Separating galaxies from the cluster dark matter halo in Abell 611

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Geller, M. J.; Zitrin, A.; Mercurio, A.; Suyu, S. H.; Postman, M.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2017-03-01

    We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of ∼1.5, or, equivalently, we would underestimate the mass of the cluster dark halo by ∼5 per cent. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the five galaxies close to the arc by a factor up to ∼10. The resulting parameters are in good agreement with the σ-rtr scaling relation derived in the pointlike analysis. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1σ confidence level with the spectroscopic measurements. In contrast, the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.

  12. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N-body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ(2)/dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass Macc at the time of accretion, the maximum circular velocity Vacc at the time of accretion, and the peak maximum circular velocity Vpeak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L*). For low-luminosity samples, the Vacc model stands out in reproducing the data, with the Vpeak model slightly worse, while the Macc model fails to fit the data. We discuss the implications of the modelling results.

  13. Testing gravity with the stacked phase space around galaxy clusters.

    PubMed

    Lam, Tsz Yan; Nishimichi, Takahiro; Schmidt, Fabian; Takada, Masahiro

    2012-08-03

    In general relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints on f(R) and Dvali-Gabadadze-Porrati model parameters by several orders of magnitude when applied to upcoming imaging and redshift surveys.

  14. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Lehnert, M. D.; Villar-Martín, M.; Norris, R. P.; Ekers, R. D.; van Moorsel, G. A.; Dannerbauer, H.; Pentericci, L.; Miley, G. K.; Allison, J. R.; Sadler, E. M.; Guillard, P.; Carilli, C. L.; Mao, M. Y.; Röttgering, H. J. A.; De Breuck, C.; Seymour, N.; Gullberg, B.; Ceverino, D.; Jagannathan, P.; Vernet, J.; Indermuehle, B. T.

    2016-12-01

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy—a massive galaxy in a distant protocluster—is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  15. Clusters of Galaxies in Infrared Domain

    NASA Astrophysics Data System (ADS)

    Wszołek, B.

    2008-12-01

    Far infrared emission (FIR) of the sky is generally thought to originate mainly in cold dust grains distributed in space. The FIR emission of galaxy clusters may be considered therefore as a tracer of the dust constituent of the intracluster medium. The presence of dust distributed in the intergalactic medium of galaxy clusters is of considerable interest for several studies. Based on IRAS and COBE/DIRBE sky surveys we found excess FIR emission from the sky area occupied by galaxy cluster ZW5897. Very good positional and extensional coincidence between infrared source and ZW5897 may suggest intracluster origin of the emission. We studied the distribution of stars and galaxies in the cluster area using Palomar Survey data to check whether these distributions are affected by local dust. We found that a foreground obscuring cloud, overlapping accidentally the distant cluster ZW5897, may be responsible for some part of the detected FIR emission.

  16. Peculiar Velocities of Galaxies in the Leo Spur

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Tully, R. Brent; Makarova, Lidia N.; Makarov, Dmitry I.; Rizzi, Luca

    2015-06-01

    The Hubble Space Telescope Advanced Camera for Surveys has been used to determine accurate distances for the spiral galaxy NGC 2683 and 12 other galaxies in a zone of the “local velocity anomaly” from luminosity measurements of the brightest red giant branch stars. These galaxies lie in the Leo Spur, the nearest filament beyond our Local Sheet. The new accurate distance measurements confirm that galaxies along the Leo Spur are more distant than expected from uniform cosmic expansion, and hence have large and peculiar velocities toward us. The motions are generally explained by a previously published model that posits that the Local Sheet is descending at 259 km s-1 toward the south supergalactic pole due to expansion of the Local Void and is being attracted toward the Virgo Cluster at 185 km s-1. With the standard ΛCDM cosmology, an empty void expands at 16 km s-1 Mpc-1, so a motion of 259 km s-1 requires the Local Void to be impressively large and empty. Small residuals from the published model can be attributed to an upward push toward the north supergalactic pole by the expansion of the Gemini-Leo Void below the Leo Spur. The Leo Spur is sparsely populated, but among its constituents there are two associations that contain only dwarf galaxies. Based on observations made with the NASA/ESO Hubble Space Telescope, obtained at the Space Telescope Science Institute operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 526555. These observations are associated with the program SNAP 13442.

  17. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  18. On the clustering of faint red galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Haojie; Zheng, Zheng; Guo, Hong; Zhu, Ju; Zehavi, Idit

    2016-08-01

    Faint red galaxies in the Sloan Digital Sky Survey show a puzzling clustering pattern in previous measurements. In the two-point correlation function (2PCF), they appear to be strongly clustered on small scales, indicating a tendency to reside in massive haloes as satellite galaxies. However, their weak clustering on large scales suggests that they are more likely to be found in low-mass haloes. The interpretation of the clustering pattern suffers from the large sample variance in the 2PCF measurements, given the small volume of the volume-limited sample of such faint galaxies. We present improved clustering measurements of faint galaxies by making a full use of a flux-limited sample to obtain volume-limited measurements with an increased effective volume. In the improved 2PCF measurements, the fractional uncertainties on large scales drop by more than 40 per cent, and the strong contrast between small-scale and large-scale clustering amplitudes seen in previous work is no longer prominent. From halo occupation distribution modelling of the measurements, we find that a considerable fraction of faint red galaxies to be satellites in massive haloes, a scenario supported by the strong covariance of small-scale 2PCF measurements and the relative spatial distribution of faint red galaxies and luminous galaxies. However, the satellite fraction is found to be degenerate with the slope of the distribution profile of satellites in inner haloes. We compare the modelling results with semi-analytic model predictions and discuss the implications.

  19. A SYSTEMATIC ANALYSIS OF CAUSTIC METHODS FOR GALAXY CLUSTER MASSES

    SciTech Connect

    Gifford, Daniel; Miller, Christopher; Kern, Nicholas

    2013-08-20

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z {<=}0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to ''orphan'' galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit). We find that the caustic technique recovers the known halo masses (M{sub 200}) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N{sub gal} > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N{sub gal} = 150 (25), the caustic technique has a per cluster scatter in ln (M|M{sub 200}) of 0.3 (0.5) and bias 1% {+-} 3{r_brace} (16% {+-} 5{r_brace}) for clusters with masses >10{sup 14} M{sub Sun} at z < 0.15.

  20. A serach for 'failed clusters' of galaxies

    NASA Technical Reports Server (NTRS)

    Tucker, W. H.; Tananbaum, H.; Remillard, R. A.

    1995-01-01

    We describe a search for a new type of object - large clouds of hot gas with no visible galaxies - which we call failed clusters of galaxies. We calculate the expected X-ray luminosity, temperature, and angular diameter of such objects as a function of total cloud mass and convert the results to expected X-ray fluxes from failed clusters at different redshifts. Using the Einstein Imaging Proportional Counter (IPC) database, we establish a strategy to search for candidate failed clusters. From this initial screening of 1435 IPC fields, 17 candidates are selected for more detailed analysis, which indicates that 10 of these are very probably extended X-ray sources. Optical follow-up on the 10 prime candidates finds eight clusters of galaxies (including six reproted for the first time in this paper), one stellar identification, and one without an obvious optical counterpart (the candidate with the weakest evidence for X-ray extent). Investigation of several candidates with less evidence for X-ray extent yields two additional new clusters of galaxies. A conservative comparison of our results with the Einstein Extended Medium Sensitivity Survey demonstrates that failed clusters are a relatively unimportant contributor to the mass density of the universe. Our inability to find failed clusters is consistent with the hierarchical clustering scenario for the formation of galaxies and clusters.

  1. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters

    NASA Astrophysics Data System (ADS)

    Griv, E.; Jiang, I.-G.

    2015-02-01

    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r<3 kpc from the Sun and -200 < z <200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high-velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin-Shu type density waves estimated from two independent line-of-sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  2. Galaxy cluster mass reconstruction project - I. Methods and first results on galaxy-based techniques

    NASA Astrophysics Data System (ADS)

    Old, L.; Skibba, R. A.; Pearce, F. R.; Croton, D.; Muldrew, S. I.; Muñoz-Cuartas, J. C.; Gifford, D.; Gray, M. E.; der Linden, A. von; Mamon, G. A.; Merrifield, M. R.; Müller, V.; Pearson, R. J.; Ponman, T. J.; Saro, A.; Sepp, T.; Sifón, C.; Tempel, E.; Tundo, E.; Wang, Y. O.; Wojtak, R.

    2014-06-01

    This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealized clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R200, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 1014M⊙, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of 2. Below 1014M⊙, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic.

  3. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    SciTech Connect

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer, Hans; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U., ICG /North Carolina U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Michigan U. /Fermilab /Princeton U. Observ. /Garching, Max Planck Inst., MPE /Pittsburgh U. /Tokyo U., ICRR /Baltimore, Space Telescope Sci. /Penn State U. /Chicago U. /Stavropol, Astrophys. Observ. /Heidelberg, Max Planck Inst. Astron. /INI, SAO

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster. However, if we

  4. Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.

  5. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    SciTech Connect

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A. E-mail: shields@astro.as.utexas.edu

    2012-03-20

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 {+-} 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  6. The Formation of Galaxies and Clusters.

    ERIC Educational Resources Information Center

    Gregory, Stephen; Morrison, Nancy D.

    1985-01-01

    Summarizes recent research on the formation of galaxies and clusters, focusing on research examining how the materials in galaxies seen today separated from the universal expansion and collapsed into stable bodies. A list of six nontechnical books and articles for readers with less background is included. (JN)

  7. The Formation of Galaxies and Clusters.

    ERIC Educational Resources Information Center

    Gregory, Stephen; Morrison, Nancy D.

    1985-01-01

    Summarizes recent research on the formation of galaxies and clusters, focusing on research examining how the materials in galaxies seen today separated from the universal expansion and collapsed into stable bodies. A list of six nontechnical books and articles for readers with less background is included. (JN)

  8. The Buildup of Passive Galaxies in Clusters and the Field Over the Last 7 Billion Years.

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; van der Wel, A.; Moustakas, J.; Jablonka, P.

    2011-01-01

    One of galaxy evolution's most long-standing problems is determining how clusters affect the properties of infalling galaxies. One useful metric for this is how quickly the passive galaxy population in clusters assembles over time. Standard practice has been to assume that all red sequence galaxies are passive and to measure the evolution in the red fraction and red sequence luminosity function over time. This approach, however, neglects the possible contribution of dusty galaxies to the red sequence, which can be significant at intermediate environment and low to intermediate stellar masses. We move beyond a simple red sequence cut by using a new multi-color technique to distinguish red passive galaxies from red dusty star-forming galaxies. Isolating passive galaxies is inherently more physical than studying galaxies selected on one color alone. We track the buildup of passive galaxies in the field and in clusters using the COSMOS data for the former and a large imaging and spectroscopy survey of intermediate redshift clusters for the latter. The fraction of passive galaxies in clusters increases with increasing galaxy mass, increasing cluster velocity dispersion, and with time at a fixed mass and velocity dispersion. We relate the passive fraction in clusters to that for field galaxies of similar masses and use this to constrain the processes that shut off star formation in infalling cluster galaxies. The fraction of dust-obscured star forming galaxies changes with stellar mass and environment and this affects the interpretation of the rapid evolution in the faint red sequence galaxy population and its environmental dependence, as seen in other works.

  9. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  10. The kinematics and dynamics of the rich cluster of galaxies Abell 539

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Huchra, John P.; Geller, Margaret J.; Kurtz, Michael J.

    1988-01-01

    A sample of 289 redshifts within 10 deg of the center of the cluster A539 have been obtained in order to investigate the cluster kinematics and dynamics. Within 1 Mpc of the center, the physical parameters of A539 are found to be typical of those of rich clusters. It is shown that early-type galaxies are more concentrated toward the cluster center and that the velocity distributions of early-type and late-type galaxies differ marginally.

  11. The kinematics and dynamics of the rich cluster of galaxies Abell 539

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Huchra, John P.; Geller, Margaret J.; Kurtz, Michael J.

    1988-01-01

    A sample of 289 redshifts within 10 deg of the center of the cluster A539 have been obtained in order to investigate the cluster kinematics and dynamics. Within 1 Mpc of the center, the physical parameters of A539 are found to be typical of those of rich clusters. It is shown that early-type galaxies are more concentrated toward the cluster center and that the velocity distributions of early-type and late-type galaxies differ marginally.

  12. The galaxy population of the complex cluster system Abell 3921

    NASA Astrophysics Data System (ADS)

    Pranger, Florian; Böhm, Asmus; Ferrari, Chiara; Diaferio, Antonaldo; Hunstead, Richard; Maurogordato, Sophie; Benoist, Christophe; Brinchmann, Jarle; Schindler, Sabine

    2013-09-01

    Context. We present a spectrophotometric analysis of the galaxy population in the area of the merging cluster Abell 3921 at z = 0.093. Aims: We investigate the impact of the complex cluster environment on galaxy properties such as morphology or star formation rate. Methods: We combine multi-object spectroscopy from the two-degree field (2dF) spectrograph with optical imaging taken with the ESO Wide Field Imager. We carried out a redshift analysis and determine cluster velocity dispersions using biweight statistics. Applying a Dressler-Shectman test we sought evidence of cluster substructure. Cluster and field galaxies were investigated with respect to [OII] and Hα equivalent width, star formation rate, and morphological descriptors, such as concentration index and Gini coefficient. We studied these cluster galaxy properties as a function of clustercentric distance and investigated the spatial distribution of various galaxy types. Results: Applying the Dressler-Shectman test, we find a third component (A3921-C) in addition to the two main subclusters (A3921-A and A3921-B) that are already known. The re-determined mass ratio between the main components A and B is ~2:1. Similar to previous studies of galaxy clusters, we find that a large fraction of the disk galaxies close to the cluster core show no detectable star formation. These are likely systems that are quenched due to ram pressure stripping. Interestingly, we also find quenched spirals at rather large distances of 3-4 Mpc from the cluster core. Conclusions: A3921-C might be a group of galaxies falling onto the main cluster components. We speculate that the unexpected population of quenched spirals at large clustercentric radii in A3921-A and A3921-B might be an effect of the ongoing cluster merger: shocks in the ICM might give rise to enhanced ram pressure stripping and at least in part be the cause for the quenching of star formation. These quenched spirals might be an intermediate stage in the morphological

  13. Can cluster environment modify the dynamical evolution of spiral galaxies?

    NASA Technical Reports Server (NTRS)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  14. Galaxy Recycling in the Centaurus Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, M. D.; West, M. J.

    2002-12-01

    The Centaurus cluster of galaxies contains a spectacular example of galaxy destruction and recycling, a giant plume of stellar debris over 100 kpc in length and ~ 15 kpc wide. We have obtained HST/WFPC2 V and I band images of a tiny portion of the Centaurus plume. A highly significant excess of objects is detected in the plume, compared to surrounding regions. The excess objects, assuming they are in Centaurus, range from -6 > MV> -12, providing evidence that globular clusters and dwarf galaxies can be born from tidal debris in rich galaxy clusters, just as is known to occur in field galaxy tidal interactions. Over time, the recycled debris from many such disruption events augments the intracluster population of stars, clusters, dwarf galaxies, and gas, and is a major driver of the global evolution of the cluster. We will also discuss our deep u'g'r'i'z' multicolor images of Centaurus, obtained with the CTIO 4m 8K Mosaic to investigate the entire plume and enabling a cluster-wide search for additional tidal debris to very faint levels. We acknowledge financial support from the National Science Foundation and the Space Telescope Science Institute. Part of this work was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  15. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  16. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most

  17. The red-sequence of 72 WINGS local galaxy clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.

    2011-12-01

    We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.

  18. Galaxy Cluster Baryon Fractions Revisited

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony H.; Sivanandam, Suresh; Zabludoff, Ann I.; Zaritsky, Dennis

    2013-11-01

    We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ~ 0.1 with M = 1-5 × 1014 M ⊙. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, M_{\\star }\\propto M_{500}^{-0.52+/- 0.04}, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M 500; the fractions of total mass in stars and X-ray gas within a sphere of radius r 500 scale as f_{\\star }\\propto M_{500}^{-0.45+/- 0.04} and f_{gas}\\propto M_{500}^{0.26+/- 0.03}, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M 500 relation by ~25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: f_{bary}\\propto M_{500}^{0.16+/- 0.04}. For M 500 >~ 2 × 1014, the total baryon fractions within r 500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with

  19. Low X-Ray Luminosity Galaxy Clusters: Main Goals, Sample Selection, Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, José Luis; Alonso, M. Victoria; García Lambas, Diego; Valotto, Carlos; O'Mill, Ana Laura; Cuevas, Héctor; Carrasco, Eleazar R.; Ramírez, Amelia; Astudillo, José M.; Ramos, Felipe; Jaque Arancibia, Marcelo; Ulloa, Natalie; Órdenes, Yasna

    2016-06-01

    We present our study of 19 low X-ray luminosity galaxy clusters (L{}X ˜ 0.5-45 × 1043 erg s-1), selected from the ROSAT Position Sensitive Proportional Counters Pointed Observations and the revised version of Mullis et al. in the redshift range of 0.16-0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations, and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. Using the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogs contain the point-spread function and aperture magnitudes of galaxies within the 90% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km s-1 for [VMF98]022 to 775 km s-1 for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray emission peak and with clustercentric velocities smaller than the cluster velocity dispersion or 6000 km s-1, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations, the galaxy luminosity function, and cluster dynamics.

  20. Characterizing galaxy clusters with gravitational potential

    NASA Astrophysics Data System (ADS)

    Lau, Erwin Tin-Hay

    2010-11-01

    We propose a simple estimator for the gravitational potential of cluster-size halos using the temperature and density profiles of the intracluster gas based on the assumptions of hydro-static equilibrium and spherical symmetry. Using high resolution cosmological simulations of galaxy clusters, we show that the scaling relation between this estimator and the gravitational potential has a small intrinsic scatter of ˜ 10%, and it is insensitive to baryon physics outside the cluster core. The slope and the normalization of the scaling relation vary weakly with redshift, and they are relatively independent of the choice of radial range used and the dynamical states of the clusters. The results presented here provide a way for using the cluster potential function as an alternative to the cluster mass function in constraining cosmology using galaxy clusters.

  1. How robust are predictions of galaxy clustering?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2013-07-01

    We use the Millennium Simulation data base to compare how different versions of the Durham and Munich semi-analytical galaxy formation models populate dark matter haloes with galaxies. The models follow the same physical processes but differ in how these are implemented. All of the models we consider use the Millennium N-body Simulation; however, the Durham and Munich groups use independent algorithms to construct halo merger histories from the simulation output. We compare the predicted halo occupation distributions (HODs) and correlation functions for galaxy samples defined by stellar mass, cold gas mass and star formation rate. The model predictions for the HOD are remarkably similar for samples ranked by stellar mass. The predicted bias averaged over pair separations in the range 5-25 h-1 Mpc is consistent between models to within 10 per cent. At small pair separations there is a clear difference in the predicted clustering. This arises because the Durham models allow some satellite galaxies to merge with the central galaxy in a halo when they are still associated with resolved dark matter subhaloes. The agreement between the models is less good for samples defined by cold gas mass or star formation rate, with the spread in predicted galaxy bias reaching 20 per cent and the small-scale clustering differing by an order of magnitude, reflecting the uncertainty in the modelling of star formation. The model predictions in these cases are nevertheless qualitatively similar, with a markedly shallower slope for the correlation function than is found for stellar mass selected samples and with the HOD displaying an asymmetric peak for central galaxies. We provide illustrative parametric fits to the HODs predicted by the models. Our results reveal the current limitations on how well we can predict galaxy bias in a fixed cosmology, which has implications for the interpretation of constraints on the physics of galaxy formation from galaxy clustering measurements and the

  2. NGC 4388 - A Seyfert 2 galaxy in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Phillips, M. M.; Malin, D. F.

    1982-06-01

    Direct photographic data and preliminary spectroscopy of the spiral galaxy NGC 4388 are presented. The galaxy appears to be a barred spiral of morphological class SB(s)b pec and is almost certainly a member of the Virgo cluster. The nucleus was studied with a photon-counting image intensifier/reticon scanner and was found to emit a high-excitation, narrow emission-line spectrum of relatively low luminosity. Image-tube spectrograms and spectroscopy using an image photon-counting system revealed optical, X-ray, and radio nuclear properties consistent with a classical Seyfert 2 galaxy. The radial velocity of the peaks of the asymmetric nuclear emission lines is 55 km/s less than the H I 21 cm systemic velocity.

  3. The Properties of Faint Galaxies in Nearby Clusters of the WINGS Sample

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Kjærgaard, P.; Milvan-Jensen, B.; D'Onofrio, M.; Moretti, A.; Poggianti, B. M.; Fasano, G.; Cava, A.; Couch, W.; Fritz, J.; Moles, M.

    We present the results of our X-shooter observations for a sample of dwarf (-17 < MB < -15) galaxies in nearby (0. 040 < z < 0. 068) galaxy clusters of the WINGS sample. The study of galaxies in this faint luminosity range is fundamental to trace the evolution of high-z star-forming cluster galaxies down to the present day. We measure the velocity dispersion of 22 galaxies in this range of luminosity and we explore their scaling relations. We found that the Fundamental Plane has a peculiar feature, suggesting the existence of some kind of warping at low luminosities.

  4. ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES

    SciTech Connect

    Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena

    2010-08-10

    We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.

  5. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R velocities |vpec| < 3.5σ200 and stellar masses 9.5 ≤ {log({M}}^*_{approx}/M⊙)≤12. Finally, we give an update on the SAMI-GS progress for the cluster regions.

  6. Tidal Stripping of Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-01

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 1014 M⊙ h-1. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters SN depends on their clustercentric distance.

  7. TIDAL STRIPPING OF GLOBULAR CLUSTERS IN A SIMULATED GALAXY CLUSTER

    SciTech Connect

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-20

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 10{sup 14} M{sub ⊙} h{sup −1}. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters S{sub N} depends on their clustercentric distance.

  8. The Virgo Cluster of Galaxies in the Making

    NASA Astrophysics Data System (ADS)

    2004-10-01

    VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the

  9. Major cluster mergers and the location of the brightest cluster galaxy

    SciTech Connect

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-05-10

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc){sup 3} in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M {sub cl} > 1.1 × 10{sup 12} M {sub ☉}, including 18 massive clusters with M {sub cl} > 10{sup 14} M {sub ☉}. It also contains 1, 088, 797 galaxies with mass M {sub gal} ≥ 2 × 10{sup 9} M {sub ☉} and luminosity L > 9.5 × 10{sup 5} L {sub ☉}. For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f {sub BNC} of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f {sub BNC} increases from 0.05 for low-mass clusters (M {sub cl} ∼ 10{sup 12} M {sub ☉}) to 0.5 for high-mass clusters (M {sub cl} > 10{sup 14} M {sub ☉}) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f {sub BNC} increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi

  10. Chandra Observation of Abell 1142: A Cool-core Cluster Lacking a Central Brightest Cluster Galaxy?

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Buote, David A.; Gastaldello, Fabio; van Weeren, Reinout

    2016-04-01

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s-1. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous LX-TX scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  11. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    SciTech Connect

    Su, Yuanyuan; Weeren, Reinout van; Buote, David A.; Gastaldello, Fabio

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  12. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  13. THE CLUSTERING PROPERTIES OF THE FIRST GALAXIES

    SciTech Connect

    Stiavelli, Massimo; Trenti, Michele

    2010-06-20

    We study the clustering properties of the first galaxies formed in the universe. We find that, due to chemical enrichment of the interstellar medium by isolated Population III stars formed in mini-halos at redshift z {approx_gt} 30, the (chronologically) first galaxies are composed of metal-poor Population II stars and are highly clustered on small scales. In contrast, chemically pristine galaxies in halos with mass M {approx} 10{sup 8} M{sub sun} may form at z < 20 in relatively underdense regions of the universe. This occurs once self-enrichment by Population III in mini-halos is quenched by the buildup of an H{sub 2} photodissociating radiative background in the Lyman-Werner bands. We find that these chemically pristine galaxies are spatially uncorrelated. Thus, we expect that deep fields with the James Webb Space Telescope (JWST) may detect clusters of chemically enriched galaxies but individual chemically pristine objects. We predict that metal-free galaxies at 10 {approx}< z {approx}< 15 have surface densities of about 80 arcmin{sup -2} and per unit redshift but most of them will be too faint even for JWST. However, the predicted density makes these objects interesting targets for searches behind lensing clusters.

  14. The Evolving Shape of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Just, Dennis W.; Yee, H. K. C.; Muzzin, Adam; Wilson, Gillian; Gilbank, David G.; Gladders, Michael

    2016-10-01

    We present the first measurement of the evolution of the apparent projected shape of galaxy clusters from 0.2<~ z<~2. We measure the ellipticities (ɛcl) of homogeneously selected galaxy clusters over this wide redshift range. We confirm the predictions of N-body simulations that clusters are more elongated at higher redshift, finding the mean projected ellipticity changes linearly from 0.36+/-0.01 to 0.25+/-0.01 over that range. The fraction of relaxed clusters (defined as having ɛ cl <0.2) is 9+5-3% at z~1.8, steadily increasing to 42+7-6% by z~0.3. Because more spherical clusters have a higher degree of virialization, our result shows significant evolution in the degree of cluster virialization over cosmic time.

  15. Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Li, Ran; Mo, H. J.; Yang, Xiaohu

    2009-04-01

    Galaxy clustering and galaxy-galaxy lensing probe the connection between galaxies and their dark matter haloes in complementary ways. Since the clustering of dark matter haloes depends on cosmology, the halo occupation statistics inferred from the observed clustering properties of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light ratios for dark matter haloes. Galaxy-galaxy lensing, which yields direct constraints on the actual mass-to-light ratios, can therefore be used to break this degeneracy, and thus to constrain cosmological parameters. In this paper, we establish the link between galaxy luminosity and dark matter halo mass using the conditional luminosity function (CLF), Φ(L|M)dL, which gives the number of galaxies with luminosities in the range L +/- dL/2 that reside in a halo of mass M. We constrain the CLF parameters using the galaxy luminosity function and the luminosity dependence of the correlation lengths of galaxies. The resulting CLF models are used to predict the galaxy-galaxy lensing signal. For a cosmology that agrees with constraints from the cosmic microwave background, i.e. (Ωm,σ8) = (0.238,0.734), the model accurately fits the galaxy-galaxy lensing data obtained from the Sloan Digital Sky Survey. For a comparison cosmology with (Ωm,σ8) = (0.3,0.9), however, we can accurately fit the luminosity function and clustering properties of the galaxy population, but the model predicts mass-to-light ratios that are too high, resulting in a strong overprediction of the galaxy-galaxy lensing signal. We conclude that the combination of galaxy clustering and galaxy-galaxy lensing is a powerful probe of the galaxy-dark matter connection, with the potential to yield tight constraints on cosmological parameters. Since this method mainly probes the mass distribution on relatively small (non-linear) scales, it is complementary to constraints obtained from the galaxy power spectrum, which

  16. The velocity dispersion among galaxies and the density parameter

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, J. A.; Bruno, Ruth

    1988-06-01

    From a sample of 151 E-galaxies the authors have derived the r.m.s. peculiar velocity of galaxies. The three-dimensional velocity dispersion is 230±20 km s-1 consistent with the earlier results by Davis and Peebles (1983). This r.m.s. peculiar velocity implies a density parameter Ω = 0.060±0.015 within the framework of the linear theory.

  17. Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Fort, Bernard

    For a long time, the small number of clusters at z > 0.3 in the Abell survey catalogue and simulations of the standard CDM formation of large scale structures provided a paradigm where clusters were considered as young merging structures. At earlier times, loose concentrations of galaxy clumps were mostly anticipated. Recent observations broke the taboo. Progressively we became convinced that compact and massive clusters at z = 1 or possibly beyond exist and should be searched for.

  18. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  19. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  20. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  1. Quenching star formation in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Taranu, Dan S.; Hudson, Michael J.; Balogh, Michael L.; Smith, Russell J.; Power, Chris; Oman, Kyle A.; Krane, Brad

    2014-05-01

    In order to understand the processes that quench star formation in cluster galaxies, we construct a library of subhalo orbits drawn from Λ cold dark matter cosmological N-body simulations of four rich clusters. We combine these orbits with models of star formation followed by environmental quenching, comparing model predictions with observed bulge and disc colours and stellar absorption line-strength indices of luminous cluster galaxies. Models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc is quenched upon infall are acceptable fits to the data. An exponential disc quenching time-scale of 3-3.5 Gyr is preferred. Quenching in lower mass groups prior to infall (`pre-processing') provides better fits, with similar quenching time-scales. Models with short (≲1 Gyr) quenching time-scales yield excessively steep cluster-centric gradients in disc colours and Balmer line indices, even if quenching is delayed for several Gyr. The data slightly prefer models where quenching occurs only for galaxies falling within ˜0.5r200. These results imply that the environments of rich clusters must impact star formation rates of infalling galaxies on relatively long time-scales, indicative of gentler quenching mechanisms such as slow `strangulation' over more rapid ram-pressure stripping.

  2. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  3. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  4. CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Mercurio, A.; Balestra, I.; Nonino, M.; Biviano, A.; Grillo, C.; Rosati, P.; Annunziatella, M.; Demarco, R.; Fritz, A.; Gobat, R.; Lemze, D.; Presotto, V.; Scodeggio, M.; Tozzi, P.; Bartosch Caminha, G.; Brescia, M.; Coe, D.; Kelson, D.; Koekemoer, A.; Lombardi, M.; Medezinski, E.; Postman, M.; Sartoris, B.; Umetsu, K.; Zitrin, A.; Boschin, W.; Czoske, O.; De Lucia, G.; Kuchner, U.; Maier, C.; Meneghetti, M.; Monaco, P.; Monna, A.; Munari, E.; Seitz, S.; Verdugo, M.; Ziegler, B.

    2015-07-01

    Aims: In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACS J1206.2-0847 at z ~ 0.44 and probe its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Methods: Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS at VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R200 (4 h70-1 Mpc). We classify 412 galaxies as passive, with strong Hδ absorption (red and blue galaxies), and with emission lines from weak to very strong. A number of tests for substructure detection are applied to analyze the galaxy distribution in the velocity space, in 2D space, and in 3D projected phase-space. Results: Studied in its entirety, the cluster appears as a large-scale relaxed system with a few secondary, minor overdensities in 2D distribution. We detect no velocity gradients or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive galaxies and red strong Hδ galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hδ galaxies also mark a secondary, dense peak ~2 h70-1 Mpcat ESE. The emission line galaxies cluster in several loose structures, mostly outside R200. Two of these structures are also detected through our 3D analysis. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive galaxies and red strong Hδ galaxies. The red strong Hδ galaxies, interpreted as poststarburst galaxies, date a likely important event 1-2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions. Based in large part

  5. Recent Galaxy Mergers and Residual Star Formation of Red Sequence Galaxies in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Ree, Chang H.; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-08-01

    This study explored the Galaxy Evolution Explorer ultraviolet (UV) properties of optical red sequence galaxies in four rich Abell clusters at z≤slant 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r\\prime colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r\\prime ≤slant 5), and that number was doubled (˜72%) when using a generous criterion (NUV - r\\prime ≤slant 5.4). The trend was the same when we restricted the sample to galaxies within 0.5 × R 200. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R 200. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the substructures in the galaxy clusters. Within R 200 of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters’ substructures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.

  6. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  7. Numerical Simulations of Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Roettiger, Kurt; Loken, Chris; Burns, Jack O.

    1997-04-01

    We present results from three-dimensional numerical simulations of head-on mergers between two clusters of galaxies using a hybrid hydro/N-body code. In these simulations, the gaseous intracluster medium (ICM) is evolved as a massless fluid within a changing gravitational potential defined by the collisionless dark matter component. The ICM is represented by the equations of hydrodynamics which are solved by an Eulerian, finite-difference method. The cluster dark matter component is represented by the N-body particle distribution. A series of simulations have been conducted in which we have systematically varied the cluster-subcluster mass ratio between 8:1 and 1:1. We find that cluster-subcluster mergers result in an elongation of both the cluster dark matter and gas distributions. The dark matter distribution is elongated parallel to the merger axis and accompanied by anisotropy in the dark matter velocity dispersion. Both the elongation and corresponding velocity anisotropy are sustained for more than 5 Gyr after the merger. The elongation of the gas distribution is also generally along the merger axis, although shocks and adiabatic compressions produce elongations perpendicular to the merger axis at various times during the merger. We also find a significant offset between dark matter and gas centroids in the period following core passage. The gasdynamics is also severely affected by the cluster-subcluster merger. In these simulations, the subcluster enters the primary at supersonic speeds initiating bulk flows that can exceed 2000 km s-1. The width of the bulk flows are seen to range between several hundred kiloparsecs to nearly 1 Mpc. We believe the bulk flows can produce the bending of wide-angle tailed (WAT) radio sources. The most significant gasdynamics is seen to subside on timescales of 2 Gyr, although still significant dynamics is seen even after 5 Gyr. The merger-induced gasdynamics may also play a role in the formation of radio halo sources, and

  8. Morphology of galaxies in the WINGS clusters

    NASA Astrophysics Data System (ADS)

    Fasano, G.; Vanzella, E.; Dressler, A.; Poggianti, B. M.; Moles, M.; Bettoni, D.; Valentinuzzi, T.; Moretti, A.; D'Onofrio, M.; Varela, J.; Couch, W. J.; Kjærgaard, P.; Fritz, J.; Omizzolo, A.; Cava, A.

    2012-02-01

    We present the morphological catalogue of galaxies in nearby clusters of the WIde-field Nearby Galaxy-clusters Survey (WINGS). The catalogue contains a total number of 39 923 galaxies, for which we provide the automated estimates of the morphological type, applying the purposely devised tool MORPHOT to the V-band WINGS imaging. For ˜3000 galaxies we also provide visual estimates of the morphological type. A substantial part of the paper is devoted to the description of the MORPHOT tool, whose application is limited, at least for the moment, to the WINGS imaging only. The approach of the tool to the automation of morphological classification is a non-parametric and fully empirical one. In particular, MORPHOT exploits 21 morphological diagnostics, directly and easily computable from the galaxy image, to provide two independent classifications: one based on a maximum likelihood (ML), semi-analytical technique and the other one on a neural network (NN) machine. A suitably selected sample of ˜1000 visually classified WINGS galaxies is used to calibrate the diagnostics for the ML estimator and as a training set in the NN machine. The final morphological estimator combines the two techniques and proves to be effective both when applied to an additional test sample of ˜1000 visually classified WINGS galaxies and when compared with small samples of Sloan Digital Sky Survey (SDSS) galaxies visually classified by Fukugita et al. and Nair et al. Finally, besides the galaxy morphology distribution (corrected for field contamination) in the WINGS clusters, we present the ellipticity (ɛ), colour (B-V) and Sersic index (n) distributions for different morphological types, as well as the morphological fractions as a function of the clustercentric distance (in units of R200).

  9. Three-point correlations of galaxy clusters

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Hollosi, Joseph; Szalay, Alexander S.

    1989-01-01

    A relation between two- and three-point correlation functions similar to that of galaxies is presently established by estimating the irreducible angular three-point correlation function of Abell clusters in distance classes 5 and 6, for Galactic latitudes below 40 deg. The shape of the three-point correlation function is fully consistent with the quadratic scaling law found by Groth and Peebles (1977) for galaxies. The three-point correlation function is inconsistent with the expectations from biasing.

  10. The Velocity Dispersion Function for Quiescent Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Zahid, H. Jabran; Geller, Margaret J.

    2017-08-01

    We investigate the distribution of central velocity dispersions for quiescent galaxies in the SDSS at 0.03 ≤ z ≤ 0.10. To construct the field velocity dispersion function (VDF), we construct a velocity dispersion complete sample of quiescent galaxies with D n 4000 > 1.5. The sample consists of galaxies with central velocity dispersion larger than the velocity dispersion completeness limit of the SDSS survey. Our VDF measurement is consistent with previous field VDFs for σ > 200 km s-1. In contrast with previous results, the VDF does not decline significantly for σ < 200 km s-1. The field and the similarly constructed cluster VDFs are remarkably flat at low velocity dispersion (σ < 250 km s-1). The cluster VDF exceeds the field for σ > 250 km s-1 providing a measure of the relatively larger number of massive subhalos in clusters. The VDF is a probe of the dark matter halo distribution because the measured central velocity dispersion may be directly proportional to the dark matter velocity dispersion. Thus the VDF provides a potentially powerful test of simulations for models of structure formation.

  11. Numerical experiments on galaxy clustering in open universes

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1984-01-01

    Numerical studies were performed on the dynamical effects on the evolution of clumps, filaments, voids, and galaxy clusters by various final Omega values. The final Omega values examined ranged from 0.03-1, and attention was given to defining observations of superclusters which would aid in determining an actual value for Omega. The numerical trials consisted of n-body integration programs governed by the total expansion and final Omega value and included comparisons between results for open and closed universes. All runs started from the same initial conditions. The dispersion trajectories of particles and the final galactic cluster forms were found to be equivalent, regardless of the final Omega value. The possibility of deriving a value for Omega from velocity data on galaxies which have not yet joined clusters is discussed.

  12. Characterizing the Small Scale Structure in Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    2001-01-01

    We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.

  13. Testing Cosmological Models with Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Schuecker, Peter

    2003-05-01

    Galaxy clusters are ideal probes for the large-scale structure of the Universe and for the tests of cosmological models. We use, REFLEX, the currently largest and best defined cluster X-ray survey to illustrate this application of galaxy cluster studies. Based on this survey of X-ray selected clusters of galaxies we determine statistical properties of the galaxy cluster population, their spatial correlation, and the density fluctuation power spectrum of the cosmic matter distribution on large scales up to about 1 Gpc. Comparing these results with predictions of cosmological models we obtain tight constrains for the matter density parameter of the Universe, consistent with the combined results from observations of the microwave background anisotropies and distant type Ia supernovae. The only difference between the present results and the ``concordance model'' is a low value for the σ8-normalization. Exploring the parameter space of the cosmic matter density and the equation of state parameter of dark energy most favoured by the combined observations of REFLEX clusters and distant type Ia supernovae we find that the conventional cosmological constant model is best consistent with the observational data.

  14. Galaxies in Clusters : Gas Stripping and Accretion

    NASA Astrophysics Data System (ADS)

    O'Dea, Chris; Balsara, Dinshaw; Livio, Mario

    1994-05-01

    We study the process of a galaxy moving through the intercluster gas in a cluster of galaxies, using a high quality hydrocode run at high resolutions. We find that ram pressure stripping occurs in the form of individual events that are separated by about ten million years. In addition we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial "pumping" mode, similar to the one found previously in simulations of wind accretion onto compact objects. Some implications of our results for the understanding of a few recent observations are discussed.

  15. On the distribution of dark matter in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sand, David J.

    2006-07-01

    The goal of this thesis is to provide constraints on the dark matter density profile in galaxy clusters by developing and combining different techniques. The work is motivated by the fact that a precise measurement of the logarithmic slope of the dark matter on small scales provides a powerful test of the Cold Dark Matter paradigm for structure formation, where numerical simulations suggest a density profile r DM 0( r -1 or steeper in the innermost regions. We have obtained deep spectroscopy of gravitational arcs and the dominant brightest cluster galaxy in six carefully chosen galaxy clusters. Three of the clusters have both radial and tangential gravitational arcs while the other three display only tangential arcs. We analyze the stellar velocity dispersion for the brightest cluster galaxies in conjunction with axially symmetric lens models to jointly constrain the dark and baryonic mass profiles jointly. For the radial are systems we find the inner dark matter density profile is consistent with r DM 0( r -b , with [left angle bracket]b[right angle bracket] = [Special characters omitted.] (68% CL). Likewise, an upper limit on b for the tangential arc sample is found to be b <0.57 (99% CL). We study a variety of possible systematic uncertainties, including the consequences of our one- dimensional mass model, fixed dark matter scale radius, and simple velocity dispersion analysis, and conclude that at most these systematics each contribute a Db ~ 0.2 systematic into our final conclusions. These results suggest the relationship between dark and baryonic matter in cluster cores is more complex than anticipated from dark matter only simulations. Recognizing the power of our technique, we have performed a systematic search of the Hubble Space Telescope Wide Field and Planetary Camera 2 data archive for further examples of systems containing tangential and radial gravitational arcs. We carefully examined 128 galaxy cluster cores and found 104 tangential arcs and 12

  16. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  17. Stellar evolution in clusters and galaxies

    SciTech Connect

    Isbell, J.T.

    1989-01-01

    The comparison of numerical models of stellar evolution to observations of star clusters provides useful information about such star systems. Computer models are constructed for stars with masses ranging from 0.5 to 30 Mass{sub sun} and metallicities from Z = 0.0001 to Z = 0.030. These stellar models are then used to construct isochrones and synthetic cluster diagrams of 5 open clusters (pleadies, M 11, IC 4756, NGC 1817 and Hyades). Models are also constructed for 4 globular clusters (47 Tuc, M 13, M 68 and M 15) and 4 nearby galaxies (LMC, Sculptor, Draco and SMC). Values obtained for the distance, interstellar reddening, metallicity, age and observational scatter for each cluster or galaxy are summarized in the results.

  18. Dust in Cluster Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Baes, M.; Fritz, J.; Verstappen, J.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; Davies, J. I.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Magrini, L.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    Based on single cross-scan data of the Herschel Virgo Cluster Survey, we report the first detections of dust in cluster early-type dwarf galaxies: VCC 209, VCC 781 and VCC 951. All three galaxies have dust masses M d ≈ 105 - 106 M⊙ and average dust temperatures ≈ 16-20 K. Since these three early-type dwarfs reside in densely crowded regions close to the center of the Virgo cluster, and several H I-detected dwarfs in the outskirts of Virgo were not detected by Herschel(implying a dust content < 104 M⊙), this might imply that dust in dwarfs is more closely related to the molecular gas, which is more centrally peaked in a galaxy's potential well and therefore, not easily removed by any stripping mechanism. We conclude that the removal of interstellar dust from these early-type dwarfs appears to be less efficient than the removal of the H I gas.

  19. Mass Distribution in Galaxy Cluster Cores

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.; Edge, A. C.; Main, R. A.

    2017-03-01

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar (M *), gas (M gas), and dark matter (M DM) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular Hα emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r 1.1 expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r 0.67 down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”

  20. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias

  1. Galaxy Luminosity Function of the Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    NASA Astrophysics Data System (ADS)

    Lee, Youngdae; Rey, Soo-Chang; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K.

    2016-05-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to {M}r˜ -14 mag based on deep images in the u, g, and r bands taken by using MOSAIC II CCD mounted on the Blanco 4 m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information and on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at r˜ 18.5 mag ({M}r˜ -17.8 mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the clustercentric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely associated with the surrounding, possible filamentary structure. The combined LF of the overdense regions exhibits a two-component function with a distinct dip, while the LF of the central region is well described by a single Schechter function. We suggest that, in the context of the hierarchical cluster formation scenario, the observed overdense regions are the relics of galaxy groups, retaining their two-component LFs with a dip, which acquired their shapes through a galaxy merging process in group environments, before they fall into a cluster.

  2. Globular cluster systems as clues to galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Ashman, Keith M.

    1993-01-01

    We investigate the properties of systems of globular clusters in light of the hypothesis that galaxy mergers play a major role in galaxy evolution. In a previous paper, we presented a model in which the formation of globular clusters occurs during galaxy interactions and mergers. We discussed several predictions of the model, including the existence of young globular clusters in currently merging galaxies and the presence of two or more metallicity peaks in the globular clusters systems of normal elliptical galaxies. Here, we present recent observational evidence which supports both of these predictions and suggests that mergers may have a significant influence on the formation and evolution of galaxies and their globular clusters.

  3. Intracluster Light in Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony; Zabludoff, Ann I.; Zaritsky, Dennis F.

    2016-01-01

    We present recent results from our study on the origin and assembly history of the intracluster starlight (ICL) for a sample of 29 galaxy groups and clusters with 3x1013clusters show clear negative color gradients. Such negative colour (and equivalently, metallicity) gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the brightest cluster galaxy (BCG). We also find ICL luminosities of 3-9 L* in the range 10 < r < 110 kpc for these clusters. Dwarf disruption alone cannot explain the total luminosity of the ICL and remain consistent with the observed evolution in the faint-end slope of the luminosity function. The results of our study are suggestive of a formation history in which the ICL is built-up by a combination of stripping of L* galaxies and/or dwarf disruption and disfavor significant contribution by major mergers with the BCG.This sample of groups and clusters is the largest with HST/WFC3 data for ICL analysis that spans two orders of magnitude in halo mass at redshifts >0.3. Because of this we can investigate how the ICL color profile changes as a function of cluster mass for the first time, as well as expand previous studies of the changing fraction of cluster luminosity that is contained in the BCG+ICL as a function of halo mass. We present our preliminary results and describe our next steps using this sample to investigate the intracluster light in massive halos.

  4. Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry; Bailin, Jeremy

    2017-01-01

    We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ≃ 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ≃ ‑2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R≳ 4 {R}{eff}, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.

  5. SPECTRAL IMAGING OF GALAXY CLUSTERS WITH PLANCK

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-20

    The Sunyaev–Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  6. Spectral Imaging of Galaxy Clusters with Planck

    NASA Astrophysics Data System (ADS)

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-01

    The Sunyaev-Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  7. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    SciTech Connect

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; de Haan, T.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data set (SZ clustersv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the

  8. Watching the Birth of a Galaxy Cluster?

    NASA Astrophysics Data System (ADS)

    1999-07-01

    First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of

  9. When clusters collide - A numerical Hydro/N-body simulation of merging galaxy clusters

    NASA Technical Reports Server (NTRS)

    Roettiger, Kurt; Burns, Jack; Loken, Chris

    1993-01-01

    A 3D numerical simulation of two merging clusters of galaxies, using a hybrid Hydro/N-body code, is presented. The hydrodynamics of the code is solved by an Eulerian finite difference method. Initial results disclose that the X-ray emission of the dominant cluster becomes elongated and broadened; heating occurs at the core of the dominant cluster as a result of multiple shocks, and high velocity gas motions within the intracluster medium. It is predicted that clusters which have undergone recent mergers and do not have cooling flows will have high peculiar gas velocities and that the shocks and turbulence generated during the merger may power cluster-wide radio halos. Prolonged high-velocity gas motions through the dominant cluster core possibly play a major role in the formation and shaping of wide-angle tailed radio sources associated with central dominant galaxies. The N-body component of the simulation reveals the subcluster to be dispersed as it passes through the dominant cluster.

  10. Galaxy Cluster Masses at Moderate Redshifts

    NASA Technical Reports Server (NTRS)

    Ellingson, E.

    1998-01-01

    The masses of galaxy clusters are dominated by dark matter, and a robust determination of their masses has the potential of indicating how much dark matter exists on large scales in the universe, and the cosmological parameter Omega. X-ray observations of galaxy clusters provide a direct measure of both the gas mass in the intra-cluster medium, and also the total gravitating mass of the cluster. We used new and archival ROSAT observations to measure these quantities for a sample of intermediate redshift clusters which have also been subject to intensive dynamical studies, in order to compare the mass estimates from different methods. We used data from 14 of the CNOC cluster sample at 0.18 less than z less than 0.55 for this study. A direct comparison of dynamical mass estimates from Carlberg, Yee & Ellingson (1997) yielded surprisingly good results. The X-ray/dynamical mass ratios have a mean of 0.96+/- 0.10, indicating that for this sample, both methods are probably yielding very robust mass estimates. Comparison with mass estimates from gravitational lensing studies from the literature showed a small systematic with weak lensing estimates, and large discrepancies with strong lensing estimates. This latter is not surprising, given that these measurement are made close to the central core, where optical and X-ray estimates are less certain, and where substructure and the effects of individual galaxies will be more pronounced. These results are presented in Lewis, Ellingson, Morris/Carlberg, 1998, submitted to the Astrophysical Journal. (Note that Lewis is Ellingson's Ph.D. thesis, who received direct support from this grant and is using this investigation as part of his thesis.) Three additional papers are in preparation. The first provides a comparison of the mass profiles as measured in X- rays and in galaxy dynamics. These profiles are difficult to determine for individual clusters, and are subject to asphericity and other individual quirks of each cluster

  11. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  12. Kinematics of the Globular Cluster System of the Sombrero Galaxy

    NASA Astrophysics Data System (ADS)

    Windschitl, Jessica L.; Rhode, K. L.; Bridges, T. J.; Zepf, S. E.; Gebhardt, K.; Freeman, K. C.

    2013-06-01

    Using spectra from the Hydra spectrograph on the 3.5m WIYN telescope and from the AAOmega spectrograph on the 3.9m Anglo-Australian Telescope, we have measured heliocentric radial velocities for >50 globular clusters in the Sombrero Galaxy (M104). We combine these new measurements with those from previous studies to construct and analyze a total sample of >360 globular cluster velocities in M104. We use the line-of-sight velocity dispersion to determine the mass and mass-to-light ratio profiles for the galaxy using a spherical, isotropic Jeans mass model. In addition to the increased sample size, our data provide a significant expansion in radial coverage compared to previous spectroscopic studies. This allows us to reliably compute the mass profile of M104 out to ~43 kpc, nearly 14 kpc farther into the halo than previous work. We find that the mass-to-light ratio profile increases from the center to a value of ~20 at 43 kpc. We also look for the presence of rotation in the globular cluster system as a whole and within the red and blue subpopulations. Despite the large number of clusters and better radial sampling, we do not find strong evidence of rotation.

  13. Spectroscopy for E and S0 galaxies in nine clusters

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per

    1995-10-01

    Central velocity dispersions, Mg_2 line indices and radial velocities for 220 E and S0 galaxies are derived on the basis of intermediate resolution spectroscopy. Galaxies in the following clusters have been observed: Abell 194, Abell 539, Abell 3381, Abell 3574, S639, S753, Doradus, HydraI (Abell 1060) and Grm 15. For 151 of the galaxies, the velocity dispersion has not previously been measured. 134 of the Mg_2 determinations are for galaxies with no previous measurement. The spectra cover either 500 or 1000A, centred on the magnesium triplet at 5177A. The observations were obtained with the Boller & Chivens spectrograph at the ESO 1.5-m telescope and with the OPTOPUS, a multi-object fibre-fed B&C spectrograph, at the ESO 3.6-m telescope. The data are part of our ongoing study of the large-scale motions in the Universe and the physical background for the Fundamental Plane. The Fourier fitting method was used to derive the velocity dispersions and radial velocities. The velocity dispersions have been corrected for the effect of the size of the aperture. The correction was established on the basis of velocity dispersion profiles available in the literature. A comparison with results from Davies et al. shows that the derived central velocity dispersions have an rms error of 0.036 in logsigma. There is no offset relative to the velocity dispersions from Davies et al. The offset relative to data from Lucey & Carter is -0.017+/-0.011 in logsigma, with our velocity dispersions being the smallest. The velocity dispersions derived from the B&C and the OPTOPUS observations, as well as the velocity dispersions published by Davies et al., Dressler, Lucey & Carter and Lucey et al., can be brought on a system consistent within 3 per cent. The Mg_2 line indices have been corrected for the size of the apertures, transformed to the Lick system, and corrected for the effect of the velocity dispersion. From comparison with data from Davies et al. and from Faber, we find that the rms

  14. Numerical experiments on the clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1983-01-01

    Consistent and robust growth rates for disturbances which lead to galaxy clustering are obtainable with a precision of 1-2 percent, in numerical experiments that encompass such conditions as expansion, nonexpansion, and parameter variations. The experiments have given attention to the dominant physical processes of gravitational clustering in an expanding universe of conventional matter, and are based on n-body integrations for 100,000 particles responding self-consistently to forces of self-gravitation with periodic boundary conditions. Observed structures of the scale of galaxy clusters and superclusters are most easily described in terms of matter swept away from growing empty regions. The result of this process has a cellular appearance which resembles clustering of the scale of large voids and superclusters.

  15. New Frontiers in Galaxy Clusters with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Miller, Eric D.; Kitayama, Tetsu; Akamatsu, Hiroki; Allen, Steven W.; Bautz, Mark W.; de Plaa, Jelle; Galeazzi, Massimiliano; Kawaharada, Madoka; Madejski, Grzegorz Maria; Markevitch, Maxim L.; Matsushita, Kyoko; McNamara, Brian R.; Nakazawa, Kazuhiro; Ota, Naomi; Russell, Helen; Sato, Kosuke; Sekiya, Norio; Simionescu, Aurora; Tamura, Takayuki; Uchida, Yuusuke; Ursino, Eugenio; Werner, Norbert; Zhuravleva, Irina; Zuhone, John A.; ASTRO-H Team

    2015-01-01

    The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters. For the first time, the focal plane calorimeter aboard ASTRO-H will achieve the spectral resolution required to measure velocities of the intracluster plasma. At the same time, the Hard X-ray Imager (HXI) will extend the simultaneous spectral coverage to energies well above 10 keV, critical for studying both thermal and non-thermal gas in clusters. We present an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters, including their cosmological implications, the physics of AGN feedback, the dynamics of cluster mergers and associated high-energy processes, the chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter. By demonstrating these capabilities explicitly on representative galaxy clusters, we hope to aid and encourage the broader astrophysical community in developing ASTRO-H science.

  16. New Frontiers in Galaxy Clusters with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Miller, Eric D.; Kitayama, Tetsu; Bautz, Marshall; Markevitch, Maxim; Matsushita, Kyoko; Allen, Steven; Kawaharada, Madoka; McNamara, Brian; Ota, Naomi; Akamatsu, Hiroki; de Plaa, Jelle; Galeazzi, Massimiliano; Madejski, Grzegorz; Nakazawa, Kazuhiro; Russell, Helen; Sato, Kosuke; Sekiya, Norio; Simionescu, Aurora; Tamura, Takayuki; Uchida, Yuusuke; Ursino, Eugenio; Werner, Norbert; Zhuravleva, Irina; ZuHone, John; ASTRO-H Team

    2015-08-01

    The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters. For the first time, the focal plane calorimeter aboard ASTRO-H will achieve the spectral resolution required to measure velocities of the intracluster plasma. At the same time, the Hard X-ray Imager (HXI) will extend the simultaneous spectral coverage to energies well above 10 keV, critical for studying both thermal and non-thermal gas in clusters. We present an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters, including their cosmological implications, the physics of AGN feedback, the dynamics of cluster mergers and associated high-energy processes, the chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter. By demonstrating these capabilities explicitly on representative galaxy clusters, we hope to aid and encourage the broader astrophysical community in developing ASTRO-H science.

  17. Constraints on the Optical Depth of Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-01

    Future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel’dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average {τ }500 (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

  18. Constraints on the optical depth of galaxy groups and clusters

    DOE PAGES

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-10

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  19. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  20. Cosmology and astrophysics with galaxy clusters

    SciTech Connect

    Nagai, Daisuke

    2014-11-20

    Galaxy clusters are the largest gravitationally bound objects in the universe, whose formation is driven by dark energy and dark matter. The majority of the baryonic mass in clusters resides in the hot X-ray emitting plasma, which also leaves imprints in the cosmic microwave background radiation. Recent X-ray and microwave observations have revealed detailed thermodynamic structure of the hot X-ray emitting plasma from their cores to the virial radii, making comparisons of baryonic component in simulations to observations a strong cosmological probe. However, the statistical power of these future surveys can only be exploited for cosmology if and only if we are able to measure the cluster mass with a very high precision. I will discuss recent progress and future challenges for the use of galaxy clusters as precise cosmological probes, with highlights on (1) the importance of understanding thermodynamics and plasma physics in the outskirts of galaxy clusters and (2) prospects for improving the power of cluster-based cosmological measurements using numerical simulations and multi-wavelength observations.

  1. Dynamics of cD clusters of galaxies. II: Analysis of seven Abell clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.

    1994-01-01

    We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.

  2. HYDRODYNAMICAL SIMULATIONS OF GALAXY CLUSTERS WITH GALCONS

    SciTech Connect

    Arieli, Yinon; Rephaeli, Yoel; Norman, Michael L.

    2010-06-20

    We present our recently developed galcon approach to hydrodynamical cosmological simulations of galaxy clusters-a subgrid model added to the Enzo adaptive mesh refinement code-which is capable of tracking galaxies within the cluster potential and following the feedback of their main baryonic processes. Galcons are physically extended galactic constructs within which baryonic processes are modeled analytically. By identifying galaxy halos and initializing galcons at high redshift (z {approx} 3, well before most clusters virialize), we are able to follow the evolution of star formation (SF), galactic winds, and ram pressure stripping of interstellar media, along with their associated mass, metals, and energy feedback into intracluster (IC) gas, which are deposited through a well-resolved spherical interface layer. Our approach is fully described and all results from initial simulations with the enhanced Enzo-Galcon code are presented. With a galactic SF rate derived from the observed cosmic SF density, our galcon simulation better reproduces the observed properties of IC gas, including the density, temperature, metallicity, and entropy profiles. By following the impact of a large number of galaxies on IC gas we explicitly demonstrate the advantages of this approach in producing a lower stellar fraction, a larger gas core radius, an isothermal temperature profile in the central cluster region, and a flatter metallicity gradient than in a standard simulation.

  3. Interpreting the Clustering of Distant Red Galaxies

    SciTech Connect

    Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng; /Princeton, Inst. Advanced Study

    2009-08-03

    We analyze the angular clustering of z {approx} 2.3 distant red galaxies (DRGs) measured by Quadri et al. (2008). We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w({theta}) at {theta} = 10{double_prime}, nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is {approx} 44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that {approx} 30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z {approx} 0 estimates. Down to the completeness limit of the Quadri et al sample, we find that the halo masses of central DRGs are {approx} 50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only {approx} 2/3 of the time.

  4. The Evolution of Stellar Velocity Dispersion in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Stickley, Nathaniel Roland

    Stellar velocity dispersion is a key measurable quantity in galactic astronomy, yet its variation during galaxy mergers is not well-understood theoretically. Thus, while it is fairly common to measure velocity dispersion in galaxies that are in the process of merging, it is unclear how these measurements should be interpreted. In this dissertation, I provide a theoretical analysis of the evolution of stellar velocity dispersion during galaxy mergers. This is done using a set of numerical simulations. The temporal and directional evolution of velocity dispersion are examined in detail for a variety of merger simulations. I also examine the effects that dust attenuation and star formation have on measurements of velocity dispersion by creating detailed, Doppler broadened galaxy spectra. Velocity dispersions are measured from the synthetic spectra using the same technique that is employed for observations of real galaxies. I find that velocity dispersion increases rapidly and significantly as two galaxies pass through one another. As galaxies recede from a collision, their velocity dispersions rapidly decrease and nearly return to their pre-collision values. Velocity dispersion increases in all directions during collisions, however the enhancement is most significant along the collision axis. After the nuclei of the progenitor system coalesce, the velocity dispersion oscillates slightly of the coalesced system oscillated around its final equilibrium value for up to several dynamical timescales. I also find that the mean velocity dispersion of young stars tends to be lower than the velocity dispersion of the galaxy as a whole. The young stars become dynamically heated with time. In most cases, the youngest stars are found in dusty environments. Thus, dust preferen- tially obscures young stars, partially removing them from the flux-weighted velocity dispersion measurement. This causes flux-weighted velocity dispersion measurements to be elevated with respect to mass

  5. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  6. Star Formation in Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mansheim, Alison Seiler

    This thesis straddles two areas of cosmology, each of which are active, rich and plagued by controversy in their own right: merging clusters and the environmental dependence of galaxy evolution. While the greater context of this thesis is major cluster mergers, our individual subjects are galaxies, and we apply techniques traditionally used to study the differential evolution of galaxies with environment. The body of this thesis is drawn from two papers: Mansheim et al. 2016a and Mansheim et al. 2016b, one on each system. Both projects benefited from exquisite data sets assembled as part of the Merging Cluster Collaboration (MC2), and Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey, allowing us to scrutinize the evolutionary states of galaxy populations in multiple lights. Multi-band optical and near-infrared imaging was available for both systems, allowing us to calculate photometric redshifts for completeness corrections, colors (red vs. blue) and stellar masses to view the ensemble properties of the populations in and around each merger. High-resolution spectroscopy was also available for both systems, allowing us to confirm cluster members by measuring spectroscopic redshifts, which are unparalleled in accuracy, and gauge star formation rates and histories by measuring the strengths of certain spectral features. We had the luxury of HST imaging for Musket Ball, allowing us to use galaxy morphology as an additional diagnostic. For Cl J0910, 24 mum imaging allowed us to defeat a most pernicious source of uncertainty. Details on the acquisition and reduction of multi-wavelength data for each system are found within each respective chapter. It is important to note that the research presented in Chapter 3 is based on a letter which had significant space restrictions, so much of the observational details are outsourced to papers written by ORELSE collaboration members. Below is a free-standing summary of each project, drawn from the

  7. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  8. Exploring the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, E.; George, J.; Mushotzky, R.; Bautz, M.; Davis, D.; Henry, J.

    2014-07-01

    A number of recent studies have traced the hot intracluster medium (ICM) to the virial radius in a sizeable sample of galaxy clusters. These results have begun to clarify the thermodynamic conditions at the edge of clusters, constraining models of cluster growth and evolution, yet the observations are challenging and bedeviled by a host of systematic issues due to the very low ICM surface brightness in the cluster outskirts. We are currently embarked on a program to observe a sample of about ten relaxed clusters with Suzaku, fully imaging each cluster to beyond R_{200}, and leveraging complementary data from XMM-Newton and Chandra. Our results support the idea that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see indications of low-entropy substructures and some evidence for azimuthal variations in temperature and surface brightness. I will present the latest results from this project, explore the possible sources of systematic error, and discuss the remarkable ``universality'' of thermodynamic profiles to the outer limits of galaxy clusters.

  9. The cD galaxy in Abell cluster 1775

    NASA Technical Reports Server (NTRS)

    Hayes, J. J. E.; Bhattacharya, B.

    1990-01-01

    Over the last 20 years, a number of workers have studied the multiple nuclei cD galaxy in the rich Abell cluster 1775, trying to discover its nature. In all the cases though, very little has been published concerning its morphology. The majority of arguments about the nature of this object have been based on the relative radial velocities of the 2 components with each other and with the other galaxies in the cluster, or its radio morphology. Very little work has been done on the optical morphology. To rectify that lack of data, the authors have obtained charge coupled device (CCD) images of the cD. The authors find from the CCD data that the cD is unlikely to be a bound object and that there is strong evidence for a collision.

  10. K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mohr, Joseph J.

    2004-12-01

    We investigate the near-infrared K-band properties of the brightest cluster galaxies (BCGs) in a sample of 93 X-ray galaxy clusters and groups, using data from the Two Micron All Sky Survey. Our cluster sample spans a factor of 70 in mass, making it sensitive to any cluster mass-related trends. We derive the cumulative radial distribution for the BCGs in the ensemble and find that 70% of the BCGs are centered in the cluster to within 5% of the virial radius r200; this quantifies earlier findings that BCG position coincides with the cluster center as defined by the X-ray emission peak. We study the correlations between the luminosity of the BCGs (Lb) and the mass and the luminosity of the host clusters, finding that BCGs in more massive clusters are more luminous than their counterparts in less massive systems and that the BCGs become less important in the overall cluster light (L200) as cluster mass increases. By examining a large sample of optically selected groups, we find that these correlations hold for galactic systems less massive than our clusters (<3×1013 Msolar). From the differences between luminosity functions in high- and low-mass clusters, we argue that BCGs grow in luminosity mainly by merging with other luminous galaxies as the host clusters grow hierarchically; the decreasing BCG luminosity fraction (Lb/L200) with cluster mass indicates that the rate of luminosity growth in BCGs is slow compared to the rate at which clusters acquire galaxy light from the field or other merging clusters. Utilizing the observed correlation between the cluster luminosity and mass and a merger tree model for cluster formation, we estimate that the amount of intracluster light (ICL) increases with cluster mass; our calculations suggest that in 1015 Msolar clusters more than 50% of total stellar mass is in ICL, making the role of ICL very important in the evolution and thermodynamic history of clusters. The cluster baryon fraction accounting for the ICL is in good

  11. On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33

    NASA Astrophysics Data System (ADS)

    Keenan, Olivia Charlotte

    2017-08-01

    This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.

  12. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM

  13. THE FIRST GENERATION OF VIRGO CLUSTER DWARF ELLIPTICAL GALAXIES?

    SciTech Connect

    Lisker, Thorsten; Janz, Joachim; Hielscher, Oliver; Paudel, Sanjaya; Hensler, Gerhard; Kim, Suk; Rey, Soo-Chang; Weinmann, Simone; Mastropietro, Chiara; Kotulla, Ralf

    2009-11-20

    In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE subclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single peak. We conclude that the round dEs probably are on circularized orbits, while the flat dEs are still on more eccentric or radial orbits typical for an infalling population. In this picture, the round dEs would have resided in the cluster already for a long time, or would even be a cluster-born species, explaining their nearly circular orbits. They would thus be the first generation of Virgo cluster dEs. Their shape could be caused by dynamical heating through repeated tidal interactions. Further investigations through stellar population measurements and studies of simulated galaxy clusters would be desirable to obtain definite conclusions on their origin.

  14. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.

    PubMed

    Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-12-02

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift. Copyright © 2016, American Association for the Advancement of Science.

  15. X-ray scaling laws for galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Horner, Donald John

    Scaling laws between galaxy cluster properties, such as the x-ray luminosity- temperature relation (L-T), the total mass-temperature relation (M-T), and velocity dispersion-temperature relation (?-T) reflect the underlying physics in clus ter formation and evolution. The differences between empirically determined and theoretically predicted scaling laws can give useful insights into physical processes happening in clusters. To determine these scaling laws, we have developed a data reduction pipeline for clusters observed by the ASCA x-ray satellite to create a sample of 273 clusters and groups with measured x-ray luminosities, average temperatures, and metal abundances. This is the largest such sample yet created and will form a baseline for future studies with improved instruments like Chandra and XMM-Newton. We compare our ASCA cluster catalog to data in the literature to examine some of the biases and systematics that affect measurement of x-ray properties, and illuminate issues that affect the science results derived from such x-ray samples. We derive the L-T relationship over several orders of magnitude in luminosity, from rich clusters to groups. In combination with data from the literature, we examine the M-T relationship for a variety of mass estimators. We then examine the ?-T relationship and other correlations between the optical and x-ray propertie s of galaxy clusters. In general, we find that these scaling laws are affected by non-gravitational processes which require additional physics, e.g., energy injection by supernovae. We also see little evolution of galaxy cluster properties with redshift to z - 0.5.

  16. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  17. Globular Clusters as Tracers of Dark Matter in Virgo Cluster Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Stephanie; Toloba, E.; Guhathakurta, P.; Chen, J.; Cote, P.; Ferrarese, L.; Peng, E. W.; NGVS Collaboration

    2014-01-01

    Dwarf elliptical (dE) galaxies outnumber any other galaxy class in galaxy clusters, but their formation is still debated. Their angular momentum and mass distribution contains valuable information about the physical processes they have experienced since their formation. Combining the Next Generation Virgo Cluster Survey (NGVS) and the ACS Virgo Cluster Survey (ACSVCS), we have carried out a Keck/DEIMOS survey to estimate the dark matter mass and its distribution in dEs. We target globular cluster (GC) candidates as tracers of the potential well of a total of 21 dEs in the Virgo Cluster in the luminosity range -17 < Mv < -15. The sample comprises 117 GCs that are satellites of the 21 dEs and span out to ~7 half-light radii (Re). For each galaxy, we first compare the velocity distribution of the GCs against an escape velocity function for a pure stellar mass model, finding a moderate dark matter halo extending to ~7 Re. We then calculate the total mass within 1 Re with a dispersion-based estimator and the total mass to 7 Re with a projected mass estimator. We average our estimates to create a dE representative of our sample, finding mass-to-light ratios in solar units of ~4.5 for the inner regions and ~8-20 for the entire galaxy. This indicates that dEs are not dark matter dominated, neither in their inner nor in their outer regions. Our results represent the first estimate of dark matter content beyond ~2 Re for low-luminosity dEs. These mass estimates are consistent with the prevalent tidal stripping theory of dE formation, which explains the lack of a massive, extended dark matter halo. This research was carried out under UCSC’s Science Internship Program. We thank the National Science Foundation for funding support. ET was supported by a Fulbright fellowship.

  18. Quantitative descriptions of nonlinear gravitational galaxy clustering

    NASA Astrophysics Data System (ADS)

    Itoh, Makoto

    1990-08-01

    Results are presented on three different quantitative analyses of nonlinear gravitational galaxy clustering, including determinations of two-point correlation function, xi(r); fractal dimensions, Dq; and f(N) statistics. The analyses show that, for models with n = 1 and n = 0, the exponent of the correlation function (which has a general form xi/r/ proportional to r exp -gamma) is about 2 in the nonlinear regime. It is shown that the thermodynamic f(N), which connnects the fractal dimensions with the exponent of xi(r) can describe the distribution of galaxies in the nonlinear regime.

  19. The Faint Globular Cluster in the Dwarf Galaxy Andromeda I

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Strader, Jay; Sand, David J.; Willman, Beth; Seth, Anil C.

    2017-09-01

    Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (M V -3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.

  20. Isolated elliptical galaxies and their globular cluster systems. II. NGC 7796 - globular clusters, dynamics, companion

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Salinas, R.; Lane, R. R.; Hilker, M.; Schirmer, M.

    2015-02-01

    Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long-term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims: We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods: Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results: The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals. The colour distribution of globular clusters is bimodal, which does not necessarily mean a metallicity bimodality. The kinematic literature data are somewhat inconclusive. The velocity dispersion in the inner parts can be reproduced without dark matter under isotropy. Radially anisotropic models need a low stellar mass-to-light ratio, which would contrast with the old age of the galaxy. A MONDian model is supported by X-ray analysis and previous dynamical modelling, but better data are necessary for a confirmation. The dwarf companion galaxy NGC 7796-1 exhibits tidal tails, multiple nuclei, and very boxy isophotes. Conclusions: NGC 7796 is an old, massive isolated elliptical galaxy with no indications of later major star formation events as seen frequently in other isolated ellipticals. Its

  1. Xray AGN in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Koulouridis, Elias; XMM-LSS Consortium

    2012-09-01

    Given that the triggering mechanism of the AGN phenomenon is still a matter of debate, our aim is to investigate the possible effects of the AGN host's environment in the activity of the nucleus. Following a pilot study of 16 Abell clusters back in 2010 (Koulouridis & Plionis 2010), in which we argued that the AGN activity within 1 Mpc of the cluster center is strongly suppressed, we would like to extent our research to larger and more diverse samples. The completion of the XMM-LSS survey gives us a unique opportunity to study AGN not only in the environment of rich clusters but also poor clusters and groups of galaxies. Investigating over 40 clusters, over a range of redshifts and dynamical states, in the 10deg^2 of the XMM-LSS field will provide a preliminary analysis since our target is to complete our study using the full XXL 50 deg^2 survey.

  2. TURBULENCE IN GALAXY CLUSTER CORES: A KEY TO CLUSTER BIMODALITY?

    SciTech Connect

    Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2010-04-01

    We study the effects of externally imposed turbulence on the thermal properties of galaxy cluster cores, using three-dimensional numerical simulations including magnetic fields, anisotropic thermal conduction, and radiative cooling. The imposed 'stirring' crudely approximates the effects of galactic wakes, waves generated by galaxies moving through the intracluster medium, and/or turbulence produced by a central active galactic nucleus. The simulated clusters exhibit a strong bimodality. Modest levels of turbulence, {approx}100 km s{sup -1} {approx} 10% of the sound speed, suppress the heat-flux-driven buoyancy instability (HBI), resulting in an isotropically tangled magnetic field and a quasi-stable, high entropy, thermal equilibrium with no cooling catastrophe. Thermal conduction dominates the heating of the cluster core, but turbulent mixing is critical because it suppresses the HBI and (to a lesser extent) the thermal instability. Lower levels of turbulent mixing ({approx}<100 km s{sup -1}) are insufficient to suppress the HBI, rapidly leading to a thermal runaway and a cool-core cluster. Remarkably, then, small fluctuations in the level of turbulence in galaxy cluster cores can initiate transitions between cool-core (low entropy) and non-cool-core (high entropy) states.

  3. ChaMP Serendipitous Galaxy Cluster Survey

    SciTech Connect

    Barkhouse, Wayne A.; Green, P.J.; Vikhlinin, A.; Kim, D.-W.; Perley, D.; Cameron, R.; Silverman, J.; Mossman, A.; Burenin, R.; Jannuzi, B.T.; Kim, M.; Smith, M.G.; Smith, R.C.; Tananbaum, H.; Wilkes, B.J.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley, Astron. Dept. /SLAC /Garching, Max Planck Inst., MPE /Moscow, Space Res. Inst. /NOAO, Tucson /Cerro-Tololo InterAmerican Obs.

    2006-04-03

    We present a survey of serendipitous extended X-ray sources and optical cluster candidates from the Chandra Multi-wavelength Project (ChaMP). Our main goal is to make an unbiased comparison of X-ray and optical cluster detection methods. In 130 archival Chandra pointings covering 13 square degrees, we use a wavelet decomposition technique to detect 55 extended sources, of which 6 are nearby single galaxies. Our X-ray cluster catalog reaches a typical flux limit of about {approx} 10{sup -14} erg s{sup -1} cm{sup -2}, with a median cluster core radius of 21''. For 56 of the 130 X-ray fields, we use the ChaMP's deep NOAO/4m MOSAIC g', r', and i' imaging to independently detect cluster candidates using a Voronoi tessellation and percolation (VTP) method. Red-sequence filtering decreases the galaxy fore/background contamination and provides photometric redshifts to z {approx} 0.7. From the overlapping 6.1 square degree X-ray/optical imaging, we find 115 optical clusters (of which 11% are in the X-ray catalog) and 28 X-ray clusters (of which 46% are in the optical VTP catalog). The median redshift of the 13 X-ray/optical clusters is 0.41, and their median X-ray luminosity (0.5-2 keV) is L{sub X} = (2.65 {+-} 0.19) x 10{sup 43} ergs s{sup -1}. The clusters in our sample that are only detected in our optical data are poorer on average ({approx} 4{sigma}) than the X-ray/optically matched clusters, which may partially explain the difference in the detection fractions.

  4. SUPERMODEL ANALYSIS OF GALAXY CLUSTERS

    SciTech Connect

    Fusco-Femiano, R.; Cavaliere, A.; Lapi, A.

    2009-11-01

    We present the analysis of the X-ray brightness and temperature profiles for six clusters belonging to both the Cool Core (CC) and Non Cool Core (NCC) classes, in terms of the Supermodel (SM) developed by Cavaliere et al. Based on the gravitational wells set by the dark matter (DM) halos, the SM straightforwardly expresses the equilibrium of the intracluster plasma (ICP) modulated by the entropy deposited at the boundary by standing shocks from gravitational accretion, and injected at the center by outgoing blast waves from mergers or from outbursts of active galactic nuclei. The cluster set analyzed here highlights not only how simply the SM represents the main dichotomy CC versus NCC clusters in terms of a few ICP parameters governing the radial entropy run, but also how accurately it fits even complex brightness and temperature profiles. For CC clusters like A2199 and A2597, the SM with a low level of central entropy straightforwardly yields the characteristic peaked profile of the temperature marked by a decline toward the center, without requiring currently strong radiative cooling and high mass deposition rates. NCC clusters like A1656 require instead a central entropy floor of a substantial level, and some like A2256 and even more A644 feature structured temperature profiles that also call for a definite floor extension; in such conditions the SM accurately fits the observations, and suggests that in these clusters the ICP has been just remolded by a merger event, in the way of a remnant cool core. The SM also predicts that DM halos with high concentration should correlate with flatter entropy profiles and steeper brightness in the outskirts; this is indeed the case with A1689, for which from X-rays we find concentration values c approx 10, the hallmark of an early halo formation. Thus, we show the SM to constitute a fast tool not only to provide wide libraries of accurate fits to X-ray temperature and density profiles, but also to retrieve from the ICP

  5. When galaxy clusters collide: the impact of merger shocks on cluster gas and galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stroe, A.

    2015-09-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to cluster-wide traveling shocks, which can be detected at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. The 'Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We derive shock properties and the magnetic field structure for the relic. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the 'Sausage' relic. Halpha mapping of the cluster provides the first direct test as to whether the shock drives or prohibits star formation. We find numerous galaxies in! close proximity to the radio relic which are extremely massive, metal-rich, star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction between the merger, the shock wave and gas is a fundamental driver in the evolution of cluster galaxies from gas rich spirals to gas-poor ellipticals.

  6. Intermediate Redshift Galaxy Clusters from DPOSS

    NASA Astrophysics Data System (ADS)

    Lopes, P. A. A.

    2003-06-01

    In this thesis we discuss the selection of intermediate redshift galaxy cluster candidates based on the Digitized Second Palomar Observatory Sky Survey (DPOSS). Clusters are detected using the best DPOSS plates based on seeing and limiting magnitude. The search is further restricted to high galactic latitudes (|b| > 50 °), where stellar contamination is mild and nearly uniform. The input galaxy catalogs used for this search are limited to r = 21.1. The cluster selection is based on two techniques, the adaptive kernel and the voronoi tesselation methods. The final combined catalog contains ~ 10,000 candidates over ~ 2,700 square degrees, with ~ 0.30 and ~ 40 (Ngals is a richness estimate we provide). Rich clusters are detected down to z ~ 0.5. This cluster catalog is a supplement to the previous DPOSS catalogs, being the largest resource of rich clusters in this redshift range to date. In order to optimize the detection algorithms and estimate the contamination and completeness rates, we perform a large number of simulations for both catalogs. Redshift and richness estimates are also provided for all candidates in the two catalogs. As a by-product we present a comparison between the DPOSS and SDSS surveys. This comparison is used to estimate the DPOSS detection limits. Some of the projects to be developed in the future are also discussed.

  7. Merging Galaxy Cluster A2255 in Mid-infrared

    NASA Astrophysics Data System (ADS)

    Shim, Hyunjin; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2011-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 μm and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (~11 μm) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 - S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (-2.0 < N3 - S11 < -1.2) galaxies that are quiescent, old (>5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (-1.2 < N3 - S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is ~130 M sun yr-1, which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red, quiescent galaxies from the

  8. MERGING GALAXY CLUSTER A2255 IN MID-INFRARED

    SciTech Connect

    Shim, Hyunjin; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Seo, Hyunjong; Hwang, Ho Seong; Matsuhara, Hideo; Wada, Takehiko; Goto, Tomotsugu

    2011-01-20

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 {mu}m and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR ({approx}11 {mu}m) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 - S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (-2.0 < N3 - S11 < -1.2) galaxies that are quiescent, old (>5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (-1.2 < N3 - S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is {approx}130 M{sub sun} yr{sup -1}, which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red

  9. Small-scale galaxy clustering in the eagle simulation

    NASA Astrophysics Data System (ADS)

    Artale, M. Celeste; Pedrosa, Susana E.; Trayford, James W.; Theuns, Tom; Farrow, Daniel J.; Norberg, Peder; Zehavi, Idit; Bower, Richard G.; Schaller, Matthieu

    2017-09-01

    We study present-day galaxy clustering in the eagle cosmological hydrodynamical simulation. eagle's galaxy formation parameters were calibrated to reproduce the redshift z = 0.1 galaxy stellar mass function, and the simulation also reproduces galaxy colours well. The simulation volume is too small to correctly sample large-scale fluctuations and we therefore concentrate on scales smaller than a few mega parsecs. We find very good agreement with observed clustering measurements from the Galaxy And Mass Assembly (GAMA) survey, when galaxies are binned by stellar mass, colour or luminosity. However, low-mass red galaxies are clustered too strongly, which is at least partly due to limited numerical resolution. Apart from this limitation, we conclude that eagle galaxies inhabit similar dark matter haloes as observed GAMA galaxies, and that the radial distribution of satellite galaxies, as a function of stellar mass and colour, is similar to that observed as well.

  10. Surface Brightness-dependent Clustering of APM Galaxies

    NASA Astrophysics Data System (ADS)

    Shao, Z.

    Based on a simple estimation of surface brightness (SB) of galaxies in the Automated Plate Measuring Machine (APM) catalogue, a homogeneous sample of apparent central SB data for more than 2 million galaxies brighter than BJ=20.5, covering 4300 deg2 in the region of the south galactic cap, was taken account to investigate the dependence of the strength of galaxy clustering on SB. The two point correlation function was used to compare the clustering pattern of galaxies in a series of SB volume-limited samples. Galaxies with high SB were found to have a significantly strong clustering strength in comparison to normal and low SB galaxies.

  11. Galaxies in clusters: Gas stripping and accretion

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw; Livio, Mario; O'Dea, Christopher P.

    1994-12-01

    We study the process of a galaxy moving through the intracluster gas in a cluster of galaxies, using two-dimensional hydrodynamic simulations at high resolution. We find that ram pressure stripping occurs in the form of individual events which are separated by a few times 107 yr. In addition, we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial 'pumping' mode, similar to the one found previously in simulations of wind accretion onto compact objects. The flow is found to exhibit a complex shock structure around the core. Some implications of our results for the understanding of a few recent observations are discussed.

  12. Clusters of Galaxies in the last 5 Billion Years: from the Brightest Cluster Galaxy to the Intra-Cluster Light

    NASA Astrophysics Data System (ADS)

    Pillepich, Annalisa

    2014-10-01

    Understanding the physical processes which shape the galaxy population in the high density environment of galaxy clusters as a function of cosmic time is a central open question in galaxy evolution studies. With the Frontier Field Initiative, HST will provide an ultra-deep view and an unprecedented multi-wavelength dataset to study the galaxy population in and around galaxy clusters at intermediate redshift. With our study, we aim at providing the first self-consistent theoretical framework based on cosmological hydrodynamical simulations to understand the evolution of cluster galaxies: our analysis is designed to complement and aid the interpretation of the wealth of observational data within the LCDM Cosmology. In particular, we plan an in-depth analysis of a sample of 15 haloes with masses between 7x10^13 and 2x10^15 Msun at z=0, simulated with the gravity+hydrodynamics code Arepo. The numerical scheme and the galaxy formation model adopted in this study have already been successfully tested against a series of global measurements: they will allow us to follow the fate, within each cluster, of hundreds of well-resolved galaxies with stellar masses above 5x10^9 Msun. Our analysis will include the assembly properties of the central brightest galaxies as well as the demographics of the satellite populations and their cluster-centric gradients of colors, morphologies and star formation rates. Our setup is suitable to quantify the effects of environment on star formation, stripping, and quenching across an unprecedented range of galaxy masses, cluster masses and spatial scales, in addition to providing valuable clues about the diffuse intra-cluster light.

  13. An updated survey of globular clusters in M 31. I. Classification and radial velocity for 76 candidate clusters

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-09-01

    Aims.We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M 31 galaxy. The survey is aimed at the classification of known candidate M 31 clusters and at the study of their kinematic properties. Methods: .We obtained low-resolution spectroscopy (λ/Δλ ≃ 800-1300) for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M 31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~± 20 km s-1. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. Results: .In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M 31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 Hii regions belonging to M 31 and 3 unclassified (possibly M 31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M 31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Conclusions: .Our results suggest that a significant number of genuine clusters (≳100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M 31 galaxy is still far from complete even in terms of simple membership.

  14. Galaxy Cluster Takes It to the Extreme

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA's Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years requires one of the most energetic events ever detected. The cluster of galaxies is filled with tenuous gas at 170 million degree Celsius that is bound by the mass equivalent of a quadrillion, or 1,000 trillion, suns. The temperature and mass make this cluster a giant among giants. VLA Radio Image of 3C438 VLA Radio Image of 3C438 "The huge feature detected in the cluster, combined with the high temperature, points to an exceptionally dramatic event in the nearby Universe," said Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and leader of a team of astronomers involved in this research. "While we're not sure what caused it, we've narrowed it down to a couple of exciting possibilities." The favored explanation for the bright X-ray arc is that two massive galaxy clusters are undergoing a collision at about 4 million miles per hour. Shock waves generated by the violent encounter of the clusters' hot gas clouds could produce a sharp change in pressure along the boundary where the collision is occurring, giving rise to the observed arc-shaped structure which resembles a titanic weather front. "Although this would be an extreme collision, one of the most powerful ever seen, we think this may be what is going on," said team member Martin Hardcastle, of the University of Hertfordshire, United Kingdom. Images of 3C438 and Surrounding Galaxy Cluster Images of 3C438 and Surrounding Galaxy Cluster A problem with the collision theory is that only one peak in the X-ray emission is seen, whereas two are expected. Longer observations with Chandra and the XMM-Newton X-ray observatories should help determine how serious this problem is for the collision hypothesis. Another possible explanation is that the disturbance was

  15. The galaxy cluster outskirts probed by Chandra

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine

    2015-08-01

    Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056 3 keV) in the Chandra archive, with a total integration time of ~20 Ms. We stacked the emission measure profiles of the clusters to detect a signal out to R_{100}. We then measured the average emission measure, gas density and gas fraction, which scale according to the self-similar model of cluster formation. We observe a steepening of the density profiles beyond R_{500} with slope beta ~ 0.68 at R_{500} and beta ~ 1 at R_{200} and beyond. By tracking the direction of the cosmic filaments where the clusters are embedded, we report that galaxy clusters deviate from spherical symmetry. We also did not find evolution of the gas density with redshift, confirming the self-similar evolution of the gas density. The value of the baryon fraction reaches the cosmic value at R_{200}: however, systematics due to non-thermal pressure support and clumpiness might enhance the measured gas fraction, leading to an actual deficit of the baryon budget with respect to the primordial value). This novel method, the stacking the X-ray signal of cluster outskirts, has the capacity to provide a generational leap forward in our understanding of cluster physics and formation, and the use of clusters as cosmological probes.

  16. SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VI. NINE CLUSTERS IN THE INNER MILKY WAY

    SciTech Connect

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Korchagin, Vladimir I.; Van Altena, William F.; Lopez, Carlos E.

    2010-11-15

    We have measured the absolute proper motions of nine low-latitude, inner Galaxy globular clusters, namely, NGC 6273 (M 19), NGC 6284, NGC 6287, NGC 6293, NGC 6333 (M 9), NGC 6342, NGC 6356, NGC 6388, and NGC 6441. These are the first determinations ever made for these clusters. The proper motions are on the International Celestial Reference System via Hipparcos. The proper-motion errors range between 0.4 and 0.9 mas yr{sup -1} and are dominated by the number of measurable cluster members in these regions which are very crowded by the bulge/bar and the thick disk. This sample contains five metal-poor ([Fe/H] < -1.0) and four metal-rich ([Fe/H] {>=} -1.0) clusters; seven clusters are located within {approx}4 kpc from the Galactic center, while the remaining two, namely NGC 6356 and NGC 6284, are in the background of the bulge at {approx}7.5 kpc from the Galactic center. By combining proper motions with radial velocities and distances from the literature we derive three-dimensional velocities. In a number of cases, distance uncertainties make the kinematical classification ambiguous. For the metal-poor group of clusters, we find that three clusters, namely NGC 6273, NGC 6287, and NGC 6293 are members of a kinematically hot system, the inner halo. As for the remaining two metal-poor clusters, NGC 6284 is located at {approx}7.5 kpc from the Galactic center and kinematically belongs to the thick disk, while NGC 6333, located in the inner {approx}2 kpc, has an uncertain membership (between halo and thick disk) due to the distance uncertainty. Within the metal-rich group of clusters, NGC 6356 and NGC 6342 have velocities compatible with membership in the thick disk; however, velocity uncertainties do not allow us to rule out their belonging to a hotter system. NGC 6342 is within {approx}2 kpc from the Galactic center, and thus it may belong to the bulge. NGC 6356 is at {approx}7.5 kpc from the Galactic center and thus its metallicity, kinematics, and location argue

  17. Correlation analysis of objectively defined galaxy and cluster catalogues

    NASA Astrophysics Data System (ADS)

    Stevenson, P. R. F.; Fong, R.; Shanks, T.

    1988-10-01

    The authors present further galaxy clustering results from the objective COSMOS/UKST galaxy catalogue of Stevenson et al. They first re-examine the results of SSFM for the galaxy correlation function, wgg(θ), testing the stability of the result against possible systematic effects and extending the analysis to larger angular scales. They then use the method of Turner & Gott to automatically detect groups and clusters in these catalogues. The authors next present the cluster-galaxy cross-correlation function wcg. Finally, the above correlation analyses are carried out on simulated galaxy and cluster catalogues.

  18. Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy

    NASA Astrophysics Data System (ADS)

    Yun, J. L.; Elia, Davide; Djupvik, A. A.; Torrelles, J. M.; Molinari, S.

    2015-09-01

    We report the discovery of a new young stellar cluster in the outer Galaxy located at the position of an IRAS Point Source Catalog source that has been previously misidentified as an external galaxy. The cluster is seen in our near-infrared imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the young stellar nature of the sources detected. There is also evidence of subclustering seen in the spatial distributions of young stars and of gas and dust. Near- and mid-infrared photometry indicates that the stars exhibit colours compatible with reddening by interstellar and circumstellar dust and are likely to be low- and intermediate-mass young stellar objects (YSOs) with a large proportion of Class I YSOs. Ammonia and CO lines were detected, with the CO emission well centred near the position of the richest part of the cluster. The velocity of the CO and NH3 lines indicates that the gas is Galactic and located at a distance of about 5.5 kpc, in the outer Galaxy. Herschel data of this region characterize the dust environment of this molecular cloud core where the young cluster is embedded. We derive masses, luminosities, and temperatures of the molecular clumps where the young stars reside and discuss their evolutionary stages.

  19. The Adopted Morphological Types of 247 Rich PF Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, Elena; Bajan, Katarzyna; Flin, Piotr; Gotsulyak, Alla

    2016-10-01

    Morphological types were determined for 247 rich galaxy clusters from the PF Catalogue of Galaxy Clusters and Groups. The adopted types are based on classical morphological schemes and consider concentration to the cluster center, the signs of preferential direction or plane in the cluster, and the positions of the brightest galaxies. It is shown that both concentration and preferential plane are significant and independent morphological criteria.

  20. An extended cold gas absorber in a central cluster galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.; Edge, Alastair C.

    2017-10-01

    We present the serendipitous discovery of an extended cold gas structure projected close to the brightest cluster galaxy (BCG) of the z=0.045 cluster Abell 3716, from archival integral field spectroscopy. The gas is revealed through narrow Na D line absorption, seen against the stellar light of the BCG, which can be traced for $\\sim$25 kpc, with a width of 2-4 kpc. The gas is offset to higher velocity than the BCG (by $\\sim$100 km/s), showing that it is infalling rather than outflowing; the intrinsic linewidth is $\\sim$80 km/s (FWHM). Very weak H$\\alpha$ line emission is detected from the structure, and a weak dust absorption feature is suggested from optical imaging, but no stellar counterpart has been identified. We discuss some possible interpretations for the absorber: as a projected low-surface-brightness galaxy, as a stream of gas that was stripped from an infalling cluster galaxy, or as a "retired" cool-core nebula filament.

  1. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  2. Nonextensivity and galaxy clustering in the Universe

    NASA Astrophysics Data System (ADS)

    Wuensche, C. A.; Ribeiro, A. L. B.; Ramos, F. M.; Rosa, R. R.

    2004-12-01

    We investigate two important questions about the use of the nonextensive thermostatistics (NETS) formalism in the context of nonlinear galaxy clustering in the Universe. Firstly, we define a quantitative criterion for justifying nonextensivity at different physical scales. Then, we discuss the physics behind the ansatz of the entropic parameter q(r). Our results suggest the approximate range where nonextensivity can be justified and, hence, give some support to the applicability of NETS to the study of large-scale structures.

  3. Surface photometry of Virgo cluster galaxies - Barred galaxies

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.

    1976-01-01

    Photographic surface photometry in B and V is presented for three barred galaxies in the Virgo cluster: N4548, N4596, and N4608. Intercomparisons of luminosity and color profiles and standard photometric parameters indicate that for these galaxies: (1) the nuclear component follows the fourth-root-of-radius luminosity law for both B and V, (2) the luminosity profiles along the bar show a characteristic shoulder with a slight fall in B-V color profile at the brightest point in the bar, the strength of the effect declining from N4548 to N4608, (3) the integrated bar component is slightly bluer than the nucleus, and (4) as the disk, arm, and ring components contribute less to the total luminosity of the system, the contribution of the bar increases as does the equivalent gradient.

  4. Ram pressure and dusty red galaxies - key factors in the evolution of the multiple cluster system Abell 901/902

    NASA Astrophysics Data System (ADS)

    Bösch, B.; Böhm, A.; Wolf, C.; Aragón-Salamanca, A.; Barden, M.; Gray, M. E.; Ziegler, B. L.; Schindler, S.; Balogh, M.

    2013-01-01

    Aims: We present spectroscopic observations of 182 disk galaxies (96 in the cluster and 86 in the field environment) in the region of the Abell 901/902 multiple cluster system, which is located at a redshift of z ~ 0.165. We estimate dynamical parameters of the four subclusters and analyse the kinematics of spiral galaxies, searching for indications of ram-pressure stripping. Furthermore, we focus on dusty red galaxies as a possible intermediate stage in the transformation of field galaxies to lenticulars when falling into the cluster. Methods: We obtained multi-object slit spectroscopy using the VLT instrument VIMOS. We carried out a redshift analysis, determined velocity dispersions using biweight statistics, and detected possible substructures with the Dressler-Shectman test. We exploited rotation curves from emission lines to analyse distortions in the gaseous disk of a galaxy, as well as HST/ACS images to quantify the morphological distortions of the stellar disk. Results: The presence of substructures and non-Gaussian redshift distributions indicate that the cluster system is dynamically young and not in a virialised state. We find evidence of two important galaxy populations. Morphologically distorted galaxies are probably subject to increased tidal interactions. They show pronounced rotation-curve asymmetries at intermediate cluster-centric radii and low rest-frame peculiar velocities. Morphologically undistorted galaxies show the strongest rotation-curve asymmetries at high rest-frame velocities and low cluster-centric radii. Supposedly, this group is strongly affected by ram-pressure stripping due to interaction with the intra-cluster medium. Among the morphologically undistorted galaxies, dusty red galaxies have particularly strong rotation-curve asymmetries, suggesting that ram pressure is an important factor in these galaxies. Furthermore, dusty red galaxies have on average a bulge-to-total ratio that is higher by a factor of two than cluster blue

  5. Masses of Galaxy Clusters from Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk; Bartelmann, Matthias; Dahle, Håkon; Israel, Holger; Limousin, Marceau; Meneghetti, Massimo

    2013-08-01

    Despite consistent progress in numerical simulations, the observable properties of galaxy clusters are difficult to predict ab initio. It is therefore important to compare both theoretical and observational results to a direct measure of the cluster mass. This can be done by measuring the gravitational lensing effects caused by the bending of light by the cluster mass distribution. In this review we discuss how this phenomenon can be used to determine cluster masses and study the mass distribution itself. As sample sizes increase, the accuracy of the weak lensing mass estimates needs to improve accordingly. We discuss the main practical aspects of these measurements. We review a number of applications and highlight some recent results.

  6. Particle Acceleration in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Takizawa, M.; Naito, Tsuguya; Ohno, Hiroshi; Shibata, Shinpei

    2003-07-01

    Clusters of galaxies have non-thermal high energy particles as well as the thermal intracluster medium in the intracluster space. One bit of direct evidence is the existence of non-thermal synchrotron radio halos and relics. However, it is still unclear how they are accelerated. Here, we consider two kinds of acceleration processes which likely work in the intracluster space and intro duce models based on them. One is shock acceleration associated with cluster mergers. We calculate evolution of non-thermal electrons during cluster merger based on N-b o dy + SPH simulations. Radio emission is localized near the shocks. This is qualitatively similar to radio relics. The other is resonant scattering of random Alfv´n waves. e We calculate steady state electron distribution functions when Alfv´n wave power e spectra are power-law. We successfully repro duce the Coma cluster radio halo spectrum.

  7. Cosmic Ray Streaming in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Gould Zweibel, Ellen; Oh, Siang P.

    2017-08-01

    The origin of diffuse radio emission in galaxy clusters remains an open question in astrophysics. This emission indicates the presence of cluster-wide magnetic fields and high energy cosmic ray (CR) electrons. I will discuss how the properties of the observed radio emission in clusters are shaped by different CR transport processes, namely CR streaming. Recent work has shown that fast streaming may turn off radio emission on relatively short time scales - a full treatment of magnetohydrodynamic (MHD) wave damping shows that streaming may be even faster than previously thought in high β environments. I will briefly introduce the physics behind CR transport, and present simple numerical simulations of the Coma cluster that predict radio emission, as well as other observable signatures such as gamma radiation that can differentiate between models for the source of the CR electrons.

  8. Jet-driven feedback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian; Morsony, Brian; Bruggen, Marcus; Ruszkowski, Mateusz

    A decade of Chandra imaging has provided us with overwhelming evidence for the large scale impact black holes have on the inner regions of galaxy clusters. While it is now mostly accepted that jets play a major role in heating cool core clusters, the details of just how the heating occurs and whether it is sufficient to halt cooling are still unclear. We will present results from a series of numerical investigations that aim to illuminate how jets interact with the intracluster medium, with the primary aim to connect observed properties of radio sources and X-ray cavities to the underlying dynamics of feedback. In particular, we will argue that the dynamical state of the cluster is critically important for the evolution of radio sources, and inferences about the power and duty cycle of jets made on the basis of models that neglect cluster weather are likely to be incorrect.

  9. Shock Features in Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dasadia, Sarthak; Sun, Ming; Morandi, Andrea

    2017-01-01

    Clusters of galaxies are the largest and the most massive gravitationally collapsed objects in the universe. In the hierarchical scenarios of the large-scale structure formation of the universe, they form by subcluster mergers and infall. Major mergers inject tremendous amounts of energy (˜1064 erg) into the intracluster medium (ICM), triggering shocks and generating. These hydro-dynamical activities may amplify magnetic fields in the cluster and accelerate relativistic particles. These non-thermal phenomena have been revealed by the detection of Mpc-scale diffuse radio emission. Current studies hint at a correlation between X-ray and Radio morphologies.To further address this issue, shock properties of 15 galaxy clusters were studied. The sample was divided into two categories: with and without diffuse radio emission. In my dissertation, my goal is to address questions: Do more luminous clusters have stronger shocks?, How continuous gas stripping affect cool cores?, Why some clusters exhibit a stronger correlation between X-ray shocks and radio relic?

  10. A DOZEN NEW GALAXIES CAUGHT IN THE ACT: GAS STRIPPING AND EXTENDED EMISSION LINE REGIONS IN THE COMA CLUSTER

    SciTech Connect

    Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari; Yoshida, Michitoshi; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha

    2010-12-15

    We present images of extended H{alpha} clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended H{alpha} clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r {approx} 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed H{alpha} clouds.

  11. Assembly bias and splashback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Busch, Philipp; White, Simon D. M.

    2017-10-01

    We use publicly available data for the Millennium Simulation to explore the implications of the recent detection of assembly bias and splashback signatures in a large sample of galaxy clusters. These were identified in the Sloan Digital Sky Survey/Data Release 8 (SDSS/DR8) photometric data by the redMaPPer algorithm and split into high- and low-concentration subsamples based on the projected positions of cluster members. We use simplified versions of these procedures to build cluster samples of similar size from the simulation data. These match the observed samples quite well and show similar assembly bias and splashback signals. Previous theoretical work has found the logarithmic slope of halo density profiles to have a well-defined minimum whose depth decreases and whose radius increases with halo concentration. Projected profiles for the observed and simulated cluster samples show trends with concentration which are opposite to these predictions. In addition, for high-concentration clusters the minimum slope occurs at significantly smaller radius than predicted. We show that these discrepancies all reflect confusion between splashback features and features imposed on the profiles by the cluster identification and concentration estimation procedures. The strong apparent assembly bias is not reflected in the three-dimensional distribution of matter around clusters. Rather it is a consequence of the preferential contamination of low-concentration clusters by foreground or background groups.

  12. Dark Matter in Galaxy Clusters: Shape, Projection, and Environment

    NASA Astrophysics Data System (ADS)

    Groener, Austen M.

    We explore the intrinsic distribution of dark matter within galaxy clusters, by combining insights from the largest N-body simulations as well as the largest observational dataset of its kind. Firstly, we study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimate of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of 3D concentrations (c200) and isodensity shape on weak and strong lensing scales. We find this difference to be ˜ 18% (˜ 9%) for low (medium) mass cluster halos with intrinsically low concentrations (c200=1- 3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well-aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ˜ 30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download. Following that, we then turn to observational measurements galaxy clusters. Scaling relations of clusters have made them particularly important cosmological probes of structure formation. In this work, we present a comprehensive study of the relation between two profile observables, concentration (cvir ) and mass (Mvir). We have collected the largest known sample of measurements from the literature which make use of one or more of the following reconstruction techniques: Weak gravitational lensing (WL), strong gravitational lensing (SL), Weak+Strong Lensing (WL+SL), the Caustic Method (CM), Line-of-sight Velocity Dispersion (LOSVD), and X-ray. We find that the concentration-mass (c-M) relation

  13. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O ii] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  14. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  15. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    SciTech Connect

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.

  16. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    SciTech Connect

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it

    2013-04-10

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  17. An exploration of galaxy-galaxy lensing and galaxy clustering in the Millennium-XXL simulation

    NASA Astrophysics Data System (ADS)

    Marian, Laura; Smith, Robert E.; Angulo, Raul E.

    2015-08-01

    The combination of galaxy-galaxy lensing and galaxy clustering data has the potential to simultaneously constrain both the cosmological and galaxy formation models. In this paper, we perform a comprehensive exploration of these signals and their covariances through a combination of analytic and numerical approaches. First, we derive analytic expressions for the projected galaxy correlation function and stacked tangential shear profile and their respective covariances, which include Gaussian and discreteness noise terms. Secondly, we measure these quantities from mock galaxy catalogues obtained from the Millennium-XXL simulation and semi-analytic models of galaxy formation. We find that on large scales (R > 10 h-1 Mpc), the galaxy bias is roughly linear and deterministic. On smaller scales (R ≲ 5 h-1 Mpc), the bias is a complicated function of scale and luminosity, determined by the different spatial distribution and abundance of satellite galaxies present when different magnitude cuts are applied, as well as by the mass dependence of the host haloes on magnitude. Our theoretical model for the covariances provides a reasonably good description of the measured ones on small and large scales. However, on intermediate scales (1 < R < 10 h-1 Mpc), the predicted errors are ˜2-3 times smaller, suggesting that the inclusion of higher order, non-Gaussian terms in the covariance will be required for further improvements. Importantly, both our theoretical and numerical methods show that the galaxy-galaxy lensing and clustering signals have a non-zero cross-covariance matrix with significant bin-to-bin correlations. Future surveys aiming to combine these probes must take this into account in order to obtain unbiased and realistic constraints.

  18. Shaken and Stirred: Conduction and Turbulence in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ruszkowski, M.; Oh, S. Peng

    2010-04-01

    Uninhibited radiative cooling in clusters of galaxies would lead to excessive mass accretion rates contrary to observations. One of the key proposals to offset radiative energy losses is thermal conduction from outer, hotter layers of cool core (CC) clusters to their centers. However, thermal conduction is sensitive to magnetic field topology. In CC clusters where temperature decreases inwards, the heat buoyancy instability (HBI) leads to magnetic fields ordered preferentially in the direction perpendicular to that of gravity, which significantly reduces the level of conduction below the classical Spitzer-Braginskii value. However, the CC clusters are rarely in perfect hydrostatic equilibrium. Sloshing motions due to minor mergers and stirring motions induced by cluster galaxies or active galactic nuclei can significantly perturb the gas. The turbulent cascade can then affect the topology of the magnetic field and the effective level of thermal conduction. We perform three-dimensional adaptive mesh refinement magnetohydrodynamical simulations of the effect of turbulence on the properties of the anisotropic thermal conduction in CC clusters. We show that very weak subsonic motions, well within observational constraints, can randomize the magnetic field and significantly boost effective thermal conduction beyond the saturated values expected in the pure unperturbed HBI case. We find that the turbulent motions can essentially restore the conductive heat flow to the CC to level comparable to the theoretical maximum of ~1/3 Spitzer for a highly tangled field. Runs with radiative cooling show that the cooling catastrophe can be averted and the cluster core stabilized; however, this conclusion may depend on the central gas density. Above a critical Froude number, these same turbulent motions also eliminate the tangential bias in the velocity and magnetic field that is otherwise induced by the trapped g-modes, and possibly allow significant turbulent heat diffusion. Our

  19. STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS

    SciTech Connect

    Zhang Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q.; Sheldon, Erin S.

    2013-08-20

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of {approx}5{sigma} out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.

  20. SPIDER - IX. Classifying galaxy groups according to their velocity distribution

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. L. B.; de Carvalho, R. R.; Trevisan, M.; Capelato, H. V.; La Barbera, F.; Lopes, P. A. A.; Schilling, A. C.

    2013-09-01

    We introduce a new method to study the velocity distribution of galaxy systems, the Hellinger Distance (HD), designed for detecting departures from a Gaussian velocity distribution. Testing different approaches to measure normality of a distribution, we conclude that HD is the least vulnerable method to type I and II statistical errors. We define a relaxed galactic system as the one with unimodal velocity distribution and a normality deviation below a critical value (HD < 0.05). In this work, we study the Gaussian nature of the velocity distribution of the Berlind group sample, and of the FoF groups from the Millennium simulation. For the Berlind group sample (z < 0.1), 67 per cent of the systems are classified as relaxed, while for the Millennium sample we find 63 per cent (z = 0). We verify that in multi-modal groups the average mass of modes in high-multiplicity (N ≥ 20) systems are significantly larger than in low-multiplicity ones (N < 20), suggesting that groups experience a mass growth at an increasing virialization rate towards z = 0, with larger systems accreting more massive subunits. We also investigate the connection between galaxy properties ([Fe/H], Age, eClass, g - r, Rpetro and <μpetro>) and the Gaussianity of the velocity distribution of the groups. Bright galaxies (Mr ≤ -20.7) residing in the inner and outer regions of groups do not show significant differences in the listed quantities regardless if the group has a Gaussian (G) or a Non-Gaussian (NG) velocity distribution. However, the situation is significantly different when we examine the faint galaxies (-20.7 < Mr ≤ -17.9). In G groups, there is a remarkable difference between the galaxy properties of the inner and outer galaxy populations, testifying how the environment is affecting the galaxies. Instead, in NG groups there is no segregation between the properties of galaxies in the inner and outer regions, showing that the properties of these galaxies still reflect the physical

  1. An X-ray View of Galaxies in Compact Groups and the Coma Cluster Infall Region

    NASA Astrophysics Data System (ADS)

    Desjardins, Tyler D.

    2015-01-01

    As the majority of galaxies in the nearby universe exist in groups and clusters, it is imperative for our understanding of galaxy evolution to examine the effects these environments have on their member galaxies. In particular, compact groups of galaxies (CGs) occupy an interesting part of the parameter space having low velocity dispersions and high number densities. These characteristics increase the likelihood of multi-galaxy interactions over long timescales. Infrared observations of galaxies in CGs have suggested that CG members experience accelerated evolution from star-forming to passive. Using X-ray imaging spectroscopy from the Chandra X-ray Observatory, I characterize the luminosity and morphology of the hot intragroup gas in 19 CGs and compare the results with known galaxy cluster scaling relations and other group properties. Only the most massive CGs have hot intragroup gas similar to galaxy clusters. At low group masses, the hot gas becomes associated with individual galaxies and is linked to star formation. The low derived hot gas densities and low galaxy velocities imply that ram-pressure stripping, a common quenching process in galaxy clusters, is probably not the cause of the accelerated evolution in CGs. Using deep XMM observations, I also examine the X-ray emission from individual galaxies in the Coma cluster infall region, inside which the galaxies have infrared properties suggestive of accelerated evolution similar to CG members. While the Coma galaxies have X-ray emission consistent with known scaling relations between X-ray luminosity, star formation rate, and stellar mass, a CG galaxy comparison sample shows enhanced X-ray emission sometimes an order of magnitude more luminous than the expected value. Thus, while the mid-infrared properties of CG and Coma infall galaxies are similar, the X-ray data reveal that there are marked differences between these environments. While it has been hypothesized that low gas-phase metallicity may cause

  2. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    SciTech Connect

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.; Randriamampandry, S. M. E-mail: gregory.wirth@gmail.com

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs at the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.

  3. A COMPARISON OF THE CLUSTERING PROPERTIES BETWEEN GALAXIES AND GROUPS OF GALAXIES

    SciTech Connect

    Deng Xinfa

    2013-03-01

    In this study, I apply cluster analysis and perform comparative studies of clustering properties between galaxies and groups of galaxies. It is found that the number of objects N{sub max} of the richest system and the maximal length D{sub max} of the largest system for groups in all samples are apparently larger than ones for galaxies, and that galaxies preferentially form isolated, paired, and small systems, while groups preferentially form grouped and clustered systems. These results show that groups are more strongly clustered than galaxies, which is consistent with statistical results of the correlation function.

  4. The SAMI Galaxy Survey: Cluster properties and the impact on galaxy star formation

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.

    2015-08-01

    The SAMI Galaxy Survey will provide resolved spectroscopy for around 3000 galaxies. Of those galaxies, ~600 have been selected to be members of eight massive clusters of galaxies. These eight clusters were the subject of a deep redshift survey using the AAOmega multi-object spectrograph with the aim of characterising the cluster dynamical properties (galaxy membership, cluster mass and substructure). Seven of the clusters also have existing Chandra and/or XMM-Newton X-ray data. In this talk I will describe the global characteristics of the clusters, such as the total masses and merging status, which have been measured using the combination of the redshift and X-ray data. These data are also used to provide a more physical description of galaxy environment local to the SAMI targets. Preliminary results will be presented on the environments of galaxies with evidence for environmentally impacted star formation properties, as indicated by the resolved information provided by the SAMI data.

  5. The Frequency of Anomalously Red Galaxies in SDSS Clusters

    NASA Astrophysics Data System (ADS)

    Shearman, O.; Pimbblet, K. A.

    2014-09-01

    We present a systematic photometric search for spectroscopically confirmed anomalously red galaxies members of 748 low redshift clusters between 0.03 z 0.17 from the SDSS-C4 cluster catalogue (Miller et al. 2005). For each cluster we spectroscopically determine cluster membership, construct a colour-magnitude diagram and fit the red sequence using a robust bi-weight fit. We define an "anomalously red galaxy" as having a (g - r) colour of greater than 3σ redward of the fitted cluster colour-magnitude relation. We find that of 7485 galaxies at r ≤ 17.77 in (g - r), 7 galaxies are anomalously red - 0.0935 per cent of all galaxies in our sample. We show that two of the red outliers are caused by red contamination from nearby sources and are therefore not intrinsically anomalous red. However, 5 have no underlying cause to be so red and we speculate that they may have a high internal dust content. These intrinsically red galaxies are rare - comprising no more than 0.0668 per cent of all cluster galaxies. Most are morphologically early type galaxies, with a few probable late type galaxies that are viewed edge-on and one low surface brightness late type. One of our anomalously red galaxies appears to be a dust-shrouded starburst and we speculate that this may be a unique galaxy amoungst this galaxy set.

  6. Nonthermal emission from clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show

  7. Nonthermal emission from clusters of galaxies

    SciTech Connect

    Kushnir, Doron; Waxman, Eli E-mail: eli.waxman@weizmann.ac.il

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10{sup 14.5}M{sub ☉}, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β{sub core} and η{sub e}. β{sub core} is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η{sub e(p)} is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β{sub core} ≅ η{sub p}/200, nearly independent of cluster mass and with a scatter Δln β{sub core} ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η{sub e}/η{sub p})(T/10 keV){sup −1/2} and ≅ 150(η{sub e}/η{sub p})(T/10 keV){sup −1/2} respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η{sub p} ∼ η{sub e} ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular

  8. Preferred alignments of angular momentum vectors of galaxies in six dynamically unstable Abell clusters

    NASA Astrophysics Data System (ADS)

    Yadav, Shiv N.; Aryal, Binil; Saurer, Walter

    2017-07-01

    A spatial orientation of angular momentum vectors of galaxies in six dynamically unstable Abell clusters (S1171, S0001, A1035, A1373, A1474 and A4053) is studied. For this, two-dimensional observed parameters (e.g., positions, diameters and position angles) are converted into three-dimensional (3D) rotation axes of the galaxy using the ‘position angle - inclination’ method. The expected isotropic distribution curves for angular momentum vectors are obtained by performing random simulations. The observed and expected distributions are compared using several statistical tests. No preferred alignments of angular momentum vectors of galaxies are noticed in all six dynamically unstable clusters, supporting the hierarchy model of galaxy formation. These clusters have a larger value of velocity dispersion. However, local effects are noticed in the clusters that have substructures in the 1D-3D number density maps.

  9. Dynamical Analyses of Galaxy Clusters With Large Redshift Samples

    NASA Astrophysics Data System (ADS)

    Mohr, J. J.; Richstone, D. O.; Wegner, G.

    1998-12-01

    We construct equilibrium models of galaxy orbits in five nearby galaxy clusters to study the distribution of binding mass, the nature of galaxy orbits and the kinematic differences between cluster populations of emission-line and non emission-line galaxies. We avail ourselves of 1718 galaxy redshifts (and 1203 cluster member redshifts) in this Jeans analysis; most of these redshifts are new, coming from multifiber spectroscopic runs on the MDM 2.4m with the Decaspec and queue observing on WIYN with Hydra. In addition to the spectroscopic data we have V and R band CCD mosaics (obtained with the MDM 1.3m) of the Abell region in each of these clusters. Our scientific goals include: (i) a quantitative estimate of the range of binding masses M500 consistent with the optical and X-ray data, (ii) an estimate of the typical galaxy oribital anisotropies required to make the galaxy data consistent with the NFW expectation for the cluster potential, (iii) a better understanding of the systematics inherent in the process of rescaling and ``stacking'' galaxy cluster observations, (iv) a reexamination of the recent CNOC results implying that emission-line (blue) galaxies are an equilibrium population with a more extended radial distribution than their non emission-line (red) galaxy counterparts and (v) a measure of the galaxy contribution to the cluster mass of baryons.

  10. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  11. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  12. ON THE CLUSTERING OF SUBMILLIMETER GALAXIES

    SciTech Connect

    Williams, Christina C.; Giavalisco, Mauro; Yun, Min S.; Pope, Alexandra; Wilson, Grant W.; Cybulski, Ryan; Schloerb, F. Peter; Porciani, Cristiano; Scott, Kimberly S.; Austermann, Jason E.; Aretxaga, Itziar; Hughes, David H.; Hatsukade, Bunyo; Kawabe, Ryo; Lee, Kyoung-Soo; Kohno, Kotaro; Perera, Thushara

    2011-06-01

    We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg{sup 2} down to a 1.26 mJy beam{sup -1} (1{sigma}) limit, including 189 (328) sources with S/N {>=}3.5 (3). We can only set upper limits to the correlation length r{sub 0}, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits of r{sub 0} {approx}< 6-8h{sup -1} Mpc at 3.7 mJy and r{sub 0} {approx}< 11-12 h{sup -1} Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r{sub 0} is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg{sup 2} is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope's 6'' beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.

  13. The galaxy velocity field and CDM models

    NASA Technical Reports Server (NTRS)

    Tormen, Giuseppe; Moscardini, Lauro; Lucchin, Francesco; Matarrese, Sabino

    1993-01-01

    It is generally accepted that some kind of non-baryonic dark matter accounts for most of the mass density of the universe. Considering such a component has become, in the last decade, a key ingredient in current theories of structure formation. In particular, the Cold Dark Matter (CDM) scenario has proven to be quite successful in explaining most of the observed properties of galaxies and of their large-scale distribution. The standard CDM model is characterized by a primordial Zel'dovich spectrum, of random-phase adiabatic perturbations in a universe with density parameter omega sub 0 = 1 and vanishing cosmological constant. This poster paper presents an analysis of observational data on peculiar motion of optical galaxies in comparison to the predictions of CDM models where the assumptions of the standard scenario: omega sub 0 = 1, n = 1, and bias parameter b = 1 are relaxed. In particular, CDM models with 0 less than n less than 1 and 0.4 less than omega sub 0 less than 1 are considered.

  14. VizieR Online Data Catalog: Radial velocities of 76 M31 candidate clusters (Galleti+, 2006)

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-06-01

    We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M31 galaxy. The survey is aimed at the classification of known candidate M31 clusters and at the study of their kinematic properties. We obtained low-resolution spectroscopy for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~+/-20Km/s. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 HII regions belonging to M31 and 3 unclassified (possibly M31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Our results suggest that a significant number of genuine clusters (~>100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M31 galaxy is still far from complete even in terms of simple membership. (1 data file).

  15. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  16. A Redshift Survey of the Nearby Galaxy Cluster Abell 2199: Comparison of the Spatial and Kinematic Distributions of Galaxies with the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Song, Hyunmi; Hwang, Ho Seong; Park, Changbom; Tamura, Takayuki

    2017-06-01

    We present the results from an extensive spectroscopic survey of the central region of the nearby galaxy cluster Abell 2199 (A2199) at z = 0.03. By combining 775 new redshifts from the MMT/Hectospec observations with the data in the literature, we construct a large sample of 1624 galaxies with measured redshifts at R< 30\\prime , which results in high spectroscopic completeness at {r}{petro,0}< 20.5 (77%). We use these data to study the kinematics and clustering of galaxies, focusing on the comparison with those of the intracluster medium (ICM) from Suzaku X-ray observations. We identify 406 member galaxies of A2199 at R< 30\\prime using the caustic technique. The velocity dispersion profile of cluster members appears smoothly connected to the stellar velocity dispersion profile of the cD galaxy. The luminosity function is well fitted with a Schechter function at {M}r< -15. The radial velocities of cluster galaxies generally agree well with those of the ICM, but there are some regions where the velocity difference between the two is about a few hundred kilometers per second. The cluster galaxies show a hint of global rotation at R< 5\\prime with {v}{rot}=300{--}600 {km} {{{s}}}-1, but the ICM in the same region does not show such rotation. We apply a friends-of-friends algorithm to the cluster galaxy sample at R< 60\\prime and identify 32 group candidates, and examine the spatial correlation between the galaxy groups and X-ray emission. This extensive survey in the central region of A2199 provides an important basis for future studies of interplay among the galaxies, the ICM, and the dark matter in the cluster.

  17. The structure and dynamics of the AC114 galaxy cluster revisited

    NASA Astrophysics Data System (ADS)

    Proust, Dominique; Yegorova, Irina; Saviane, Ivo; Ivanov, Valentin D.; Bresolin, Fabio; Salzer, John J.; Capelato, Hugo V.

    2015-10-01

    We present a dynamical analysis of the galaxy cluster AC114 based on a catalogue of 524 velocities. Of these, 169 (32 per cent) are newly obtained at European Southern Observatory (Chile) with the Very Large Telescope and the VIsible MultiObject spectrograph. Data on individual galaxies are presented and the accuracy of the measured velocities is discussed. Dynamical properties of the cluster are derived. We obtain an improved mean redshift value z = 0.31665 ± 0.0008 and velocity dispersion σ = 1893^{+73}_{-82} km s^{-1}. A large velocity dispersion within the core radius and the shape of the infall pattern suggests that this part of the cluster is in a radial phase of relaxation with a very elongated radial filament spanning 12 000 km s-1. A radial foreground structure is detected within the central 0.5 h-1 Mpc radius, recognizable as a redshift group at the same central redshift value. We analyse the colour distribution for this archetype Butcher-Oemler galaxy cluster and identify the separate red and blue galaxy sequences. The latter subset contains 44 per cent of confirmed members of the cluster, reaching magnitudes as faint as Rf= 21.1 (1.0 mag fainter than previous studies). We derive a mass M200 = (4.3 ± 0.7) × 1015 M⊙ h-1. In a subsequent paper, we will utilize the spectral data presented here to explore the mass-metallicity relation for this intermediate redshift cluster.

  18. On the coherence length of large-scale peculiar velocities and gravitational clustering

    SciTech Connect

    Kashlinsky, A.; Queen Mary College, London )

    1989-08-01

    If the large-scale structure in the universe is formed by gravitational clustering of less than 0 density fluctuations, the correlation function of massive objects/clusters of the clustering hierarchy would be increased over the underlying mass autocorrelation function. This means that if light traces mass, the peculiar gravitational field on the average would be stronger when measured by galaxies associated with such clusters. This in turn would lead to larger rms peculiar velocities deduced from the motions of such samples. Ellipticals are known to populate preferentially dense regions/(rich) clusters, and it is, therefore, suggested that this mechanism is responsible for the large peculiar motions observed recently by the Seven Samurai in a sample of elliptical galaxies. On the assumption that light traces mass, these and the cluster-cluster correlation function results are consistent with gravitational clustering of n of about -1 fluctuations in Omega of about 0.2 universe. It is further shown that according to the gravitational clustering theory, galaxies selected preferentially from poor groups should exhibit small rms peculiar velocities. 21 refs.

  19. On the coherence length of large-scale peculiar velocities and gravitational clustering

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.

    1989-08-01

    If the large-scale structure in the universe is formed by gravitational clustering of less than 0 density fluctuations, the correlation function of massive objects/clusters of the clustering hierarchy would be increased over the underlying mass autocorrelation function. This means that if light traces mass, the peculiar gravitational field on the average would be stronger when measured by galaxies associated with such clusters. This in turn would lead to larger rms peculiar velocities deduced from the motions of such samples. Ellipticals are known to populate preferentially dense regions/(rich) clusters, and it is, therefore, suggested that this mechanism is responsible for the large peculiar motions observed recently by the Seven Samurai in a sample of elliptical galaxies. On the assumption that light traces mass, these and the cluster-cluster correlation function results are consistent with gravitational clustering of n of about -1 fluctuations in Omega of about 0.2 universe. It is further shown that according to the gravitational clustering theory, galaxies selected preferentially from poor groups should exhibit small rms peculiar velocities.

  20. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  1. The clustering of clusters of galaxies in the REFLEX survey

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Böhringer, H.; Collins, C. A.; Schuecker, P.; Chincarini, G.; Cruddace, R.; de Grandi, S.; Neumann, D. M.; Schindler, S.; Shaver, P. A.; Voges, W.

    We summarize the major clustering results obtained so far from the REFLEX survey of X-ray clusters of galaxies. The REFLEX survey is now virtually 100% redshift complete to a flux limit 3×10-12 erg s-1 cm-2 (in the ROSAT band, 0.1-2.4 keV) and several clustering analyses are underway. The most interesting results are being obtained on the power spectrum, which has been estimated on scales approaching ~1000h-1 Mpc and whose shape and amplitude are both in very good agreement with the predictions of a low-ΩM (open or Λ-dominated) CDM model. Both the power spectrum and the two-point correlation function show a remarkable agreement in shape - just scaled by a constant b2 ~ 7 - 10 in amplitude - with the corresponding statistics measured from galaxy surveys, confirming the validity of a simple biasing scheme. Several tests, as e.g. the behaviour of the mean cluster density as a function of redshift, or the isotropy of the correlation function ξ(τp, π), represent additional confirmation that the current REFLEX sample is highly complete (>90%) and with a well-controlled selection function.

  2. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  3. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  4. Dark matter phenomenology of high-speed galaxy cluster collisions

    NASA Astrophysics Data System (ADS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-08-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90^circ . Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.

  5. Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    NASA Astrophysics Data System (ADS)

    Caldwell, C. E.; McCarthy, I. G.; Baldry, I. K.; Collins, C. A.; Schaye, J.; Bird, S.

    2016-11-01

    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary cosmic microwave background (CMB) data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g. X-ray luminosity, Sunyaev-Zel'dovich flux, and optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ cold dark matter models. These predictions can be compared with the results from existing redshift surveys such as the highly complete Galaxy And Mass Assembly survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey and the Dark Energy Survey Instrument.

  6. Weak lensing galaxy cluster field reconstruction

    NASA Astrophysics Data System (ADS)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  7. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  8. Galaxy clusters, similarity parameters, and ratios between measurable characteristics

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.

    2015-12-01

    The study of galaxy clusters provides insights into the different stages of the evolution of the Universe. Cluster observations measure luminosity, size, temperature, and mass. What binds a cluster into a single entity is gravity, its force being proportional to the Newtonian constant of gravitation G. Because all five of these quantities are measured in units of mass, length, and time, two nondimensional parameters, commonly known as similarity parameters, can be argued to characterize the system. One of these is the well-known virial ratio of kinetic to potential energies. The velocities of galaxy clusters are not measured, however. The luminosity L and the constant G can be combined to introduce the dynamic velocity scale U_α=(LG)1/5. The ratio of this scale to the particle thermal velocity gives the similarity parameter \\varPi _1, which is constant to within about 10 % for all 30 objects studied, allowing the virial similarity parameter \\varPi _2 to be evaluated for 31 objects. For nearby objects with a red shift of z ≤ 0.2, the parameter \\varPi _2 is of order 10 and decreases with increasing z, i.e., with decreasing age. To test the quality of the data, the value of G was determined using other measured quantities and found to be equal to its true value to within ≤ 6 % and 28 % for close and distant objects, respectively. A number of other ratios between measured quantities have been proposed and checked, showing a scatter of 10- 20 % from constancy on the linear scale in the numerical coefficients involved. Older clusters are, on average, larger in mass and size, implying that smaller clusters can be absorbed by large ones. The results obtained can be valid for clusters with a temperature of T > 1 keV, i.e., in the X-ray range of the spectrum. The claster mass reduction with increasing z, i.e., with decreasing age, is also traced, on the average, in other spectral regions. It is shown that by knowing the temperature and the received X-ray intensity

  9. IPC two-color analysis of x ray galaxy clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1990-01-01

    The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.

  10. Pairwise Velocities of Galaxies in the CfA and SSRS2 Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Marzke, Ronald O.; Geller, Margaret J.; da Costa, L. N.; Huchra, John P.

    1995-08-01

    We combine the CfA Redshift Survey (CfA2) and the Southern Sky Redshift Survey (SSRS2) to estimate the pairwise velocity dispersion of galaxies σ_12_ on a scale of ~1 h^-1^ Mpc. Both surveys are complete to an apparent magnitude limit B(0) = 15.5. Our sample includes 12812 galaxies distributed in a volume 1.8 x 10^6^ h^-3^ Mpc^3^. We conclude: (1) The pairwise velocity dispersion of galaxies in the combined CfA2+SSRS2 redshift survey is σ_12_ = 540 +/- 180 km s^-1^. Both the estimate and the variance of σ_12_ significantly exceed the canonical values σ_12_ = 340 +/- 40 measured by Davis & Peebles (1983) using CfA1. (2) We derive the uncertainty in σ_12_ from the variation among subsamples with volumes on the order of 7 x 10^5^h^-3^ Mpc^3^. This variation is nearly an order of magnitude larger than the formal error, 36 km s^-1^, derived using least-squares fits to the CfA2+SSRS2 correlation function. This variation among samples is consistent with the conclusions of Mo et al. (1993) for a number of smaller surveys and with the analysis of CfA1 by Zurek et al. (1994). (3) When we remove Abell clusters with R > 1 from our sample, the pairwise velocity dispersion of the remaining galaxies drops to 295 +/- 99 km s^-1^. (4) The dominant source of variance in σ_12_ is the shot noise contributed by dense virialised systems. Because σ_12_ is pair weighted, the statistic is sensitive to the few richest systems in the volume. This sensitivity has two consequences. First, σ_12_ is biased low in small volumes, where the number of clusters is small. Second, we can estimate the variance in σ_12_ as a function of survey volume from the distribution of cluster and group velocity dispersions n (σ). For either a COBE-normalized CDM universe or for the observed distribution of Abell cluster velocity dispersions, the volume required for σ_12_ to converge (δσ_12_/σ_12_ < 0.1) is ~5 x 10^6^h^-3^ Mpc^3^, larger than the volume of CfA2+SSRS2. (5) The distribution of pairwise

  11. Understanding the Toothbrush Merging Galaxy Cluster to Constrain Dark Matter

    NASA Astrophysics Data System (ADS)

    Dawson, William; Brüggen, M.; Van Weeren, R. J.; Wittman, D. M.

    2014-01-01

    Merging galaxy clusters have proven to be one of the most important probes of dark matter self-interaction properties. If their full dark matter constraining power is to be realized though, we must accurately quantify the properties of these dissociative mergers. Some properties such as mass and relative line of sight velocity can be directly measured and sufficiently constrained, but there remains considerable uncertainty on indirect properties of the mergers. Indirect properties such as the angle of the merger axis with the plane of the sky and collision velocity are crucial to translating the gravitational lensing measurements of the mass, X-ray measurements of the cluster gas and optical measurements of the galaxies into constraints on the dark matter properties. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger (1RXS J0603+4212) we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches.

  12. Quantifying peculiarity of cluster galaxies and their kinematic features

    NASA Astrophysics Data System (ADS)

    Oh, Sree; Jeong, Hyunjin; Sheen, Yun-Kyeong; Yi, Sukyoung

    2016-01-01

    Galaxy morphology involves complex effects from both secular and non-secular evolution of galaxies. Although it is a final product of galaxy evolution, it gives a clue to the processes that the galaxy suffer. Galaxy clusters are the sites where the most massive galaxies are found, and so the most dramatic merger histories are embedded. Our extra-ordinary deep (μr ~ 28 mag/''2) imaging of Abell 119 at z = 0.044 using a Blanco 4-m telescope at CTIO enable us to detect low surface brightness features, and we found post-merger signatures for 25% of red-sequence galaxies in the clusters suggesting that so many galaxies even in clusters have gone through galaxy mergers at recent epochs. We quantified the degree of peculiarity of morphology utilizing residual lights from model subtracted images to pin down the merger frequency in cluster environments more objectively. With our technique we measured the degree of features which in turn allow us to extract the details of the merger properties, such as the galaxy mass ratios and the merger frequency. We went further to understand the impact of galaxy mergers in cluster environment using the SAMI Integral Field Unit on the galaxies of Abell 119 and found that half of galaxies related to mergers show misalignment in the angle between the photometric major and the rotation axes, and most of them show complex kinematic features. Our research on quantification of merger features through deep imaging help us to understand the merger history of cluster galaxies, and we present our understanding of galaxy mergers in cluster environment from the perspective of kinematics.

  13. QUASAR-GALAXY CLUSTERING THROUGH PROJECTED GALAXY COUNTS AT z = 0.6-1.2

    SciTech Connect

    Zhang Shaohua; Zhou Hongyan; Wang Tinggui; Wang Huiyuan E-mail: twang@ustc.edu.cn

    2013-08-20

    We investigate the spatial clustering of galaxies around quasars at z = 0.6-1.2 using photometric data from Sloan Digital Sky Survey Stripe 82. The quasar and galaxy cross-correlation functions are measured through the projected galaxy number density n(r{sub p} ) on scales of 0.05 < r{sub p} < 20 h {sup -1} Mpc around quasars for a sample of 2300 quasars from Schneider et al. We detect strong clustering signals at all redshifts and find that the clustering amplitude increases significantly with redshift. We examine the dependence of quasar-galaxy clustering on quasar and galaxy properties and find that the clustering amplitude is significantly larger for quasars with more massive black holes or with bluer colors, while there is no dependence on quasar luminosity. We also show that quasars have a stronger correlation amplitude with blue galaxies than with red galaxies. We finally discuss the implications of our findings.

  14. Tangential Velocity of the Dark Matter in the Bullet Cluster from Precise Lensed Image Redshifts

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor M.; Broadhurst, Tom; Umetsu, Keiichi; Zitrin, Adi; Rephaeli, Yoel; Shimon, Meir

    2013-09-01

    We show that the fast-moving component of the "Bullet Cluster" (1E0657-56) can induce potentially resolvable redshift differences between multiply lensed images of background galaxies. This moving cluster effect, due to the tangential peculiar velocity of the lens, can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components; the effect is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The Bullet Cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply lensed images of systems "G" and "H" straddling the critical curve of the bullet component will show the largest frequency shifts up to ~0.5 km s-1. These shifts are within the range of the Atacama Large Millimeter/Submillimeter Array for molecular emission, and are near the resolution limit of the new generation high-throughput optical-IR spectrographs. The detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with ΛCDM, which is inferred from the gas motion less directly. This method may be extended to smaller redshift differences using the Lyα forest toward QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic Sunyaev-Zel'dovich effect, providing a full three-dimensional description of velocities.

  15. TANGENTIAL VELOCITY OF THE DARK MATTER IN THE BULLET CLUSTER FROM PRECISE LENSED IMAGE REDSHIFTS

    SciTech Connect

    Molnar, Sandor M.; Broadhurst, Tom; Zitrin, Adi; Rephaeli, Yoel; Shimon, Meir

    2013-09-01

    We show that the fast-moving component of the ''Bullet Cluster'' (1E0657-56) can induce potentially resolvable redshift differences between multiply lensed images of background galaxies. This moving cluster effect, due to the tangential peculiar velocity of the lens, can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components; the effect is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The Bullet Cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply lensed images of systems ''G'' and ''H'' straddling the critical curve of the bullet component will show the largest frequency shifts up to {approx}0.5 km s{sup -1}. These shifts are within the range of the Atacama Large Millimeter/Submillimeter Array for molecular emission, and are near the resolution limit of the new generation high-throughput optical-IR spectrographs. The detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with {Lambda}CDM, which is inferred from the gas motion less directly. This method may be extended to smaller redshift differences using the Ly{alpha} forest toward QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic Sunyaev-Zel'dovich effect, providing a full three-dimensional description of

  16. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model

  17. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model

  18. Clues to the nature of ultradiffuse galaxies from estimated galaxy velocity dispersions

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis

    2017-01-01

    We describe how to estimate the velocity dispersions of ultradiffuse galaxies (UDGs) using a previously defined galaxy scaling relationship. The method is accurate for the two UDGs with spectroscopically measured dispersions, as well as for ultracompact galaxies, ultrafaint galaxies, and stellar systems with little or no dark matter. This universality means that the relationship can be applied without further knowledge or prejudice regarding the structure of a galaxy. We then estimate the velocity dispersions of UDGs drawn from two published samples and examine the distribution of total masses. We find, in agreement with the previous studies of two individual UDGs, that these systems are dark matter dominated systems, and that they span a range of at least 1010 < M200/M⊙ < 1012. These galaxies are not, as an entire class, either all dwarfs or all failed L* galaxies. Estimates of the velocity dispersions can also help identify interesting subsets of UDGs, such as those that are likely to have the largest mass-to-light ratios, for subsequent spectroscopic study.

  19. Galaxy properties in low X-ray luminosity clusters at z=0.25

    NASA Astrophysics Data System (ADS)

    Balogh, Michael; Bower, R. G.; Smail, Ian; Ziegler, B. L.; Davies, Roger L.; Gaztelu, A.; Fritz, Alexander

    2002-11-01

    We present the first spectroscopic survey of intrinsically low X-ray luminosity clusters at z>> 0, with Hubble Space Telescope (HST) WFPC2 imaging and spectroscopy from Calar Alto and WHT-LDSS2. We study 172 confirmed cluster members in a sample of ten clusters at 0.23 < z < 0.3, with LX<~ 4 × 1043h-2 erg s-1[0.1-2.4 keV] (Ωm= 0.3, Λ= 0.7). The core of each cluster is imaged with WFPC2 in the F702W filter, and the spectroscopic sample is statistically complete to Mr~-19.0 + 5 log h, within an 11 arcmin (~1.8 h-1 Mpc) field. The clusters are dynamically well-separated from the surrounding field and most have velocity distributions consistent with Gaussians. The velocity dispersions range from ~350-850 km s-1, consistent with the local LX-σ correlation. All 10 clusters host a bright, giant elliptical galaxy without emission lines, near the centre of the X-ray emission. We measure the equivalent width of two nebular emission lines, [OII] and Hα, and the Hδ absorption line to classify the cluster members spectrally. Galaxy morphologies are measured from the HST images, using the two-dimensional surface-brightness fitting software GIM2D. Emission-line galaxies in these clusters are relatively rare, comprising only 22 +/- 4 per cent of the sample. There is no evidence that these emission-line galaxies are dynamically distinct from the majority of the cluster population, though our sample is too small to rule out the ~30 per cent difference that has been observed in more massive clusters. We find 11 galaxies, comprising 6 per cent of the cluster members, that are disc-dominated but show no sign of emission in their spectrum. Most of these are relatively isolated, spiral galaxies with smooth discs. We find no cluster members with a starburst or post-starburst spectrum. The striking similarity between the spectral and morphological properties of galaxies in these clusters and those of galaxies in more massive systems at similar redshifts implies that the physical

  20. Alignments of the Dominant Galaxies in Poor Clusters

    NASA Astrophysics Data System (ADS)

    Fuller, Todd M.; West, Michael J.; Bridges, Terry J.

    1999-07-01

    We have examined the orientations of brightest cluster galaxies (BCGs) in poor MKW (Morgan, Kayser, and White) and AWM (Albert, White, and Morgan) clusters and find that, like their counterparts in richer Abell clusters, poor cluster BCGs exhibit a strong propensity to be aligned with the principal axes of their host clusters as well as the surrounding distribution of nearby (<=20 h-1 Mpc) Abell clusters. The processes responsible for dominant galaxy alignments are therefore independent of cluster richness. We argue that these alignments most likely arise from anisotropic infall of material into clusters along large-scale filaments.

  1. Independent Measurements of the Dynamical Masses of Six Galaxy Clusters in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun

    2017-04-01

    We present independent measurements of the masses of galaxy clusters in the local universe by employing the Dynamical Mass Estimator (DME) originally developed by Falco et al. In the catalog of the galaxy groups/clusters constructed by Tempel et al. from Sloan Digital Sky Survey Data Release 10, we search for galaxy clusters as the targets around which neighbor galaxies constitute thin straight filamentary structures in the configuration space spanned by the redshifts and the projected distances. Out of the 29 Sloan clusters that have 100 or more member galaxies, a total of six targets are found to have filamentary structures in their bound zones. For each of the six targets, we construct the profile of the recession velocities of the filament galaxies, which depend on the cluster mass and the angle of the filament relative to the line-of-sight direction. Fitting the constructed profile to the universal formula with constant amplitude and slope, we statistically determine the dynamical mass of each cluster and compare it with previous estimates made using the conventional method. The weak and strong points of the DME, as well as its prospects for measuring the dynamical masses of high-z clusters, are discussed.

  2. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    SciTech Connect

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I.; Lopez, S.; Lira, P.; Maureira, M. J.; Gilbank, D. G.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities

  3. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  4. H I absorption toward cooling flows in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; O'Connell, Robert W.; Bregman, Joel N.

    1990-01-01

    An H I survey of 14 cooling flow clusters and two noncooling flow clusters was conducted, and H I absorption features were detected against the nuclear radio continuum sources of two cooling flow dominant (CFD) galaxies, 2A 0335 + 096 and MKW3s. The absorption features are broad and redshifted with respect to the stellar absorption-line velocity of the CFDs by 90-225 km/s. This indicates that the H I is falling onto, and is probably gravitationally bound to, the CFDs. The kinematics of the H I clouds suggest a possible kinematic link between the warm and cold phases of the intracluster medium. The clouds are orders of magnitude smaller in radius and mass and larger in density than Galactic H I clouds. The detected CFDs have mass-accretion rates that are about 2.5 times larger than the CFDs that were not detected.

  5. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  6. Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Kauffmann, Guinevere; Börner, Gerhard; Kang, Xi; Wang, Lan

    2007-04-01

    By comparing semi-analytic galaxy catalogues with data from the Sloan Digital Sky Survey (SDSS), we show that current galaxy formation models reproduce qualitatively the dependence of galaxy clustering and pairwise peculiar velocities on luminosity, but some subtle discrepancies with the data still remain. The comparisons are carried out by constructing a large set of mock galaxy redshift surveys that have the same selection function as the SDSS Data Release Four (DR4). The mock surveys are based on two sets of semi-analytic catalogues presented by Croton et al. and Kang et al. From the mock catalogues, we measure the redshift-space projected two-point correlation function wp(rp), the power spectrum P(k) and the pairwise velocity dispersion (PVD) in Fourier space σ12(k) and in configuration space σ12(rp), for galaxies in different luminosity intervals. We then compare these theoretical predictions with the measurements derived from the SDSS DR4. On large scales and for galaxies brighter than L*, both sets of mock catalogues agree well with the data. For fainter galaxies, however, both models predict stronger clustering and higher pairwise velocities than observed. We demonstrate that this problem can be resolved if the fraction of faint satellite galaxies in massive haloes is reduced by ~30 per cent compared to the model predictions. A direct look into the model galaxy catalogues reveals that a significant fraction (15 per cent) of faint galaxies (-18 < M0.1r - 5 log10h < -17) reside in haloes with Mvir > 1013 Msolar, and this population is predominantly red in colour. These faint red galaxies are responsible for the high PVD values of low-luminosity galaxies on small scales.

  7. Temperature Maps of Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William R.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    We have completed our analysis of the temperature structure of clusters of galaxies. The next to last paper to be supported by this project has been published in the Astrophysical Journal. The analysis for the final paper is nearly complete, but has been delayed by the high priority demands of Chandra Mission Planning and Chandra Calibration which have required more than the expected amount of work by Forman and Donnelly. For this paper, a final check of the 55 member cluster sample identified several clusters for which X-ray luminosities are needed. We also verified the ASCA analysis and the novel method we use for the derivation of the temperature maps against XMM-Newton observations for a few clusters which are publicly available in the XMM-Newton archives We find excellent agreement. This final paper is expected to be submitted by November 2002. It will provide a large, well-defined sample of clusters for comparison to large numerical simulations which can help clarify the evolution of the largest collapsed systems in the Universe.

  8. On the evolution of globular cluster systems. I - Present characteristics and rate of destruction in our Galaxy

    NASA Technical Reports Server (NTRS)

    Aguilar, Luis; Hut, Piet; Ostriker, Jeremiah P.

    1988-01-01

    The current dynamic state and rate of destruction for the system of globular clusters in the Galaxy are modeled. It is found that gravitational shocks due to the central bulge of the Galaxy are very efficient in destroying clusters on highly radial orbits. This effect, extrapolated at the present unweighted destruction rate over 10 to the 10th yr, can account for the observed difference between the velocity distribution of globular clusters and other tracers of the halo population.

  9. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  10. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  11. Galaxy Cluster Studies with the Hobby Eberly Telescope Dark Energy Experiment

    NASA Astrophysics Data System (ADS)

    Boada, Steven A.; Papovich, Casey J.; Wechsler, Risa H.; Rozo, Eduardo; Rykoff, Eli S.; Gebhardt, Karl

    2016-01-01

    The study of clusters of galaxies has been argued to be a very effective way to measure cosmological parameters, including measuring dark energy and testing models of gravity. The Hobby Eberly Telescope Dark Energy Experiment (HETDEX) will observe many hundreds of square degrees, covering a large sample of galaxy clusters out to z = 0.5 based on their optical spectra (3500-5500 Å). The spectra will provide important measures of the clusters dynamics and may enable constraints on cosmological parameters, but only if the measurements provide accurate estimates of the total cluster masses. We have carried out a study to investigate the ability of HETDEX to recover accurate galaxy cluster masses over a wide range of masses and redshifts. We used a detailed mock galaxy catalog and present mock observations of two different scenarios: (1) We targeted individual galaxy clusters to investigate the recovery of parameters with such observations. (2) We created and evaluated a HETDEX-like selection "function'' of galaxies over a similarly sized portion of the sky and use well adopted techniques to recover the dynamical properties, such as velocity dispersion and mass. Using both observing strategies, we produce cluster mass probability density functions P(X|M,z), which can be used to determine the probability that a galaxy cluster of given mass (M), located at redshift (z) determined using observable parameter (X). We then applied these probability functions to ten galaxy clusters selected from the Sloan Digital Sky Survey DR8 and the Chandra-XMM X-ray Cluster Survey at z=0.2-0.3, and observed by the HETDEX spectrograph prototype instrument (VIRUS-p). We measured spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, derived a line-of-sight velocity dispersion, and inferred a dynamical mass for each cluster which ranges from (0.4-24) x 1014 M⊙ (M200c). Using the mass probability density functions described above, we updated these

  12. X-ray emission from clusters and groups of galaxies.

    PubMed

    Mushotzky, R

    1998-01-06

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  13. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  14. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  15. Steep Spectrum Radio Sources in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy E.

    2012-05-01

    Steep spectrum radio emission associated with galaxy clusters comes from compact central active galactic nuclei (AGN) driven radio sources in dense cool core clusters as well as from large regions of diffuse (halo and relic) emission associated with dynamically complex merging systems. These radio halos and relics are best traced at low radio frequencies where details of their morphology, location and spectral index distribution can be used to probe the underlying acceleration mechanism(s) as well as important details of large scale structure formation. Low frequency radio observations also play an important role in the study of AGN feedback into the intracluster medium and the regulation of cooling cores. While spectacular results are coming from the current generation of low frequency instruments, there will soon be a new revolution in studies of steep spectrum sources with the upcoming generation of low frequency interferometers on Earth and ultimately the moon.

  16. Two high-velocity encounters of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Balcells, Marc; Borne, Kirk D.; Hoessel, John G.

    1989-01-01

    This paper describes results obtained on a simulation of two high-velocity encounters of NGC 4782/4783 and NGC 2672/2673 binary elliptical galaxies which differ substantially in mass ratio (about 1 for the first pair, and about 10 for the second). CCD images and velocities obtained from digital spectra were used to constrain simulations of the galaxy collisions. The binary orbital elements, the orientation of the orbit in the sky, the time since pericenter, and the dynamical mass of the pair were derived. Results suggested that the dumb-bell galaxy NGC 4782/4783 is not a supermassive galaxy, as was claimed earlier on the basis of the high relative velocity and high central dispersion, but has a moderate mass to luminosity ratio M/L(B) of about 10. It was concluded that its trajectory changed from hyperbolic to elliptical as a result of energy lost during the collision. It was found that the NGC 2672/2673 also has a moderate M/L(B) of about 7.

  17. Galaxy populations in the Antlia cluster - II. Compact elliptical galaxy candidates

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía V.; Faifer, Favio R.; Richtler, Tom; Bassino, Lilia P.

    2008-12-01

    Continuing our study of galaxy populations in the Antlia cluster, we present a photometric analysis of four galaxies classified as compact elliptical (cE) galaxies in the 1990 Antlia Group catalogue of Ferguson and Sandage. Until now, there have been only six known members of this rare type of galaxy. Using data from various photometric systems (Washington C, Kron-Cousins R, Bessel V and I, Hubble Space Telesecope F814W and F435W), we measured the brightness and colour profiles, as well as the structural parameters. By comparing these with those of other galaxies in the Antlia cluster, as well as with confirmed cE galaxies from the literature, we found that two of the cE candidates, although spectroscopically confirmed Antlia members, are not cE galaxies. However, one of these objects presents strong ellipticity and position angle variations that resemble those already reported for M32, leading us to speculate about this type of object being a progenitor of a cE galaxy. The other two cE candidates, for which radial velocities are not available, match some features typical of cE galaxies, such as being close in projection to a larger galaxy, displaying flat colour profiles, and having a high degree of compactness. Only one of the remaining cE candidates shows a high central surface brightness, two components in its brightness profile and distinct changes in ellipticity and position angle where the outer component begins to dominate. It seems to follow the same trend as other confirmed cE galaxies in a luminosity versus mean effective surface brightness diagram. Moreover, it shows a distorted inner structure with similar characteristics to those found by simulations of interacting galaxies. Also, an extremely faint structure, which seems to link this object with one of the Antlia dominant galaxies, has been detected in images from the Cerro Tololo Inter-American Observatory MOSAIC, the Very Large Telescope FORS1 and the Hubble Space Telescope Advanced Camera for

  18. Simulations of binary galaxy cluster mergers: Modeling real clusters and exploring parameter spaces

    NASA Astrophysics Data System (ADS)

    Zuhone, John A.

    We present an investigation of controlled N -body/hydrodynamics high-resolution simulations of binary galaxy cluster mergers, performed using the FLASH code. In addition to analyzing the quantities directly from the simulation, we produce simulated X-ray observations of the cluster ICM and perform standard analyses of the surface brightness distribution and spectra of the X-ray photons emitted from the hot cluster gas. Several lines of evidence have suggested that the galaxy cluster Cl 0024+17, an apparently relaxed system, is actually a collision of two clusters, the interaction occurring along our line of sight. We present a high-resolution N -body/hydrodynamics simulation of such a collision. We analyze mock X-ray observations of our simulated clusters to generate radial profiles of the surface brightness and temperature to show that at later times the simulated surface brightness profiles are better fit by a superposition of two b-model profiles than a single profile, in agreement with the observations of Cl 0024+17. We determine from our fitted profiles that if the system is modeled as a single cluster, the hydrostatic mass estimate is a factor ~2-3 less than the actual mass, but if the system is modeled as two galaxy clusters in superposition, a hydrostatic mass estimation can be made which is accurate to within ~10%. Additionally, recent lensing observations of Cl 0024+17 suggest the presence of a ring-like dark matter structure, which has been interpreted as the result of such a collision. To determine the conditions under which such a feature would form, we vary the initial velocity anisotropy of the dark matter particles. Our simulations show a ring feature does not occur even when the initial particle velocity distribution is highly tangentially anisotropic. Only when the initial particle velocity distribution is circular do our simulations show such a feature, which is consistent with the halo velocity distributions seen in cosmological simulations

  19. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological

  20. A Statistical Approach to Galaxy Cluster Gas Inhomogeneity: Chandra Observations of Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Reese, Erik D.; Kawahara, H.; Kitayama, T.; Sasaki, S.; Suto, Y.

    2009-01-01

    Motivated by cosmological hydrodynamic simulations, the intracluster medium (ICM) inhomogeneity of galaxy clusters is modeled statistically with a lognormal model for density inhomogeneity. Through mock observations of synthetic clusters the relationship between density inhomogeneities and that of the X-ray surface brightness has been developed. This enables one to infer the statistical properties of the fluctuations of the underlying three-dimensional density distribution of real galaxy clusters from X-ray observations. We explore inhomogeneity in the intracluster medium by applying the above methodology to Chandra observations of a sample of nearby galaxy clusters. We also consider extensions of the model, including Poissonian effects and compare this hybrid lognormal-Poisson model to the nearby cluster Chandra data. EDR gratefully acknowledges support from JSPS (Japan Society for the Promotion of Science) Postdoctoral Fellowhip for Foreign Researchers award P07030. HK is supported by Grands-in-Aid for JSPS of Science Fellows. This work is also supported by Grant-in-Aid for Scientific research of Japanese Ministry of Education, Culture, Sports, Science and Technology (Nos. 20.10466, 19.07030, 16340053, 20340041, and 20540235) and by JSPS Core-to-Core Program "International Research Network for Dark Energy".

  1. A partial list of southern clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Quintana, H.; White, R. A.

    1990-01-01

    An inspection of 34 SRC/ESO J southern sky fields is the basis of the present list of clusters of galaxies and their approximate classifications in terms of cluster concentration, defined independently of richness and shape-symmetry. Where possible, an estimate of the cluster morphological population is provided. The Bautz-Morgan classification was applied using a strict comparison with clusters on the Palomar Sky Survey. Magnitudes were estimated on the basis of galaxies with photoelectric or photographic magnitudes.

  2. THE GALAXY POPULATION OF LOW-REDSHIFT ABELL CLUSTERS

    SciTech Connect

    Barkhouse, Wayne A.; Yee, H. K. C.; Lopez-Cruz, Omar E-mail: hyee@astro.utoronto.c

    2009-10-01

    We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (f{sub b} ) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r {sub 200} to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (B {sub gc}), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The f{sub b} is found not to correlate with B {sub gc}; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy f{sub b} is approximately constant with clustercentric radius except for the inner-cluster core region where f{sub b} decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.

  3. Do Disk Galaxies Have Different Central Velocity Dispersions At A Given Rotation Velocity?

    NASA Astrophysics Data System (ADS)

    Danilovich, Taissa; Jones, H.; Mould, J.; Taylor, E.; Tonini, C.; Webster, R.

    2011-05-01

    Hubble's classification of spiral galaxies was one dimensional. Actually it was 1.5 dimensional, as he distinguished barred spirals. Van den Bergh's was two dimensional: spirals had luminosity classes too. Other schemes are summarized at http://www.daviddarling.info/encyclopedia/G/galaxyclassification.html A more quantitative approach is to classify spiral galaxies by rotation velocity. Their central velocity dispersion (bulge) tends to be roughly one half of their rotation velocity (disk). There is a trend from σ/W = 0.8 to σ/W = 0.2 as one goes from W = 100 to 500 km/s, where W is twice the rotation velocity. But some fraction of spirals have a velocity dispersion up to a factor of two larger than that. In hierarchical galaxy formation models, the relative contributions of σ and W depend on the mass accretion history of the galaxy, which determines the mass distribution of the dynamical components such as disk, bulge and dark matter halo. The wide variety of histories that originate in the hierarchical mass assembly produce at any value of W a wide range of σ/W, that reaches high values in more bulge- dominated systems. In a sense the two classifiers were both right: spirals are mostly one dimensional, but σ/W (bulge to disk ratio) is often larger than average. Is this a signature of merger history?

  4. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  5. The Scaling of Stellar Mass and Central Stellar Velocity Dispersion for Quiescent Galaxies at z<0.7

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Geller, Margaret J.; Fabricant, Daniel G.; Hwang, Ho Seong

    2016-12-01

    We examine the relation between stellar mass and central stellar velocity dispersion—the M * σ relation—for massive quiescent galaxies at z < 0.7. We measure the local relation from the Sloan Digital Sky Survey and the intermediate redshift relation from the Smithsonian Hectospec Lensing Survey. Both samples are highly complete (>85%) and we consistently measure the stellar mass and velocity dispersion for the two samples. The M * σ relation and its scatter are independent of redshift with σ \\propto {M}* 0.3 for M * ≳ 1010.3 M ⊙. The measured slope of the M * σ relation is the same as the scaling between the total halo mass and the dark matter halo velocity dispersion obtained by N-body simulations. This consistency suggests that massive quiescent galaxies are virialized systems, where the central dark matter concentration is either a constant or negligible fraction of the stellar mass. The relation between the total galaxy mass (stellar + dark matter) and the central stellar velocity dispersion is consistent with the observed relation between the total mass of a galaxy cluster and the velocity dispersion of the cluster members. This result suggests that the central stellar velocity dispersion is directly proportional to the velocity dispersion of the dark matter halo. Thus, the central stellar velocity dispersion is a fundamental, directly observable property of galaxies, which may robustly connect galaxies to dark matter halos in N-body simulations. To interpret the results further in the context of ΛCDM, it would be useful to analyze the relationship between the velocity dispersion of stellar particles and the velocity dispersion characterizing their dark matter halos in high-resolution cosmological hydrodynamic simulations.

  6. Star formation activity of intermediate redshift cluster galaxies out to the infall regions

    NASA Astrophysics Data System (ADS)

    Gerken, B.; Ziegler, B.; Balogh, M.; Gilbank, D.; Fritz, A.; Jäger, K.

    2004-07-01

    We present a spectroscopic analysis of two galaxy clusters at z≈0.2, out to ˜4 Mpc. The two clusters VMF73 and VMF74 as identified by \\citet{VMFJQH98} were observed with multiple object spectroscopy using MOSCA at the Calar Alto 3.5 m telescope. Both clusters lie in the ROSAT Position Sensitive Proportional Counter field R285 and were selected from the X-ray Dark Cluster Survey \\citep{GBCZ04} that provides optical V- and I-band data. VMF73 and VMF74 are located at respective redshifts of z=0.25 and z=0.18 with velocity dispersions of 671 km s-1 and 442 km s-1, respectively. Both cluster velocity dispersions are consistent with Gaussians. The spectroscopic observations reach out to ˜2.5 virial radii. Line strength measurements of the emission lines Hα and [O II]λ3727 are used to assess the star formation activity of cluster galaxies which show radial and density dependences. The mean and median of both line strength distributions as well as the fraction of star forming galaxies increase with increasing clustercentric distance and decreasing local galaxy density. Except for two galaxies with strong Hα and [O II] emission, all of the cluster galaxies are normal star forming or passive galaxies. Our results are consistent with other studies that show the truncation in star formation occurs far from the cluster centre. Table A.1 is only available in electronic from at http//www.edpsciences.org

  7. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  8. A velocity dipole in the distribution of radio galaxies.

    PubMed

    Blake, Chris; Wall, Jasper

    2002-03-14

    The motion of our Galaxy through the Universe is reflected in a systematic shift in the temperature of the cosmic microwave background-because of the Doppler effect, the temperature of the background is about 0.1 per cent higher in the direction of motion, with a correspondingly lower temperature in the opposite direction. This effect is known as dipole anisotropy. If our standard cosmological model is correct, a related dipole effect should also be present as an enhancement in the surface density of distant galaxies in the direction of motion. The main obstacle to finding this signal is the uneven distribution of galaxies in the local supercluster, which drowns out the small cosmological signal. Here we report a detection of the expected cosmological dipole anisotropy in the distribution of galaxies. We use a survey of radio galaxies that are mainly located at cosmological distances, so the contamination from nearby clusters is small. When local radio galaxies are removed from the sample, the resulting dipole is in the same direction as the temperature anisotropy of the microwave background, and close to the expected amplitude. The result therefore confirms the standard cosmological interpretation of the microwave background.

  9. Capturing a Star Formation Burst in Galaxies Infalling onto the Cluster A1367

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Cortese, L.; Boselli, A.; Iglesias-Paramo, J.; Vílchez, J. M.; Carrasco, L.

    2003-11-01

    The discovery of a striking astrophysical laboratory in the cluster of galaxies A1367 by Sakai and coworkers is confirmed with independent imaging and spectroscopic observations and further investigated in the present analysis. Two giant and 10 dwarf/H II galaxies, members of a group, are simultaneously undergoing a burst of star formation. Redshift measurements suggest that the group galaxies are in the process of falling into the cluster at very high speed. We explore two possible mechanisms that could have triggered the short-lived stellar burst that we are witnessing: the first, internal to the group itself, via tidal interactions among its members, the hypothesis favored by Sakai et al.; the second associated with the high-velocity infall of the group galaxies into the cluster intergalactic medium. We present evidence in favor of and against the two hypotheses.

  10. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST

  11. Velocity dispersions in the bulges of spiral and S0 galaxies. II Further observations and a simple three-component model for spiral galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, B. C.; Kirshner, R. P.

    1981-11-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L ∝ σ4, but with velocity dispersions that are 17 ± 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L ∝ σ4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. We also find that the bulge components of SO galaxies follow a L ∝ σ4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar. We have compared our velocity dispersions with rotational velocities determined from neutral hydrogen widths. For a totally bulge dominated spiral the ratio of the asymptotic rotational velocity to the velocity dispersion is about 1.4. This suggests that the mass responsible for producing the flat rotation curves (presumably the "halo") resides in a spheroidal component rather than in the disk. Our study also substantiates our earlier result that the massive halo is not merely an extension of the bulge, but is a separate dynamical component for most of our galaxies. A simple three-component model has been constructed to aid in the interpretation of this data. These models provide an independent indication of the existence of massive halos in spiral galaxies.

  12. The Formation of Cluster Populations Through Direct Galaxy Collisions

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley W.; Smith, Beverly J.; Struck, Curtis

    2016-01-01

    Much progress has been made on the question of how globular clusters form. In particular, the study of extragalactic populations of young, high-mass clusters ("super star clusters") has revealed a class of objects can evolve into globular clusters. The process by which these clusters form, and how many survive long enough to become globular clusters, is not wholly understood. Here, we use new data on the colliding galaxy system Arp 261 to investigate the possibility that young, massive clusters form in greater numbers during direct galaxy collisions, compared to less direct tidal collisions.

  13. Old Massive Star Clusters in the Halo of Dwarf Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hwang, Narae

    2015-08-01

    We present photometric and spectroscopic studies of halo star clusters in a dwarf irregular galaxy NGC 6822. The spectra of these halo clusters show that they are old (>=8 Gyr) and metal poor ([Fe/H] <=-1.5), and their luminosities indicate that these clusters are as massive as ~105 M⊙, which makes them old massive star clusters (Hwang et al. 2014). The massive star clusters are not uncommon in dwarf galaxies. However, these massive clusters in NGC 6822 are unique in terms that they have extended structure with half-light radii Rh ≈ 7.5 -14.0 pc, and that they are widely distributed, ranging from 10.‧7 (≈1.5 kpc) to 77‧ (≈11 kpc) from NGC 6822 center, which is almost perpendicular to the HI gas disk-like structure with young stellar components (Hwang et al. 2011). Interestingly, we have found out that the radial velocities of the massive clusters do not conform to the systematic rotation displayed by the HI structure nor the intermediate age carbon stars. There appears to be no consistent systematics among the velocities of these massive clusters, either. This may imply that these massive clusters have accreted into the halo of NGC 6822, not formed on-site. We are going to discuss the implication of these results regarding the formation of massive star clusters and the evolution of dwarf galaxies.

  14. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  15. Dissecting simulated disc galaxies - II. The age-velocity relation

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Minchev, Ivan; Flynn, Chris

    2014-09-01

    We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on the merger history at low redshift, with even 1:10-1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are of the order of 30 per cent). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ˜0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in σz is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.

  16. Cosmology with EMSS Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. Mark

    1999-01-01

    We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.

  17. Formation and evolution of star clusters in merging galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Qing

    2002-04-01

    Recent observations have revealed numerous young massive star clusters, often known as “young globular clusters”. Their formation and evolution are important astrophysical processes and may potentially have cosmological implications. In this work, we focus on the star clusters in the nearest ongoing merger NGC 4038/9 (the “Antennae”). With the Hubble Space Telescope, we identify clusters with all ages, most of which are younger than 20 Myr. Our goal is to study their formation mechanisms, and the relation with the interstellar medium environment, and their evolutionary connection with old globular clusters. We find that their luminosity function and mass function are best described as power laws with indices around -2. The masses of young star clusters cover the range 104 ≤ M ≤ 10 6 M⊙ . This result is distinctly different from that of old globular clusters that has a “preferred” scale at M ≈ 2 × 105 M⊙ . To understand the difference in MF between the young and old star clusters, we conduct a theoretical study on the effects of dynamical disruption of individual clusters on the mass function. We find that, for a wide variety of initial conditions, the mass function develops a characteristic scale, that is remarkably close to the observed one for globular clusters after 12 Gyr. In addition, we find that some radial anisotropy in the initial velocity distribution, especially when decreasing outward, is needed to account for the observed near-uniformity of the mass functions of globular clusters. This is consistent with the observed near-isotropy of the present velocity distributions because clusters on elongated orbits are preferentially destroyed. In order to understand the formation and feedback effects of young star clusters, we have also conducted a multi- wavelength study on the association between young star clusters and their interstellar environment in the Antennae galaxies. This is possible for the first time because various new

  18. Scaling Relations of Mass, Velocity, and Radius for Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Earl

    2017-02-01

    I demonstrate four tight correlations of total baryonic mass, velocity, and radius for a set of nearby disk galaxies: the mass–velocity relation {M}{{t}}\\propto {V}4; the mass–radius relation {M}{{t}}\\propto {R}2; the radius–velocity relation R\\propto {V}2; and the mass–radius–velocity relation {M}{{t}}\\propto {{RV}}2. The mass–velocity relation is the familiar Baryonic Tully–Fisher relation, and versions of the other three relations, using magnitude rather than baryonic mass, are also well known. These four observed correlations follow from a pair of more fundamental relations. First, the centripetal acceleration at the edge of the stellar disk is proportional to the acceleration predicted by Newtonian physics, and second, this acceleration is a constant that is related to Milgrom’s constant. The two primary relations can be manipulated algebraically to generate the four observed correlations and allow little room for dark matter inside the radius of the stellar disk. The primary relations do not explain the velocity of the outer gaseous disks of spiral galaxies, which do not trace the Newtonian gravitational field of the observed matter.

  19. The Luminosity Functions of Low Redshift Field and Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Jorgensen, I.; Hill, G. J.; Bergmann, M. P.; Elston, R.; Vanden Berk, D.; Jurcevic, J. S.

    1999-12-01

    We present a comparison of the luminosity functions for low redshift field and cluster galaxies. The luminosity functions are established for field galaxies in UBVRI, and for galaxies in the Coma cluster in UBRI. The field galaxy sample is drawn from The Texas Deep Sky Survey (TDSS) of a 2.1 by 2.1 sq. deg. area around the North Galactic Pole. More than 40000 objects have been detected in our survey of this area. We have obtained spectra of approximately 700 galaxies, making the redshift information complete to a total R magnitude of 18.5 mag. We have surveyed the central square degree of the Coma cluster in UBRI. Approximately 16000 objects have been detected in our survey. We have obtained spectra for 220 galaxies in the area with no previous measurements. Together with published data these observations make the redshift information complete for galaxies brighter than a total R magnitude of 17.5. A total of 480 members of the cluster have measured redshifts, while 180 background and foreground galaxies in the field have measured redshifts. The accurate determination of the luminosity functions for low redshift galaxies is important for the interpretation of luminosity functions established for higher redshift galaxies, both in clusters and in the field. This research was supported in part by NASA through grant number HF-01073.01.94A to IJ from the Space Telescope Science Institute.

  20. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  1. Investigation of dwarf galaxies in the Virgo cluster

    SciTech Connect

    Bothun, G.D.; Mould, J.R.; Wirth, A.; Caldwell, N.

    1985-05-01

    We have obtained 21-cm H I observations of a sample of 32 dwarf irregular (dI) and 12 dwarf elliptical (dE) galaxies that are located in the Virgo cluster. Altogether, 18 of 32 DIs were detected in H I, but none of the dEs were detected at a sensitivity level of M/sub Htsi/ = 2--3 x 10/sup 6/ M/sub sun/. The detected dIs have M/sub Htsi/>3 x 10/sup 7/ M/sub sun/. This disparity in H I content between dIs and dEs effectively dispels the possibility that the dEs are presently in a stage of quiescence (hibernation), between bursts of star formation. In order to supplement the 21-cm data, we have acquired optical spectroscopy, CCD images, and infrared photometry for a limited subsample of these dwarfs. The most significant result provided by this additional data is that the dEs, although very H I poor, nevertheless have observed (J-K) colors which indicate somewhat high metallicity, implying some degree of enrichment due to multiple generations of star formation. In contrast, most of the dIs are quite H I rich (with some having fractional H I contents that exceed 30% by mass), yet they are apparently in a quiescent phase, judging by their low central surface brightnesses (<10% of sky) and lack of resolution into obvious regions of star formation. A small gas-poor contingent of dIs have been found but there is no apparent correlation between dI gas content and either their velocity with respect to the Virgo ICM or their position in the cluster. In general, the velocity distribution of the dIs is flat with only a weak peak that corresponds to the mean velocity of the brighter galaxies in Virgo.

  2. Constraining Dark Matter Through the Study of Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dawson, William Anthony

    2013-03-01

    Context: The majority (~85%) of the matter in the universe is composed of dark matter, a mysterious particle that does not interact via the electromagnetic force yet does interact with all other matter via the gravitational force. Many direct detection experiments have been devoted to finding interactions of dark matter with baryonic matter via the weak force. It is still possible that dark matter interacts with itself via a strong scale force and has a self-scattering cross-section of ~0.5 cm2g -1. In fact such a strong scale scattering force could resolve several outstanding astronomical mysteries: a discrepancy between the cuspy density profiles seen in ΛCDM simulations and the cored density profiles observed in low surface brightness galaxies, dwarf spheroidal galaxies, and galaxy clusters, as well as the discrepancy between the significant number of massive Milky Way dwarf spheroidal halos predicted by ΛCDM and the dearth of observed Milky Way dwarf spheroidal halos. Need: While such observations are in conflict with ΛCDM and suggest that dark matter may self-scatter, each suffers from a baryonic degeneracy, where the observations might be explained by various baryonic processes (e.g., AGN or supernove feedback, stellar winds, etc.) rather than self-interacting dark matter (SIDM). If dark matter lags behind the effectively collisionless galaxies then this is clear evidence that dark matter self-interacts. The expected galaxy-dark matter offset is typically >25 kpc (for cross-sections that would explain the other aforementioned issues with ΛCDM), this is larger than the scales of that are plagued by the baryonic degeneracies. Task: To test whether dark matter self-interacts we have carried out a comprehensive survey of the dissociative merging galaxy cluster DLSCL J0916.2+2951 (also known as the Musket Ball Cluster). This survey includes photometric and spectroscopic observations to quantify the position and velocity of the cluster galaxies, weak

  3. Clusters of galaxies and the hot intracluster medium

    NASA Technical Reports Server (NTRS)

    Jones, C.; Forman, W.

    1990-01-01

    The luminous material in clusters of galaxies falls primarily into two forms: the visible galaxies and the X-ray emitting intracluster medium. The hot intracluster medium is the major observed baryonic component of clusters with a mass equal to or greater than that of the stellar matter. In this paper, the structure and morphology of rich clusters as inferred from X-ray observations of the ICM are reviewed. Changes in the efficiency of galaxy formation for different clusters and the origin of the intracluster medium are also discussed.

  4. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    SciTech Connect

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second part focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments

  5. Cosmology with galaxy cluster phase spaces

    NASA Astrophysics Data System (ADS)

    Stark, Alejo; Miller, Christopher J.; Huterer, Dragan

    2017-07-01

    We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters that describe the cosmological expansion history. We find that our probe has the potential of providing constraints comparable to, or even stronger than, those from other cosmological probes. More specifically, with 1000 (100) clusters uniformly distributed in the redshift range 0 ≤z ≤0.8 , after applying a conservative 80% mass scatter prior on each cluster and marginalizing over all other parameters, we forecast 1 σ constraints on the dark energy equation of state w and matter density parameter ΩM of σw=0.138 (0.431 ) and σΩM=0.007(0.025 ) in a flat universe. Assuming 40% mass scatter and adding a prior on the Hubble constant we can achieve a constraint on the Chevallier-Polarski-Linder parametrization of the dark energy equation of state parameters w0 and wa with 100 clusters in the same redshift range: σw 0=0.191 and σwa=2.712. Dropping the assumption of flatness and assuming w =-1 we also attain competitive constraints on the matter and dark energy density parameters: σΩ M=0.101 and σΩ Λ=0.197 for 100 clusters uniformly distributed in the range 0 ≤z ≤0.8 after applying a prior on the Hubble constant. We also discuss various observational strategies for tightening constraints in both the near and far future.

  6. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster?

    NASA Astrophysics Data System (ADS)

    ZuHone, John A.; Miller, Eric D.; Bulbul, Esra; Zhuravleva, Irina

    2017-08-01

    Recently, the Hitomi X-ray Observatory provided the first-ever direct measurements of Doppler line shifting and broadening from the hot plasma in clusters of galaxies via its observations of the Perseus Cluster. It has been reported that these observations demonstrate that the ICM in Perseus is "quiescent". It is indisputable that the velocities inferred from the measured line shifts and broadening are low, but what do these observations imply about the structure of the velocity field on scales smaller than the Hitomi PSF? We use hydrodynamic simulations of gas motions in a cool-core cluster in combination with synthetic Hitomi observations in order to compare the observed line-of-sight velocities to the 3D velocity structure of the ICM, and assess the impact of Hitomi's spatial resolution and the effects of varying the underlying ICM physics.

  7. Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia

    2016-09-01

    We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

  8. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  9. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  10. Turbulence Produced by Tsunamis in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Matsumoto, Tomoaki; Wada, Keiichi

    2004-12-01

    Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T˜ 2--10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the `cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

  11. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  12. The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani

    2017-08-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.

  13. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0 galaxies in galaxy clusters with log M {sub *} ≲ 10.0 M {sub ☉}.

  14. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  15. AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Scannapieco, E.

    Hot, underdense bubbles powered by active galactic nuclei (AGN) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive-mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. Pure-hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas. However, proper modeling of subgrid turbulence shows that Rayleigh-Taylor instabilities act to mix the heated regions with their surroundings, while at the same time preserving them as coherent structures, consistent with observations. Thus bubbles are transformed into hot clouds of mixed material as they move outwards in the hydrostatic intracluster medium. Properly capturing the evolution of such clouds has important implications for many ICM properties.

  16. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II.. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, B.; Noll, S.; Halliday, C.; Poggianti, B. M.; Jablonka, P.; Aragón-Salamanca, A.; Saglia, R. P.; Nowak, N.; von der Linden, A.; De Lucia, G.; Pelló, R.; Moustakas, J.; Poirier, S.; Bamford, S. P.; Clowe, D. I.; Dalcanton, J. J.; Rudnick, G. H.; Simard, L.; White, S. D. M.; Zaritsky, D.

    2008-05-01

    Aims: We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. Methods: We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. Results: The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters. Conclusions: Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for 26 EDisCS clusters with redshifts in the range 0.40-0.96 and velocity dispersions in the range 166 km s-1-1080 km s-1. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419

  17. VLT/Magellan Spectroscopy of 29 Strong Lensing Selected Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Carrasco, Mauricio; Barrientos, L. Felipe; Anguita, Timo; García-Vergara, Cristina; Bayliss, Matthew; Gladders, Michael; Gilbank, David; Yee, H. K. C.; West, Michael

    2017-01-01

    We present an extensive spectroscopic follow-up campaign of 29 strong lensing (SL) selected galaxy clusters discovered primarily in the Second Red-Sequence Cluster Survey (RCS-2). Our spectroscopic analysis yields redshifts for 52 gravitational arcs present in the core of our galaxy clusters, which correspond to 35 distinct background sources that are clearly distorted by the gravitational potential of these clusters. These lensed galaxies span a wide redshift range of 0.8 ≤ z ≤ 2.9, with a median redshift of zs = 1.8 ± 0.1. We also measure reliable redshifts for 1004 cluster members, allowing us to obtain robust velocity dispersion measurements for 23 of these clusters, which we then use to determine their dynamical masses by using a simulation-based σDM ‑ M200 scaling relation. The redshift and mass ranges covered by our SL sample are 0.22 ≤ z ≤ 1.01 and 5× {10}13≤slant {M}200/{h}70-1 {M}ȯ ≤slant 1.9× {10}15, respectively. We analyze and quantify some possible effects that might bias our mass estimates, such as the presence of substructure, the region where cluster members are selected for spectroscopic follow-up, the final number of confirmed members, and line-of-sight effects. We find that 10 clusters of our sample with Nmem ≳ 20 show signs of dynamical substructure. However, the velocity data of only one system is inconsistent with a uni-modal distribution. We therefore assume that the substructures are only marginal and not of comparable size to the clusters themselves. Consequently, our velocity dispersion and mass estimates can be used as priors for SL mass reconstruction studies and also represent an important step toward a better understanding of the properties of the SL galaxy cluster population.

  18. A new giant luminous arc gravitational lens associated with a z = 0.62 galaxy cluster, and the environments of distant radio galaxies

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1993-01-01

    In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.

  19. Stellar-to-halo mass relation of cluster galaxies

    DOE PAGES

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...

    2017-07-04

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected dis