NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1990-01-01
The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.
Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog
NASA Astrophysics Data System (ADS)
Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.
We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups
The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data
NASA Astrophysics Data System (ADS)
Connolly, Andrew J.; Scranton, Ryan; Johnston, David; Dodelson, Scott; Eisenstein, Daniel J.; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Postman, Marc; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, István; Tegmark, Max; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta; Brinkmann, J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert; Ichikawa, Takashi; Ivezić, Željko; Kim, Rita S. J.; Knapp, Gillian R.; Kunszt, Peter; Lamb, D. Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Munn, Jeff; Peoples, John; Pier, Jeff; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.
2002-11-01
The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local universe. In this paper we present some of the initial results on the angular two-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18
Higher order correlations of IRAS galaxies
NASA Technical Reports Server (NTRS)
Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander
1992-01-01
The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.
Discriminating topology in galaxy distributions using network analysis
NASA Astrophysics Data System (ADS)
Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl
2016-07-01
The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.
Calculating the n-point correlation function with general and efficient python code
NASA Astrophysics Data System (ADS)
Genier, Fred; Bellis, Matthew
2018-01-01
There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.
Galaxy Clustering Around Nearby Luminous Quasars
NASA Technical Reports Server (NTRS)
Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.
1996-01-01
We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.
Evidence for biasing in the CfA survey
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.
Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Lam; LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027
2007-11-15
It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separationmore » of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys.« less
On hierarchical solutions to the BBGKY hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less
NASA Technical Reports Server (NTRS)
Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.
1991-01-01
Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.
Do Galactic Potential Wells Depend on Their Largescale Environment
NASA Astrophysics Data System (ADS)
Mo, H. J.; Lahav, O.
1993-04-01
We study the dependence of the intrinsic velocities of galaxies on their large-scale environment, using a cross-correlation technique that provides an objective way of defining the local overdensity of `trace' galaxies around `target' galaxies. We use galaxies in optical (CfA and SSRS) and IRAS redshift surveys as tracers of the density field, and about 1000 spiral galaxies with measured circular velocities and elliptical galaxies with measured velocity dispersion as `targets'. We find that the correlation function tends to increase with circular velocity, the trend being weak except in the case of cD-like elliptical galaxies with the highest velocity dispersions (σ >~ 300 km s^-1^), where the effect is strong, possibly due to morphological segregations in clusters of galaxies. A fit to the mean overdensity δ(r < r_p_) of the trace galaxies (in spheres of radius r_p_) around target galaxies as a function of the circular velocities V_c_ shows a weak increase of δ with v_c_, with slope {DELTA}δ(r<~3.6 h^-1^ Mpc)/{DELTA}V_c_ <~ 0.02. The observed weak correlation is contrasted with the strong dependence of the correlation functions of dark haloes on their circular velocities predicted in some (e.g. high-biasing cold dark matter) models for galaxy formation. In particular, our results are inconsistent with the prediction of the `natural' (high) biasing model at a high significance level. Comparison of our results with those of a simple biasing model suggests that either the observed circular velocities of galaxies are not simply related to the circular velocities of dark haloes, or most dark haloes were formed at high redshifts, or the galaxy distribution does not trace the matter distribution in a simple way.
Redshift space clustering of galaxies and cold dark matter model
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.
The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2more » h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.« less
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.
2018-06-01
Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.
On the universality of the two-point galaxy correlation function
NASA Technical Reports Server (NTRS)
Davis, Marc; Meiksin, Avery; Strauss, Michael A.; Da Costa, L. Nicolaci; Yahil, Amos
1988-01-01
The behavior of the two-point galaxy correlation function in volume-limited subsamples of three complete redshift surveys is investigated. The correlation length is shown to scale approximately as the square root of the distance limit in both the CfA and Southern Sky catalogs, but to be independent of the distance limit in the IRAS sample. This effect is found to be due to factors such as the large positive density fluctuations in the foreground of the optically selected catalogs biasing the correlation length estimate downward, and the brightest galaxies appearing to be more strongly clustered than the mean.
Environment of Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hou, K.-c.; Chen, L.-w.
2013-10-01
To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.
A cross-correlation-based estimate of the galaxy luminosity function
NASA Astrophysics Data System (ADS)
van Daalen, Marcel P.; White, Martin
2018-06-01
We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward
1991-01-01
It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.
Galaxy clusters and cold dark matter - A low-density unbiased universe?
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue
1992-01-01
Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.
Uncertainties in the cluster-cluster correlation function
NASA Astrophysics Data System (ADS)
Ling, E. N.; Frenk, C. S.; Barrow, J. D.
1986-12-01
The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.
NASA Astrophysics Data System (ADS)
Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-09-01
We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo
We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifiesmore » the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillermo A.; Lira, Paulina; Francke, Harold
2008-07-10
We present K-band imaging of two {approx}30{sup '} x 30{sup '} fields covered by the Multiwavelength Survey by Yale-Chile (MUSYC) Wide NIR Survey. The SDSS 1030+05 and Cast 1255 fields were imaged with the Infrared Side Port Imager (ISPI) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) to a 5 {sigma} point-source limiting depth of K {approx} 20 (Vega). Combining these data with the MUSYC optical UBVRIz imaging, we created multiband K-selected source catalogs for both fields. These catalogs, together with the MUSYC K-band catalog of the Extended Chandra Deep Field South (ECDF-S) field, weremore » used to select K < 20 BzK galaxies over an area of 0.71 deg{sup 2}. This is the largest area ever surveyed for BzK galaxies. We present number counts, redshift distributions, and stellar masses for our sample of 3261 BzK galaxies (2502 star-forming [sBzK] and 759 passively evolving [pBzK]), as well as reddening and star formation rate estimates for the star-forming BzK systems. We also present two-point angular correlation functions and spatial correlation lengths for both sBzK and pBzK galaxies and show that previous estimates of the correlation function of these galaxies were affected by cosmic variance due to the small areas surveyed. We have measured correlation lengths r{sub 0} of 8.89 {+-} 2.03 and 10.82 {+-} 1.72 Mpc for sBzK and pBzK galaxies, respectively. This is the first reported measurement of the spatial correlation function of passive BzK galaxies. In the {lambda}CDM scenario of galaxy formation, these correlation lengths at z {approx} 2 translate into minimum masses of {approx}4 x 10{sup 12} and {approx}9 x 10{sup 12} M{sub sun} for the dark matter halos hosting sBzK and pBzK galaxies, respectively. The clustering properties of the galaxies in our sample are consistent with their being the descendants of bright Lyman break galaxies at z {approx} 3, and the progenitors of present-day >1L{sup *} galaxies.« less
Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy
NASA Astrophysics Data System (ADS)
Papastergis, E.
2013-09-01
We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.
Predicting galaxy star formation rates via the co-evolution of galaxies and haloes
NASA Astrophysics Data System (ADS)
Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.
2015-01-01
In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.
Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data
NASA Astrophysics Data System (ADS)
Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.
2002-05-01
We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.
N-point correlation functions in the CfA and SSRS redshift distribution of galaxies
NASA Technical Reports Server (NTRS)
Gaztanaga, Enrique
1992-01-01
Using counts in cells, we estimate the volume-average N-point galaxy correlation functions for N = 2, 3, and 4, in redshift samples of the CfA and SSRS catalogs. Volume-limited samples of different sizes are used to study the uncertainties at different scales, the shot noise, and the problem with the boundaries. The hierarchical constants S3 and S4 agree well in all samples in CfA and SSRS, with average S3 = 194 +/- 0.07 and S4 = 4.56 +/- 0.53. We compare these results with estimates obtained from angular catalogs and recent analysis over IRAS samples. The amplitudes SJ seem larger in real space than in redshift space, although the values from the angular analysis correspond to smaller scales, where we might expect larger nonperturbative effects. It is also found that S3 and S4 are smaller for IRAS than for optical galaxies. This, together with the fact that IRAS galaxies have smaller amplitude for the above correlation functions, indicates that the density fluctuations of IRAS galaxies cannot be simply proportional to the density fluctuations of optical galaxies, i.e., biasing has to be nonlinear between them.
Far-infrared emission and star formation in spiral galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Bandiera, R.
1989-01-01
The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Blake, Chris; Poole, Gregory B.; Marin, Felipe
2013-04-01
We use high-resolution N-body simulations to develop a new, flexible empirical approach for measuring the growth rate from redshift-space distortions in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a 1 h-3 Gpc3 volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting luminous red galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the `standard' assumption of a power-law correlation function can result in a significant systematic error in the growth-rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10 per cent) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper, we present the application of our new methodology to the WiggleZ Survey data set.
Galaxy-galaxy weak gravitational lensing in f(R) gravity
NASA Astrophysics Data System (ADS)
Li, Baojiu; Shirasaki, Masato
2018-03-01
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.
First results from the IllustrisTNG simulations: matter and galaxy clustering
NASA Astrophysics Data System (ADS)
Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill
2018-03-01
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
Testing modified gravity using a marked correlation function
NASA Astrophysics Data System (ADS)
Armijo, Joaquí n.; Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu; Peacock, John A.
2018-05-01
In theories of modified gravity with the chameleon screening mechanism, the strength of the fifth force depends on environment. This induces an environment dependence of structure formation, which differs from ΛCDM. We show that these differences can be captured by the marked correlation function. With the galaxy correlation functions and number densities calibrated to match between f(R) and ΛCDM models in simulations, we show that the marked correlation functions from using either the local galaxy number density or halo mass as the marks encode extra information, which can be used to test these theories. We discuss possible applications of these statistics in observations.
NASA Astrophysics Data System (ADS)
Wang, Lan; De Lucia, Gabriella; Weinmann, Simone M.
2013-05-01
The empirical traditional halo occupation distribution (HOD) model of Wang et al. fits, by construction, both the stellar mass function and correlation function of galaxies in the local Universe. In contrast, the semi-analytical models of De Lucia & Blazoit (hereafter DLB07) and Guo et al. (hereafter Guo11), built on the same dark matter halo merger trees than the empirical model, still have difficulties in reproducing these observational data simultaneously. We compare the relations between the stellar mass of galaxies and their host halo mass in the three models, and find that they are different. When the relations are rescaled to have the same median values and the same scatter as in Wang et al., the rescaled DLB07 model can fit both the measured galaxy stellar mass function and the correlation function measured in different galaxy stellar mass bins. In contrast, the rescaled Guo11 model still overpredicts the clustering of low-mass galaxies. This indicates that the detail of how galaxies populate the scatter in the stellar mass-halo mass relation does play an important role in determining the correlation functions of galaxies. While the stellar mass of galaxies in the Wang et al. model depends only on halo mass and is randomly distributed within the scatter, galaxy stellar mass depends also on the halo formation time in semi-analytical models. At fixed value of infall mass, galaxies that lie above the median stellar mass-halo mass relation reside in haloes that formed earlier, while galaxies that lie below the median relation reside in haloes that formed later. This effect is much stronger in Guo11 than in DLB07, which explains the overclustering of low mass galaxies in Guo11. Assembly bias in Guo11 model might be overly strong. Nevertheless, in case that a significant assembly bias indeed exists in the real Universe, one needs to use caution when applying current HOD and abundance matching models that employ the assumption of random scatter in the relation between stellar and halo mass.
Strong Clustering of Lyman Break Galaxies around Luminous Quasars at Z ˜ 4
NASA Astrophysics Data System (ADS)
García-Vergara, Cristina; Hennawi, Joseph F.; Barrientos, L. Felipe; Rix, Hans-Walter
2017-10-01
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z ˜ 4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z ˜ 4 QSO fields with VLT/FORS, exploiting a novel set of narrow-band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of {{Δ }}z˜ 0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z≳ 4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z ˜ 4, on scales of 0.1≲ R≲ 9 {h}-1 {Mpc} (comoving). Assuming a power-law form for the cross-correlation function ξ ={(r/{r}0{QG})}γ , we measure {r}0{QG}={8.83}-1.51+1.39 {h}-1 {Mpc} for a fixed slope of γ =2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a deterministic bias model. We also measure a strong auto-correlation of LBGs in our QSO fields, finding {r}0{GG}={21.59}-1.69+1.72 {h}-1 {Mpc} for a fixed slope of γ =1.5, which is ˜4 times larger than the LBG auto-correlation length in blank fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive ({M}{halo}> {10}12 {M}⊙ ) dark matter halos at z ˜ 4.
The Intrinsic Properties of SDSS Galaxies: Taking off the Rose Tinted Glasses
NASA Astrophysics Data System (ADS)
Maller, Ariyed; Berlind, A.; Blanton, M.; Hogg, D.
2006-12-01
It is well known that most galaxies contain dust. Dust reddens galaxies and does so as an increasing function of the galaxies observed inclination. Therefore when one looks at the properties of observed galaxies, such as the luminosity function, the correlation function or the color magnitude-diagram, one gets a distorted view of the properties of galaxies. This effect can be corrected for in a large galaxy sample such as the Sloan Digital Sky Survey. The procedure is to identify inclination dependence in an observed galaxy property, color being the most obvious choice, and then to solve for the function of inclination that will remove this observed dependence. In this way we can determine the intrinsic properties of galaxies, properties that are independent of their inclination. The distribution of these intrinsic properties give us an undistorted view into the nature of galaxies and are thus more useful for determining evolutionary effects and comparing to theoretical models.
Evolution of Clustering of Starburst Galaxies in the COSMOS Field
NASA Astrophysics Data System (ADS)
Tribiano, S. M.; Paglione, T. A. D.; Shopbell, P. L.; Capek, P.; Liu, C.; Tyson, N. D.; COSMOS Team
2005-12-01
We measure the angular and spatial correlation function, ω (θ ) on scales of θ = 3" - 300" and ξ (r) on scales of 1-25 h-1 Mpc of 18,801 starburst galaxies (SBGs) with 20 < i+AB < 25 in the COSMOS Field and compare to the correlation functions of the full galaxy sample (180,451 objects) over 0 < z ≤ 2.4. We find in all redshift slices of thickness dz = 0.4, except 0.8 < z ≤ 1.2 for ω (θ ) only, that the amplitude of the clustering of SBGs is greater than that of the full galaxy sample. We report results of fits to a power law profile, measured correlation lengths, and discuss implications for starburst environments. This work is supported by the CUNY Community College Collaborative Research Incentive Grant and the American Museum of Natural History.
Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift
NASA Technical Reports Server (NTRS)
Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.;
2010-01-01
We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.
Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos
Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...
2014-03-06
In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less
Constraints on galaxy formation theories
NASA Technical Reports Server (NTRS)
Szalay, A. S.
1986-01-01
The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.
NASA Astrophysics Data System (ADS)
Zu, Ying; Mandelbaum, Rachel
2018-05-01
Recent studies suggest that the quenching properties of galaxies are correlated over several megaparsecs. The large-scale `galactic conformity' phenomenon around central galaxies has been regarded as a potential signature of `galaxy assembly bias' or `pre-heating', both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu and Mandelbaum, we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in Sloan Digital Sky Survey, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more versus less red galaxy subsamples, split by the red-sequence ridge line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of (1) halo quenching and (2) the variation of halo mass function with environment - an indirect environmental effect mediated by two separate physical processes.
Mitigating the impact of the DESI fiber assignment on galaxy clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burden, Angela; Padmanabhan, Nikhil; Cahn, Robert N.
2017-03-01
We present a simple strategy to mitigate the impact of an incomplete spectroscopic redshift galaxy sample as a result of fiber assignment and survey tiling. The method has been designed for the Dark Energy Spectroscopic Instrument (DESI) galaxy survey but may have applications beyond this. We propose a modification to the usual correlation function that nulls the almost purely angular modes affected by survey incompleteness due to fiber assignment. Predictions of this modified statistic can be calculated given a model of the two point correlation function. The new statistic can be computed with a slight modification to the data cataloguesmore » input to the standard correlation function code and does not incur any additional computational time. Finally we show that the spherically averaged baryon acoustic oscillation signal is not biased by the new statistic.« less
NASA Astrophysics Data System (ADS)
van Uitert, Edo; Joachimi, Benjamin; Joudaki, Shahab; Amon, Alexandra; Heymans, Catherine; Köhlinger, Fabian; Asgari, Marika; Blake, Chris; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D.; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Miller, Lance; Nakajima, Reiko; Schneider, Peter; Valentijn, Edwin; Viola, Massimo
2018-06-01
We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28 {per cent} in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
NASA Astrophysics Data System (ADS)
Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team
2014-12-01
We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.
NASA Astrophysics Data System (ADS)
Hincks, Adam D.; Hajian, Amir; Addison, Graeme E.
2013-05-01
We cross-correlate the 100 μm Improved Reprocessing of the IRAS Survey (IRIS) map and galaxy clusters at 0.1 < z < 0.3 in the maxBCG catalogue taken from the Sloan Digital Sky Survey, measuring an angular cross-power spectrum over multipole moments 150 < l < 3000 at a total significance of over 40σ. The cross-spectrum, which arises from the spatial correlation between unresolved dusty galaxies that make up the cosmic infrared background (CIB) in the IRIS map and the galaxy clusters, is well-fit by a single power law with an index of -1.28±0.12, similar to the clustering of unresolved galaxies from cross-correlating far-infrared and submillimetre maps at longer wavelengths. Using a recent, phenomenological model for the spectral and clustering properties of the IRIS galaxies, we constrain the large-scale bias of the maxBCG clusters to be 2.6±1.4, consistent with existing analyses of the real-space cluster correlation function. The success of our method suggests that future CIB-optical cross-correlations using Planck and Herschel data will significantly improve our understanding of the clustering and redshift distribution of the faint CIB sources.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2018-01-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.
Peculiar velocity effect on galaxy correlation functions in nonlinear clustering regime
NASA Astrophysics Data System (ADS)
Matsubara, Takahiko
1994-03-01
We studied the distortion of the apparent distribution of galaxies in redshift space contaminated by the peculiar velocity effect. Specifically we obtained the expressions for N-point correlation functions in redshift space with given functional form for velocity distribution f(v) and evaluated two- and three-point correlation functions quantitatively. The effect of velocity correlations is also discussed. When the two-point correlation function in real space has a power-law form, Xir(r) is proportional to r(-gamma), the redshift-space counterpart on small scales also has a power-law form but with an increased power-law index: Xis(s) is proportional to s(1-gamma). When the three-point correlation function has the hierarchical form and the two-point correlation function has the power-law form in real space, the hierarchical form of the three-point correlation function is almost preserved in redshift space. The above analytic results are compared with the direct analysis based on N-body simulation data for cold dark matter models. Implications on the hierarchical clustering ansatz are discussed in detail.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution
NASA Astrophysics Data System (ADS)
Zoldan, Anna
2017-07-01
This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236
Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0
NASA Astrophysics Data System (ADS)
Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.
1999-02-01
We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.
The distribution of galaxies within the 'Great Wall'
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1992-01-01
The galaxy distribution within the 'Great Wall', the most striking feature in the first three 'slices' of the CfA redshift survey extension is examined. The Great Wall is extracted from the sample and is analyzed by counting galaxies in cells. The 'local' two-point correlation function within the Great Wall is computed and the local correlation length, is estimated 15/h Mpc, about 3 times larger than the correlation length for the entire sample. The redshift distribution of galaxies in the pencil-beam survey by Broadhurst et al. (1990) shows peaks separated about by large 'voids', at least to a redshift of about 0.3. The peaks might represent the intersections of their about 5/h Mpc pencil beams with structures similar to the Great Wall. Under this hypothesis, sampling of the Great Walls shows that l approximately 12/h Mpc is the minimum projected beam size required to detect all the 'walls' at redshifts between the peak of the selection function and the effective depth of the survey.
Lensing corrections to features in the angular two-point correlation function and power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam
2008-01-15
It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graur, Or; Bianco, Federica B.; Huang, Shan
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties.more » The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.« less
NASA Astrophysics Data System (ADS)
Graur, Or; Bianco, Federica B.; Huang, Shan; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Eldridge, J. J.
2017-03-01
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, I.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. Y.; Jing, Y. P.; Li, Cheng
2012-11-20
We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05,more » independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.« less
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.
1978-01-01
OSO-8 X-ray spectra from 2 to 20 keV were analyzed for 26 clusters of galaxies. Temperature, emission integrals, iron abundances, and low energy absorption measurements are given. Eight clusters have positive iron emission line detections at the 90% confidence level, and all twenty cluster spectra are consistent with Fe/H=0.000014 by number with the possible exception of Virgo. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that: (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral and therefore the bolometric X-ray luminosity is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central galaxy density than with richness; (4) temperature and emission integral are separately correlated with Rood-Sastry type; and (5) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
2015-08-01
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2017-06-01
We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.
Void statistics of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-01-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
Void statistics of the CfA redshift survey
NASA Astrophysics Data System (ADS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-11-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
Stellar mass functions and implications for a variable IMF
NASA Astrophysics Data System (ADS)
Bernardi, M.; Sheth, R. K.; Fischer, J.-L.; Meert, A.; Chae, K.-H.; Dominguez-Sanchez, H.; Huertas-Company, M.; Shankar, F.; Vikram, V.
2018-03-01
Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical to stellar population-based estimates of the mass of a galaxy (M_{*}^JAM/M_{*}) correlates with σe, the light-weighted velocity dispersion within its half-light radius, if M* is estimated using the same initial mass function (IMF) for all galaxies and the stellar mass-to-light ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, M_{*}^{α _{JAM}}, from M* and σe for a sample of 6 × 105 Sloan Digital Sky Survey (SDSS) galaxies for which spatially resolved kinematics is not available. We also compute the `virial' mass estimate k(n,R) R_e σ _R^2/G, where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an n-dependent correction must be applied to the k(n, R) values provided by Prugniel & Simien. Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)-γ(n). The resulting stellar mass functions, based on M_*^{α _{JAM}} and the recalibrated virial mass, are in good agreement. Using a Fundamental Plane-based observational proxy for σe produces comparable results. The use of direct measurements for estimating the IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars, especially at high redshift, at a fraction of the cost. Our results are provided in tabular form.
Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.
2016-01-01
We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.
SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment
NASA Astrophysics Data System (ADS)
Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.
2017-02-01
We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.; et al.
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less
Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan
2017-12-01
We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.
General relativistic corrections in density-shear correlations
NASA Astrophysics Data System (ADS)
Ghosh, Basundhara; Durrer, Ruth; Sellentin, Elena
2018-06-01
We investigate the corrections which relativistic light-cone computations induce on the correlation of the tangential shear with galaxy number counts, also known as galaxy-galaxy lensing. The standard-approach to galaxy-galaxy lensing treats the number density of sources in a foreground bin as observable, whereas it is in reality unobservable due to the presence of relativistic corrections. We find that already in the redshift range covered by the DES first year data, these currently neglected relativistic terms lead to a systematic correction of up to 50% in the density-shear correlation function for the highest redshift bins. This correction is dominated by the fact that a redshift bin of number counts does not only lens sources in a background bin, but is itself again lensed by all masses between the observer and the counted source population. Relativistic corrections are currently ignored in the standard galaxy-galaxy analyses, and the additional lensing of a counted source populations is only included in the error budget (via the covariance matrix). At increasingly higher redshifts and larger scales, these relativistic and lensing corrections become however increasingly more important, and we here argue that it is then more efficient, and also cleaner, to account for these corrections in the density-shear correlations.
High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Pattarakijwanich, Petchara
Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity in the same object. Given that AGN feedback is thought to be a likely mechanism responsible for quenching star-formation, post-starburst quasars provide ideal laboratory for studying this link. We explored various ways to identify post-starburst quasars, and construct our sample with more than 600 objects at high-redshift. This is the largest sample of post-starburst quasars available in the literature, and will be useful for AGN feedback studies. Finally, we studied the clustering properties of post-starburst galaxies through cross-correlation with CMASS galaxies. The real-space cross correlation function is a power-law with correlation length r0 ˜ 9.2 Mpc, and power-law index gamma ˜ 1.8. We also measure the linear bias of post-starburst galaxies to be bPSG ˜ 1.74 at redshift z = 0.62, corresponding to a dark matter halo mass of Mhalo ˜ 1.5 x 1013 M [special characters removed]. We found no evidence for redshift evolution in clustering properties for post-starburst galaxies.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
The association between gas and galaxies - II. The two-point correlation function
NASA Astrophysics Data System (ADS)
Wilman, R. J.; Morris, S. L.; Jannuzi, B. T.; Davé, R.; Shone, A. M.
2007-02-01
We measure the two-point correlation function, ξAG, between galaxies and quasar absorption-line systems at z < 1, using the data set of Morris & Jannuzi on 16 lines-of-sight (LOS) with ultraviolet (UV) spectroscopy and galaxy multi-object spectroscopy (Paper I). The measurements are made in 2D redshift space out to π = 20h-1 Mpc (comoving) along the LOS and out to σ = 2h-1 Mpc projected; as a function of HI column density in the range NHI = 1013-1019cm-2, also for CIV absorption systems, and as a function of galaxy spectral type. This extends the absorber-galaxy pair analysis of Paper I. We find that the amplitude of the peak in ξAG at the smallest separations increases slowly as the lower limit on NHI is increased from 1013 to 1016cm-2, and then jumps sharply (albeit with substantial uncertainties) for NHI > 1017cm-2. For CIV absorbers, the peak strength of ξAG is roughly comparable to that of HI absorbers with NHI > 1016.5cm-2, consistent with the finding that the CIV absorbers are associated with strong HI absorbers. We do not reproduce the differences reported by Chen et al. between 1D ξAG measurements using galaxy subsamples of different spectral types. However, the full impact on the measurements of systematic differences in our samples is hard to quantify. We compare the observations with smoothed particle hydrodynamical (SPH) simulations and discover that in the observations ξAG is more concentrated to the smallest separations than in the simulations. The latter also display a `finger of god' elongation of ξAG along the LOS in redshift space, which is absent from our data, but similar to that found by Ryan-Weber for the cross-correlation of quasar absorbers and HI-emission-selected galaxies. The physical origin of these `fingers of god' is unclear, and we thus highlight several possible areas for further investigation.
Clustering in the SDSS Redshift Survey
NASA Astrophysics Data System (ADS)
Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration
2002-05-01
We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.
The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder
2018-01-01
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.
NASA Technical Reports Server (NTRS)
Allen, R. J.
1992-01-01
The relation between the projected face-on velocity-integrated CO (1-0) brightness ICO and the 20 cm nonthermal radio continuum brightness T20 is examined as a function of radius in the Galactic disk. Averaged in 1 kpc annuli, the ratio ICO/T20 is nearly constant with a mean value of 1.51 +/- 0.34 km/s from 2 to 10 kpc. The manner in which ICO and T20 are derived for the Galaxy is different in several significant respects from the more direct observational determinations possible in nearby galaxies. The fact that the Galaxy also follows this correlation further strengthens the generality of the result.
NASA Astrophysics Data System (ADS)
Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team
2018-01-01
‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad; ...
2016-06-17
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
Cold dark matter. 2: Spatial and velocity statistics
NASA Technical Reports Server (NTRS)
Gelb, James M.; Bertschinger, Edmund
1994-01-01
We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.
NASA Astrophysics Data System (ADS)
Li, Cheng; Wang, Lixin; Jing, Y. P.
2013-01-01
It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.
NASA Astrophysics Data System (ADS)
Gaztañaga, Enrique; Juszkiewicz, Roman
2001-09-01
We present a new constraint on the biased galaxy formation picture. Gravitational instability theory predicts that the two-point mass density correlation function, ξ(r), has an inflection point at the separation r=r0, corresponding to the boundary between the linear and nonlinear regime of clustering, ξ~=1. We show how this feature can be used to constrain the biasing parameter b2≡ξg(r)/ξ(r) on scales r~=r0, where ξg is the galaxy-galaxy correlation function, which is allowed to differ from ξ. We apply our method to real data: the ξg(r), estimated from the Automatic Plate Measuring (APM) galaxy survey. Our results suggest that the APM galaxies trace the mass at separations r>~5 h-1 Mpc, where h is the Hubble constant in units of 100 km s-1 Mpc-1. The present results agree with earlier studies, based on comparing higher order correlations in the APM with weakly nonlinear perturbation theory. Both approaches constrain the b factor to be within 20% of unity. If the existence of the feature that we identified in the APM ξg(r)-the inflection point near ξg=1-is confirmed by more accurate surveys, we may have discovered gravity's smoking gun: the long-awaited ``shoulder'' in ξ, predicted by Gott and Rees 25 years ago.
DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groves, Brent A.; Schinnerer, Eva; Walter, Fabian
2015-01-20
We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we findmore » that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.« less
VizieR Online Data Catalog: Lick Observatory Supernova Search (LOSS) revisited (Graur+, 2017)
NASA Astrophysics Data System (ADS)
Graur, O.; Bianco, F. B.; Huang, S.; Modjaz, M.; Shivvers, I.; Filippenko, A. V.; Li, W.; Eldridge, J. J.
2017-10-01
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS; see Leaman+, 2011, J/MNRAS/412/1419) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey (SDSS) and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality-that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works. (7 data files).
Finding the Edge of the Galactic Wind's Influence
NASA Astrophysics Data System (ADS)
Werk, Jessica; Prochaska, J. Xavier; Tumlinson, Jason; Tripp, Todd; Thom, Christopher; Ford, Amanda Brady
2011-08-01
Brand new results from the HST Cosmic Origins Spectrograph on the low-z IGM combined with low-resolution optical spectroscopy of galaxy absorbers indicate that there is a correlation between the total star formation rates of L* galaxies and the strength of the OVI absorption in their halos out to 150 kpc. That diffuse, highly-ionized metals surrounding L* galaxies are a sensitive function of recent star formation suggests we may be seeing the effects of feedback in action in the far reaches of a galaxy's halo. Here, we propose to examine this correlation over a broader range of parameters, for galaxies with luminosities ranging from 0.01 L* to L*, having data- rich QSO sightlines passing through their halos at impact parameters up to 300 kpc. Using a combination of GMOS-S imaging and multi-slit spectroscopy, we will determine the star formation rates and metallicities of galaxies from the recently-published LCO/WFCCD redshift survey. We will use existing UV spectral data for the 14 QSO sightlines to analyze the OVI absorption in the circumgalactic medium of the surveyed galaxies. Our goal is to measure the radius at which OVI absorption no longer correlates with galaxy SFR. This observational estimate for the extent to which galactic winds propagate will provide robust constraints on the simulations that model their effects.
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.
2018-03-01
We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 degmore » $^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $$\\Lambda$$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $$\\Lambda$$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $$\\times$$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $$S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$$ and $$\\Omega_m = 0.264^{+0.032}_{-0.019}$$ for $$\\Lambda$$CDM for $w$CDM, we find $$S_8 = 0.794^{+0.029}_{-0.027}$$, $$\\Omega_m = 0.279^{+0.043}_{-0.022}$$, and $$w=-0.80^{+0.20}_{-0.22}$$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $$S_8$$ and $$\\Omega_m$$ are lower than the central values from Planck ...« less
PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1
NASA Astrophysics Data System (ADS)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.
GALAXY GROWTH BY MERGING IN THE NEARBY UNIVERSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Tao; Hogg, David W.; Blanton, Michael R., E-mail: david.hogg@nyu.edu
2012-11-10
We measure the mass growth rate by merging for a wide range of galaxy types. We present the small-scale (0.014 h {sup -1} {sub 70} Mpc < r < 11 h {sub 70} {sup -1} Mpc) projected cross-correlation functions w(r {sub p}) of galaxy subsamples from the spectroscopic sample of the NYU Value-Added Galaxy Catalog (5 Multiplication-Sign 10{sup 5} galaxies of redshifts 0.03 < z < 0.15) with galaxy subsamples from the Sloan Digital Sky Survey imaging (4 Multiplication-Sign 10{sup 7} galaxies). We use smooth fits to de-project the two-dimensional functions w(r {sub p}) to obtain smooth three-dimensional real-space cross-correlationmore » functions {xi}(r) for each of several spectroscopic subsamples with each of several imaging subsamples. Because close pairs are expected to merge, the three-space functions and dynamical evolution time estimates provide galaxy accretion rates. We find that the accretion onto massive blue galaxies and onto red galaxies is dominated by red companions, and that onto small-mass blue galaxies, red and blue galaxies make comparable contributions. We integrate over all types of companions and find that at fixed stellar mass, the total fractional accretion rates onto red galaxies ({approx}3 h {sub 70} percent per Gyr) are greater than that onto blue galaxies ({approx}1 h {sub 70} percent per Gyr). These rates are almost certainly overestimates because we have assumed that all close pairs merge as quickly as the merger time that we used. One conclusion of this work is that if the total growth of red galaxies from z = 1 to z = 0 is mainly due to merging, the merger rates must have been higher in the past.« less
Predicting weak lensing statistics from halo mass reconstructions - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, Spencer
2015-08-20
As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to makemore » predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
Galaxies and gas in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Katz, Neal; Hernquist, Lars; Weinberg, David H.
1992-01-01
We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.
The Very Local Universe in X-Rays
NASA Technical Reports Server (NTRS)
Ptak, A.
2011-01-01
There are many open questions in X-ray observations of the Galactic neighborhood and nearby galaxies, such as the properties of the hot ISM and accreting sources, the X-ray/star-formation rate correlation and how the X-ray luminosity function of starburst galaxies. We discuss how these would be addressed by very wide-area (> 100 sq. deg.) X-ray surveys and upcoming X-ray missions. In particular planned NuStar observations of the Galaxy and nearby galaxies will be highlighted.
The Center for Astrophysics Redshift Survey - Recent results
NASA Technical Reports Server (NTRS)
Geller, Margaret J.; Huchra, John P.
1989-01-01
Six strips of the CfA redshift survey extension are now complete. The data continue to support a picture in which galaxies are on thin sheets which nearly surround vast low-density voids. The largest structures are comparable with the extent of the survey. Voids like the one in Bootes are a common feature of the large-scale distribution of galaxies. The issue of fair samples of the galaxy distribution is discussed, examining statistical measures of the galaxy distribution including the two-point correlation functions.
NASA Astrophysics Data System (ADS)
Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.
2016-12-01
We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.
Measurement of the dipole in the cross-correlation function of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less
Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman
2015-01-01
The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Smith, B. W.
1978-01-01
OSO 8 X-ray spectra from 2 to 20 keV have been analyzed for 26 clusters of galaxies. For 20 clusters temperatures, emission integrals, iron abundances, and low-energy absorption measurements are presented. The data give, in general, better fits to thermal bremsstrahlung than to power-law models. Eight clusters have positive iron emission-line detections at the 90% confidence level, and all 20 cluster spectra are consistent with Fe/H = 0.000014 by number with the possible exception of Virgo. Thus it is confirmed that X-ray emission in this energy band is predominantly thermal radiation from hot intracluster gas rather than inverse Compton radiation. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central-galaxy density than with richness; and (4) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.
NASA Astrophysics Data System (ADS)
McEwen, Joseph E.; Weinberg, David H.
2018-07-01
The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.
NASA Astrophysics Data System (ADS)
McEwen, Joseph E.; Weinberg, David H.
2018-04-01
The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
ELUCID. V. Lighting Dark Matter Halos with Galaxies
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Zhang, Youcai; Wang, Huiyuan; Liu, Chengze; Lu, Tianhuan; Li, Shijie; Shi, Feng; Jing, Y. P.; Mo, H. J.; van den Bosch, Frank C.; Kang, Xi; Cui, Weiguang; Guo, Hong; Li, Guoliang; Lim, S. H.; Lu, Yi; Luo, Wentao; Wei, Chengliang; Yang, Lei
2018-06-01
In a recent study, using the distribution of galaxies in the north galactic pole of the SDSS DR7 region enclosed in a 500 {h}-1 {Mpc} box, we carried out our ELUCID simulation (ELUCID III). Here, we light the dark matter halos and subhalos in the reconstructed region in the simulation with galaxies in the SDSS observations using a novel neighborhood abundance matching method. Before we make use of the galaxy–subhalo connections established in the ELUCID simulation to evaluate galaxy formation models, we set out to explore the reliability of such a link. For this purpose, we focus on the following few aspects of galaxies: (1) the central–subhalo luminosity and mass relations, (2) the satellite fraction of galaxies, (3) the conditional luminosity function (CLF) and conditional stellar mass function (CSMF) of galaxies, and (4) the cross-correlation functions between galaxies and dark matter particles, most of which are measured separately for all, red, and blue galaxy populations. We find that our neighborhood abundance matching method accurately reproduces the central–subhalo relations, satellite fraction, and the CLFs, CSMFs, and biases of galaxies. These features ensure that galaxy–subhalo connections thus established will be very useful in constraining galaxy formation processes. We provide some suggestions for the three levels of using the galaxy–subhalo pairs for galaxy formation constraints. The galaxy–subhalo links and the subhalo merger trees in the SDSS DR7 region extracted from our ELUCID simulation are available upon request.
Voronoi Tessellation for reducing the processing time of correlation functions
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Sevilla-Noarbe, Ignacio
2018-01-01
The increase of data volume in Cosmology is motivating the search of new solutions for solving the difficulties associated with the large processing time and precision of calculations. This is specially true in the case of several relevant statistics of the galaxy distribution of the Large Scale Structure of the Universe, namely the two and three point angular correlation functions. For these, the processing time has critically grown with the increase of the size of the data sample. Beyond parallel implementations to overcome the barrier of processing time, space partitioning algorithms are necessary to reduce the computational load. These can delimit the elements involved in the correlation function estimation to those that can potentially contribute to the final result. In this work, Voronoi Tessellation is used to reduce the processing time of the two-point and three-point angular correlation functions. The results of this proof-of-concept show a significant reduction of the processing time when preprocessing the galaxy positions with Voronoi Tessellation.
Cluster-cluster correlations and constraints on the correlation hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Gott, J. R., III
1988-01-01
The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.
GALEX studies on UV properties of Nearby Early-type Galaxies
NASA Astrophysics Data System (ADS)
Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team
2005-12-01
We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.
High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82
NASA Astrophysics Data System (ADS)
Nikoloudakis, N.
2012-01-01
We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.
The large-scale distribution of galaxies
NASA Technical Reports Server (NTRS)
Geller, Margaret J.
1989-01-01
The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campa, Julia; Estrada, Juan; Flaugher, Brenna
2017-02-03
The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.
Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong
2008-03-15
In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less
The impact of galaxy formation on satellite kinematics and redshift-space distortions
NASA Astrophysics Data System (ADS)
Orsi, Álvaro A.; Angulo, Raúl E.
2018-04-01
Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.
The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum
NASA Astrophysics Data System (ADS)
Frith, W. J.; Outram, P. J.; Shanks, T.
2005-06-01
We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey over the whole APM area would resolve many of the remaining questions about the existence and interpretation of this local hole.
Isolating relativistic effects in large-scale structure
NASA Astrophysics Data System (ADS)
Bonvin, Camille
2014-12-01
We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.
2017-08-01
We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.
Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe
NASA Astrophysics Data System (ADS)
Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.
2017-11-01
We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.
Unveiling Quasar Fueling through a Public Snapshot Survey of Quasar Host Environments
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Feedback from quasars is thought to play a vital role in galaxy evolution, but the relationship between quasars and the halo gas that fuels star-formation on long timescales is not well constrained. Recent observations of the content of quasar host halos have found unusually high covering fractions of cool gas observed in absorption in background quasar spectra. The cool halo gas is strongly correlated with quasar luminosity and exceeds what is observed around non-AGN galaxies by factor of two. Together, these observations provide compelling evidence for a connection between AGN activity and halo gas on 20-200 kpc scales. The high covering fraction and correlation with quasar luminosity may be the result of debris from the galaxy mergers thought to trigger luminous quasars or the halo gas of satellites in gas-rich groups amenable to quasar feeding. If this is the case, then the cool gas observed in absorption will be correlated with signatures of recent galaxy interactions in the quasar host or satellites close to the background sightline. Here, we propose a snapshot imaging survey of z<1 quasars with available constraints on halo gas content to examine a possible correlation between cool halo gas and galaxy interaction signatures. Galaxy morphologies and faint tidal features at z 1 can only be observed with the high resolution imaging capabilities of HST due to the substantial flux in extended wings of AO point-spread functions. The images will be of significant archival value for studying the galaxy environments of quasars and for constraining gas flow models with multi-sightline halo gas studies of galaxies at lower redshift than the foreground & background quasars.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
Clustering of galaxies with f(R) gravity
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker
2018-02-01
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.
NASA Astrophysics Data System (ADS)
Veale, Melanie R.
2017-05-01
Massive galaxies are the end product of a long evolutionary history, impacted by many complex processes. A coupling between quasars and their host galaxies is thought to be an important factor in quenching star formation in these galaxies, although a single unified picture of this process has yet to emerge. The first and smaller portion of this work compares several simple models for quasar demographics, tuning the model parameters to match observations at redshifts from z = 1 to z = 6. A key feature of the models is the enforcement of self-consistent mass growth across time. A variety of models fit the observed luminosity functions, but physical arguments and comparison to additional observations can distinguish among the models. The second and larger portion of this work focuses on two-dimensional stellar kinematics for the most massive local galaxies. The MASSIVE survey is a volume-limited sample of 116 galaxies with absolute magnitude M K < -25.3 mag, corresponding to stellar mass above approximately 1011.8 M., within a distance of D < 108 Mpc in the northern hemisphere, with observations from the Mitchell Integral Field Spectrograph (IFS) for each galaxy a main component of the survey. The line-of-sight velocity distribution (LOSVD) is extracted from optical spectra over a 107″ square field of view, with a Gauss- Hermite parameteriztion up to order 6. After characterizng the statistics of the velocity V , dispersion sigma, and higher moments h3, h 4, h5, and h6 for the most massive 41 galaxies of the sample, the first two moments (rotation velocity V and dispersion sigma) are studied in more detail as a function of galaxy environment. Several measures of environment are calculated, and particular attention is paid to untangling the joint correlations among kinematic properties, galaxy mass, and galaxy environment. The properties of the MASSIVE sample suggest that merger histories and galaxy environment impact galaxy mass and angular momentum in tandem, with no independent correlation between angular momentum and environment once mass is controlled for. The shape of radial velocity dispersion profiles, however, depends on both galaxy mass and environment, with the correlation between dispersion profiles and environment persisting even when mass is controlled for (and vice versa). We include discussion of the kurtosis h4 to distinguish qualitatively between the influence of the total mass profiles and velocity anisotropy on the line-of-sight dispersion profile, and argue that variations from isothermal total mass profiles are very likely in our sample.
Large-scale 3D galaxy correlation function and non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele
We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less
Cosmological Constraints from Fourier Phase Statistics
NASA Astrophysics Data System (ADS)
Ali, Kamran; Obreschkow, Danail; Howlett, Cullan; Bonvin, Camille; Llinares, Claudio; Oliveira Franco, Felipe; Power, Chris
2018-06-01
Most statistical inference from cosmic large-scale structure relies on two-point statistics, i.e. on the galaxy-galaxy correlation function (2PCF) or the power spectrum. These statistics capture the full information encoded in the Fourier amplitudes of the galaxy density field but do not describe the Fourier phases of the field. Here, we quantify the information contained in the line correlation function (LCF), a three-point Fourier phase correlation function. Using cosmological simulations, we estimate the Fisher information (at redshift z = 0) of the 2PCF, LCF and their combination, regarding the cosmological parameters of the standard ΛCDM model, as well as a Warm Dark Matter (WDM) model and the f(R) and Symmetron modified gravity models. The galaxy bias is accounted for at the level of a linear bias. The relative information of the 2PCF and the LCF depends on the survey volume, sampling density (shot noise) and the bias uncertainty. For a volume of 1h^{-3}Gpc^3, sampled with points of mean density \\bar{n} = 2× 10^{-3} h3 Mpc^{-3} and a bias uncertainty of 13%, the LCF improves the parameter constraints by about 20% in the ΛCDM cosmology and potentially even more in alternative models. Finally, since a linear bias only affects the Fourier amplitudes (2PCF), but not the phases (LCF), the combination of the 2PCF and the LCF can be used to break the degeneracy between the linear bias and σ8, present in 2-point statistics.
The VLT LBG redshift survey - VI. Mapping H I in the proximity of z ˜ 3 LBGs with X-Shooter
NASA Astrophysics Data System (ADS)
Bielby, R. M.; Shanks, T.; Crighton, N. H. M.; Bornancini, C. G.; Infante, L.; Lambas, D. G.; Minniti, D.; Morris, S. L.; Tummuangpak, P.
2017-10-01
We present an analysis of the spatial distribution and dynamics of neutral hydrogen gas around galaxies using new X-Shooter observations of z ˜ 2.5-4 quasars. Adding the X-Shooter data to our existing data set of high-resolution quasar spectroscopy, we use a total sample of 29 quasars alongside ˜1700 Lyman Break Galaxies (LBGs) in the redshift range 2 ≲ z ≲ 3.5. We measure the Lyα forest auto-correlation function, finding a clustering length of s0 = 0.081 ± 0.006 h-1 Mpc, and the cross-correlation function with LBGs, finding a cross-clustering length of s0 = 0.27 ± 0.14 h-1 Mpc and power-law slope γ = 1.1 ± 0.2. Our results highlight the weakly clustered nature of neutral hydrogren systems in the Lyα forest. Building on this, we make a first analysis of the dependence of the clustering on absorber strength, finding a clear preference for stronger Lyα forest absorption features to be more strongly clustered around the galaxy population, suggesting that they trace on average higher mass haloes. Using the projected and 2-D cross-correlation functions, we constrain the dynamics of Lyα forest clouds around z ˜ 3 galaxies. We find a significant detection of large-scale infall of neutral hydrogen, with a constraint on the Lyα forest infall parameter of βF = 1.02 ± 0.22.
NASA Astrophysics Data System (ADS)
Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu
2013-04-01
We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.
A Practical Computational Method for the Anisotropic Redshift-Space 3-Point Correlation Function
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2018-04-01
We present an algorithm enabling computation of the anisotropic redshift-space galaxy 3-point correlation function (3PCF) scaling as N2, with N the number of galaxies. Our previous work showed how to compute the isotropic 3PCF with this scaling by expanding the radially-binned density field around each galaxy in the survey into spherical harmonics and combining these coefficients to form multipole moments. The N2 scaling occurred because this approach never explicitly required the relative angle between a galaxy pair about the primary galaxy. Here we generalize this work, demonstrating that in the presence of azimuthally-symmetric anisotropy produced by redshift-space distortions (RSD) the 3PCF can be described by two triangle side lengths, two independent total angular momenta, and a spin. This basis for the anisotropic 3PCF allows its computation with negligible additional work over the isotropic 3PCF. We also present the covariance matrix of the anisotropic 3PCF measured in this basis. Our algorithm tracks the full 5-D redshift-space 3PCF, uses an accurate line of sight to each triplet, is exact in angle, and easily handles edge correction. It will enable use of the anisotropic large-scale 3PCF as a probe of RSD in current and upcoming large-scale redshift surveys.
Weak lensing magnification in the Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration
2018-05-01
In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.
The three-point function as a probe of models for large-scale structure
NASA Astrophysics Data System (ADS)
Frieman, Joshua A.; Gaztanaga, Enrique
1994-04-01
We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
ON THE CLUSTERING OF SUBMILLIMETER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Christina C.; Giavalisco, Mauro; Yun, Min S.
2011-06-01
We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg{sup 2} down to a 1.26 mJy beam{sup -1} (1{sigma}) limit, including 189 (328) sources with S/N {>=}3.5 (3). We can only set upper limits to the correlation length r{sub 0}, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits ofmore » r{sub 0} {approx}< 6-8h{sup -1} Mpc at 3.7 mJy and r{sub 0} {approx}< 11-12 h{sup -1} Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r{sub 0} is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg{sup 2} is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope's 6'' beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.« less
The distant red galaxy neighbour population of 1
NASA Astrophysics Data System (ADS)
Bornancini, C.; García Lambas, D.
We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.
Statistics of voids in hierarchical universes
NASA Technical Reports Server (NTRS)
Fry, J. N.
1986-01-01
As one alternative to the N-point galaxy correlation function statistics, the distribution of holes or the probability that a volume of given size and shape be empty of galaxies can be considered. The probability of voids resulting from a variety of hierarchical patterns of clustering is considered, and these are compared with the results of numerical simulations and with observations. A scaling relation required by the hierarchical pattern of higher order correlation functions is seen to be obeyed in the simulations, and the numerical results show a clear difference between neutrino models and cold-particle models; voids are more likely in neutrino universes. Observational data do not yet distinguish but are close to being able to distinguish between models.
A new method to measure galaxy bias by combining the density and weak lensing fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique
We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as / ormore » /. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.« less
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Ting, Yuan-Sen
2018-04-01
The distributions of a galaxy's gas and stars in chemical space encode a tremendous amount of information about that galaxy's physical properties and assembly history. However, present methods for extracting information from chemical distributions are based either on coarse averages measured over galactic scales (e.g. metallicity gradients) or on searching for clusters in chemical space that can be identified with individual star clusters or gas clouds on ˜1 pc scales. These approaches discard most of the information, because in galaxies gas and young stars are observed to be distributed fractally, with correlations on all scales, and the same is likely to be true of metals. In this paper we introduce a first theoretical model, based on stochastically forced diffusion, capable of predicting the multiscale statistics of metal fields. We derive the variance, correlation function, and power spectrum of the metal distribution from first principles, and determine how these quantities depend on elements' astrophysical origin sites and on the large-scale properties of galaxies. Among other results, we explain for the first time why the typical abundance scatter observed in the interstellar media of nearby galaxies is ≈0.1 dex, and we predict that this scatter will be correlated on spatial scales of ˜0.5-1 kpc, and over time-scales of ˜100-300 Myr. We discuss the implications of our results for future chemical tagging studies.
Percolation analyses of observed and simulated galaxy clustering
NASA Astrophysics Data System (ADS)
Bhavsar, S. P.; Barrow, J. D.
1983-11-01
A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.
Clustering properties of g -selected galaxies at z ~ 0.8
Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...
2016-06-21
In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less
The Reliability of [c II] as a Star Formation Rate Indicator
NASA Astrophysics Data System (ADS)
De Looze, Ilse; Baes, Maarten; Fritz, Jacopo; Bendo, George J.; Cortese, Luca
2011-08-01
We present a calibration of the star formation rate (SFR) as a function of the [C II] 157.74 μ m luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μ m, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultra luminous galaxies (L TIR ≥ 1012 L⊙) should be handled with caution, since these objects show a non-linearity in the L [C II]-to-L FIR ratio as a function of L FIR (and thus, their star formation activity). Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
Environmental quenching and galactic conformity in the galaxy cross-correlation signal
NASA Astrophysics Data System (ADS)
Hatfield, P. W.; Jarvis, M. J.
2017-12-01
It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the halo occupation distribution scheme. We find that at z ∼ 2 environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities when they are satellites in sub-group environments, as they are globally. However, by z ∼ 0.5 galaxies are much less likely to be star forming when in a high-density (group or low-mass cluster) environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo at lower redshifts, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star forming, we see that this effect is further enhanced when the central galaxy is passive, a manifestation of galactic conformity.
The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity
NASA Technical Reports Server (NTRS)
Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu
1994-01-01
We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.
NASA Astrophysics Data System (ADS)
Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2016-10-01
In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, B. E.; Wilson, C. D.; Sinukoff, E.
2010-05-01
We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less
Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation
NASA Astrophysics Data System (ADS)
Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.
2018-04-01
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L., E-mail: puerari@inaoep.mx
2014-12-01
We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as amore » function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.« less
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-06-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-04-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.
We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of {xi}(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power law {xi}(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law {xi}(r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of {xi}(r) for L{sub *} and fainter galaxy samples at low redshift is a cosmic coincidence.« less
NASA Astrophysics Data System (ADS)
De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela
2017-03-01
We take advantage of our recently published model for GAlaxy Evolution and Assembly (GAEA) to study the origin of the observed correlation between [α/Fe] and galaxy stellar mass. In particular, we analyse the role of radio-mode active galactic nuclei (AGN) feedback, which recent work has identified as a crucial ingredient to reproduce observations. In GAEA, this process introduces the observed trend of star formation histories extending over shorter time-scales for more massive galaxies, but does not provide a sufficient condition to reproduce the observed α enhancements of massive galaxies. In the framework of our model, this is possible only by assuming that any residual star formation is truncated for galaxies more massive than 1010.5 M⊙. This results, however, in even shorter star formation time-scales for the most massive galaxies, which translate in total stellar metallicities significantly lower than observed. Our results demonstrate that (I) trends of [α/Fe] ratios cannot be simply converted into relative time-scale indicators; and (II) AGN feedback cannot explain alone the positive correlation between [α/Fe] and galaxy mass/velocity dispersion. Reproducing simultaneously the mass-metallicity relation and the α enhancements observed pose a challenge for hierarchical models, unless more exotic solutions are adopted such as metal-rich winds or a variable initial mass function.
Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6
NASA Technical Reports Server (NTRS)
Wolfe, A. M
1993-01-01
The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.
Cosmic Infrared Background Sources Clustered Around Quasars
NASA Astrophysics Data System (ADS)
Hall, Kirsten R.; Zakamska, Nadia; Marriage, Tobias; Crichton, Devin; Gralla, Megan
2017-06-01
Powerful quasars can be seen out to large distances. As they reside in massive dark matter halos, they provide a useful tracer of large scale structure. We stack Herschel-SPIRE images at 250, 350, and 500 microns at the locations of 13,000 quasars in redshift bins spanning 0.5 < z < 3.5. While the detected signal is dominated on instrumental beam scales by the unresolved dust emission of the quasar and its host galaxy, at z 2 the extended emission is clearly spatially resolved on Mpc scales. This emission is due to star-forming galaxies clustered around the dark matter halos hosting quasars. We measure radial surface brightness profiles of the stacked images to compute the angular correlation function of dusty star-forming galaxies correlated with quasars. We generate a halo occupation distribution model in order to determine the masses of the dark matter halos in which dusty star forming galaxies reside. We are probing potential changes in the halo mass most efficient at hosting star forming galaxies, and assessing any evidence that this halo mass evolved with redshift in the context of "cosmic downsizing".
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2018-04-01
I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.
Omega from the anisotropy of the redshift correlation function
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.
The three-point function as a probe of models for large-scale structure
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gaztanaga, Enrique
1993-01-01
The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan
2004-06-01
In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained independently from other observations.
A radial measurement of the galaxy tidal alignment magnitude with BOSS data
NASA Astrophysics Data System (ADS)
Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao
2018-07-01
The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted on to its correlation function. We use the LOWZ and CMASS catalogues of SDSS-III BOSS Data Release 12 to divide galaxies into two subsamples based on their offset from the Fundamental Plane, which should be correlated with orientation. These subsamples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each subsample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata, who argued that since galaxy formation physics does not depend on the direction of the `observer,' the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2σand 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).
A Radial Measurement of the Galaxy Tidal Alignment Magnitude with BOSS Data
NASA Astrophysics Data System (ADS)
Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao
2018-05-01
The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted onto its correlation function. We use the LOWZ and CMASS catalogs of SDSS-III BOSS Data Release 12 to divide galaxies into two sub-samples based on their offset from the Fundamental Plane, which should be correlated with orientation. These sub-samples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each sub-sample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata (2009), who argued that since galaxy formation physics does not depend on the direction of the "observer," the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2 and 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).
Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.
2003-03-01
We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.
The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory
NASA Technical Reports Server (NTRS)
Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.
2013-01-01
We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.
The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3
NASA Astrophysics Data System (ADS)
Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.
2013-03-01
We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0.07, respectively.
The build up of the correlation between halo spin and the large-scale structure
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2018-01-01
Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.
The effect of clulstering of galaxies on the statistics of gravitational lenses
NASA Technical Reports Server (NTRS)
Anderson, N.; Alcock, C.
1986-01-01
It is examined whether clustering of galaxies can significantly alter the statistical properties of gravitational lenses? Only models of clustering that resemble the observed distribution of galaxies in the properties of the two-point correlation function are considered. Monte-Carlo simulations of the imaging process are described. It is found that the effect of clustering is too small to be significant, unless the mass of the deflectors is so large that gravitational lenses become common occurrences. A special model is described which was concocted to optimize the effect of clustering on gravitational lensing but still resemble the observed distribution of galaxies; even this simulation did not satisfactorily produce large numbers of wide-angle lenses.
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1979-01-01
The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.
A Study of the Dependence of the Properties of Galaxy Clusters on Cluster Morphology.
NASA Astrophysics Data System (ADS)
Lugger, Phyllis Minnie
1982-03-01
A quantitative study of the properties of clusters of galaxies as a function of cluster morphology has been carried out using photographic plates obtained with the Palomar 48 inch Schmidt telescope. Surface brightness profiles of 35 first ranked cluster galaxies and luminosity functions of nine clusters are presented and analyzed. The dispersion in the metric magnitudes of first ranked galaxies is quite small ((TURN) 0.4 mag) which is consistent with the results of Kristian, Sandage and Westphal as well as Hoessel, Gunn and Thuan. For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is (TURN) 0.5 mag brighter than for the non-cD galaxies. The dispersion in the metric magnitudes for the 10 cD galaxies studied is found to be much smaller ((sigma) (TURN) 0.1 mag) than the dispersion in the metric magnitudes of the non-cD first ranked galaxies ((sigma) (TURN) 0.4 mag). The de Vaucouleurs effective radius - magnitude relation determined in the present study for first ranked galaxies (log r(,e) = -0.2 M + const.) is consistent with the extrapolations to brighter magnitudes of the range of relations found by Strom and Strom. The average residuals from the mean radius-magnitude relation for the cD and non-cD galaxy samples were not found to differ at a significant level. Luminosity functions for the region within 0.5 Mpc of the cluster center for three of the clusters studied (A1656, A2147, and A2199) show a deficit of bright galaxies when compared to a concentric annular region with bounds of 0.5 and 1.0 Mpc. Characteristic magnitudes for the nine clusters (determined from square regions 4.6 Mpc on a side) show no significant correlation with cluster morphology, central density, or total magnitude of the first ranked galaxy. The mean values of the Schechter function parameters M('*) and (alpha) are in very good agreement with the previous determinations by Schechter and by Dressler. The differential luminosity functions for A569 and A1656 do not rise monotonically to fainter magnitudes but instead show dips. These data are used to test predictions of several recent theories of the dynamical evolution of clusters of galaxies.
NASA Astrophysics Data System (ADS)
Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/
Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.
2018-05-01
We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.
On the galaxy-halo connection in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Desmond, Harry; Mao, Yao-Yuan; Wechsler, Risa H.; Crain, Robert A.; Schaye, Joop
2017-10-01
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi
The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E.
The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, themore » recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.« less
Baryons, universe and everything in between
NASA Astrophysics Data System (ADS)
Ho, Shirley
2008-06-01
This thesis is a tour of topics in cosmology, unified by their diversity and pursuits in better understanding of our Universe. The first chapter measures the Integrated Sachs-Wolfe effect as a function of redshift utilizing a large range of large scale structure observations and the cosmic microwave background. We combine the ISW likelihood function with weak lensing of CMB (which is described in Chapter 2) and CMB powerspectrum to constrain the equation of state of dark energy and the curvature of the Universe. The second chapter investigates the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, and we find evidence for a positive cross-correlation at the 2.5s level. The third chapter explores the statistical properties of Luminous Red Galaxies in a sample of X-ray selected galaxy clusters, including the halo occupation distribution, how Poisson is the satellite distribution of LRGs and the radial profile of LRGs within clusters. The forth chapter explores the idea of using multiplicity of galaxies to understand their merging timescales. We find that (by using the multiplicity function of LRGs in Chapter 3) Massive halos (~ 10 14 M [Special characters omitted.] ) at low redshift have, for example, been bombarded by several ~ 10 13 M [Special characters omitted.] halos throughout their history and these accreted LRGs merge on relatively short timescales (~ 2 Gyr). The fifth chapter presents a new method for generating a template for the kinematic Sunyaev-Zel'dovich effect that can be used to detect the missing baryons. We assessed the feasibility of the method by investigating combinations of differeng galaxy surveys and CMB observations and find that we can detect the gas-momentum kSZ correlation, and thus the ionized gas, at significant signal-to-noise level.
Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps
NASA Technical Reports Server (NTRS)
Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.
1996-01-01
As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.
Sparsely sampling the sky: Regular vs. random sampling
NASA Astrophysics Data System (ADS)
Paykari, P.; Pires, S.; Starck, J.-L.; Jaffe, A. H.
2015-09-01
Aims: The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse sampling strategy could be a powerful substitute for the - usually favoured - contiguous observation of the sky. In our previous paper, regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales. Methods: In this paper, we use a Bayesian experimental design to investigate a "random" sparse sampling approach, where the observed patches are randomly distributed over the total sparsely sampled area. Results: We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in the window function. Conclusions: This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the overall galaxy power spectrum and the cosmological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitmore, Bradley C.; Bowers, Ariel S.; Lindsay, Kevin
2014-04-01
Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dL∝L {sup α}, with an average value for α ofmore » –2.37 and rms scatter = 0.18 when using the F814W ('I') band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M {sub brightest}) and log of the number of clusters brighter than M{sub I} = –9 (log N). We also examine the magnitude of the brightest cluster versus log SFR for a sample including both dwarf galaxies and ULIRGs. This shows that the correlation extends over roughly six orders of magnitude but with scatter that is larger than for our spiral sample, probably because of the high levels of extinction in many of the LIRGs.« less
correlcalc: Two-point correlation function from redshift surveys
NASA Astrophysics Data System (ADS)
Rohin, Yeluripati
2017-11-01
correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.
NASA Astrophysics Data System (ADS)
Durkalec, A.; Le Fèvre, O.; Pollo, A.; de la Torre, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2015-11-01
We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0
NASA Astrophysics Data System (ADS)
Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso
2017-02-01
The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.
Generating log-normal mock catalog of galaxies in redshift space
NASA Astrophysics Data System (ADS)
Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro
2017-10-01
We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.
Galaxy-galaxy lensing estimators and their covariance properties
NASA Astrophysics Data System (ADS)
Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose
2017-11-01
We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.
EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoville, N.; Benson, A.; Fu, Hai
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less
Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics
NASA Astrophysics Data System (ADS)
Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; di Matteo, Tiziana; Feng, Yu; Khandai, Nishikanta
2015-04-01
The intrinsic alignment of galaxies with the large-scale density field is an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg+) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg+ correlations increase in amplitude with subhalo mass (in the range of 1010-6.0 × 1014 h-1 M⊙), with a weak redshift dependence (from z = 1 to 0.06) at fixed mass. At z ˜ 0.3, we predict a wg+ that is in reasonable agreement with Sloan Digital Sky Survey luminous red galaxy measurements and that decreases in amplitude by a factor of ˜5-18 for galaxies in the Large Synoptic Survey Telescope survey. We also compared the intrinsic alignments of centrals and satellites, with clear detection of satellite radial alignments within their host haloes. Finally, we show that wg+ (using subhaloes as tracers of density) and wδ+ (using dark matter density) predictions from the simulations agree with that of non-linear alignment (NLA) models at scales where the two-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The one-halo term induces a scale-dependent bias at small scales which is not modelled in the NLA model.
Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE
NASA Astrophysics Data System (ADS)
Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-02-01
The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.
NASA Astrophysics Data System (ADS)
Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.
2017-04-01
We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.
2010-08-01
We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.
Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?
Erwin, Peter; Gadotti, Dimitri Alexei
2012-01-01
Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ , tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ , bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less
Correlations among Galaxy Properties from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2013-07-01
Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.
NASA Astrophysics Data System (ADS)
Tugendhat, Tim M.; Schäfer, Björn Malte
2018-05-01
We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.
NASA Astrophysics Data System (ADS)
Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.
2016-08-01
We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.
Supermassive black holes do not correlate with dark matter haloes of galaxies.
Kormendy, John; Bender, Ralf
2011-01-20
Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.
NASA Technical Reports Server (NTRS)
Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo
1995-01-01
We have conducted bivariate and multivariate statistical analysis of data measuring the luminosity and interstellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992). We find a strong nonlinear correlation between L(sub B) and L(sub X), with a power-law slope of 1.8 +/- 0.1, steepening to 2.0 +/- if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies with log L(sub X) less than or equal to 40.5, we instead find a slope of 1.0 +/- 0.2 (with or without the Local Group dwarfs). Although E and S0 galaxies have consistent slopes for their L(sub B)-L(sub X) relationships, the mean values of the distribution functions of both L(sub X) and L(sub X)/L(sub B) for the S0 galaxies are lower than those for the E galaxies at the 2.8 sigma and 3.5 sigma levels, respectively. We find clear evidence for a correlation between L(sub X) and the X-ray color C(sub 21), defined by Kim, Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below 1 keV in the sense that low-L(sub X) systems have relatively large contributions from a soft component compared with high-L(sub X) systems. We find evidence from our analysis of the 12 micron IRAS data for our sample that our S0 sample has excess 12 micron emission compared with the E sample, scaled by their optical luminosities. This may be due to emission from dust heated in star-forming regions in S0 disks. This interpretation is reinforced by the existence of a strong L(sub 12)-L(sub 100) correlation for our S0 sample that is not found for the E galaxies, and by an analysis of optical-IR colors. We find steep slopes for power-law relationships between radio luminosity and optical, X-ray, and far-IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as previously argued by, e.g., Walsh et al. (1989). We also find that, for a given L(sub 100), galaxies with larger L(sub X)/L(sub B) tend to be stronger nonthermal radio sources, as originally suggested by Kim & Fabbiano (1990). We note that, while L(sub B) is most strongly correlated with L(sub 6), the total radio luminosity, both L(sub X) and L(sub X)/L(sub B) are more strongly correlated with L(sub 6 CO), the core radio luminosity. These points support the argument (proposed by Fabbiano, Gioia, & Trinchieri 1989) that radio cores in early-type galaxies are fueled by the hot ISM.
NASA Astrophysics Data System (ADS)
Hartley, W. G.; Conselice, C. J.; Mortlock, A.; Foucaud, S.; Simpson, C.
2015-08-01
We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (`galactic conformity') at intermediate to high redshift (0.4 < z < 1.9). Using an extremely deep near-infrared survey, we study the distribution and properties of satellite galaxies with stellar masses, log(M*/M⊙) > 9.7, around central galaxies at the characteristic Schechter function mass, M ˜ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range -1.1 to -1.4 for mass-selected satellites, and -1.3 to -1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ˜ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.
Low Ionization Absorbing Gas Kinematics Around Z ~ 1 Galaxies
NASA Astrophysics Data System (ADS)
Churchill, C. W.; Steidel, C. C.; Vogt, S. S.
1996-12-01
Absorption profiles of the Mg II lambda lambda 2796,2803 doublet arising from gas associated with 48 ``normal'' intermediate redshift (0.4 < z < 1.7) galaxies have been resolved in QSO spectra at 6 km s(-1) resolution using HIRES on Keck I. We have found evidence for pronounced redshift evolution in the subcomponent velocity two--point correlation function, suggestive that the gas surrounding galaxies has settled over a 5--10 Gyr look--back time. Based upon a sub--sample of 15 galaxies at z<1, we found no evidence for correlations between the absorbing gas kinematics and the projected galactocentric distance of the gas, galaxy luminosities, or galaxy rest--frame colors (though trends between galaxy properties and absorption properties are apparent from a larger low resolution absorption line sample). The implication is that low ionization gas surrounding early epoch galaxies was not smoothly distributed either spatially or kinematically out to a galactocentric distance ~ 40 kpc. Directly from the profiles, we have measured the number of separate absorbing ``kinematic subsystems'' associated with each galaxy, and each subsystem's profile velocity width, asymmetry (skew), and integrated column density. The distribution in these subsystem properties with velocity is highly peaked at zero, and does not exhibit a bimodality. The lack of a bimodality is suggestive that the gas kinematics is not dominated by quasi--symmetric infall into galactic potential wells. In view of absorption line studies of local galaxies, it appears that extended regions of low ionization gas surrounding galaxies represent a dynamical and active epoch of ``normal'' galaxy evolution. The reservoirs of gas for these extended ``halos'' were probably residual infalling fragments (from earlier formation processes and on--going dynamical events) whose evolution first included a settling in velocity dispersion and then more recently a decline in number. The build up of thick and/or extended gaseous disks (in the case of spirals) may be one manifestation of this process.
Modelling the large-scale redshift-space 3-point correlation function of galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2017-08-01
We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.
Real- and redshift-space halo clustering in f(R) cosmologies
NASA Astrophysics Data System (ADS)
Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder
2017-05-01
We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Corredoira, Martín; Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de
We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarfmore » galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.« less
The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey
NASA Astrophysics Data System (ADS)
Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.
2018-01-01
We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel David
2015-08-01
Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that
NASA Astrophysics Data System (ADS)
Chantereau, W.; Usher, C.; Bastian, N.
2018-05-01
It is now well-established that most (if not all) ancient globular clusters host multiple populations, that are characterised by distinct chemical features such as helium abundance variations along with N-C and Na-O anti-correlations, at fixed [Fe/H]. These very distinct chemical features are similar to what is found in the centres of the massive early-type galaxies and may influence measurements of the global properties of the galaxies. Additionally, recent results have suggested that M/L variations found in the centres of massive early-type galaxies might be due to a bottom-heavy stellar initial mass function. We present an analysis of the effects of globular cluster-like multiple populations on the integrated properties of early-type galaxies. In particular, we focus on spectral features in the integrated optical spectrum and the global mass-to-light ratio that have been used to infer variations in the stellar initial mass function. To achieve this we develop appropriate stellar population synthesis models and take into account, for the first time, an initial-final mass relation which takes into consideration a varying He abundance. We conclude that while the multiple populations may be present in massive early-type galaxies, they are likely not responsible for the observed variations in the mass-to-light ratio and IMF sensitive line strengths. Finally, we estimate the fraction of stars with multiple populations chemistry that come from disrupted globular clusters within massive ellipticals and find that they may explain some of the observed chemical patterns in the centres of these galaxies.
The power spectrum of galaxies in the 2dF 100k redshift survey
NASA Astrophysics Data System (ADS)
Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong
2002-10-01
We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at
NASA Astrophysics Data System (ADS)
Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge
2018-02-01
The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.
NASA Astrophysics Data System (ADS)
Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.
2017-09-01
We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.
Supermassive black holes do not correlate with galaxy disks or pseudobulges.
Kormendy, John; Bender, R; Cornell, M E
2011-01-20
The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.
How the cosmic web induces intrinsic alignments of galaxies
NASA Astrophysics Data System (ADS)
Codis, S.; Dubois, Y.; Pichon, C.; Devriendt, J.; Slyz, A.
2016-10-01
Intrinsic alignments are believed to be a major source of systematics for future generation of weak gravitational lensing surveys like Euclid or LSST. Direct measurements of the alignment of the projected light distribution of galaxies in wide field imaging data seem to agree on a contamination at a level of a few per cent of the shear correlation functions, although the amplitude of the effect depends on the population of galaxies considered. Given this dependency, it is difficult to use dark matter-only simulations as the sole resource to predict and control intrinsic alignments. We report here estimates on the level of intrinsic alignment in the cosmological hydrodynamical simulation Horizon-AGN that could be a major source of systematic errors in weak gravitational lensing measurements. In particular, assuming that the spin of galaxies is a good proxy for their ellipticity, we show how those spins are spatially correlated and how they couple to the tidal field in which they are embedded. We will also present theoretical calculations that illustrate and qualitatively explain the observed signals.
Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?
NASA Astrophysics Data System (ADS)
Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.
2003-02-01
We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.
Second feature of the matter two-point function
NASA Astrophysics Data System (ADS)
Tansella, Vittorio
2018-05-01
We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.
The Weak Lensing Masses of Filaments between Luminous Red Galaxies
NASA Astrophysics Data System (ADS)
Epps, Seth D.; Hudson, Michael J.
2017-07-01
In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.
The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.
2012-04-01
We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.
Major galaxy mergers and the growth of supermassive black holes in quasars.
Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan
2010-04-30
Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.
Generating log-normal mock catalog of galaxies in redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Aniket; Makiya, Ryu; Saito, Shun
We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less
Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies
NASA Astrophysics Data System (ADS)
Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.
1990-11-01
The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.
NASA Astrophysics Data System (ADS)
Mutch, Simon J.; Geil, Paul M.; Poole, Gregory B.; Angel, Paul W.; Duffy, Alan R.; Mesinger, Andrei; Wyithe, J. Stuart B.
2016-10-01
We introduce MERAXES, a new, purpose-built semi-analytic galaxy formation model designed for studying galaxy growth during reionization. MERAXES is the first model of its type to include a temporally and spatially coupled treatment of reionization and is built upon a custom (100 Mpc)3 N-body simulation with high temporal and mass resolution, allowing us to resolve the galaxy and star formation physics relevant to early galaxy formation. Our fiducial model with supernova feedback reproduces the observed optical depth to electron scattering and evolution of the galaxy stellar mass function between z = 5 and 7, predicting that a broad range of halo masses contribute to reionization. Using a constant escape fraction and global recombination rate, our model is unable to simultaneously match the observed ionizing emissivity at z ≲ 6. However, the use of an evolving escape fraction of 0.05-0.1 at z ˜ 6, increasing towards higher redshift, is able to satisfy these three constraints. We also demonstrate that photoionization suppression of low-mass galaxy formation during reionization has only a small effect on the ionization history of the intergalactic medium. This lack of `self-regulation' arises due to the already efficient quenching of star formation by supernova feedback. It is only in models with gas supply-limited star formation that reionization feedback is effective at regulating galaxy growth. We similarly find that reionization has only a small effect on the stellar mass function, with no observationally detectable imprint at M* > 107.5 M⊙. However, patchy reionization has significant effects on individual galaxy masses, with variations of factors of 2-3 at z = 5 that correlate with environment.
NASA Astrophysics Data System (ADS)
Lee, Joon Hyeop; Pak, Mina; Lee, Hye-Ran; Oh, Sree
2018-04-01
We investigate the properties of bright galaxies of various morphological types in Abell 1139 and Abell 2589, using pixel color–magnitude diagram (pCMD) analysis. The sample contains 32 galaxies brighter than M r = ‑21.3 mag with spectroscopic redshifts, which are deeply imaged in the g and r bands using the MegaCam mounted on the Canada–France–Hawaii Telescope. After masking contaminants with two-step procedures, we examine how the detailed properties in the pCMDs depend on galaxy morphology and infrared color. The mean g ‑ r color as a function of surface brightness (μ r ) in the pCMD of a galaxy shows good performance in distinguishing between early- and late-type galaxies, but it is not perfect because of the similarity between elliptical galaxies and bulge-dominated spiral galaxies. On the other hand, the g ‑ r color dispersion as a function of μ r works better. We find that the best set of parameters for galaxy classification is a combination of the minimum color dispersion at μ r ≤ 21.2 mag arcsec‑2 and the maximum color dispersion at 20.0 ≤ μ r ≤ 21.0 mag arcsec‑2 the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Finally, the color dispersion measurements of an elliptical galaxy appear to be correlated with the Wide-field Infrared Survey Explorer infrared color ([4.6]–[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.
Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics
Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; ...
2015-03-11
The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (w g₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reducedmore » tensor but that luminosity versus mass weighting has only negligible effects. Both ED and w g₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M ⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a w g₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that w g₊ (using subhalos as tracers of density and w δ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less
Optimal galaxy survey for detecting the dipole in the cross-correlation with 21 cm Intensity Mapping
NASA Astrophysics Data System (ADS)
Lepori, Francesca; Di Dio, Enea; Villa, Eleonora; Viel, Matteo
2018-05-01
We investigate the future perspectives of the detection of the relativistic dipole by cross-correlating the 21 cm emission in Intensity Mapping (IM) and galaxy surveys at low redshift. We model the neutral hydrogen (HI) and the galaxy population by means of the halo model to relate the parameters that affect the dipole signal such as the biases of the two tracers and the Poissonian noise. We investigate the behavior of the signal-to-noise as a function of the galaxy and magnification biases, for two fixed models of the neutral hydrogen. In both cases we found that the signal-to-noise does not grow by increasing the difference between the biases of the two tracers, due to the larger shot-noise yields by highly biased tracers. We also study and provide an optimal luminosity-threshold galaxy catalogue to enhance the signal-to-noise ratio of the relativistic dipole. Interestingly, we show that the maximum magnitude provided by the survey does not lead to the maximum signal-to-noise for detecting relativistic effects and we predict the optimal value for the limiting magnitude. Our work suggests that an optimal analysis could increase the signal-to-noise ratio up to a factor five compared to a standard one.
NASA Astrophysics Data System (ADS)
Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.
2016-02-01
We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies
NASA Astrophysics Data System (ADS)
Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Kim, Han-Seek; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-09-01
Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300 Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high-redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high-redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.
The mean density and two-point correlation function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1988-01-01
The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.
The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry
NASA Astrophysics Data System (ADS)
Bloom, J. V.; Croom, S. M.; Bryant, J. J.; Schaefer, A. L.; Bland-Hawthorn, J.; Brough, S.; Callingham, J.; Cortese, L.; Federrath, C.; Scott, N.; van de Sande, J.; D'Eugenio, F.; Sweet, S.; Tonini, C.; Allen, J. T.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J.; Lorente, N.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Sharp, R.
2018-05-01
In order to determine the causes of kinematic asymmetry in the Hα gas in the SAMI (Sydney-AAO Multi-object IFS) Galaxy Survey sample, we investigate the comparative influences of environment and intrinsic properties of galaxies on perturbation. We use spatially resolved Hα velocity fields from the SAMI Galaxy Survey to quantify kinematic asymmetry (\\overline{v_asym}) in nearby galaxies and environmental and stellar mass data from the Galaxy And Mass Assembly survey. We find that local environment, measured as distance to nearest neighbour, is inversely correlated with kinematic asymmetry for galaxies with log (M*/M⊙) > 10.0, but there is no significant correlation for galaxies with log (M*/M⊙) < 10.0. Moreover, low-mass galaxies [log (M*/M⊙) < 9.0] have greater kinematic asymmetry at all separations, suggesting a different physical source of asymmetry is important in low-mass galaxies. We propose that secular effects derived from gas fraction and gas mass may be the primary causes of asymmetry in low-mass galaxies. High gas fraction is linked to high σ _m/V (where σm is Hα velocity dispersion and V the rotation velocity), which is strongly correlated with \\overline{v_asym}, and galaxies with log (M*/M⊙) < 9.0 have offset \\overline{σ _m/V} from the rest of the sample. Further, asymmetry as a fraction of dispersion decreases for galaxies with log (M*/M⊙) < 9.0. Gas mass and asymmetry are also inversely correlated in our sample. We propose that low gas masses in dwarf galaxies may lead to asymmetric distribution of gas clouds, leading to increased relative turbulence.
Joint measurement of lensing-galaxy correlations using SPT and DES SV data
Baxter, E. J.
2016-07-04
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing
NASA Astrophysics Data System (ADS)
González-Nuevo, J.; Lapi, A.; Negrello, M.; Danese, L.; De Zotti, G.; Amber, S.; Baes, M.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Bussmann, R. S.; Cai, Z.-Y.; Cooray, A.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Ibar, E.; Ivison, R.; Liske, J.; Loveday, J.; Maddox, S.; Michałowski, M. J.; Robotham, A. S. G.; Scott, D.; Smith, M. W. L.; Valiante, E.; Xia, J.-Q.
2014-08-01
We report a highly significant (>10σ) spatial correlation between galaxies with S350 μm ≥ 30 mJy detected in the equatorial fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) with estimated redshifts ≳ 1.5, and Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly (GAMA) galaxies at 0.2 ≤ z ≤ 0.6. The significance of the cross-correlation is much higher than those reported so far for samples with non-overlapping redshift distributions selected in other wavebands. Extensive, realistic simulations of clustered sub-mm galaxies amplified by foreground structures confirm that the cross-correlation can be explained by weak gravitational lensing (μ < 2). The simulations also show that the measured amplitude and range of angular scales of the signal are larger than can be accounted for by galaxy-galaxy weak lensing. However, for scales ≲ 2 arcmin, the signal can be reproduced if SDSS/GAMA galaxies act as signposts of galaxy groups/clusters with halo masses in the range 1013.2-1014.5 M⊙. The signal detected on larger scales appears to reflect the clustering of such haloes.
Joint measurement of lensing-galaxy correlations using SPT and DES SV data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E. J.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
Joint measurement of lensing–galaxy correlations using SPT and DES SV data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E.; Clampitt, J.; Giannantonio, T.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev–Zel'dovich (SPT-SZ) survey. The two lensing–galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairlymore » insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Λ cold dark matter cosmological model. It also demonstrates that joint lensing–galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
On the galaxy–halo connection in the EAGLE simulation
Desmond, Harry; Mao, Yao -Yuan; Wechsler, Risa H.; ...
2017-06-13
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass–size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy–halo connection it implies. We find themore » EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Here by, using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.« less
On the galaxy–halo connection in the EAGLE simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmond, Harry; Mao, Yao -Yuan; Wechsler, Risa H.
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass–size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy–halo connection it implies. We find themore » EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Here by, using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.« less
NASA Astrophysics Data System (ADS)
Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping
2018-03-01
We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.
The Galactic Tango: The Elegant Dance of Galaxies and their Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Sherman, Sydney; Li, Yuexing; Zhu, Qirong
2015-01-01
For well over a decade, it has been known that a supermassive black hole resides in the center of almost every galaxy, and that these black holes strongly correlate with the stellar velocity dispersion (the MBH-σ correlation) and stellar mass (the MBH-Mhost correlation) of their hosts. The origins of these correlations, however, have yet to be determined. To explore the interplay between black holes and galaxies, we have utilized a sample of nearby spiral and elliptical galaxies as well as a sample of AGN in the redshift range z = 0-3. By examining galaxy properties such as mass, kinematics, and growth history, we have determined that these two correlations have distinct origins: the MBH-σ relation may be the result of virial equilibrium, whereas the MBH-Mhost relation may be the result of self-regulated black hole growth and star formation in galaxies. These results confirm the predictions of our previous theoretical model.
SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike
2018-04-01
We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
The influence of environment on the properties of galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Yasuhiro
1999-11-01
I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star forming galaxies, the star formation rate is correlated both with the local galaxy density and rich cluster membership. It also shows a correlation with poor cluster membership. For strongly star forming galaxies, the star formation rate is correlated with the local density and the poor cluster membership. (3)Interacting galaxies (characterized by the asymmetry index and/or the existence of apparent companions) show no correlation with rich cluster membership, but show a fair to strong correlation with the poor cluster membership.
Galaxy redshift surveys with sparse sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro
2013-12-01
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should bemore » chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.« less
Kennicutt-Schmidt Relation Variety and Star-forming Cloud Fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morokuma-Matsui, Kana; Muraoka, Kazuyuki, E-mail: kana.matsui@nao.ac.jp
2017-03-10
The observationally derived Kennicutt-Schmidt (KS) relation slopes differ from study to study, ranging from sublinear to superlinear. We investigate the KS-relation variety (slope and normalization) as a function of integrated intensity ratio, R {sub 31} = CO( J = 3–2)/CO( J = 1–0) using spatially resolved CO( J = 1–0), CO( J = 3–2), H i, H α, and 24 μ m data of three nearby spiral galaxies (NGC 3627, NGC 5055, and M83). We find that (1) the slopes for each subsample with a fixed R {sub 31} are shallower, but the slope for all data sets combined becomesmore » steeper, (2) normalizations for high R {sub 31} subsamples tend to be high, (3) R {sub 31} correlates with star formation efficiency, therefore the KS relation depends on the distribution in R {sub 31}–Σ{sub gas} space of the samples: no Σ{sub gas} dependence of R {sub 31} results in a linear slope of the KS relation, whereas a positive correlation between Σ{sub gas} and R {sub 31} results in a superlinear slope of the KS relation, and (4) R {sub 31}–Σ{sub gas} distributions are different from galaxy to galaxy and within a galaxy: galaxies with prominent galactic structure tend to have large R {sub 31} and Σ{sub gas}. Our results suggest that the formation efficiency of a star-forming cloud from molecular gas is different among galaxies as well as within a galaxy, and it is one of the key factors inducing the variety in galactic KS relation.« less
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
NASA Astrophysics Data System (ADS)
Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.
2011-11-01
It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s-1 calculated at a radius of ~10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ~50 km s-1 to ~500 km s-1, with a bend below ~80 km s-1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM "Bolshoi" simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from Mr = -14 to Mr = -22. We also compare our predictions for the "cold" baryon mass (i.e., stars and cold gas) of galaxies as a function of circular velocity with the available observations, again finding a very good agreement. The predicted circular velocity function (VF) is also in agreement with the galaxy VF from 80 to 400 km s-1, using the HIPASS survey for late-type galaxies and Sloan Digital Sky Survey (SDSS) for early-type galaxies. However, in accord with other recent results, we find that the DM halos with V circ < 80 km s-1 are much more abundant than observed galaxies with the same V circ. Finally, we find that the two-point correlation function of bright galaxies in our model matches very well the results from the final data release of the SDSS, especially when a small amount of scatter is included in the HAM prescription.
NASA Astrophysics Data System (ADS)
Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.
2018-05-01
We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 < z < 0.098 and cover approximately 1300 deg2 over two long fields. Cross-correlation is detected at a significance of 5.7 σ. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (H I) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k ˜ 1.5 h Mpc-1, the cross-power spectrum is more than a factor of 6 lower than expected, with a significance of 15.3 σ. This decrement indicates a lack of clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.
The Effects of Galaxy Interactions on Star Formation
NASA Astrophysics Data System (ADS)
Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.
2018-01-01
Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.
2018-04-01
Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, A.; Siana, B.; Masters, D.
Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sunmore » }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.« less
Dynamic evolution of nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Biernacka, M.; Flin, P.
2011-06-01
A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.
NASA Astrophysics Data System (ADS)
Ross, Ashley J.; Samushia, Lado; Burden, Angela; Percival, Will J.; Tojeiro, Rita; Manera, Marc; Beutler, Florian; Brinkmann, J.; Brownstein, Joel R.; Carnero, Aurelio; da Costa, Luiz A. N.; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; Maia, Marcio A. G.; Montesano, Francesco; Muna, Demitri; Nichol, Robert C.; Nuza, Sebastián E.; Sánchez, Ariel G.; Schneider, Donald P.; Skibba, Ramin A.; Sobreira, Flávia; Streblyanska, Alina; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Wake, David A.; Zehavi, Idit; Zhao, Gong-bo
2014-01-01
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. DR10 contains 540 505 galaxies with 0.43 < z < 0.7; from these we select 122 967 for a `Blue' sample and 131 969 for a `Red' sample based on k + e corrected (to z = 0.55) r - i colours and i-band magnitudes. The samples are chosen such that both contain more than 100 000 galaxies, have similar redshift distributions and maximize the difference in clustering amplitude. The Red sample has a 40 per cent larger bias than the Blue (bRed/bBlue = 1.39 ± 0.04), implying that the Red galaxies occupy dark matter haloes with an average mass that is 0.5 log10 M⊙ greater. Spherically averaged measurements of the correlation function, ξ0, and the power spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of both samples. Using ξ0, we obtain distance scales, relative to the distance of our reference Λ cold dark matter cosmology, of 1.010 ± 0.027 for the Red sample and 1.005 ± 0.031 for the Blue. After applying reconstruction, these measurements improve to 1.013 ± 0.020 for the Red sample and 1.008 ± 0.026 for the Blue. For each sample, measurements of ξ0 and the second multipole moment, ξ2, of the anisotropic correlation function are used to determine the rate of structure growth, parametrized by fσ8. We find fσ8, Red = 0.511 ± 0.083, fσ8, Blue = 0.509 ± 0.085 and fσ8, Cross = 0.423 ± 0.061 (from the cross-correlation between the Red and Blue samples). We use the covariance between the bias and growth measurements obtained from each sample and their cross-correlation to produce an optimally combined measurement of fσ8, comb = 0.443 ± 0.055. This result compares favourably to that of the full 0.43 < z < 0.7 sample (fσ8, full = 0.422 ± 0.051) despite the fact that, in total, we use less than half of the number of galaxies analysed in the full sample measurement. In no instance do we detect significant differences in distance scale or structure growth measurements obtained from the Blue and Red samples. Our results are consistent with theoretical predictions and our tests on mock samples, which predict that any colour-dependent systematic uncertainty on the measured BAO position is less than 0.5 per cent.
NASA Astrophysics Data System (ADS)
Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang
2018-01-01
The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.
The metal enrichment of passive galaxies in cosmological simulations of galaxy formation
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.
2017-02-01
Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.
The reliability of [C II] as an indicator of the star formation rate
NASA Astrophysics Data System (ADS)
De Looze, Ilse; Baes, Maarten; Bendo, George J.; Cortese, Luca; Fritz, Jacopo
2011-10-01
The [C II] 157.74 μm line is an important coolant for the neutral interstellar gas. Since [C II] is the brightest spectral line for most galaxies, it is a potentially powerful tracer of star formation activity. In this paper, we present a calibration of the star formation rate (SFR) as a function of the [C II] luminosity for a sample of 24 star-forming galaxies in the nearby Universe. This sample includes objects classified as H II regions or low-ionization nuclear emission-line regions, but omits all Seyfert galaxies with a significant contribution from the active galactic nucleus to the mid-infrared photometry. In order to calibrate the SFR against the line luminosity, we rely on both Galaxy Evolution Explorer far-ultraviolet data, which is an ideal tracer of the unobscured star formation, and MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. In the case of normal star-forming galaxies, the [C II] luminosity correlates well with the SFR. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultraluminous galaxies should be handled with caution, since these objects show a non-linearity in the ?-to-LFIR ratio as a function of LFIR (and thus, their star formation activity). We provide two possible explanations for the origin of the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. A first interpretation could be that the [C II] emission from photodissociation regions (PDRs) arises from the immediate surroundings of star-forming regions. Since PDRs are neutral regions of warm dense gas at the boundaries between H II regions and molecular clouds and they provide the bulk of [C II] emission in most galaxies, we believe that a more or less constant contribution from these outer layers of photon-dominated molecular clumps to the [C II] emission provides a straightforward explanation for this close link between the [C II] luminosity and SFR. Alternatively, we consider the possibility that the [C II] emission is associated with the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino
We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for amore » range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.« less
NASA Astrophysics Data System (ADS)
Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.
2018-05-01
The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.
The structure of first-ranked cluster galaxies and the radius-magnitude relation
NASA Astrophysics Data System (ADS)
Lugger, P. M.
1984-11-01
To investigate theoretical predictions for the dynamical evolution of first-ranked galaxies, a quantitative study of their properties, as a function of cluster morphology, has been carried out using photographic plates obtained with the Palomar 48 inch (1.2 m) Schmidt telescope. Surface brightness profiles to radii of several hundred kpc for 35 first-ranked cluster galaxies have been analyzed. The dispersion in the metric magnitudes of first-ranked galaxies is quite small (about 0.4 mag), which is consistent with the results of Kristian, Sandage, and Westphal (1978) as well as those of Hoessel, Gunn, and Thuan (1980) and the recent work of Schneider, Gunn, and Hoessel (1983). For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is about 0.5 mag brighter than for the non-cD galaxies. The mean de Vaucouleurs effective radius for the cD galaxy sample is 80 percent larger than that of the non-cD sample. The relation between de Vaucouleurs effective radius and magnitude determined in the present study for first-ranked galaxies, log r(e) equal to about -0.26 M + constant is consistent with the relations found for fainter galaxies by Strom and Strom (1978) as well as Wirth (1982). The residuals in radius from the mean radius-magnitude relation for first-ranked galaxies do not correlate with the Bautz-Morgan (1970) type of the cluster.
NASA Astrophysics Data System (ADS)
Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-12-01
We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.
The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology
NASA Astrophysics Data System (ADS)
Kroupa, P.
2012-06-01
The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-01-09
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between similar to 380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significantmore » correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M(circle dot)h(-1). We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The onehalo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one-and two-halo regimes, while groups with mass below 1013M(circle dot)h(-1) are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe: < bPe > = 1.50 +/- 0.226 x 10(-7) keV cm(-3) (sigma) at z approximate to 0.15.« less
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel'dovich Effect Cross-Correlation Function
NASA Astrophysics Data System (ADS)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-05-01
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between ˜380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significant correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M⊙ h-1. We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The one-halo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one- and two-halo regimes, while groups with mass below 1013 M⊙ h-1 are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe:
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo
2017-07-01
The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies
NASA Astrophysics Data System (ADS)
Kauffmann, Guinevere
2018-03-01
The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.
Host galaxy properties of calcium II and sodium I quasar absorption-line systems
NASA Astrophysics Data System (ADS)
Cherinka, Brian
Many questions remain within the areas of galaxy formation and evolution. Understanding the origin of gas in galaxy environments, whether as tidal debris, infalling High Velocity Clouds, galaxy outflows, or as gaseous material residing in galaxy disks, is an important step in answering those questions. Quasar absorption-lines can often be used to probe the environments of intervening galaxies. Traditionally, quasar absorption-lines are studied independently of the host galaxy but this method denies us the exploration of the connection between galaxy and environment. Instead, one can select pairs of known galaxies and quasars. This gives much more information regarding the host galaxy and allows us to better connect galaxy properties with associated absorbers. We use the seventh data release of the Sloan Digital Sky Survey to generate a sample of spectroscopic galaxy-quasar pairs. We cross-correlated a sample of 105,000 quasars and ˜800,000 galaxies to produce ˜98,000 galaxy-quasar pairs, with the quasar projected within 100 kpc of the galaxy. Adopting an automated line-finding algorithm and using the galaxy redshift as a prior, we search through all quasar spectra and identify Ca II and Na I absorption due to the intervening galaxy. This procedure produced 1745 Ca II absorbers and 4500 Na I absorbers detected at or above 2σ. Stacking analysis of a subset of absorbers at z > 0.01, with significances at or above 3σ, showed strong Ca II and Na I features around external galaxies. Using the same subset of absorbers at z > 0.01, we looked for correlations between absorber and galaxy properties and examined differences in galaxy properties between the absorbers and non-absorbers. We found no correlations with absorber strength or differences between many galaxy properties at the 3σ level. The lack of correlations and differences between absorbers and non-absorbers suggest a ubiquitous nature for Ca II and Na I around all types of galaxies, with the absorbers showing no geometric preference within galaxy halos. This suggests a possible origin as leftover debris from past mergers that has been redistributed within the halo over time. The main results are presented in Chapters 3 and 4, with complimentary work presented in Chapter 5.
Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation
Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; ...
2015-09-18
We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 10 43.0 erg s –1 while the low redshifts (z ≤ 0.3) showmore » an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 10 41.6 erg s –1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1) –1 at z ≤ 2 while the faint end evolves as ~3(z + 1) –1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less
Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.
2012-01-01
We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.
NASA Astrophysics Data System (ADS)
Cen, Renyue; Ostriker, Jeremiah P.
1993-11-01
We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ <ρgal> on ρtot/<ρtot>. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function. The distribution of proper velocities fits an exponential (not a Maxwellian) P(υ) 2 ∝ υ2e-υ/σexp with σexp = 225 km s-1. For galaxies separated by 1 h-1 Mpc we find a one-dimensional velocity dispersion of 670 km s-1 (490 km s-1 for the most massive subset) compared with 340±40 km s-1 as measured by Davis & Peebles (1983). Adoption of the COBE normalization causes the problem to become worse; the CDM prediction is then approximately (920±160) km s-1. If we look at the genus curves of all our galaxies, they fit the random-phase expectation, but a magnitude-limited sample emphasizes the older, more massive galaxies which have collected at a vertices. This explains the observed "meatball shift" of the genus curves found in observed samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less
Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Weikang; Ishak, Mustapha, E-mail: wxl123830@utdallas.edu, E-mail: mishak@utdallas.edu
2016-10-01
The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the twomore » scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of −0.688 which drops to −0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.« less
SOMBI: Bayesian identification of parameter relations in unstructured cosmological data
NASA Astrophysics Data System (ADS)
Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.
2016-11-01
This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
CO observations of nearby galaxies and the efficiency of star formation
NASA Technical Reports Server (NTRS)
Young, Judith S.
1987-01-01
The CO distributions and total molecular content of 160 galaxies were observed using the 14 meter millimeter telescope of the FCRAO. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, while for the Sb and Sa galaxies the Co distributions often exhibit central CO holes up to 5 kpc across. None of the Sc galaxies have CO distributions which resemble the Milky Way. A general correlation was found between total CO and IR luminosities in galaxies. The scatter in this relation is highly correlated with dust temperature. No strong correlation of IR luminosities was found with HI masses, and it was thereby concluded that the infrared emission is more directly tied to the molecular content of galaxies. It is suggested that galaxies which have high Star Formation Effiencies (SFEs) produce more stars per unit molecular mass, thereby increasing the average temperature of the dust in the star forming regions. Irregular galaxies and galaxies previously identified as mergers have the highest observed star formation efficiencies. For the mergers, evidence was found that the IR/CO luminosity ratio increases with the merger age estimated by Joseph and Wright (1985).
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.
1987-01-01
Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.
Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan
2017-08-01
Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.
Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs
NASA Astrophysics Data System (ADS)
Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom
2017-08-01
We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.
Large-scale clustering as a probe of the origin and the host environment of fast radio bursts
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Kashiyama, Kazumi; Yoshida, Naoki
2017-04-01
We propose to use degree-scale angular clustering of fast radio bursts (FRBs) to identify their origin and the host galaxy population. We study the information content in autocorrelation of the angular positions and dispersion measures (DM) and in cross-correlation with galaxies. We show that the cross-correlation with Sloan Digital Sky Survey (SDSS) galaxies will place stringent constraints on the mean physical quantities associated with FRBs. If ˜10 ,000 FRBs are detected with ≲deg resolution in the SDSS field, the clustering analysis with the intrinsic DM scatter of 100 pc /cm3 can constrain the global abundance of free electrons at z ≲1 and the large-scale bias of FRB host galaxies (the statistical relation between the distribution of host galaxies and cosmic matter density field) with fractional errors (with a 68% confidence level) of ˜10 % and ˜20 %, respectively. The mean near-source dispersion measure and the delay-time distribution of FRB rates relative to the global star forming rate can be also determined by combining the clustering and the probability distribution function of DM. Our approach will be complementary to high-resolution (≪deg ) event localization using e.g., VLA and VLBI for identifying the origin of FRBs and the source environment. We strongly encourage future observational programs such as CHIME, UTMOST, and HIRAX to survey FRBs in the SDSS field.
NASA Astrophysics Data System (ADS)
Henriques, Bruno M. B.; White, Simon D. M.; Thomas, Peter A.; Angulo, Raul E.; Guo, Qi; Lemson, Gerard; Wang, Wenting
2017-08-01
We study the quenching of star formation as a function of redshift, environment and stellar mass in the galaxy formation simulations of Henriques et al. (2015), which implement an updated version of the Munich semi-analytic model (L-GALAXIES) on the two Millennium Simulations after scaling to a Planck cosmology. In this model, massive galaxies are quenched by active galactic nucleus (AGN) feedback depending on both black hole and hot gas mass, and hence indirectly on stellar mass. In addition, satellite galaxies of any mass can be quenched by ram-pressure or tidal stripping of gas and through the suppression of gaseous infall. This combination of processes produces quenching efficiencies which depend on stellar mass, host halo mass, environment density, distance to group centre and group central galaxy properties in ways which agree qualitatively with observation. Some discrepancies remain in dense regions and close to group centres, where quenching still seems too efficient. In addition, although the mean stellar age of massive galaxies agrees with observation, the assumed AGN feedback model allows too much ongoing star formation at late times. The fact that both AGN feedback and environmental effects are stronger in higher density environments leads to a correlation between the quenching of central and satellite galaxies which roughly reproduces observed conformity trends inside haloes.
X-ray Point Source Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.
2001-12-01
In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.
Understanding Galaxy Shapes Across Cosmic Time Using The IllustrisTNG Simulation
NASA Astrophysics Data System (ADS)
Genel, Shy
2017-08-01
Legacy HST observations have enabled groundbreaking measurements of galaxy structure over cosmic time, measurements that still require theoretical interpretation in the context of a comprehensive galaxy evolution model. This proposed research aims at significantly promoting our understanding of the shapes of galaxies as quantified by their principal axes ratios. The main tool we propose to use is IllustrisTNG, a suite consisting of two of the largest cosmological hydrodynamical simulations run to date, which contain resolved galaxy populations (thousands of L* galaxies) that represent a state-of-the-art match to observed galaxies. In Part I of the program, we will use the simulations to create mock images and study the dependence of projected shape measurements on various factors: shape estimator, observed band, the presence of dust, radial and surface brightness cuts, and noise. We will then perform apples-to-apples comparison with observations (including HST), and provide predictions for archival as well as future observations. Further, we will quantify the intrinsic, three-dimensional, shape distribution of galaxies as a function of various galaxy parameters: redshift, mass, color, and size. In Part II of the program, we will develop theoretical insights into the physical mechanisms driving these results. We will study how galaxy shapes relate to angular momentum and merger history, and will follow the shape evolution of individual galaxies over time, looking for correlations to the evolution of other galaxy properties, e.g. size and SFR. We will also study galaxy shape relations to dark matter halo shape, thereby providing input for high-precision cosmic shear models.
On the Supermassive Black Hole-Galaxy Coevolution
NASA Astrophysics Data System (ADS)
Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.
2017-01-01
In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.
Arm classification and velocity gradients in spiral galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biviano, A.; Girardi, M.; Giuricin, G.
1991-08-01
On the basis of published rotation curves, velocity gradients are compiled for 94 galaxies. A significant correlation is found in this sample of galaxies between their gradients and arm classes (as given by Elmegreen and Elmegreen, 1982); galaxies with steeper curves tend to have a flocculent arm structure, and galaxies with flatter curves tend to have a grand design morphology. The correlation is true, since it is not induced by other correlations. The present result is in agreement with previous suggestions by Whitmore (1984) and with the recent result by Elmegreen and Elmegreen; it is also consistent with the predictionsmore » of density wave theory for the formation of the spiral structure. 89 refs.« less
The final data release of ALLSMOG: a survey of CO in typical local low-M∗ star-forming galaxies
NASA Astrophysics Data System (ADS)
Cicone, C.; Bothwell, M.; Wagg, J.; Møller, P.; De Breuck, C.; Zhang, Z.; Martín, S.; Maiolino, R.; Severgnini, P.; Aravena, M.; Belfiore, F.; Espada, D.; Flütsch, A.; Impellizzeri, V.; Peng, Y.; Raj, M. A.; Ramírez-Olivencia, N.; Riechers, D.; Schawinski, K.
2017-08-01
We present the final data release of the APEX low-redshift legacy survey for molecular gas (ALLSMOG), comprising CO(2-1) emission line observations of 88 nearby, low-mass (108.5
Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; ...
2016-06-26
We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ 8(z), and the physical matter density Ω mh 2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chainmore » analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.« less
A new method for the identification of non-Gaussian line profiles in elliptical galaxies
NASA Technical Reports Server (NTRS)
Van Der Marel, Roeland P.; Franx, Marijn
1993-01-01
A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.
High-Redshift Astrophysics Using Every Photon
NASA Astrophysics Data System (ADS)
Breysse, Patrick; Kovetz, Ely; Rahman, Mubdi; Kamionkowski, Marc
2017-01-01
Large galaxy surveys have dramatically improved our understanding of the complex processes which govern gas dynamics and star formation in the nearby universe. However, we know far less about the most distant galaxies, as existing high-redshift observations can only detect the very brightest sources. Intensity mapping surveys provide a promising tool to access this poorly-studied population. By observing emission lines with low angular resolution, these surveys can make use of every photon in a target line to study faint emitters which are inaccessible using traditional techniques. With upcoming carbon monoxide experiments in mind, I will demonstrate how an intensity map can be used to measure the luminosity function of a galaxy population, and in turn how these measurements will allow us to place robust constraints on the cosmic star formation history. I will then show how cross-correlating CO isotopologue lines will make it possible to study gas dynamics within the earliest galaxies in unprecedented detail.
NASA Astrophysics Data System (ADS)
Simon, Patrick; Hilbert, Stefan
2018-05-01
Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scale k with weak gravitational lensing. This method enables us to reconstruct the galaxy bias factor b(k) as well as the galaxy-matter correlation r(k) on spatial scales between 0.01 h Mpc-1 ≲ k ≲ 10 h Mpc-1 for redshift-binned lens galaxies below redshift z ≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructed r(k). For simulated data, the reconstructions achieve an accuracy of 3-7% (68% confidence level) over the above k-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10-15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates for b(k) and r(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.
The Muenster Red Sky Survey: Large-scale structures in the universe
NASA Astrophysics Data System (ADS)
Ungruhe, R.; Seitter, W. C.; Duerbeck, H. W.
2003-01-01
We present a large-scale galaxy catalogue for the red spectral region which covers an area of 5 000 square degrees. It contains positions, red magnitudes, radii, ellipticities and position angles of about 5.5 million galaxies. Together with the APM catalogue (4,300 square degrees) in the blue spectral region, this catalogue forms at present the largest coherent data base for cosmological investigations in the southern hemisphere. 217 ESO Southern Sky Atlas R Schmidt plates with galactic latitudes -45 degrees were digitized with the two PDS microdensitometers of the Astronomisches Institut Münster, with a step width of 15 microns, corresponding to 1.01 arcseconds per pixel. All data were stored on different storage media and are available for further investigations. Suitable search parameters must be chosen in such a way that all objects are found on the plates, and that the percentage of artificial objects remains as low as possible. Based on two reference areas on different plates, a search threshold of 140 PDS density units and a minimum number of four pixels per object were chosen. The detected objects were stored, according to size, in frames of different size length. Each object was investigated in its frame, and 18 object parameters were determined. The classification of objects into stars, galaxies and perturbed objects was done with an automatic procedure which makes use of combinations of computed object parameters. In the first step, the perturbed objects are removed from the catalogue. Double objects and noise objects can be excluded on the basis of symmetry properties, while for satellite trails, a new classification criterium based on apparent magnitude, effective radius and apparent ellipticity, was developed. For the remaining objects, a star/galaxy separation was carried out. For bright objects, the relation between apparent magnitude and effective radius serves as the discriminating property, for fainter objects, the relation between effective radius and central intensity was used. In addition, a few regions of enhanced object density like dwarf galaxies and star clusters were removed from the catalogue. Because error estimates of the automatic classificationprocedure are very uncertain, an extensive visual check of the automatic classification was carried out. A large number of objects previously classified automatically - 1.3 million galaxies, 815,000 stars and 647,000 perturbed objects - was re-classified by eye. We found that galaxies suffer most from misclassification. Down to magnitude 13, the error is, independent of galactic latitude, at least 60%. Between13th and 17th magnitude, the percentage of misclassified galaxies for b < -45 degrees drops continuously to between 15% and 30%, and is clearly dependent on galactic latitude. The classification of galaxies at low galactic latitudes is most strongly affected; in these regions only half of the galaxies are correctly classified. Errors found in this work thus lie by a factor 2-3 above values quoted in the literature.Stars show classification errors of at most 10%, whose level increases towards fainter magnitudes. The classification accuracy is less dependent on galactic latitude than in the case of galaxies. As concerns artifacts, noticeable classification errors occur only for objects brighter than magnitude 15, which is mainly caused by saturation effects of the photographic emulsion. At magnitudes fainter than 15th,the error is below 5%. No dependence from galactic latitude is seen. These investigations show that the automatic classification yields satisfactory results only in certain magnitude intervals, which depend on galactic latitude. The object magnitudes are influenced by the desensitization of the emulsion during exposure and by the vignetting of the telescope. Objects at the plate margins appear systematically too faint. The magnitudes were corrected by means of measured number densities of galaxies and stars, which were determined in 63 fields around the galactic southpole. The difference of the magnitude zero-point between the center and the margin of a plate amounts to approximately 0.05 mag after correction of the margin desensitization. Because of their high central intensity, stars reach the saturation limit of the emulsion already at magnitude 17. Thus bright stars appear systematically too faint. The saturation effect can be corrected by means of a point-spread function, which is calculated from the unsaturated parts of the stellar intensity profiles. The magnitude corrections for the saturation are carried out for each plate separately. In order to establish a unique magnitude zero-point for the 217 single plates, a mutual adjustment of neighbouring fields by means of their overlap regions was done. The procedure was carried out separately for stars and galaxies. In total, 1,005 overlap regions for galaxies and 1,103 regions for stars were available. The zero-point error after adjustment amounts to 0.06 mag for galaxies and 0.07 mag for stars. The external calibration of the photographic rF magnitudes was carried out by means of CCD sequences obtained with three telescopes in Chile and South Africa. In total, photometric V, R data for 1,037 galaxies and 1,058 stars in 92 fields are available. The transformation between photographic and CCD magnitudes requires a relation between F and VR.It was carried out separately for stars and galaxies, because they show different colour transformations. After the transformation of the photographic rF magnitudes to the standard Johnson R system, the errors of the local magnitude zero-point amount to 0.11 mag. for galaxies and 0.15 mag for stars. Because of the large areal extent of the catalogue, the galaxy magnitudes must be corrected for interstellar extinction. Magnitude corrections are based on hydrogen column densitiesof interstellar dust. Extinction corrections amount to up to0.1 mag for 55% of galaxies, and 0.2 mag for another 35%. For the remaining 10%, the corrections are above 0.2 mag.The iteration procedure for the indirect adjustment of single platesmay cause a magnitude gradient in north-south or east-west direction. Investigations of the magnitude differences between photographic and CCD magnitudes versus right ascension and declination show no significant gradients.In order to generate a complete catalogue of galaxies and stars, all double or multiple objects that occur in overlap regions have to be excluded. After the merging of all single plates (including half of the overlap regions), both catalogues contain 5.5 million galaxies and 20.2 million stars. The completeness of the catalogues was investigated from the comparison of counts of stars and galaxies with simulations. The limit of completenessis at magnitude18.3 for galaxies, and at 18.8 for stars. In the case of galaxies, a clear deficit is seen for galaxies down to magitude 16 in comparison with the simulation. Neither by taking into account galaxy evolution, nor by changes in the cosmological parameters, an adjustment of the simulation to the catalogue counts was possible. These results and those of others support the assumption that we are dealing with a real galaxy deficit. The determined slope of 0.66 of the galaxy counts is, within the limits of accuracy, in agreement with the measured values of other authors. No comparable star counts are available. The N-point angular correlation function were determined from various sub-catalogues consisting of 9, 25, 63, 121 and 152 fields as well asfor limiting magnitudes from magnitudes 15.0 to 19.0. The computation of chance distributions was carried out for galaxy counts in cells with side borders from 25''to 28.4''. Averaged correlation functions and their coefficients were determined by means of factorial moments. The delete-d jackknife procedure was applied for the error estimate, with 200 replications per subcatalogue. The 2-point angular correlation function shows a linear trend in logarithmic plots for all sub-catalogues on scales from 0.02 to 2degrees.Within this range, it can be parametrized by a power law omega2 = A theta exp(1-gamma). Depending on sub-catalogue, the gamma values scatter between 1.63 and 1.73. They show a good agreement with the EDSGC, APM and MRSP catalogues. The parametrization of the amplitudeof the 2-point angular correlation versus apparent magnitude yields beta values between 0.267 and 0.322, which are in accordance with beta values from model calculations. The curve form of the 2-point angularcorrelation function shows a significantly flatter decline on scales exceeding 2 degrees which cannot be reproduced by the standard CDM-model. The correlation functions of higher order intersect at a point theta_S, whose position depends on the limiting magnitude. For scales theta
Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2006-01-01
Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.
Large-scale galaxy flow from a non-gravitational impulse
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Kaiser, Nick
1989-01-01
A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.
NASA Astrophysics Data System (ADS)
Sawangwit, U.; Shanks, T.; Abdalla, F. B.; Cannon, R. D.; Croom, S. M.; Edge, A. C.; Ross, Nicholas P.; Wake, D. A.
2011-10-01
We present the angular correlation function measured from photometric samples comprising 1562 800 luminous red galaxies (LRGs). Three LRG samples were extracted from the Sloan Digital Sky Survey (SDSS) imaging data, based on colour-cut selections at redshifts, z≈ 0.35, 0.55 and 0.7 as calibrated by the spectroscopic surveys, SDSS-LRG, 2dF-SDSS LRG and QSO (quasi-stellar object) (2SLAQ) and the AAΩ-LRG survey. The galaxy samples cover ≈7600 deg2 of sky, probing a total cosmic volume of ≈5.5 h-3 Gpc3. The small- and intermediate-scale correlation functions generally show significant deviations from a single power-law fit with a well-detected break at ≈1 h-1 Mpc, consistent with the transition scale between the one- and two-halo terms in halo occupation models. For galaxy separations 1-20 h-1 Mpc and at fixed luminosity, we see virtually no evolution of the clustering with redshift and the data are consistent with a simple high peaks biasing model where the comoving LRG space density is constant with z. At fixed z, the LRG clustering amplitude increases with luminosity in accordance with the simple high peaks model, with a typical LRG dark matter halo mass 1013-1014 h-1 M⊙. For r < 1 h-1 Mpc, the evolution is slightly faster and the clustering decreases towards high redshift consistent with a virialized clustering model. However, assuming the halo occupation distribution (HOD) and Λ cold dark matter (ΛCDM) halo merger frameworks, ˜2-3 per cent/Gyr of the LRGs are required to merge in order to explain the small scales clustering evolution, consistent with previous results. At large scales, our result shows good agreement with the SDSS-LRG result of Eisenstein et al. but we find an apparent excess clustering signal beyond the baryon acoustic oscillations (BAO) scale. Angular power spectrum analyses of similar LRG samples also detect a similar apparent large-scale clustering excess but more data are required to check for this feature in independent galaxy data sets. Certainly, if the ΛCDM model were correct then we would have to conclude that this excess was caused by systematics at the level of Δw≈ 0.001-0.0015 in the photometric AAΩ-LRG sample.
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; Xu, Xiaoying; Eisenstein, Daniel J.; Scalzo, Richard; Cuesta, Antonio J.; Mehta, Kushal T.; Kazin, Eyal
2012-12-01
We present the first application to density field reconstruction to a galaxy survey to undo the smoothing of the baryon acoustic oscillation (BAO) feature due to non-linear gravitational evolution and thereby improve the precision of the distance measurements possible. We apply the reconstruction technique to the clustering of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) luminous red galaxy (LRG) sample, sharpening the BAO feature and achieving a 1.9 per cent measurement of the distance to z = 0.35. We update the reconstruction algorithm of Eisenstein et al. to account for the effects of survey geometry as well as redshift-space distortions and validate it on 160 LasDamas simulations. We demonstrate that reconstruction sharpens the BAO feature in the angle averaged galaxy correlation function, reducing the non-linear smoothing scale Σnl from 8.1 to 4.4 Mpc h-1. Reconstruction also significantly reduces the effects of redshift-space distortions at the BAO scale, isotropizing the correlation function. This sharpened BAO feature yields an unbiased distance estimate (<0.2 per cent) and reduces the scatter from 3.3 to 2.1 per cent. We demonstrate the robustness of these results to the various reconstruction parameters, including the smoothing scale, the galaxy bias and the linear growth rate. Applying this reconstruction algorithm to the SDSS LRG DR7 sample improves the significance of the BAO feature in these data from 3.3σ for the unreconstructed correlation function to 4.2σ after reconstruction. We estimate a relative distance scale DV/rs to z = 0.35 of 8.88 ± 0.17, where rs is the sound horizon and DV≡(DA2H-1)1/3 is a combination of the angular diameter distance DA and Hubble parameter H. Assuming a sound horizon of 154.25 Mpc, this translates into a distance measurement DV(z = 0.35) = 1.356 ± 0.025 Gpc. We find that reconstruction reduces the distance error in the DR7 sample from 3.5 to 1.9 per cent, equivalent to a survey with three times the volume of SDSS.
THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv, E-mail: apuebla@astro.unam.mx
2013-08-20
Several occupational distributions for satellite galaxies more massive than m{sub *} Almost-Equal-To 4 Multiplication-Sign 10{sup 7} M{sub Sun} around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m{sub *}. For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Smallmore » and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are Almost-Equal-To 0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N{sub s} ({>=}m{sub *}) , down to the mass of the Fornax dwarf is within the 1{sigma} distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N{sub s} ({>=}m{sub *}) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N{sub s} ({>=}m{sub *}). Then, it is not possible to accurately determine the MW halo mass by means of its N{sub s} ({>=}m{sub *}); from our catalog, we constrain a lower limit of 1.38 Multiplication-Sign 10{sup 12} M{sub Sun} at the 1{sigma} level. Our analysis strongly suggests that the abundance of massive subhalos should agree with the abundance of massive satellites in all MW-sized hosts, i.e., there is not a missing (massive) satellite problem for the {Lambda}CDM cosmology. However, we confirm that the maximum circular velocity, v{sub max}, of the subhalos of satellites smaller than m{sub *} {approx} 10{sup 8} M{sub Sun} is systematically larger than the v{sub max} inferred from current observational studies of the MW bright dwarf satellites; different from previous works, this conclusion is based on an analysis of the overall population of MW-sized galaxies. Some pieces of evidence suggest that the issue could refer only to satellite dwarfs but not to central dwarfs, then environmental processes associated with dwarfs inside host halos combined with supernova-driven core expansion should be on the basis of the lowering of v{sub max}.« less
NASA Astrophysics Data System (ADS)
Guzzo, L.; Bartlett, J. G.; Cappi, A.; Maurogordato, S.; Zucca, E.; Zamorani, G.; Balkowski, C.; Blanchard, A.; Cayatte, V.; Chincarini, G.; Collins, C. A.; Maccagni, D.; MacGillivray, H.; Merighi, R.; Mignoli, M.; Proust, D.; Ramella, M.; Scaramella, R.; Stirpe, G. M.; Vettolani, G.
2000-03-01
We present analyses of the two-point correlation properties of the ESO Slice Project (ESP) galaxy redshift survey, both in redshift and real space. From the redshift-space correlation function $xi (r) i(s) we are able to trace positive clustering out to separations as large as 50 h^{-1} Mpc, after which xi (r) i(s) smoothly breaks down, crossing the zero value between 60 and 80 h^{-1} Mpc. This is best seen from the whole magnitude-limited redshift catalogue, using the J_3 miniμm-variance weighting estimator. xi (r) i(s) is reasonably well described by a shallow power law with \\gamma\\sim 1.5 between 3 and 50 h^{-1} Mpc, while on smaller scales (0.2-2 h^{-1} Mpc) it has a shallower slope (\\gamma\\sim 1). This flattening is shown to be mostly due to the redshift-space damping produced by virialized structures, and is less evident when volume-limited samples of the survey are analysed. We examine the full effect of redshift-space distortions by computing the two-dimensional correlation function xi (r) i(r_p,\\pi) , from which we project out the real-space xi (r) i(r) below 10 h^{-1} Mpc. This function is well described by a power-law model (r/r_o)^{-\\gamma}, with r_o=4.15^{+0.20}_{-0.21} h^{-1} Mpc and \\gamma=1.67^{+0.07}_{-0.09} for the whole magnitude-limited catalogue. Comparison to other redshift surveys shows a consistent picture in which galaxy clustering remains positive out to separations of 50 h^{-1} Mpc or larger, in substantial agreement with the results obtained from angular surveys like the APM and EDSGC. Also the shape of the two-point correlation function is remarkably unanimous among these data sets, in all cases requiring more power on scales larger than 5 h^{-1} Mpc (a `shoulder'), with respect to a simple extrapolation of the canonical xi (r) i(r) =(r/5)^{-1.8}. The analysis of xi (r) i(s) for volume-limited subsamples with different luminosity shows evidence of luminosity segregation only for the most luminous sample with Mb_J <= -20.5. For these galaxies, the amplitude of clustering is on all scales >4 h^{-1} Mpc about a factor of 2 above that of all other subsamples containing less luminous galaxies. When redshift-space distortions are removed through projection of xi (r) i(r_p,\\pi) , however, a weak dependence on luminosity is seen at small separations also at fainter magnitudes, resulting in a growth of r_o from 3.45_{-0.30}^{+0.21} h^{-1} Mpc to 5.15_{-0.44}^{+0.39} h^{-1} Mpc, when the limiting absolute magnitude of the sample changes from M=-18.5 to M=-20. This effect is masked in redshift space, as the mean pairwise velocity dispersion experiences a parallel increase, basically erasing the effect of the clustering growth on xi (r) i(s) . Based on observations collected at the European Southern Observatory, La Silla, Chile.}
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.
2018-07-01
Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter haloes. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the `accurate' regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard Λ cold dark matter (ΛCDM) + halo model against the clustering of Sloan Digital Sky Survey (SDSS) seventh data release (DR7) galaxies. Specifically, we use the projected correlation function, group multiplicity function, and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir haloes) matches the clustering of low-luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the `standard' halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.
Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12
NASA Astrophysics Data System (ADS)
Jarrett, T. H.; Cluver, M. E.; Magoulas, C.; Bilicki, M.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Croom, S.; Driver, S.; Holwerda, B. W.; Hopkins, A. M.; Loveday, J.; Norberg, P.; Peacock, J. A.; Popescu, C. C.; Sadler, E. M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.
2017-02-01
We present an analysis of the mid-infrared Wide-field Infrared Survey Explorer (WISE) sources seen within the equatorial GAMA G12 field, located in the North Galactic Cap. Our motivation is to study and characterize the behavior of WISE source populations in anticipation of the deep multiwavelength surveys that will define the next decade, with the principal science goal of mapping the 3D large-scale structures and determining the global physical attributes of the host galaxies. In combination with cosmological redshifts, we identify galaxies from their WISE W1 (3.4 μm) resolved emission, and we also perform a star-galaxy separation using apparent magnitude, colors, and statistical modeling of star counts. The resulting galaxy catalog has ≃590,000 sources in 60 deg2, reaching a W1 5σ depth of 31 μJy. At the faint end, where redshifts are not available, we employ a luminosity function analysis to show that approximately 27% of all WISE extragalactic sources to a limit of 17.5 mag (31 μJy) are at high redshift, z> 1. The spatial distribution is investigated using two-point correlation functions and a 3D source density characterization at 5 Mpc and 20 Mpc scales. For angular distributions, we find that brighter and more massive sources are strongly clustered relative to fainter sources with lower mass; likewise, based on WISE colors, spheroidal galaxies have the strongest clustering, while late-type disk galaxies have the lowest clustering amplitudes. In three dimensions, we find a number of distinct groupings, often bridged by filaments and superstructures. Using special visualization tools, we map these structures, exploring how clustering may play a role with stellar mass and galaxy type.
NASA Astrophysics Data System (ADS)
Ponder, Kara A.
In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature sample of SNeIa with host galaxy data from publicly available catalogs. We find inconclusive evidence that more massive galaxies host SNeIa that are brighter in the NIR than SNeIa hosted in less massive galaxies.
Clustering of galaxies around AGNs in the HSC Wide survey
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori
2018-01-01
We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.
The Merger-Free Growth of Galaxies and Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Simmons, Brooke; Smethurst, Rebecca; Lintott, Chris; Martin, Garreth; Kaviraj, Sugata; Devriendt, Julien; Galaxy Zoo Team
2018-01-01
There is now clear evidence that the merger-driven pathway to black hole and galaxy growth is only half the story. Merger-free evolution contributes roughly equally to the overall growth of black holes in the Universe and is also responsible for a significant amount of galaxy growth over cosmic time. A recent study examining the growth of black holes in unambiguously disk-dominated galaxies shows these black holes reach quasar-like luminosities and black hole masses typical of those hosted in bulge-dominated and elliptical galaxies with major mergers in their evolutionary histories. However, while there appears to be no correlation between the size of the black hole and upper limits on the host galaxy bulges, the fitted correlation between black hole mass and total galaxy stellar mass in these merger-free systems is fully consistent with the canonical relationship based on merger-driven systems. There is further evidence via comparison between observed populations and cosmological simulations confirming that bulgeless systems are generally consistent with having merger-free histories. If bulgeless and disk-dominated galaxies are indeed signatures of systems with no violent mergers in their formation histories, the same correlation between black hole and galaxy in these systems versus that seen in elliptical galaxy samples indicates the black hole-galaxy connection must originate with a process more fundamental than the dynamical configuration of a galaxy's stars.
THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Puebla, Aldo; Yang, Xiaohu; Foucaud, Sebastien
By means of a statistical approach that combines different semi-empirical methods of galaxy-halo connection, we derive the stellar-to-halo mass relations (SHMR) of local blue and red central galaxies. We also constrain the fraction of halos hosting blue/red central galaxies and the occupation statistics of blue and red satellites as a function of halo mass, M {sub h}. For the observational input we use the blue and red central/satellite galaxy stellar mass functions and two-point correlation functions in the stellar mass range of 9 < log(M {sub *}/M {sub ☉}) <12. We find that: (1) the SHMR of central galaxies is segregated bymore » color, with blue centrals having a SHMR above that of red centrals; at log(M {sub h}/M {sub ☉}) ∼12, the M {sub *}-to-M {sub h} ratio of the blue centrals is ≈0.05, which is ∼1.7 times larger than the value of red centrals. (2) The constrained scatters around the SHMRs of red and blue centrals are ≈0.14 and ≈0.11 dex, respectively. The scatter of the average SHMR of all central galaxies changes from ∼0.20 dex to ∼0.14 dex in the 11.3 < log(M {sub h}/M {sub ☉}) <15 range. (3) The fraction of halos hosting blue centrals at M{sub h}=10{sup 11} M {sub ☉} is 87%, but at 2 × 10{sup 12} M {sub ☉} decays to ∼20%, approaching a few percent at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is M{sub h}≈7×10{sup 11} M {sub ☉}. Our results suggest that the SHMR of central galaxies at large masses is shaped by mass quenching. At low masses processes that delay star formation without invoking too strong supernova-driven outflows could explain the high M {sub *}-to-M {sub h} ratios of blue centrals as compared to those of the scarce red centrals.« less
Correlation between low level fluctuations in the x ray background and faint galaxies
NASA Technical Reports Server (NTRS)
Tolstoy, Eline; Griffiths, R. E.
1993-01-01
A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).
NASA Astrophysics Data System (ADS)
Secker, Jeffrey Alan
1995-01-01
We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1.41, consistent with known faint-end slopes for the Virgo and Fornax clusters. The early-type dwarf-to-giant ratio for the Coma cluster core is consistent with that of the Virgo cluster, and thus with the rich Coma cluster being formed as the merger of multiple less-rich galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, William G.; Brighenti, Fabrizio; Temi, Pasquale
The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branchmore » stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.« less
Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure
NASA Astrophysics Data System (ADS)
Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel
2018-01-01
We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Black Hole Safari: Tracking Populations and Hunting Big Game
NASA Astrophysics Data System (ADS)
McConnell, N. J.
2013-10-01
Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.
The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.
2017-05-01
We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.
Galaxy power-spectrum responses and redshift-space super-sample effect
NASA Astrophysics Data System (ADS)
Li, Yin; Schmittfull, Marcel; Seljak, Uroš
2018-02-01
As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.
NASA Astrophysics Data System (ADS)
Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar
2017-11-01
Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5< z≤ 2.7. It is found that the innermost components of nearby ETGs are highly correlated with ETGs in the redshift range, 2< z≤ 2.7, known as `red nuggets'. The intermediate and the outermost parts have moderate correlations with ETGs in the redshift range, 0.5< z≤ 0.75. The quantitative measures are highly consistent with the two phase formation scenario of nearby massive ETGs, as suggested by various authors, and resolve the conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.
The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.
2014-10-01
The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.
Properties of Narrow line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang
2018-04-01
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
Galaxy Zoo: the interplay of quenching mechanisms in the group environment★
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Bamford, S. P.; Hart, R. E.; Kruk, S. J.; Masters, K. L.; Nichol, R. C.; Simmons, B. D.
2017-08-01
Does the environment of a galaxy directly influence the quenching history of a galaxy? Here, we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and near ultra-violet (NUV) detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining star formation history for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching time-scale of ˜ 2.5 Gyr from star forming to complete quiescence, during an average infall time (from ˜10R200 to 0.01R200) of ˜ 2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms that are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms that are correlated with satellite velocity, such as ram-pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead, an interplay of mergers, mass and morphological quenching and environment-driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.
Constraining neutrino masses with the integrated-Sachs-Wolfe-galaxy correlation function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesgourgues, Julien; Valkenburg, Wessel; Gaztanaga, Enrique
2008-03-15
Temperature anisotropies in the cosmic microwave background (CMB) are affected by the late integrated Sachs-Wolfe (lISW) effect caused by any time variation of the gravitational potential on linear scales. Dark energy is not the only source of lISW, since massive neutrinos induce a small decay of the potential on small scales during both matter and dark energy domination. In this work, we study the prospect of using the cross correlation between CMB and galaxy-density maps as a tool for constraining the neutrino mass. On the one hand massive neutrinos reduce the cross-correlation spectrum because free-streaming slows down structure formation; onmore » the other hand, they enhance it through their change in the effective linear growth. We show that in the observable range of scales and redshifts, the first effect dominates, but the second one is not negligible. We carry out an error forecast analysis by fitting some mock data inspired by the Planck satellite, Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST). The inclusion of the cross correlation data from Planck and LSST increases the sensitivity to the neutrino mass m{sub {nu}} by 38% (and to the dark energy equation of state w by 83%) with respect to Planck alone. The correlation between Planck and DES brings a far less significant improvement. This method is not potentially as good for detecting m{sub {nu}} as the measurement of galaxy, cluster, or cosmic shear power spectra, but since it is independent and affected by different systematics, it remains potentially interesting if the total neutrino mass is of the order of 0.2 eV; if instead it is close to the lower bound from atmospheric oscillations, m{sub {nu}}{approx}0.05 eV, we do not expect the ISW-galaxy correlation to be ever sensitive to m{sub {nu}}.« less
Model for Spiral Galaxys Rotation Curves
NASA Astrophysics Data System (ADS)
Hodge, John
2003-11-01
A model of spiral galaxy dynamics is proposed. An expression describing the rotation velocity of particles v in a galaxy as a function of the distance from the center r (RC) is developed. The resulting, intrinsic RC of a galaxy is Keplerian in the inner bulge and rising in the disk region without modifying the Newtonian gravitational potential (MOND) and without unknown dark matter. The v^2 is linearly related to r of the galaxy in part of the rapidly rising region of the HI RC (RRRC) and to r^2 in another part of the RRRC. The r to discontinuities in the surface brightness versus r curve is related to the 21 cm line width, the measured mass of the central supermassive black hole (SBH), and the maximum v^2 in the RRRC. The distance to spiral galaxies can be calculated from these relationships that tightly correlates with the distance calculated using Cepheid variables. Differing results in measuring the mass of the SBH from differing measurement procedures are explained. This model is consistent with previously unexplained data, has predicted new relationships, and suggests a new model of the universe. Full text: http://web.infoave.net/ ˜scjh.
Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster
NASA Astrophysics Data System (ADS)
Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.
2012-03-01
We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.
ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z ∼ 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcorn, Leo Y.; Tran, Kim-Vy H.; Quadri, Ryan
2016-07-01
We perform a kinematic analysis of galaxies at z ∼ 2 in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE survey with stellar masses ranging from log( M {sub ⋆}/ M {sub ⊙}) = 9.0–11.0, 28 of which are members of a known overdensity at z = 2.095. We measure H α emission-line integrated velocity dispersions ( σ {sub int}) from 50 to 230 km s{sup −1}, consistent with other emission-line studies of z ∼ 2 field galaxies. From thesemore » data we estimate virial, stellar, and gas masses and derive correlations between these properties for cluster and field galaxies at z ∼ 2. We find evidence that baryons dominate within the central effective radius. However, we find no statistically significant differences between the cluster and the field, and conclude that the kinematics of star-forming galaxies at z ∼ 2 are not significantly different between the cluster and field environments.« less
The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja
We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less
Color-size Relations of Disc Galaxies with Similar Stellar Masses
NASA Astrophysics Data System (ADS)
Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.
2011-01-01
To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.
Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities
NASA Astrophysics Data System (ADS)
Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.
2011-11-01
In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z < 0.1 with long-slit Hα spectroscopy from Pizagno et al. and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ˜170 000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). The optimal photometric estimator of Vrot we find is stellar mass M★ from Bell et al., based on the linear combination of a luminosity and a colour. Assuming a Kroupa initial mass function (IMF), we find: log [V80/(km s-1)] = (2.142 ± 0.004) + (0.278 ± 0.010)[log (M★/M⊙) - 10.10], where V80 is the rotation velocity measured at the radius R80 containing 80 per cent of the i-band galaxy light. This relation has an intrinsic Gaussian scatter ? dex and a measured scatter σmeas= 0.056 dex in log V80. For a fixed IMF, we find that the dynamical-to-stellar mass ratios within R80, (Mdyn/M★)(R80), decrease from approximately 10 to 3, as stellar mass increases from M★≈ 109 to 1011 M⊙. At a fixed stellar mass, (Mdyn/M★)(R80) increases with disc size, so that it correlates more tightly with stellar surface density than with stellar mass or disc size alone. We interpret the observed variation in (Mdyn/M★)(R80) with disc size as a reflection of the fact that disc size dictates the radius at which Mdyn/M★ is measured, and consequently, the fraction of the dark matter 'seen' by the gas at that radius. For the lowest M★ galaxies, we find a positive correlation between TFR residuals and disc sizes, indicating that the total density profile is dominated by dark matter on these scales. For the highest M★ galaxies, we find instead a weak negative correlation, indicating a larger contribution of stars to the total density profile. This change in the sense of the correlation (from positive to negative) is consistent with the decreasing trend in (Mdyn/M★)(R80) with stellar mass. In future work, we will use these results to study disc galaxy formation and evolution and perform a fair, statistical analysis of the dynamics and masses of a photometrically selected sample of disc galaxies.
Non-linear clustering in the cold plus hot dark matter model
NASA Astrophysics Data System (ADS)
Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.
1995-03-01
The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.
Large-Scale Clustering of Galaxies in the CFA Survey
NASA Astrophysics Data System (ADS)
Park, Changbom
1992-03-01
The power spectrum of the galaxy distribution is accuarately measured up to wavelengths over 100h-1 Mpc from the CfA 1 and 2 catalogs. We find that our results agree with power spectra calculated by others from smaller samples of optical, radio and infrared galaxies. The power spectrum of an open CDM model (Omega h = 0.2 and delta8 = 1; see below for definitions) best approximates the observed power spectrum. The power spectrum of the standard CDM model(Omega h = 0.5 and delta8 = 1) is inconsistent with the observed one at the 99% confidence level. Our best estimation of the corresponding correlation function in real space is Xi(r) = (r/6.2h-1 Mpc)^-1.8 for r < 20h-1 Mpc.
Cross-correlation of the X-ray background with nearby galaxies
NASA Technical Reports Server (NTRS)
Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer
1991-01-01
The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.
Practical Weak-lensing Shear Measurement with Metacalibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, Erin S.; Huff, Eric M.
2017-05-20
Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observe that for imagesmore » with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
A General Formulation of the Source Confusion Statistics and Application to Infrared Galaxy Surveys
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.; Ishii, Takako T.
2004-03-01
Source confusion has been a long-standing problem in the astronomical history. In the previous formulation of the confusion problem, sources are assumed to be distributed homogeneously on the sky. This fundamental assumption is, however, not realistic in many applications. In this work, by making use of the point field theory, we derive general analytic formulae for the confusion problems with arbitrary distribution and correlation functions. As a typical example, we apply these new formulae to the source confusion of infrared galaxies. We first calculate the confusion statistics for power-law galaxy number counts as a test case. When the slope of differential number counts, γ, is steep, the confusion limits become much brighter and the probability distribution function (PDF) of the fluctuation field is strongly distorted. Then we estimate the PDF and confusion limits based on the realistic number count model for infrared galaxies. The gradual flattening of the slope of the source counts makes the clustering effect rather mild. Clustering effects result in an increase of the limiting flux density with ~10%. In this case, the peak probability of the PDF decreases up to ~15% and its tail becomes heavier. Although the effects are relatively small, they will be strong enough to affect the estimation of galaxy evolution from number count or fluctuation statistics. We also comment on future submillimeter observations.
QSO Narrow [OIII] Line Width and Host Galaxy Luminosity
NASA Astrophysics Data System (ADS)
Bonning, E. W.; Shields, G. A.; Salviander, S.
2004-05-01
Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.
RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.ed, E-mail: janewman@pitt.ed
2010-09-20
Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alonemore » Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that sample large areas of sky (>{approx}10{sup 0}-100{sup 0}), but dominant for {approx}1 deg{sup 2} fields. We conclude by presenting a step-by-step, optimized recipe for reconstructing redshift distributions from cross-correlation information using standard correlation measurements.« less
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Voids and constraints on nonlinear clustering of galaxies
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.
1994-01-01
Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.
Nuclear starburst activity induced by elongated bulges in spiral galaxies
NASA Astrophysics Data System (ADS)
Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong
2018-06-01
We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < -19.5 mag at 0.02 ≤z< 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al. (2011) who performed two-dimensional bulge+disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.
NASA Astrophysics Data System (ADS)
Whitmore, Bradley C.; Chandar, Rupali; Bowers, Ariel S.; Larsen, Soeren; Lindsay, Kevin; Ansari, Asna; Evans, Jessica
2014-04-01
Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dLvpropL α, with an average value for α of -2.37 and rms scatter = 0.18 when using the F814W ("I") band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M brightest) and log of the number of clusters brighter than MI = -9 (log N). We also examine the magnitude of the brightest cluster versus log SFR for a sample including both dwarf galaxies and ULIRGs. This shows that the correlation extends over roughly six orders of magnitude but with scatter that is larger than for our spiral sample, probably because of the high levels of extinction in many of the LIRGs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also based on data obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA). Support for Program number 11781 was provided by NASA through a grant from the Space Telescope Science Institute.
Counts-in-cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations
NASA Astrophysics Data System (ADS)
Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H.
2011-01-01
Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bizyaev, D.; Pan, K.; Brinkmann, J.
2017-04-20
We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed H α emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the verticalmore » lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.« less
NASA Astrophysics Data System (ADS)
Bizyaev, D.; Walterbos, R. A. M.; Yoachim, P.; Riffel, R. A.; Fernández-Trincado, J. G.; Pan, K.; Diamond-Stanic, A. M.; Jones, A.; Thomas, D.; Cleary, J.; Brinkmann, J.
2017-04-01
We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed Hα emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.
NASA Astrophysics Data System (ADS)
Lagattuta, David J.; Mould, Jeremy R.; Forbes, Duncan A.; Monson, Andrew J.; Pastorello, Nicola; Persson, S. Eric
2017-09-01
We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 μm in eight highly luminous (L˜ 10{L}* ) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K I, Na I, Mn I) showing a positive EW-σ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K I)/EW(Mg I)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies (σ ˜ 100 km s-1) favor a Chabrier IMF, while high-mass galaxies (σ ˜ 350 km s-1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Driver, S. P.; Davies, L. J. M.; Hopkins, A. M.; Baldry, I. K.; Agius, N. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M.; De Propris, R.; Drinkwater, M. J.; Holwerda, B. W.; Kelvin, L. S.; Lara-Lopez, M. A.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Mahajan, S.; McNaught-Roberts, T.; Moffett, A.; Norberg, P.; Obreschkow, D.; Owers, M. S.; Penny, S. J.; Pimbblet, K.; Prescott, M.; Taylor, E. N.; van Kampen, E.; Wilkins, S. M.
2014-11-01
We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 108 and 1012 M⊙. Using the analytic form of this fit we investigate the total stellar mass accreting on to more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging on to more massive companions is 2.0-5.6 per cent. Using the GAMA-II data we see no significant evidence for a change in the close pair fraction between redshift z = 0.05 and 0.2. However, we find a systematically higher fraction of galaxies in similar mass close pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function γM = A(1 + z)m to predict the major close pair fraction, we find fitting parameters of A = 0.021 ± 0.001 and m = 1.53 ± 0.08, which represents a higher low-redshift normalization and shallower power-law slope than recent literature values. We find that the relative importance of in situ star formation versus galaxy merging is inversely correlated, with star formation dominating the addition of stellar material below M^* and merger accretion events dominating beyond M^*. We find mergers have a measurable impact on the whole extent of the galaxy stellar mass function (GSMF), manifest as a deepening of the `dip' in the GSMF over the next ˜Gyr and an increase in M^* by as much as 0.01-0.05 dex.
Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu
2018-04-01
We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.
Internal Kinematics of Groups of Galaxies in the Sloan Digital Sky Survey Data Release 7
NASA Astrophysics Data System (ADS)
Li, Cheng; Jing, Y. P.; Mao, Shude; Han, Jiaxin; Peng, Qiuying; Yang, Xiaohu; Mo, H. J.; van den Bosch, Frank
2012-10-01
We present measurements of the velocity dispersion profile (VDP) for galaxy groups in the final data release of the Sloan Digital Sky Survey (SDSS). For groups of given mass, we estimate the redshift-space cross-correlation function (CCF) with respect to a reference galaxy sample, ξ(s)(rp , π), the projected CCF, wp (rp ), and the real-space CCF, ξcg(r). The VDP is then extracted from the redshift distortion in ξ(s)(rp , π), by comparing ξ(s)(rp , π) with ξcg(r). We find that the velocity dispersion (VD) within virial radius (R 200) shows a roughly flat profile, with a slight increase at radii below ~0.3R 200 for high-mass systems. The average VD within the virial radius, σ v , is a strongly increasing function of central galaxy mass. We apply the same methodology to N-body simulations with the concordance Λ cold dark matter cosmology but different values of the density fluctuation parameter σ8, and we compare the results to the SDSS results. We show that the σ v - M * relation from the data provides stringent constraints on both σ8 and σ ms , the dispersion in log M * of central galaxies at fixed halo mass. Our best-fitting model suggests σ8 = 0.86 ± 0.03 and σ ms = 0.16 ± 0.03. The slightly higher value of σ8 compared to the WMAP7 result might be due to a smaller matter density parameter assumed in our simulations. Our VD measurements also provide a direct measure of the dark matter halo mass for central galaxies of different luminosities and masses, in good agreement with the results obtained by Mandelbaum et al. from stacking the gravitational lensing signals of the SDSS galaxies.
A New Method for Calculating Counts in Cells
NASA Astrophysics Data System (ADS)
Szapudi, István
1998-04-01
In the near future, a new generation of CCD-based galaxy surveys will enable high-precision determination of the N-point correlation functions. The resulting information will help to resolve the ambiguities associated with two-point correlation functions, thus constraining theories of structure formation, biasing, and Gaussianity of initial conditions independently of the value of Ω. As one of the most successful methods of extracting the amplitude of higher order correlations is based on measuring the distribution of counts in cells, this work presents an advanced way of measuring it with unprecedented accuracy. Szapudi & Colombi identified the main sources of theoretical errors in extracting counts in cells from galaxy catalogs. One of these sources, termed as measurement error, stems from the fact that conventional methods use a finite number of sampling cells to estimate counts in cells. This effect can be circumvented by using an infinite number of cells. This paper presents an algorithm, which in practice achieves this goal; that is, it is equivalent to throwing an infinite number of sampling cells in finite time. The errors associated with sampling cells are completely eliminated by this procedure, which will be essential for the accurate analysis of future surveys.
CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Steven L.; Papovich, Casey; Salmon, Brett
2012-09-10
We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 {approx}< z {approx}< 8. We use new wide-field near-infrared data in the Great Observatories Origins Deep Survey-South field from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble Ultra Deep Field (HUDF) 2009, and Early Release Science programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z {approx}> 3.5, including 113 at z {approx_equal} 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slopemore » ({beta}) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on {beta} than other methods, as well as a reduced number of galaxies with catastrophically incorrect {beta} measurements (i.e., {Delta}{beta} > 1). We find that the median value of {beta} evolves significantly from -1.82{sup +0.00}{sub -0.04} at z = 4 to -2.37{sup +0.26}{sub -0.06} at z = 7. Additionally, we find that faint galaxies at z = 7 have {beta} -2.68{sup +0.39}{sub -0.24} ({approx} -2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A{sub V} {approx} 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant (<2{sigma}) correlation between {beta} and M{sub UV} when measuring M{sub UV} at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between {beta} and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z {>=} 7. Thus, the stellar-mass-metallicity relation, previously observed up to z {approx} 3, may extend out to z = 7-8.« less
Global properties of infrared bright galaxies
NASA Technical Reports Server (NTRS)
Young, Judith S.; Xie, Shuding; Kenney, Jeffrey D. P.; Rice, Walter L.
1989-01-01
Infrared flux densities of 182 galaxies, including 50 galaxies in the Virgo cluster, were analyzed using IRAS data for 12, 25, 60, and 100 microns, and the results were compared with data listed in the Point Source Catalog (PSC, 1985). In addition, IR luminosities, L(IRs), colors, and warm dust masses were derived for these galaxies and were compared with the interstellar gas masses and optical luminosities of the galaxies. It was found that, for galaxies whose optical diameter measures between 5 and 8 arcmin, the PSC flux densities are underestimated by a factor of 2 at 60 microns, and by a factor of 1.5 at 100 microns. It was also found that, for 49 galaxies, the mass of warm dust correlated well with the H2 mass, and that L(IR) correlated with L(H-alpha), demonstrating that the L(IR) measures the rate of star formation in these galaxies.
A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij
2018-01-01
The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.
NASA Astrophysics Data System (ADS)
Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro
2016-04-01
We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.
NASA Astrophysics Data System (ADS)
Boissier, S.; Buat, V.; Ilbert, O.
2010-11-01
Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.
OSO 8 X-ray spectra of clusters of galaxies. II - Discussion
NASA Technical Reports Server (NTRS)
Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.
1979-01-01
An observational description of X-ray clusters of galaxies is given based on OSO 8 X-ray results for spatially integrated spectra of 20 such clusters and various correlations obtained from these results. It is found from a correlation between temperature and velocity dispersion that the X-ray core radius should be less than the galaxy core radius or, alternatively, that the polytropic index is about 1.1 for most of the 20 clusters. Analysis of a correlation between temperature and emission integral yields evidence that more massive clusters accumulate a larger fraction of their mass as intracluster gas. Galaxy densities and optical morphology, as they correlate with X-ray properties, are reexamined for indications as to how mass injection by galaxies affects the density structure of the gas. The physical arguments used to derive iron abundances from observed equivalent widths of iron line features in X-ray spectra are critically evaluated, and the associated uncertainties in abundances derived in this manner are estimated to be quite large.
Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER
NASA Astrophysics Data System (ADS)
Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.
2018-05-01
We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.
NASA Technical Reports Server (NTRS)
Wilkes, B. J.; Mcdowell, J.
1994-01-01
Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.
The distant red galaxy neighbour population of 1 <~ z <~ 2 QSOs and optically obscured sources
NASA Astrophysics Data System (ADS)
Bornancini, Carlos G.; García Lambas, Diego
2007-05-01
We study the distant red galaxy (DRG; J - Ks > 2.3) neighbour population of quasi-stellar objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 <~ z <~ 2. We perform a similar analysis for optically obscured active galactic nuclei (AGNs; i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 μm) with the Spitzer Space Telescope and a mean redshift z ~ 2.2 in the Flamingos Extragalactic Survey (FLAMEX). Both QSOs and obscured AGN target samples cover 4.7 deg2 in the same region of the sky. We find a significant difference in the environment of these two target samples. Neighbouring galaxies close to QSOs tend to be bluer than galaxies in optically obscured source environments. We also present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r0 = 5.4 +/- 1.6 Mpc h-1 and a slope of γ = 1.94 +/- 0.10. For the optically obscured galaxy sample, we find r0 = 8.9 +/- 1.4 Mpc h-1 and a slope of γ = 2.27 +/- 0.20. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compared to QSOs. Based on observations and/or data products by the Flamingos Extragalactic Survey. FLAMINGOS was designed and constructed by the IR instrumentation group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory. E-mail: bornancini@oac.uncor.edu
NASA Astrophysics Data System (ADS)
Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus, Jr.; Poggianti, Bianca; Vulcani, Benedetta
2016-11-01
Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is often assumed to be clear, but we use a simple “physics-free” model to show that it is not and that exploring its nuances can yield new insights. Comprising nothing more than 2094 loosely constrained lognormal star formation histories (SFHs), the model faithfully reproduces the following data it was not designed to match: stellar mass functions at z≤slant 8; the slope of the star formation rate/stellar mass relation (the SFR “Main Sequence”) at z≤slant 6; the mean {sSFR}(\\equiv {SFR}/{M}* ) of low-mass galaxies at z≤slant 7; “fast-” and “slow-track” quenching; downsizing; and a correlation between formation timescale and {sSFR}({M}* ,t) similar to results from simulations that provides a natural connection to bulge growth. We take these findings—which suggest that quenching is the natural downturn of all SFHs affecting galaxies at rates/times correlated with their densities—to mean that: (1) models in which galaxies are diversified on Hubble timescales by something like initial conditions rival the dominant grow-and-quench framework as good descriptions of the data; or (2) absent spatial information, many metrics of galaxy evolution are too undiscriminating—if not inherently misleading—to confirm a unique explanation. We outline future tests of our model but stress that, even if ultimately incorrect, it illustrates how exploring different paradigms can aid learning and, we hope, more detailed modeling efforts.
A cross-correlation study of the Fermi-LAT γ-ray diffuse extragalactic signal
Xia, Jun -Qing; Cuoco, Alessandro; Branchini, Enzo; ...
2011-09-12
In this work, starting from 21 months of data from the Fermi Large Area Telescope (LAT), we derive maps of the residual isotropic γ-ray emission, a relevant fraction of which is expected to be contributed by the extragalactic diffuse γ-ray background (EGB). We search for the auto-correlation signals in the above γ-ray maps and for the cross-correlation signal with the angular distribution of different classes of objects that trace the large-scale structure of the Universe. We compute the angular two-point auto-correlation function of the residual Fermi-LAT maps at energies E > 1 GeV, E > 3 GeV and E >more » 30 GeV well above the Galactic plane and find no significant correlation signal. This is, indeed, what is expected if the EGB were contributed by BL Lacertae (BLLacs), Flat Spectrum Radio Quasars (FSRQs) or star-forming galaxies, since, in this case, the predicted signal is very weak. Then, we search for the Integrated Sachs–Wolfe (ISW) signature by cross-correlating the Fermi-LAT maps with the 7-year Wilkinson Microwave Anisotropy Probe ( WMAP7) cosmic microwave background map. We find a cross-correlation consistent with zero, even though the expected signal is larger than that of the EGB auto-correlation. Lastly, in an attempt to constrain the nature of the γ-ray background, we cross-correlate the Fermi-LAT maps with the angular distributions of objects that may contribute to the EGB: quasi-stellar objects (QSOs) in the Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) catalogue, NRAO VLA Sky Survey (NVSS) galaxies, Two Micron All Sky Survey (2MASS) galaxies and Luminous Red Galaxies (LRGs) in the SDSS catalogue. The cross-correlation is always consistent with zero, in agreement with theoretical expectations, but we find (with low statistical significance) some interesting features that may indicate that some specific classes of objects contribute to the EGB. A χ 2 analysis confirms that the correlation properties of the 21-month data do not provide strong constraints of the EGB origin. However, the results suggest that the situation will significantly improve with the 5- and 10-yr Fermi-LAT data. In future, the EGB analysis will then allow placing significant constraints on the nature of the EGB and might provide, in addition, a detection of the ISW signal.« less
Ionized Gas in the Halos of Edge-on Starburst Galaxies: Evidence for Supernova-driven Superwinds
NASA Astrophysics Data System (ADS)
Lehnert, Matthew D.; Heckman, Timothy M.
1996-05-01
Supernova-driven galactic winds ("superwinds") have been invoked to explain many aspects of galaxy formation and evolution. Such winds should arise when the supernova rate is high enough to create a cavity of very hot shock-heated gas within a galaxy. This gas can then expand outward as a high-speed wind that can accelerate and heat ambient interstellar or circum-galactic gas causing it to emit optical line radiation and/or thermal X-rays. Theory suggests that such winds should be common in starburst galaxies and that the nature of the winds should depend on the star formation rate and distribution. In order to systematize our observational understanding of superwinds (determine their incidence rate and the dependence of their properties on the star formation that drives them) and to make quantitative comparisons with the theory of superwinds, we have analyzed data from an optical spectroscopic and narrow-band imaging survey of an infrared flux-limited (S_60 microns_ >= 5.4 Jy) sample of about 50 IR-warm (S_60 microns_/S_100 microns_ > 0.4), starburst galaxies whose stellar disks are viewed nearly edge-on (b/a ~> 2). This sample contains galaxies with infrared luminosities from ~10^10^-10^12^ L_sun_ and allows us to determine the properties of superwinds over a wide range of star formation rates. We have found that extraplanar emission-line gas is a very common feature of these edge-on, IR-bright galaxies and the properties of the extended emission-line gas are qualitatively and quantitatively consistent with the superwind theory. We can summarize these properties as morphological, ionization, dynamical, and physical. 1. Morphological properties.-Extraplanar filamentary and shell-like emission-line morphologies on scales of hundreds of parsecs to 10 kpc are common, there is a general "excess" of line emission along the minor axis, the minor axis emission-line "excess" correlates with "IR activity," and the minor axis emission-line "excess" also correlates with the relative compactness of the Hα emission. 2. Ionization properties.-Line ratios become more "shocklike" (high ratios of [N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, and [O I] λ6300/Hα) at more extreme IR properties, the most "shocklike" line ratios occur far out along the minor axis, "shocklike" line ratios corresponds to broad emission lines, and the most extreme line ratios correspond to the most extreme IR properties, especially for the emission-line gas farthest out along the minor axis. 3. Dynamical properties.-Lines are broader along the minor axis than along the major axis, line widths correlate with the "IR activity," line widths correlate with line ratios, line widths do not correlate with rotation speed, minor axis shear (a measure of the systematic velocity change along the minor axis) correlates with "IR activity," minor axis shear correlates with axial ratio and implies that a face-on galaxy would have an outflow/inflow speed of 170_-80_^+150^ km s^-1^, and the starbursts show statistically blueward line profile asymmetries. 4. Physical properties.-Pressures in the nuclei of these galaxies are 3 orders of magnitude higher than the ambient pressure in the interstellar medium of our galaxy, and the pressure falls systematically with radius. While none of these results are in themselves proof of the superwind model, we believe that when the results are taken as a whole, the superwind hypothesis is very successful in explaining what we have observed. In addition, these results have implications for galaxy evolution and the nature of the intergalactic medium. Those galaxies with the best evidence for driving superwinds are those with large IR luminosities (L_IR_ ~> 10^44^ ergs s^-1^), large IR excesses (L_IR_/L_OPT_ ~> 2), and warm far-IR colors (S_60 microns_/S_100 microns_ ~> 0.5). Integrating over the local far-IR luminosity function for galaxies meeting the above criteria, multiplying by the age of the universe, and then dividing by the local space density of galaxies implies that superwinds have carried out ~5 x 10^8^ M_sun_ in metals and 10^59^ ergs in kinetic plus thermal energy per average (Schecter L^*^) galaxy over the history of the universe. We note that these two quantities are approximately equal to the mass of metals contained inside an average galaxy and the gravitational binding energy of an average galaxy, respectively. Even with the conservative assumptions of this calculation (we have neglected that star formation rates were presumably higher in the early universe), it is obvious that superwinds may have a major impact on the evolution of individual galaxies and the intergalactic medium by injecting mass, metals, and kinetic energy into the galactic halo and potentially the intergalactic medium.
Modelling the angular correlation function and its full covariance in photometric galaxy surveys
NASA Astrophysics Data System (ADS)
Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique
2011-06-01
Near-future cosmology will see the advent of wide-area photometric galaxy surveys, such as the Dark Energy Survey (DES), that extend to high redshifts (z˜ 1-2) but give poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function w(θ), or the Cℓ power spectrum, will become the standard approach to extracting cosmological information or to studying the nature of dark energy through the baryon acoustic oscillations (BAO) probe. In this work we present a detailed model for w(θ) at large scales as a function of redshift and binwidth, including all relevant effects, namely non-linear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix, characterizing the angular correlation measurements, that takes into account the same effects as for w(θ) and also the possibility of a shot-noise component and partial sky coverage. Provided with a large-volume N-body simulation from the MICE collaboration, we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.
Variable Stars in the M31 Dwarf Spheroidal Companion Cassiopeia
NASA Astrophysics Data System (ADS)
Pritzl, Barton J.; Armandroff, T. E.; Jacoby, G. H.; Da Costa, G. S.
2007-12-01
Dwarf spheroidal galaxies show very diverse star formation histories. For the Galactic dwarf spheroidal galaxies, a correlation exists between Galactocentric distance and the prominence of intermediate-age ( 2 - 10 Gyr) populations. To test whether this correlation exists for the M31 dwarf spheroidal galaxies, we observed the Cassiopeia (And VII) dwarf galaxy, which is one of the most distant M31 dwarf spheroidal galaxies. We will present the results of a variable star search using HST/ACS data, along with a preliminary color-magnitude diagram. From the RR Lyrae stars we can obtain an independent distance and metallicity estimate for the dwarf galaxy. These results will be compared to those found for the other M31 dwarf spheroidal galaxies.This research is supported in part by NASA through grant number GO-11081.11 from the Space Telescope Science Institute.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; Treu, Tommaso
2014-03-01
Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.
The dependence of halo mass on galaxy size at fixed stellar mass using weak lensing
NASA Astrophysics Data System (ADS)
Charlton, Paul J. L.; Hudson, Michael J.; Balogh, Michael L.; Khatri, Sumeet
2017-12-01
Stellar mass has been shown to correlate with halo mass, with non-negligible scatter. The stellar mass-size and luminosity-size relationships of galaxies also show significant scatter in galaxy size at fixed stellar mass. It is possible that, at fixed stellar mass and galaxy colour, the halo mass is correlated with galaxy size. Galaxy-galaxy lensing allows us to measure the mean masses of dark matter haloes for stacked samples of galaxies. We extend the analysis of the galaxies in the CFHTLenS catalogue by fitting single Sérsic surface brightness profiles to the lens galaxies in order to recover half-light radius values, allowing us to determine halo masses for lenses according to their size. Comparing our halo masses and sizes to baselines for that stellar mass yields a differential measurement of the halo mass-galaxy size relationship at fixed stellar mass, defined as Mh(M_{*}) ∝ r_{eff}^{η }(M_{*}). We find that, on average, our lens galaxies have an η = 0.42 ± 0.12, i.e. larger galaxies live in more massive dark matter haloes. The η is strongest for high-mass luminous red galaxies. Investigation of this relationship in hydrodynamical simulations suggests that, at a fixed M*, satellite galaxies have a larger η and greater scatter in the Mh and reff relationship compared to central galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
Large-scale structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Park, Changbom; Spergel, David N.; Turok, Nail
1991-01-01
This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-10-24
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Blazek, Jonathan A.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E.; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2018-02-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv < 0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of baryon acoustic oscillation (BAO) method measurements of the cosmic distance scale using the two-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3 per cent rms in the distance scale inferred from the BAO feature in the BOSS two-point clustering, well below the 1 per cent statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument (DESI) to self-protect against the relative velocity as a possible systematic.
NASA Astrophysics Data System (ADS)
Parejko, John Kenneth
The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.
Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew
2018-06-01
We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.
The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grasha, K.; Calzetti, D.; Adamo, A.
We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less
NASA Astrophysics Data System (ADS)
Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo
2015-12-01
We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.
Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology
NASA Astrophysics Data System (ADS)
Papastergis, Emmanouil
2013-03-01
The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital Sky Survey (SDSS), to measure the number density of galaxies as a function of their "baryonic" mass (stars + atomic gas). In the context of a ΛCDM cosmological model, the measured distribution reveals that low-mass halos are heavily "baryon depleted", i.e. their baryonic-to-dark mass ratio is much lower than the cosmological value. These baryon deficits are usually attributed to stellar feedback (e.g. supernova-driven gas outflows), but the efficiency implied by our measurement is extremely high. Whether such efficient feedback can be accommodated in a consistent picture of galaxy formation is an open question, and remains one of the principle scientific drivers for hydrodynamic simulations of galaxy formation. Lastly, we measure the clustering properties of HI-selected samples, through the two-point correlation function of ALFALFA galaxies. We find no compelling evidence for a dependence of clustering on HI mass, suggesting that the relationship between galactic gas mass and host halo mass is not tight. We furthermore find that HI galaxies cluster more weakly than optically selected ones, when no color selection is applied. However, SDSS galaxies with blue colors have very similar clustering characteristics with ALFALFA galaxies, both in real as well as in redshift space. On the other hand, HI galaxies cluster much more weakly than optical galaxies with red colors, and in fact "avoid" being located within ≈3 Mpc from the latter. By considering the clustering properties of ΛCDM halos, we confirm our previous intuition for an MHI-Mh relation with large scatter, and find that spin parameter may be a key halo property related to the gas content of present-day galaxies.
NASA Astrophysics Data System (ADS)
Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.
2009-03-01
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.
NASA Astrophysics Data System (ADS)
Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.
2011-08-01
We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.
NASA Astrophysics Data System (ADS)
Bowers, Ariel; Whitmore, B. C.; Chandar, R.; Larsen, S. S.
2014-01-01
Luminosity functions have been determined for star cluster populations in 20 nearby (4 - 30 Mpc), star-forming galaxies based on ACS source lists generated by the Hubble Legacy Archive (http://hla.stsci.edu). These cluster catalogs provide one of the largest sets of uniform, automatically-generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster luminosity function can be approximated by a power-law, dN/dL ∝ Lα, with an average value for α of -2.37 and rms scatter = 0.18. A comparison of fitting results based on methods which use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum-likelihood) method to give slightly more negative values of α for galaxies with steper luminosity functions. Our uniform database results in a small scatter (0.5 magnitude) in the correlation between the magnitude of the brightest cluster (Mbrightest) and Log of the number of clusters brighter than MI = -9 (Log N). We also examine the magnitude of the brightest cluster vs. Log SFR for a sample including LIRGS and ULIRGS.
The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited
NASA Astrophysics Data System (ADS)
Platais, Imants
2017-08-01
The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.
The [CII] 158 μm line emission in high-redshift galaxies
NASA Astrophysics Data System (ADS)
Lagache, G.; Cousin, M.; Chatzikos, M.
2018-02-01
Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of L[ CII] probed by the model (1 × 107-2 × 109 L⊙ at z = 6) with a slope α = -1. The slope is not evolving from z = 4 to z = 8 but the number density of [CII]-emitters decreases by a factor of 20×. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions. The FITS files of the data used in this paper (e.g., M⋆, SFR, ISRF, Zg, L[CII], LIR) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A130
THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.
2012-04-10
We investigate the radial distribution of galaxies within their host dark matter halos as measured in the Sloan Digital Sky Survey by modeling their small-scale clustering. Specifically, we model the Jiang et al. measurements of the galaxy two-point correlation function down to very small projected separations (10 h{sup -1} kpc {<=} r {<=} 400 h{sup -1} kpc), in a wide range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation distribution framework with free parameters that specify both the number and spatial distribution of galaxies within their host dark matter halos. Wemore » assume one galaxy resides in the halo center and additional galaxies are considered satellites that follow a radial density profile similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the concentration and inner slope are allowed to vary. We find that in low luminosity samples (M{sub r} < -19.5 and lower), satellite galaxies have radial profiles that are consistent with NFW. M{sub r} < -20 and brighter satellite galaxies have radial profiles with significantly steeper inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to -2.1, as opposed to -1 for NFW). We define a useful metric of concentration, M{sub 1/10}, which is the fraction of satellite galaxies (or mass) that are enclosed within one-tenth of the virial radius of a halo. We find that M{sub 1/10} for low-luminosity satellite galaxies agrees with NFW, whereas for luminous galaxies it is 2.5-4 times higher, demonstrating that these galaxies are substantially more centrally concentrated within their dark matter halos than the dark matter itself. Our results therefore suggest that the processes that govern the spatial distribution of galaxies, once they have merged into larger halos, must be luminosity dependent, such that luminous galaxies become poor tracers of the underlying dark matter.« less
Long-range (fractal) correlations in the LEDA database.
NASA Astrophysics Data System (ADS)
di Nella, H.; Montuori, M.; Paturel, G.; Pietronero, L.; Sylos Labini, F.
1996-04-01
All the recent redshift surveys show highly irregular patterns of galaxies on scales of hundreds of megaparsecs such as chains, walls and cells. One of the most powerful catalog of galaxies is represented by the LEDA database that contains more than 36,000 galaxies with redshift. We study the correlation properties of such a sample finding that galaxy distribution shows well defined fractal nature up to R_S_~150h^-1^Mpc with fractal dimension D~2. We test the consistency of these results versus the incompleteness in the sample.
Statistical methods for astronomical data with upper limits. II - Correlation and regression
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Nelson, P. I.
1986-01-01
Statistical methods for calculating correlations and regressions in bivariate censored data where the dependent variable can have upper or lower limits are presented. Cox's regression and the generalization of Kendall's rank correlation coefficient provide significant levels of correlations, and the EM algorithm, under the assumption of normally distributed errors, and its nonparametric analog using the Kaplan-Meier estimator, give estimates for the slope of a regression line. Monte Carlo simulations demonstrate that survival analysis is reliable in determining correlations between luminosities at different bands. Survival analysis is applied to CO emission in infrared galaxies, X-ray emission in radio galaxies, H-alpha emission in cooling cluster cores, and radio emission in Seyfert galaxies.
The Morphology-Density Relationship: Looking Back, Thinking Back
NASA Astrophysics Data System (ADS)
Dressler, A.
The work I did in the late 1970s leading to the morphology-density relation was done in a time of rising interest in how galaxies acquired different morphological types. I describe briefly here how I contributed to this effort by adding a large number of morphologies for galaxies in rich clusters and the field. The strong correlation that I discovered between galaxy type and local galaxy density ran counter to ideas at the time that emphasized processes tied to the global cluster environment. Instead, it provided some of the first evidence for a hierarchical picture - one in which the density of the environment into which a galaxy was born would be its lifetime legacy. Though often cited as a relation between galaxy morphology and the influence of present-epoch environment, the morphology-density relation was interpreted by me, from the first, as the influence of the early environment of galaxy formation, passed down by the hierarchical growth of structure. In fact, it seems increasingly likely that the more fundamental correlation of galaxy morphology is with galaxy mass, and that the morphology-density relation is basically an expression of the prevalence of more massive galaxies in regions of higher galaxy density.
The dark side of galaxy colour
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.; Watson, Douglas F.
2013-10-01
We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin
NASA Astrophysics Data System (ADS)
Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi
2017-07-01
We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h < 1012 M ⊙, finding M */M h ≈ 5 × 10-3 at M h = 7. 5 × 1011 M ⊙, which is lower by a factor of 2-4 than those measured at higher masses (M h ˜ 1012-13 M ⊙). Finally, we use our results to illustrate the future capabilities of Subaru’s Prime-Focus Spectrograph, a next-generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1.
The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0
NASA Astrophysics Data System (ADS)
Calistro Rivera, G.; Williams, W. L.; Hardcastle, M. J.; Duncan, K.; Röttgering, H. J. A.; Best, P. N.; Brüggen, M.; Chyży, K. T.; Conselice, C. J.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, H. T.; Jarvis, M. J.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Prandoni, I.; Sabater, J.; Smith, D. J. B.; Tasse, C.; van der Werf, P. P.; White, G. J.
2017-08-01
We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ˜ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared-radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)-0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)-0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2018-04-01
We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi
2014-04-01
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less
NASA Astrophysics Data System (ADS)
Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom
2018-03-01
We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.
Assessing colour-dependent occupation statistics inferred from galaxy group catalogues
NASA Astrophysics Data System (ADS)
Campbell, Duncan; van den Bosch, Frank C.; Hearin, Andrew; Padmanabhan, Nikhil; Berlind, Andreas; Mo, H. J.; Tinker, Jeremy; Yang, Xiaohu
2015-09-01
We investigate the ability of current implementations of galaxy group finders to recover colour-dependent halo occupation statistics. To test the fidelity of group catalogue inferred statistics, we run three different group finders used in the literature over a mock that includes galaxy colours in a realistic manner. Overall, the resulting mock group catalogues are remarkably similar, and most colour-dependent statistics are recovered with reasonable accuracy. However, it is also clear that certain systematic errors arise as a consequence of correlated errors in group membership determination, central/satellite designation, and halo mass assignment. We introduce a new statistic, the halo transition probability (HTP), which captures the combined impact of all these errors. As a rule of thumb, errors tend to equalize the properties of distinct galaxy populations (i.e. red versus blue galaxies or centrals versus satellites), and to result in inferred occupation statistics that are more accurate for red galaxies than for blue galaxies. A statistic that is particularly poorly recovered from the group catalogues is the red fraction of central galaxies as a function of halo mass. Group finders do a good job in recovering galactic conformity, but also have a tendency to introduce weak conformity when none is present. We conclude that proper inference of colour-dependent statistics from group catalogues is best achieved using forward modelling (i.e. running group finders over mock data) or by implementing a correction scheme based on the HTP, as long as the latter is not too strongly model dependent.
Modelling galaxy clustering: halo occupation distribution versus subhalo matching.
Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo
2016-07-01
We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.
Galactic Outflows and Their Correlation with Galaxy Properties at 0.8 < z < 1.6
NASA Astrophysics Data System (ADS)
Whiting, Lindsey M.
Out. ows have been shown to be ubiquitous in galaxies between z = 1 and z=2, and many models and observations have attempted to correlate the absorption line. properties of these out. ows with morphological characteristics of their host galaxies. In this study, we examined the spectra of 71 galaxies with redshifts 1< z<2, paying. particular attention to the FeII and MgII absorption lines. We plotted the equivalent. width, velocity, and maximum velocity of the absorption features against various. physical properties of the galaxies, obtained from catalogues created by Skelton et. al., (2014) and van der Wel et al., (2012). We conrmed the presence of out. ows in. our galaxy sample, and found a signicant trend between the equivalent width and. star formation rate - out. owing gas has stronger absorption lines in galaxies with. higher star formation rates.
NASA Astrophysics Data System (ADS)
Bait, Omkar; Barway, Sudhanshu; Wadadekar, Yogesh
2017-11-01
Using multiwavelength data, from ultraviolet to optical to near-infrared to mid-infrared, for ˜6000 galaxies in the local Universe, we study the dependence of star formation on the morphological T-types for massive galaxies (log M*/M⊙ ≥ 10). We find that, early-type spirals (Sa-Sbc) and S0s predominate in the green valley, which is a transition zone between the star forming and quenched regions. Within the early-type spirals, as we move from Sa to Sbc spirals the fraction of green valley and quenched galaxies decreases, indicating the important role of the bulge in the quenching of galaxies. The fraction of early-type spirals decreases as we enter the green valley from the blue cloud, which coincides with the increase in the fraction of S0s. These points towards the morphological transformation of early-type spiral galaxies into S0s, which can happen due to environmental effects such as ram-pressure stripping, galaxy harassment or tidal interactions. We also find a second population of S0s that are actively star forming and are present in all environments. Since morphological T-type, specific star formation rate (sSFR), and environmental density are all correlated with each other, we compute the partial correlation coefficient for each pair of parameters while keeping the third parameter as a control variable. We find that morphology most strongly correlates with sSFR, independent of the environment, while the other two correlations (morphology-density and sSFR-environment) are weaker. Thus, we conclude that, for massive galaxies in the local Universe, the physical processes that shape their morphology are also the ones that determine their star-forming state.
The Faber–Jackson relation and Fundamental Plane from halo abundance matching
Desmond, Harry; Wechsler, Risa H.
2016-11-02
The Fundamental Plane (FP) describes the relation between the stellar mass, size, and velocity dispersion of elliptical galaxies; the Faber–Jackson relation (FJR) is its projection on to {mass, velocity} space. In this work, we re-deploy and expand the framework of Desmond & Wechsler to ask whether abundance matching-based Λ-cold dark matter models which have shown success in matching the spatial distribution of galaxies are also capable of explaining key properties of the FJR and FP, including their scatter. Within our framework, agreement with the normalization of the FJR requires haloes to expand in response to disc formation. We find thatmore » the tilt of the FP may be explained by a combination of the observed non-homology in galaxy structure and the variation in mass-to-light ratio produced by abundance matching with a universal initial mass function, provided that the anisotropy of stellar motions is taken into account. However, the predicted scatter around the FP is considerably increased by situating galaxies in cosmologically motivated haloes due to the variations in halo properties at fixed stellar mass and appears to exceed that of the data. Finally, this implies that additional correlations between galaxy and halo variables may be required to fully reconcile these models with elliptical galaxy scaling relations.« less
An inventory of bispectrum estimators for redshift space distortions
NASA Astrophysics Data System (ADS)
Regan, Donough
2017-12-01
In order to best improve constraints on cosmological parameters and on models of modified gravity using current and future galaxy surveys it is necessary maximally exploit the available data. As redshift-space distortions mean statistical translation invariance is broken for galaxy observations, this will require measurement of the monopole, quadrupole and hexadecapole of not just the galaxy power spectrum, but also the galaxy bispectrum. A recent (2015) paper by Scoccimarro demonstrated how the standard bispectrum estimator may be expressed in terms of Fast Fourier Transforms (FFTs) to afford an extremely efficient algorithm, allowing the bispectrum multipoles on all scales and triangle shapes to be measured in comparable time to those of the power spectrum. In this paper we present a suite of alternative proxies to measure the three-point correlation multipoles. In particular, we describe a modal (or plane wave) decomposition to capture the information in each multipole in a series of basis coefficients, and also describe three compressed estimators formed using the skew-spectrum, the line correlation function and the integrated bispectrum, respectively. As well as each of the estimators offering a different measurement channel, and thereby a robustness check, it is expected that some (especially the modal estimator) will offer a vast data compression, and so a much reduced covariance matrix. This compression may be vital to reduce the computational load involved in extracting the available three-point information.
Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS
NASA Astrophysics Data System (ADS)
Fang, Jerome J.; Faber, S. M.; Koo, David C.; Rodríguez-Puebla, Aldo; Guo, Yicheng; Barro, Guillermo; Behroozi, Peter; Brammer, Gabriel; Chen, Zhu; Dekel, Avishai; Ferguson, Henry C.; Gawiser, Eric; Giavalisco, Mauro; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; McGrath, Elizabeth J.; McIntosh, Daniel; Newman, Jeffrey A.; Pacifici, Camilla; Pandya, Viraj; Pérez-González, Pablo G.; Primack, Joel R.; Salmon, Brett; Trump, Jonathan R.; Weiner, Benjamin; Willner, S. P.; Acquaviva, Viviana; Dahlen, Tomas; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Gruetzbauch, Ruth; Johnson, Seth; Mobasher, Bahram; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Santini, P.; van der Wel, Arjen; Wiklind, Tommy; Wuyts, Stijn
2018-05-01
This is the first in a series of papers examining the demographics of star-forming (SF) galaxies at 0.2 < z < 2.5 in CANDELS. We study 9100 galaxies from GOODS-S and UDS, having published values of redshifts, masses, star formation rates (SFRs), and dust attenuation (A V ) derived from UV–optical spectral energy distribution fitting. In agreement with previous works, we find that the UVJ colors of a galaxy are closely correlated with its specific star formation rate (SSFR) and A V . We define rotated UVJ coordinate axes, termed S SED and C SED, that are parallel and perpendicular to the SF sequence and derive a quantitative calibration that predicts SSFR from C SED with an accuracy of ∼0.2 dex. SFRs from UV–optical fitting and from UV+IR values based on Spitzer/MIPS 24 μm agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star formation decline and quenching, exhibit “mass-accelerated evolution” (“downsizing”). A population of transition galaxies below the SF main sequence is identified. These objects are located between SF and quiescent galaxies in UVJ space, and have lower A V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and SF galaxies are given as a function of mass and redshift.
NASA Technical Reports Server (NTRS)
Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.;
2012-01-01
We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.
Practical Weak-lensing Shear Measurement with Metacalibration
Sheldon, Erin S.; Huff, Eric M.
2017-05-19
We report that metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observemore » that for images with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Finally, using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.« less
The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z 3
NASA Astrophysics Data System (ADS)
Durkalec, A.; Le Fèvre, O.; Pollo, A.; Zamorani, G.; Lemaux, B. C.; Garilli, B.; Bardelli, S.; Hathi, N.; Koekemoer, A.; Pforr, J.; Zucca, E.
2018-04-01
We present a study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2 < z < 3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS), covering a total area of 0.92 deg2. We measured the two-point real-space correlation function wp(rp) for four volume-limited subsamples selected by stellar mass and four volume-limited subsamples selected by MUV absolute magnitude. We find that the scale-dependent clustering amplitude r0 significantly increases with increasing luminosity and stellar mass. For the least luminous galaxies (MUV < -19.0), we measured a correlation length r0 = 2.87 ± 0.22 h-1 Mpc and slope γ = 1.59 ± 0.07, while for the most luminous (MUV < -20.2) r0 = 5.35 ± 0.50 h-1 Mpc and γ = 1.92 ± 0.25. These measurements correspond to a strong relative bias between these two subsamples of Δb/b* = 0.43. Fitting a five-parameter halo occupation distribution (HOD) model, we find that the most luminous (MUV < -20.2) and massive (M⋆ > 1010 h-1 M⊙) galaxies occupy the most massive dark matter haloes with ⟨Mh⟩ = 1012.30 h-1 M⊙. Similar to the trends observed at lower redshift, the minimum halo mass Mmin depends on the luminosity and stellar mass of galaxies and grows from Mmin = 109.73 h-1 M⊙ to Mmin = 1011.58 h-1 M⊙ from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z 3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1 ≈ 4Mmin over all luminosity ranges, which is significantly lower than observed at z 0; this indicates that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large-scale galaxy bias, which we model as bg,HOD (>L) = 1.92 + 25.36(L/L*)7.01. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR). We observe a significant model-observation discrepancy for low-mass galaxies, suggesting a higher than expected star formation efficiency of these galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thacker, Cameron; Gong, Yan; Cooray, Asantha
We present the cross-correlation between the far-infrared (far-IR) background fluctuations as measured with the Herschel Space Observatory at 250, 350, and 500 μm and the near-infrared (near-IR) background fluctuations with the Spitzer Space Telescope at 3.6 and 4.5 μm. The cross-correlation between the FIR and NIR background anisotropies is detected such that the correlation coefficient at a few to 10 arcminute angular scale decreases from 0.3 to 0.1 when the FIR wavelength increases from 250 to 500 μm. We model the cross-correlation using a halo model with three components: (a) FIR bright or dusty star-forming galaxies below the masking depth inmore » Herschel maps, (b) NIR faint galaxies below the masking depth, and (c) intra-halo light (IHL), or diffuse stars in dark matter halos, that is likely dominating the large-scale NIR fluctuations. The model is able to reasonably reproduce the auto-correlations at each of the FIR wavelengths and at 3.6 μm and their corresponding cross-correlations. While the FIR and NIR auto-correlations are dominated by faint, dusty, star-forming galaxies and IHL, respectively, we find that roughly half of the cross-correlation between the NIR and FIR backgrounds is due to the same dusty galaxies that remain unmasked at 3.6 μm. The remaining signal in the cross-correlation is due to IHL present in the same dark matter halos as those hosting the same faint and unmasked galaxies.« less
NASA Astrophysics Data System (ADS)
McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
2014-09-01
We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.
Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors
NASA Astrophysics Data System (ADS)
Baldry, I. K.; Alpaslan, M.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Cluver, M. E.; Croom, S. M.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Hopkins, A. M.; Kelvin, L. S.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Norberg, P.; Peacock, J.; Robotham, A. S. G.; Taylor, E. N.
2014-07-01
The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33 km s-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu
2016-09-01
Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less
Hα Imaging of Nearby Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.
2016-05-01
We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10-15 erg cm-2 s-1 arcsec-2, and corrected these images for [N II] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100-1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H II region emission. Only the most luminous AGNs (log(L Hα /erg s-1) > 41.5) would still be identified as such at z ˜ 0.3.
NASA Astrophysics Data System (ADS)
Guo, Hong; Yang, Xiaohu; Lu, Yi
2018-05-01
We propose a novel method to constrain the missing fraction of galaxies using galaxy clustering measurements in the galaxy conditional stellar mass function (CSMF) framework, which is applicable to surveys that suffer significantly from sample selection effects. The clustering measurements, which are not sensitive to the random sampling (missing fraction) of galaxies, are widely used to constrain the stellar–halo mass relation (SHMR). By incorporating a missing fraction (incompleteness) component into the CSMF model (ICSMF), we use the incomplete stellar mass function and galaxy clustering to simultaneously constrain the missing fractions and the SHMRs. Tests based on mock galaxy catalogs with a few typical missing fraction models show that this method can accurately recover the missing fraction and the galaxy SHMR, hence providing us with reliable measurements of the galaxy stellar mass functions. We then apply it to the Baryon Oscillation Spectroscopic Survey (BOSS) over the redshift range of 0.1 < z < 0.8 for galaxies of M * > 1011 M ⊙. We find that the sample completeness for BOSS is over 80% at z < 0.6 but decreases at higher redshifts to about 30%. After taking these completeness factors into account, we provide accurate measurements of the stellar mass functions for galaxies with {10}11 {M}ȯ < {M}* < {10}12 {M}ȯ , as well as the SHMRs, over the redshift range 0.1 < z < 0.8 in this largest galaxy redshift survey.
NASA Astrophysics Data System (ADS)
Faisst, A. L.; Capak, P. L.; Davidzon, I.; Salvato, M.; Laigle, C.; Ilbert, O.; Onodera, M.; Hasinger, G.; Kakazu, Y.; Masters, D.; McCracken, H. J.; Mobasher, B.; Sanders, D.; Silverman, J. D.; Yan, L.; Scoville, N. Z.
2016-05-01
We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z˜ 3. We then apply this relation to a sample of 224 galaxies at 3.5\\lt z\\lt 6.0 (< z> =4.8) in the Cosmic Evolution Survey (COSMOS), for which unique UV spectra from the Deep Imaging Multi-object Spectrograph (DEIMOS) and accurate stellar masses from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) are available. The average galaxy population at z˜ 5 and {log}(M/{M}⊙ )\\gt 9 is characterized by 0.3-0.4 dex (in units of 12+{log}({{O/H}})) lower metallicities than at z ˜ 2, but comparable to z˜ 3.5. We find galaxies with weak or no Lyα emission to have metallicities comparable to z ˜ 2 galaxies and therefore may represent an evolved subpopulation of z˜ 5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate consistent with observations at z ˜ 2. The relation between stellar mass and metallicity (MZ relation) is similar to z˜ 3.5, but there are indications of it being slightly shallower, in particular for the young, Lyα-emitting galaxies. We show that, within a “bathtub” approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Because of this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.
NASA Astrophysics Data System (ADS)
Malkan, Matthew A.; Cohen, Daniel P.; Maruyama, Miyoko; Kashikawa, Nobunari; Ly, Chun; Ishikawa, Shogo; Shimasaku, Kazuhiro; Hayashi, Masao; Motohara, Kentaro
2017-11-01
We combined deep U-band and optical/near-infrared imaging, in order to select Lyman Break Galaxies (LBGs) at z˜ 3 using U - V and V-{R}c colors in the Subaru Deep Field. The resulting sample of 5161 LBGs gives a UV luminosity function (LF) down to {M}{UV}=-18, with a steep faint-end slope of α =-1.78+/- 0.05. We analyze UV-to-NIR energy distributions (SEDs) from optical photometry and photometry on IR median-stacked images. In the stacks, we find a systematic background depression centered on the LBGs. This results from the difficulty of finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies, so we corrected for this deficit. Best-fit stellar population models for the LBG SEDs indicate stellar masses and star formation rates of {{log}}10({M}* /{M}⊙ )≃ 10 and ≃ 50 M ⊙ yr-1 at < {i}{AB}{\\prime }> =24, down to {{log}}10({M}* /{M}⊙ )≃ 8 and ≃ 3 {M}⊙ yr-1 at < {i}{AB}{\\prime }> =27. The faint LBGs show a ˜1 mag excess over the stellar continuum in K-band. We interpret this excess flux as redshifted [O III]λ λ {4959,5007} lines. The observed excesses imply equivalent widths that increase with decreasing mass, reaching {{EW}}0([{{O}} {{iii}}]4959,5007+{{H}}β )≳ 1500 Å (rest-frame). Such strong [O III] emission is seen only in a miniscule fraction of local emission-line galaxies, but is probably universal in the faint galaxies that reionized the universe. Our halo occupation distribution analysis of the angular correlation function gives a halo mass of {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.29+/- 0.12 for the full sample of LBGs, and {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.49+/- 0.1 for the brightest half of the sample.
Grupos de galaxias en el catálogo 2dF: La estructura en gran escala con grupos
NASA Astrophysics Data System (ADS)
Zandivarez, A.; Merchán, M. E.; Padilla, N. D.
We use the 2dF Galaxy Group Catalogue constructed by Merchán & Zandivarez to study the large scale structure of the Universe traced by galaxy groups. The resulting group power spectrum shows a similar shape to the galaxy power spectrum of the 2dF Galaxy Redshift Survey, but with a higher amplitude quantified by a relative bias in redshift space of bs(k) ˜ 1.5. The group two point correlation function ξ(s) for the total sample is well described by a power law with correlation length s0=8.9 ± 0.3 h-1 Mpc and slope γ=-1.6 ± 0.1. In order to study the dependence of the clustering properties on group mass we split the catalogue in four subsamples defined by different ranges of group virial masses finding that our results are consistent with a 40% increase of the correlation length s0. These computations allow a fair estimate of the relation described by s0 and the mean intergroup separation dc. An empirical scaling law s0=4.7 dc0.32 provides a very good fit to the results from this work, as well as to previous results obtained for groups and clusters of galaxies and for dark matter haloes in N-body simulations of ΛCDM models. We also study the redshift space distortions of galaxy groups, finding that the anisotropies in the clustering pattern of groups are consistent with gravitational instability, with a flattening of the ξ(s) contours in the direction of the line of sight and group pairwise velocities found for almost the whole sample of groups are consistent with < w2 >1/2 = (280+50-110)km/s, in agreement with ΛCDM cosmological simulations. The bias factor for the 2dF groups of moderate masses is consistent with the values predicted by the combination of a CDM model and the ellipsoidal collapse model for the formation of structures.
THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, A.; Schinnerer, E.; Sargent, M. T.
2011-04-01
We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 {mu}m selected sample of >10{sup 5} galaxies in the 2 deg{sup 2} COSMOS field. The average star formation rate (SFR) for subsets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 < z < 3 both populations show a strong and mass-independent decrease inmore » their SSFR toward the present epoch. It is best described by a power law (1 + z) {sup n}, where n {approx} 4.3 for all galaxies and n {approx} 3.5 for star-forming (SF) sources. The decrease appears to have started at z>2, at least for high-mass (M{sub *} {approx}> 4 x 10{sup 10} M{sub sun}) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR {proportional_to} M{sub *} {sup {beta},} between SSFR and stellar mass at all epochs. The relation tends to flatten below M{sub *} {approx} 10{sup 10} M{sub sun} if quiescent galaxies are included; if they are excluded from the analysis a shallow index {beta}{sub SFG} {approx} -0.4 fits the correlation. On average, higher mass objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper threshold in SSFR that an average galaxy cannot exceed, possibly due to gravitationally limited molecular gas accretion. It is suggested by a flattening of the SSFR-M{sub *} relation (also for SF sources), but affects massive (>10{sup 10} M{sub sun}) galaxies only at the highest redshifts. Since z = 1.5 there thus is no direct evidence that galaxies of higher mass experience a more rapid waning of their SSFR than lower mass SF systems. In this sense, the data rule out any strong 'downsizing' in the SSFR. We combine our results with recent measurements of the galaxy (stellar) mass function in order to determine the characteristic mass of an SF galaxy: we find that since z {approx} 3 the majority of all new stars were always formed in galaxies of M{sub *} = 10{sup 10.6{+-}0.4} M{sub sun}. In this sense, too, there is no 'downsizing'. Finally, our analysis constitutes the most extensive SFR density determination with a single technique out to z = 3. Recent Herschel results are consistent with our results, but rely on far smaller samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaghmare, Kaustubh; Kembhavi, Ajit; Barway, Sudhanshu, E-mail: kaustubh@iucaa.ernet.in, E-mail: akk@iucaa.ernet.in, E-mail: barway@saao.ac.za
In this Letter, we present a systematic study of lenticular (S0) galaxies based on mid-infrared imaging data on 185 objects taken using the Spitzer Infrared Array Camera. We identify the S0s hosting pseudobulges based on the position of the bulge on the Kormendy diagram and the Sersic index of the bulge. We find that pseudobulges preferentially occur in the fainter luminosity class (defined as having total K-band absolute magnitude M{sub K} fainter than -22.66 in the AB system). We present relations between bulge and disk parameters obtained as a function of the bulge type. The disks in the pseudobulge hostingmore » galaxies are found to have distinct trends on the r{sub e}-r{sub d} and {mu}{sub d}(0)-r{sub d} correlations compared to those in galaxies with classical bulges. We show that the disks of pseudobulge hosts possess on average a smaller scale length and have a fainter central surface brightness than their counterparts occurring in classical bulge hosting galaxies. The differences found for discs in pseudobulge and classical bulge hosting galaxies may be a consequence of the different processes creating the central mass concentrations.« less
The Correlation Dimension of Young Stars in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Odekon, Mary Crone
2006-11-01
We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data from the Hubble Space Telescope archive; photometry for one of the galaxies, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and the most dramatic decrease with logarithmic scale, falling from 1.68+/-0.14 to 0.10+/-0.05 over less than a factor of 10 in r. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in r, extending nearly to the edge of the distribution. This behavior may indicate either a scale-free distribution with an unusually low correlation dimension or a two-component (not scale-free) combination of cluster and field stars.
Statistical Issues in Galaxy Cluster Cosmology
NASA Technical Reports Server (NTRS)
Mantz, Adam
2013-01-01
The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.
The Relation between Luminous AGNs and Star Formation in Their Host Galaxies
NASA Astrophysics Data System (ADS)
Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.
2015-08-01
We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.
NASA Astrophysics Data System (ADS)
Lee, Bomee; Giavalisco, Mauro; Whitaker, Katherine; Williams, Christina C.; Ferguson, Henry C.; Acquaviva, Viviana; Koekemoer, Anton M.; Straughn, Amber N.; Guo, Yicheng; Kartaltepe, Jeyhan S.; Lotz, Jennifer; Pacifici, Camilla; Croton, Darren J.; Somerville, Rachel S.; Lu, Yu
2018-02-01
We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M *), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2< z< 4. We do this by making new measures of M *, SFR, and stellar age thanks to an improved SED fitting procedure that allows various star formation history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the ({M}* ;{SFR}) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high {{{Σ }}}1 (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of {{{Σ }}}1, which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of {{{Σ }}}1 for fixed values of M * shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of {{{Σ }}}1 (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.
The Galaxy Count Correlation Function in Redshift Space Revisited
NASA Astrophysics Data System (ADS)
Campagne, J.-E.; Plaszczynski, S.; Neveu, J.
2017-08-01
In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.
NASA Astrophysics Data System (ADS)
Kazin, Eyal A.; Sánchez, Ariel G.; Cuesta, Antonio J.; Beutler, Florian; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Manera, Marc; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Ross, Ashley J.; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Xu, Xiaoying; Brinkmann, J.; Joel, Brownstein; Nichol, Robert C.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel
2013-10-01
We analyse the 2D correlation function of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of massive galaxies of the ninth data release to measure cosmic expansion H and the angular diameter distance DA at a mean redshift of
A statistical investigation of the mass discrepancy-acceleration relation
NASA Astrophysics Data System (ADS)
Desmond, Harry
2017-02-01
We use the mass discrepancy-acceleration relation (the correlation between the ratio of total-to-visible mass and acceleration in galaxies; MDAR) to test the galaxy-halo connection. We analyse the MDAR using a set of 16 statistics that quantify its four most important features: shape, scatter, the presence of a `characteristic acceleration scale', and the correlation of its residuals with other galaxy properties. We construct an empirical framework for the galaxy-halo connection in LCDM to generate predictions for these statistics, starting with conventional correlations (halo abundance matching; AM) and introducing more where required. Comparing to the SPARC data, we find that: (1) the approximate shape of the MDAR is readily reproduced by AM, and there is no evidence that the acceleration at which dark matter becomes negligible has less spread in the data than in AM mocks; (2) even under conservative assumptions, AM significantly overpredicts the scatter in the relation and its normalization at low acceleration, and furthermore positions dark matter too close to galaxies' centres on average; (3) the MDAR affords 2σ evidence for an anticorrelation of galaxy size and Hubble type with halo mass or concentration at fixed stellar mass. Our analysis lays the groundwork for a bottom-up determination of the galaxy-halo connection from relations such as the MDAR, provides concrete statistical tests for specific galaxy formation models, and brings into sharper focus the relative evidence accorded by galaxy kinematics to LCDM and modified gravity alternatives.
Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies
NASA Astrophysics Data System (ADS)
Parkash, Vaishali; Brown, Michael J. I.
2018-01-01
Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.
Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS
NASA Astrophysics Data System (ADS)
Acciari, V. A.; Beilicke, M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Celik, O.; Cesarini, A.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Duke, C.; Ergin, T.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hughes, S. B.; Hui, M. C.; Humensky, T. B.; Imran, A.; Kaaret, P.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Maier, G.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; White, R. J.; Williams, D. A.; Wissel, S. A.; Wood, M. D.; Zitzer, B.
2008-05-01
The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in active galactic nuclei from radio waves to TeV γ-rays. Here we report the detection of γ-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cerenkov telescope array and discuss its correlation with the X-ray emission. The γ-ray emission is measured to be pointlike with an intrinsic source radius less than 4.5'. The differential energy spectrum is fitted well by a power-law function: dΦ/dE = (7.4 +/- 1.3stat +/- 1.5sys)(E/TeV)(- 2.31 +/- 0.17stat +/- 0.2sys) 10-9 m-2 s-1 TeV-1. We show strong evidence for a year-scale correlation between the γ-ray flux reported by TeV experiments and the X-ray emission measured by the ASM RXTE observatory, and discuss the possible short-timescale variability. These results imply that the γ-ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet. Corresponding author: .
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, C. S.
2017-06-01
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
NASA Astrophysics Data System (ADS)
Kravtsov, V. V.
2006-09-01
Peak metallicities of metal-rich populations of globular clusters (MRGCs) belonging to early-type galaxies and spheroidal subsystems of spiral galaxies (spheroids) of different mass fall within the somewhat conservative -0.7<=[Fe/H]<=-0.3 range. Indeed, if possible age effects are taken into account, this metallicity range might become smaller. Irregular galaxies such as the Large Magellanic Cloud (LMC), with longer timescales of formation and lower star formation (SF) efficiency, do not contain old MRGCs with [Fe/H]>-1.0, but they are observed to form populations of young/intermediate-age massive star clusters (MSCs) with masses exceeding 104 Msolar. Their formation is widely believed to be an accidental process fully dependent on external factors. From the analysis of available data on the populations and their hosts, including intermediate-age populous star clusters in the LMC, we find that their most probable mean metallicities fall within -0.7<=[Fe/H]<=-0.3, as the peak metallicities of MRGCs do, irrespective of signs of interaction. Moreover, both the disk giant metallicity distribution function (MDF) in the LMC and the MDFs for old giants in the halos of massive spheroids exhibit a significant increase toward [Fe/H]~-0.5. That is in agreement with a correlation found between SF activity in galaxies and their metallicity. The formation of both the old MRGCs in spheroids and MSC populations in irregular galaxies probably occurs at approximately the same stage of the host galaxies' chemical evolution and is related to the essentially increased SF activity in the hosts around the same metallicity that is achieved very early in massive spheroids, later in lower mass spheroids, and much later in irregular galaxies. Changes in the interstellar dust, particularly in elemental abundances in dust grains and in the mass distribution function of the grains, may be among the factors regulating star and MSC formation activity in galaxies. Strong interactions and mergers affecting the MSC formation presumably play an additional role, although they can substantially intensify the internally regulated MSC formation process. Several implications of our suggestions are briefly discussed.
NASA Astrophysics Data System (ADS)
Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.
2015-07-01
We report CO2/H2O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5-5.0 μm) spectra. The CO2/H2O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO2/H2O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO2/H2O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO2/H2O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO2/H2O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO2/H2O ice abundance ratios tend to be high in young star-forming galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawthon, R.; et al.
We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins:more » $$z \\in[0.15,0.3]$$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $$|\\Delta z|<0.01$$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $$|\\Delta z|<0.01$$. We compare our results to other analyses of redMaGiC photometric redshifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.
In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less
Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway
NASA Astrophysics Data System (ADS)
Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.
2017-08-01
We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Hilbert, Stefan
2015-03-01
We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.
The 6dF Galaxy Survey: dependence of halo occupation on stellar mass
NASA Astrophysics Data System (ADS)
Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred
2013-03-01
In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp). We find that the typical halo mass (M1) as well as the satellite power-law index (α) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between M1 and the minimum dark matter halo mass (Mmin) of M1 ≈ 22 Mmin, in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at Mstellar = 2.6 × 1010 h-2 M⊙ to 12 per cent at Mstellar = 5.4 × 1010 h-2 M⊙ indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.
VLA observations of a complete sample of extragalactic X-ray sources. II
NASA Technical Reports Server (NTRS)
Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.
1983-01-01
A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.
The effect of Limber and flat-sky approximations on galaxy weak lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemos, Pablo; Challinor, Anthony; Efstathiou, George, E-mail: pl411@cam.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk, E-mail: gpe@ast.cam.ac.uk
We review the effect of the commonly-used Limber and flat-sky approximations on the calculation of shear power spectra and correlation functions for galaxy weak lensing. These approximations are accurate at small scales, but it has been claimed recently that their impact on low multipoles could lead to an increase in the amplitude of the mass fluctuations inferred from surveys such as CFHTLenS, reducing the tension between galaxy weak lensing and the amplitude determined by Planck from observations of the cosmic microwave background. Here, we explore the impact of these approximations on cosmological parameters derived from weak lensing surveys, using themore » CFHTLenS data as a test case. We conclude that the use of small-angle approximations for cosmological parameter estimation is negligible for current data, and does not contribute to the tension between current weak lensing surveys and Planck.« less
Black hole demographics from the M•-σ relation
NASA Astrophysics Data System (ADS)
Merritt, David; Ferrarese, Laura
2001-01-01
We analyse a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, Mbulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M•, using the tight empirical correlation between M• and bulge stellar velocity dispersion. The frequency function N[log(M•Mbulge)] is reasonably well described as a Gaussian with
Analytical halo model of galactic conformity
NASA Astrophysics Data System (ADS)
Pahwa, Isha; Paranjape, Aseem
2017-09-01
We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, M.; Elbaz, D.; Daddi, E.
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeo Velona, A. D.; Gavignaud, I.; Meza, A.
2013-06-20
We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevantmore » evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. Finally, the [O/Fe] abundance ratio is presented too: we report a strong increasing evolution with redshift at given mass, especially at z {approx}> 1. The expected increasing trend with mass is recovered when only considering the more massive galaxies. We discuss these results in terms of the mechanisms driving the evolution within the high- and low-mass regimes at different epochs: mergers, feedback-driven outflows, and the intrinsic variation of the star formation efficiency.« less
A Mass Census of the Nearby Universe with RESOLVE and ECO
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila; Stark, David; Moffett, Amanda J.; Norris, Mark A.; Berlind, Andreas A.; Hall, Kirsten; Baker, Ashley; Snyder, Elaine M.; Bittner, Ashley; Hoversten, Erik A.; Lagos, Claudia; Nasipak, Zachary; RESOVE Team
2017-01-01
The low-mass slope of the galaxy stellar mass function is significantly shallower than that of the theoretical dark matter halo mass function, leading to several possible interpretations including: 1) stellar mass does not fully represent galaxy mass, 2) galaxy formation becomes increasingly inefficient in lower mass halos, and 3) environmental effects, such as stripping and merging, may change the mass function. To investigate these possible scenarios, we present the census of stellar, baryonic (stars + cold gas), and dynamical masses of galaxies and galaxy groups for the RESOLVE and ECO surveys. RESOLVE is a highly complete volume-limited survey of ~1500 galaxies, enabling direct measurement of galaxy mass functions without statistical completeness corrections down to baryonic mass Mb ~ 10^9 Msun. ECO provides a larger data set (~10,000 galaxies) complete down to Mb ~ 10^9.4 Msun. We show that the baryonic mass function has a steeper low-mass slope than the stellar mass function due to the large population of low-mass, gas-rich galaxies. The baryonic mass function’s low-mass slope, however, is still significantly shallower than that of the dark matter halo mass function. A more direct probe of total galaxy mass is its characteristic velocity, and we present RESOLVE’s preliminary galaxy velocity function, which combines ionized-gas rotation curves, stellar velocity dispersions, and estimates from scaling relations. The velocity function also diverges from the dark matter halo velocity function at low masses. To study the effect of environment, we break the mass functions into different group halo mass bins, finding complex substructure, including a depressed and flat low-mass slope for groups with halo masses ~10^11.4-12 Msun, which we refer to as the nascent group regime, with typical membership of 2-4 galaxies. This substructure is suggestive of efficient merging or gas stripping in nascent groups, which we find also have large scatter in their cold-baryon fractions, possibly pointing to diversity in hot halo gas content in this regime. This work is supported by NSF grant AST-0955368, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society Dissertation Completion Fellowship.
Does the LFIR-LHCN Correlation Hold for Low LFIR Isolated Galaxies?
NASA Astrophysics Data System (ADS)
Flaquer, B. O.; Leon, S.; Espada, D.; Martín, S.; Lisenfeld, U.; Verley, S.; Sabater, J.; Verdes-Montenegro, L.
2010-10-01
Gao & Solomon (2004a,b) (GS) found a tight linear correlation between LFIR, a good tracer of the SF rate, and LHCN, probing the dense molecular gas for IR-Luminous galaxies. It is open whether this correlation is also followed by galaxies with less active SF. We observed in HCN(1-0) 15 Isolated Galaxies (IG) from the AMIGA sample (VerdesMontenegro et al. 2005) with the IRAM 30m, with the purpose to test whether the GS relation is independent of environment and luminosity. We found that IG have lower LHCN than expected (Fig.1a), with LHCN / LCO ˜ 0.05. However, this might be due to extended HCN missed by our observations in most cases only done at one central pointing. Four galaxies of our sample were mapped. In 2 of them there is substantial emission outside the central parts (Fig.1b+c), and their LHCN value derived from the mapping, follows much closer the relation from GS. Further mapping is needed.
RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK
DOE Office of Scientific and Technical Information (OSTI.GOV)
MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo
2009-05-01
The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn frommore » the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.« less
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos
NASA Astrophysics Data System (ADS)
Tumlinson, Jason
2009-07-01
We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from the Sloan Digital Sky Survey. In aggregate, these sightlines will constitute a statistically sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows. In addition to our other science goals, these observations will help place the Milky Way's population of multiphase, accreting High Velocity Clouds {HVCs} into a global context by identifying analogous structures around other galaxies. Our program is designed to make optimal use of the unique capabilities of COS to address our science goals and also generate a rich dataset of other absorption-line systems along a significant total pathlength through the IGM {Delta z 20}.
Wide-Field HST Observations of the Globular Cluster System in NGC 1399
NASA Astrophysics Data System (ADS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-01-01
We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, obtained with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the GC half-light radius, r_h, for the major fraction of the NGC 1399 GC system and find a trend of increasing r_h versus galactocentric distance, R_gal, out to ~10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of r_h(red)/r_h(blue)=0.82+/-0.11 at all R_gal from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the stellar mass density profile of NGC 1399 derived from its surface brightness profile shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric radii. We compare our results with the GC r_h distribution functions in various galaxies and find that the fraction of extended GCs is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC r_h measurements with radial velocity data from the literature and split the resulting sample at the median r_h value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, 225+/-25 km/s, than their extended counterparts, 317+/-21 km/s. Considering the weaker statistical correlation in the GC r_h-color and the GC r_h-R_gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters.
FIGGS 2: An HI survey of extremely faint irregular galaxies
NASA Astrophysics Data System (ADS)
Patra, N. N.; Chengalur, J. N.; Karachentsev, I. D.; Sharina, M. E.
2016-10-01
We present observations and first results from the FIGGS2 survey. FIGGS2 is an extension of the earlier Faint Irregular Galaxies GMRT survey (FIGGS) towards faint luminosity end. The sample consists of 20 galaxies, 15 of which were detected in HI 21 cm line using the Giant Meterwave Radio Telescope (GMRT). The median blue band magnitude of our sample is approximately -11.m 6, which is more than one magnitude fainter than earlier FIGGS survey. From our GMRT observations we found that, for many of our sample galaxies, the HI disks are offset from their optical disks. The HI diameters of the FIGGS2 galaxies show a tight correlation with their HI mass. The slope of the correlation is 2.08 ± 0.20 similar to what is found for FIGGS galaxies. We also found that for almost all galaxies, the HI disks are larger than the optical disks which is a common trend for dwarf or spiral galaxies. The mean value of the ratio of HI to optical diameter is about 1.54.
Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO
NASA Astrophysics Data System (ADS)
Avila, S.; Crocce, M.; Ross, A. J.; García-Bellido, J.; Percival, W. J.; Banik, N.; Camacho, H.; Kokron, N.; Chan, K. C.; Andrade-Oliveira, F.; Gomes, R.; Gomes, D.; Lima, M.; Rosenfeld, R.; Salvador, A. I.; Friedrich, O.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Davis, C.; De Vicente, J.; Doel, P.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hartley, W. G.; Hollowood, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Dark Energy Survey Collaboration
2018-05-01
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a 2LPT density field with an empirical halo bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range 0.45 < z < 1.4. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a double-skewed-Gaussian curve fitted to the data. We populate halos with galaxies by introducing a hybrid Halo Occupation Distribution - Halo Abundance Matching model with two free parameters. These are adjusted to achieve a galaxy bias evolution b(zph) that matches the data at the 1-σ level in the range 0.6 < zph < 1.0. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function w(θ), the comoving transverse separation clustering ξμ < 0.8(s⊥) and the angular power spectrum Cℓ, finding them in agreement. This is the first large set of three-dimensional {ra,dec,z} galaxy mock catalogues able to simultaneously accurately reproduce the photometric redshift uncertainties and the galaxy clustering.
How Accurately Can We Measure Galaxy Environment at High Redshift Using Only Photometric Redshifts?
NASA Astrophysics Data System (ADS)
Florez, Jonathan; Jogee, Shardha; Sherman, Sydney; Papovich, Casey J.; Finkelstein, Steven L.; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Ciardullo, Robin; Gronwall, Caryl; SHELA/HETDEX
2017-06-01
We use a powerful synergy of six deep photometric surveys (Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray) and a future optical spectroscopic survey (HETDEX) in the Stripe 82 field to study galaxy evolution during the 1.9 < z < 3.5 epoch when cosmic star formation and black hole activity peaked, and protoclusters began to collapse. With an area of 24 sq. degrees, a sample size of ~ 0.8 million galaxies complete in stellar mass above M* ~ 10^10 solar masses, and a comoving volume of ~ 0.45 Gpc^3, our study will allow us to make significant advancements in understanding the connection between galaxies and their respective dark matter components. In this poster, we characterize how robustly we can measure environment using only our photometric redshifts. We compare both local and large-scale measures of environment (e.g., projected two-point correlation function, projected nearest neighbor densities, and galaxy counts within some projected aperture) at different photometric redshifts to cosmological simulations in order to quantify the uncertainty in our estimates of environment. We also explore how robustly one can recover the variation of galaxy properties with environment, when using only photometric redshifts. In the era of large photometric surveys, this work has broad implications for studies addressing the impact of environment on galaxy evolution at early cosmic epochs. We acknowledge support from NSF grants AST-1614798, AST-1413652 and NSF GRFP grant DGE-1610403.
Large-Angular-Scale Clustering as a Clue to the Source of UHECRs
NASA Astrophysics Data System (ADS)
Berlind, Andreas A.; Farrar, Glennys R.
We explore what can be learned about the sources of UHECRs from their large-angular-scale clustering (referred to as their "bias" by the cosmology community). Exploiting the clustering on large scales has the advantage over small-scale correlations of being insensitive to uncertainties in source direction from magnetic smearing or measurement error. In a Cold Dark Matter cosmology, the amplitude of large-scale clustering depends on the mass of the system, with more massive systems such as galaxy clusters clustering more strongly than less massive systems such as ordinary galaxies or AGN. Therefore, studying the large-scale clustering of UHECRs can help determine a mass scale for their sources, given the assumption that their redshift depth is as expected from the GZK cutoff. We investigate the constraining power of a given UHECR sample as a function of its cutoff energy and number of events. We show that current and future samples should be able to distinguish between the cases of their sources being galaxy clusters, ordinary galaxies, or sources that are uncorrelated with the large-scale structure of the universe.
The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues
NASA Astrophysics Data System (ADS)
Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.
2015-10-01
This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (
Chandra Survey Of Galactic Coronae Around Nearby Edge-on Disk Galaxies
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Wang, D.
2012-01-01
The X-ray emitting coronae in nearby galaxies are expected to be produced either by accretion from the IGM or by various galactic feedbacks. It is already well known that the total hot gas luminosity of these galaxies is correlated with the stellar mass for early-type galaxies and with SFR for star forming galaxies. However, such relations always have large scatter, indicating various other processes must be involved in regulating the coronal properties. In this work, we conduct a systematical analysis of the Chandra data of 53 nearby edge-on disk galaxies. The data are reduced in a uniform manner. Various coronal properties, such as the luminosity, temperature, emission measure, electron number density, total mass, thermal energy, radiative cooling timescale, vertical and horizontal extension, elongation, and steepness of the vertical distribution, are characterized for most of the sample galaxies. For some galaxies with high enough counting statistics, we also study the thermal and chemical states of the coronal gas. We then compare these hot gas properties to other galactic properties to further study the role of different processes in producing and/or maintaining the coronae. The soft X-ray luminosity of the coronae generally correlates well with the SF activity for our sample galaxies over more than 3 orders of magnitude in SFR or Lx. In addition, the inclusion of other galactic properties could significantly improve the correlation of the SFR-Lx relation. The SN feedback efficiency is at most 10% for all the sample galaxies. We also find evidence for the effectiveness of old stellar feedback, gravitation, environmental effects, and cold-hot gas interaction in regulating the coronal properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Barbera, F.; De Carvalho, R. R.; De La Rosa, I. G.
2010-11-15
We present an analysis of stellar population gradients in 4546 early-type galaxies (ETGs) with photometry in grizYHJK along with optical spectroscopy. ETGs were selected as bulge-dominated systems, displaying passive spectra within the SDSS fibers. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, {nabla}{sub *}, which incorporates all of the available color indices, we investigate how {nabla}{sub *} varies with galaxy mass proxies, i.e., velocity dispersion, stellar (M{sub *}) and dynamical (M{sub dyn}) masses, as well as age, metallicity, and [{alpha}/Fe]. ETGs with M{sub dyn} larger than 8.5 xmore » 10{sup 10} M{sub sun} have increasing age gradients and decreasing metallicity gradients with respect to mass, metallicity, and enhancement. We find that velocity dispersion and [{alpha}/Fe] are the main drivers of these correlations. ETGs with 2.5 x 10{sup 10} M{sub sun} {<=} M{sub dyn} {<=} 8.5 x 10{sup 10} M{sub sun} show no correlation of age, metallicity, and color gradients with respect to mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and {alpha}-enhancement is significant at {approx}5{sigma} and results from the fact that metallicity gradient decreases with [{alpha}/Fe]. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than {approx}5 Gyr, mostly at low mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.« less
Bayesian power spectrum inference with foreground and target contamination treatment
NASA Astrophysics Data System (ADS)
Jasche, J.; Lavaux, G.
2017-10-01
This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.
NASA Astrophysics Data System (ADS)
Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.
2018-03-01
The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.
NASA Astrophysics Data System (ADS)
Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.
2017-11-01
We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.
NASA Astrophysics Data System (ADS)
Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.
2006-12-01
Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.
Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image
NASA Technical Reports Server (NTRS)
Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.
1995-01-01
Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.
NASA Astrophysics Data System (ADS)
Churchill, Christopher W.; Trujillo-Gomez, Sebastian; Nielsen, Nikole M.; Kacprzak, Glenn G.
2013-12-01
In Churchill et al., we used halo abundance matching applied to 182 galaxies in the Mg II Absorber-Galaxy Catalog (MAGIICAT) and showed that the mean Mg II λ2796 equivalent width follows a tight inverse-square power law, Wr (2796)vprop(D/R vir)-2, with projected location relative to the galaxy virial radius and that the Mg II absorption covering fraction is effectively invariant with galaxy virial mass, M h, over the range 10.7 <= log M h/M ⊙ <= 13.9. In this work, we explore multivariate relationships between Wr (2796), virial mass, impact parameter, virial radius, and the theoretical cooling radius that further elucidate self-similarity in the cool/warm (T = 104-104.5 K) circumgalactic medium (CGM) with virial mass. We show that virial mass determines the extent and strength of the Mg II absorbing gas such that the mean Wr (2796) increases with virial mass at fixed distance while decreasing with galactocentric distance for fixed virial mass. The majority of the absorbing gas resides within D ~= 0.3 R vir, independent of both virial mass and minimum absorption threshold; inside this region, and perhaps also in the region 0.3 < D/R vir <= 1, the mean Wr (2796) is independent of virial mass. Contrary to absorber-galaxy cross-correlation studies, we show there is no anti-correlation between Wr (2796) and virial mass. We discuss how simulations and theory constrained by observations support self-similarity of the cool/warm CGM via the physics governing star formation, gas-phase metal enrichment, recycling efficiency of galactic scale winds, filament and merger accretion, and overdensity of local environment as a function of virial mass.
The stellar metallicity gradients in galaxy discs in a cosmological scenario
NASA Astrophysics Data System (ADS)
Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose
2016-08-01
Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2017-08-01
We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-03-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Chen, Sihan; Yang, Yang; Yang, Xiaohu; Wang, Enci; van den Bosch, Frank C.; Jing, Yipeng; Kang, Xi; Lin, Weipeng; Lim, S. H.; Huang, Shuiyao; Lu, Yi; Li, Shijie; Cui, Weiguang; Zhang, Youcai; Tweed, Dylan; Wei, Chengliang; Li, Guoliang; Shi, Feng
2018-01-01
We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large-scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of the local universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the “environmental quenching efficiency,” which quantifies the quenched fraction as a function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass independence of density-based quenching efficiency found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population, and that the difference between the two populations found previously arises mainly from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these effects of halo mass and stellar mass, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.
On the Contribution of Large-Scale Structure to Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.
2009-04-01
We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.
The role of host galaxy for the environmental dependence of active nuclei in local galaxies
NASA Astrophysics Data System (ADS)
Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.
2017-04-01
We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin
2017-03-01
Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.
Drivers of Turbulence in the Neutral Interstellar Medium of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Stilp, Adrienne M.
The cause of HI velocity dispersions in the interstellar medium (ISM) of galaxies is often attributed to star formation, but recent evidence has shown these two quantities are not connected in regions of low star formation. This lack of connection is most apparent in dwarf galaxies and the outer disks of spiral galaxies. However, unique data sets have recently been collected that can help address this discrepancy. The ACS Nearby Survey Treasury Project (ANGST) has measured time-resolved star formation histories (SFHs) in ˜ 70 nearby galaxies. The followup Very Large Array-ANGST survey (VLA-ANGST) provides complementary HI observations of a subset of ANGST galaxies. In this thesis, I explore the connection between star formation and HI kinematics in a number of nearby dwarf galaxies. I first present the Very Large Array-ACS Nearby Galaxy Survey Treasury Project (ANGST). VLA-ANGST was designed to provide high spatial and velocity resolution observations of the HI component of the interstellar medium (ISM) in ANGST galaxies. I describe the data calibration and imaging procedures, and then present the publicly-available data products. The observations from this survey and from The HI Nearby Galaxy Survey (THINGS) comprise the majority of data in my thesis. Using VLA-ANGST and THINGS data, I present a method to measure the average HI kinematics in a number of nearby dwarf galaxies by co-adding individual line-of-sight profiles. These "superprofiles" are composed of a central narrow peak (˜ 6-10 km s-1) with higher velocity wings to either side. When scaled to the same half-width half-maximum, the shapes of the superprofiles are very similar. I interpret the central peak as representative of the average turbulent motion; the wings are then due to HI moving faster than expected compared to the average kinematics. I then compare the superprofile parameters to physical properties such as mass surface density and star formation intensity. The average velocity dispersion correlate most strongly with HI surface density, and do not show correlations with star formation intensity unless higher mass galaxies were included. The properties of the wings are more connected with star formation. By applying energy arguments, I determine that star formation can provide enough energy to drive the HI kinematics over ˜ 10 Myr timescales, while a gravitational instability cannot. I then extend this analysis to spatially-resolved scales in these galaxies, and generated superprofiles in regions determined by radius or by star formation intensity. These superprofiles provide a more direct comparison between H I kinematics and local ISM properties compared to the analysis on global scales. The spatially-resolved superprofiles indicate that star formation does not uniquely determine the HI velocity dispersion, but it does appear to provide a lower floor below which velocity dispersions cannot fall. I also find that the coupling efficiency between star formation and HI kinematics decreases with increasing star formation surface density, which may indicate that star formation energy couples more consistently to other phases of the ISM. I finally explore the timescale over which HI responds to star formation using a combination of VLA-ANGST, THINGS, and ANGST data. Using time-resolved SFHs from ANGST, I measure the average star formation rate as a function of time and compared it to present-day HI kinematics. I find that the HI kinematics are most strongly correlated with star formation that occurred ˜ 30 -- 40 Myr ago, which supports the idea that supernova explosions are one driver of HI kinematics even in low star formation systems.
Unbiased estimates of galaxy scaling relations from photometric redshift surveys
NASA Astrophysics Data System (ADS)
Rossi, Graziano; Sheth, Ravi K.
2008-06-01
Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the colour-magnitude relation, the luminosity-size relation, the fundamental plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity) is often distance dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the Vmax method, and the other is a maximum-likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalogue, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation.
Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.
2015-02-01
We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.
Local Volume Hi Survey: the far-infrared radio correlation
NASA Astrophysics Data System (ADS)
Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister
2018-06-01
In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* < 109 M⊙), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.
Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration
2016-09-01
We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.
Constraints on the magnetic fields in galaxies implied by the infrared-to-radio correlation
NASA Technical Reports Server (NTRS)
Helou, George; Bicay, M. D.
1990-01-01
A physical model is proposed for understanding the tight correlation between far-IR and nonthermal radio luminosities in star-forming galaxies. The approach suggests that the only constraint implied by the correlation is a universal relation whereby magnetic field strength scales with gas density to a power beta between 1/3 and 2/3, inclusive.
NIR Tully-Fisher in the Zone of Avoidance - III. Deep NIR catalogue of the HIZOA galaxies
NASA Astrophysics Data System (ADS)
Said, Khaled; Kraan-Korteweg, Renée C.; Jarrett, T. H.; Staveley-Smith, Lister; Williams, Wendy L.
2016-11-01
We present a deep near-infrared (NIR; J, H, and Ks bands) photometric catalogue of sources from the Parkes H I Zone of Avoidance (HIZOA) survey, which forms the basis for an investigation of the matter distribution in the Zone of Avoidance. Observations were conducted between 2006 and 2013 using the Infrared Survey Facility (IRSF), a 1.4-m telescope situated at the South African Astronomical Observatory site in Sutherland. The images cover all 1108 HIZOA detections and yield 915 galaxies. An additional 105 bright 2MASS galaxies in the southern ZOA were imaged with the IRSF, resulting in 129 galaxies. The average Ks-band seeing and sky background for the survey are 1.38 arcsec and 20.1 mag, respectively. The detection rate as a function of stellar density and dust extinction is found to depend mainly on the H I mass of the H I detected galaxies, which in principal correlates with the NIR brightness of the spiral galaxies. The measured isophotal magnitudes are of sufficient accuracy (errors ˜0.02 mag) to be used in a Tully-Fisher analysis. In the final NIR catalogue, 285 galaxies have both IRSF and 2MASS photometry (180 HIZOA plus 105 bright 2MASX galaxies). The Ks-band isophotal magnitudes presented in this paper agree, within the uncertainties, with those reported in the 2MASX catalogue. Another 30 galaxies, from the HIZOA northern extension, are also covered by UKIDSS Galactic Plane Survey (GPS) images, which are one magnitude deeper than our IRSF images. A modified version of our photometry pipeline was used to derive the photometric parameters of these UKIDSS galaxies. Good agreement was found between the respective Ks-band isophotal magnitudes. These comparisons confirm the robustness of the isophotal parameters and demonstrate that the IRSF images do not suffer from foreground contamination, after star removal, nor underestimate the isophotal fluxes of ZoA galaxies.
Photometry of resolved galaxies. V - NGC 6822
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Anderson, N.
1986-01-01
Three-color CCD frames of the local group irregular galaxy NGC 6822 have been reduced to GRI photometry for 3475 stars using RICHFLD point-spread function fitting techniques. The data are compared with earlier work on this galaxy, particularly with Kayser (1966) on a star-by-star basis. Color-magnitude diagrams are constructed from the data and compared with both theoretical stellar model tracks and the expected foreground star contamination. A luminosity function for the blue stars is derived; comparison of this luminosity function with those of 10 other irregular galaxies indicates that NGC 6822 has a typical young star population. The stellar birthrate and initial mass function are estimated for this galaxy. The slope at the bright end of the mass function looks similar to recent results for the Galaxy, the Magellanic Clouds, and the irregular galaxy Sextans A. NGC 6822 appears to be presently forming stars at a slower rate for its mass than Sextans A or the Magellanic Clouds.
NASA Technical Reports Server (NTRS)
Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.
1997-01-01
We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.
Weak lensing magnification of SpARCS galaxy clusters
NASA Astrophysics Data System (ADS)
Tudorica, A.; Hildebrandt, H.; Tewes, M.; Hoekstra, H.; Morrison, C. B.; Muzzin, A.; Wilson, G.; Yee, H. K. C.; Lidman, C.; Hicks, A.; Nantais, J.; Erben, T.; van der Burg, R. F. J.; Demarco, R.
2017-12-01
Context. Measuring and calibrating relations between cluster observables is critical for resource-limited studies. The mass-richness relation of clusters offers an observationally inexpensive way of estimating masses. Its calibration is essential for cluster and cosmological studies, especially for high-redshift clusters. Weak gravitational lensing magnification is a promising and complementary method to shear studies, that can be applied at higher redshifts. Aims: We aim to employ the weak lensing magnification method to calibrate the mass-richness relation up to a redshift of 1.4. We used the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) galaxy cluster candidates (0.2 < z < 1.4) and optical data from the Canada France Hawaii Telescope (CFHT) to test whether magnification can be effectively used to constrain the mass of high-redshift clusters. Methods: Lyman-break galaxies (LBGs) selected using the u-band dropout technique and their colours were used as a background sample of sources. LBG positions were cross-correlated with the centres of the sample of SpARCS clusters to estimate the magnification signal, which was optimally-weighted using an externally-calibrated LBG luminosity function. The signal was measured for cluster sub-samples, binned in both redshift and richness. Results: We measured the cross-correlation between the positions of galaxy cluster candidates and LBGs and detected a weak lensing magnification signal for all bins at a detection significance of 2.6-5.5σ. In particular, the significance of the measurement for clusters with z> 1.0 is 4.1σ; for the entire cluster sample we obtained an average M200 of 1.28 -0.21+0.23 × 1014 M⊙. Conclusions: Our measurements demonstrated the feasibility of using weak lensing magnification as a viable tool for determining the average halo masses for samples of high redshift galaxy clusters. The results also established the success of using galaxy over-densities to select massive clusters at z > 1. Additional studies are necessary for further modelling of the various systematic effects we discussed.
Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties
NASA Astrophysics Data System (ADS)
Krick, J. E.; Bernstein, R. A.
2007-08-01
We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao
We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal,more » we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.« less
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Galaxy clustering and the origin of large-scale flows
NASA Technical Reports Server (NTRS)
Juszkiewicz, R.; Yahil, A.
1989-01-01
Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.
The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey
NASA Astrophysics Data System (ADS)
Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.
2008-08-01
The VVDS-Wide survey has been designed to trace the large-scale distribution of galaxies at z ~ 1 on comoving scales reaching ~100~h-1 Mpc, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude IAB = 22.5, targeting four independent fields with sizes of up to 4 deg2 each. We discuss the survey strategy which covers 8.6 deg2 and present the general properties of the current redshift sample. This includes 32 734 spectra in the four regions, covering a total area of 6.1 deg2 with a sampling rate of 22 to 24%. This paper accompanies the public release of the first 18 143 redshifts of the VVDS-Wide survey from the 4 deg2 contiguous area of the F22 field at RA = 22^h. We have devised and tested an objective method to assess the quality of each spectrum, providing a compact figure-of-merit. This is particularly effective in the case of long-lasting spectroscopic surveys with varying observing conditions. Our figure of merit is a measure of the robustness of the redshift measurement and, most importantly, can be used to select galaxies with uniform high-quality spectra to carry out reliable measurements of spectral features. We also use the data available over the four independent regions to directly measure the variance in galaxy counts. We compare it with general predictions from the observed galaxy two-point correlation function at different redshifts and with that measured in mock galaxy surveys built from the Millennium simulation. The purely magnitude-limited VVDS Wide sample includes 19 977 galaxies, 304 type I AGNs, and 9913 stars. The redshift success rate is above 90% independent of magnitude. A cone diagram of the galaxy spatial distribution provides us with the current largest overview of large-scale structure up to z ~ 1, showing a rich texture of over- and under-dense regions. We give the mean N(z) distribution averaged over 6.1 deg2 for a sample limited in magnitude to IAB = 22.5. Comparing galaxy densities from the four fields shows that in a redshift bin Δz = 0.1 at z ~ 1 one still has factor-of-two variations over areas as large as ~ 0.25 deg2. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone. It is also in fairly good statistical agreement with that predicted by the Millennium simulations. The VVDS WIDE survey currently provides the largest area coverage among redshift surveys reaching z ~ 1. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even 1 deg2 size should be interpreted with caution. The survey data represent a rich data base to select complete sub-samples of high-quality spectra and to study galaxy ensemble properties and galaxy clustering over unprecedented scales at these redshifts. The redshift catalog of the 4 deg2 F22 field is publicly available at http://cencosw.oamp.fr.
Redshift-space distortions with the halo occupation distribution - II. Analytic model
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.
2007-01-01
We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.
NASA Astrophysics Data System (ADS)
Nesbet, Robert K.
2018-05-01
Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.
The fraction of AGNs in major merger galaxies and its luminosity dependence
NASA Astrophysics Data System (ADS)
Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.
2018-05-01
We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.
NASA Astrophysics Data System (ADS)
Hasan, Farhanul; Nayyeri, Hooshang; Cooray, Asantha R.; Herschel Group: University of California Irvine. Dept. of Physics & Astronomy. Led by professor Asantha Cooray, Reed College Undergraduate Research Committee
2017-06-01
We present a combined Herschel/PACS and SPIRE and HST/WFC3 observations of the five CANDELS fields, EGS, GOODS-N, GOODS-S, COSMOS and UDS, to study star-formation activity in dusty star-forming galaxies (DSFGs) at z~1. We use 3D-HST photometry and Grism spectroscopic redshifts to construct the Spectral Energy Distributions (SED) of galaxies in the near UV, optical and near infrared, along with IRAC measurements at 3.6-8 μm in the mid-infrared, and Herschel data at 250-500 μm in the far-infrared. The 3D-HST grism line measurements are used to estimate the star-formation rate from nebular emission. In particular, we compare the H-alpha measured SFRs (corrected for attenuation) to that of direct observations of the far-infrared from Herschel. We further look at the infrared excess in this sample of dusty star-forming galaxies (denoted by LIR/LUV) as a function of the UV slope. We find that the population of high-z DSFGs sit above the trend expected for normal star-forming galaxies. Additionally, we study the dependence of SFR on total dust attenuation and confirm a strong correlation between SFR(Ha) and the balmer decrement (Hα/Hβ).
The mass-metallicity-star formation rate relation under the STARLIGHT microscope
NASA Astrophysics Data System (ADS)
Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.
2014-10-01
The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.
NASA Astrophysics Data System (ADS)
Austermann, J. E.; Aretxaga, I.; Hughes, D. H.; Kang, Y.; Kim, S.; Lowenthal, J. D.; Perera, T. A.; Sanders, D. B.; Scott, K. S.; Scoville, N.; Wilson, G. W.; Yun, M. S.
2009-03-01
We report an overdensity of bright submillimetre galaxies (SMGs) in the 0.15 deg2 AzTEC/COSMOS survey and a spatial correlation between the SMGs and the optical-IR galaxy density at z <~ 1.1. This portion of the COSMOS field shows a ~3σ overdensity of robust SMG detections when compared to a background, or `blank-field', population model that is consistent with SMG surveys of fields with no extragalactic bias. The SMG overdensity is most significant in the number of very bright detections (14 sources with measured fluxes S1.1mm > 6 mJy), which is entirely incompatible with sample variance within our adopted blank-field number densities and infers an overdensity significance of >> 4σ. We find that the overdensity and spatial correlation to optical-IR galaxy density are most consistent with lensing of a background SMG population by foreground mass structures along the line of sight, rather than physical association of the SMGs with the z <~ 1.1 galaxies/clusters. The SMG positions are only weakly correlated with weak-lensing maps, suggesting that the dominant sources of correlation are individual galaxies and the more tenuous structures in the survey region, and not the massive and compact clusters. These results highlight the important roles cosmic variance and large-scale structure can play in the study of SMGs.
NASA Astrophysics Data System (ADS)
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.
2016-11-01
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.; ...
2016-08-11
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
NASA Astrophysics Data System (ADS)
Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen
2017-12-01
We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.
NASA Astrophysics Data System (ADS)
Totani, Tomonori; Takeuchi, Tsutomu T.
2002-05-01
We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE detections of FIR CBR. The intergalactic optical depth of TeV gamma rays based on our model is also presented.
Determining the Nature of Late Gunn–Peterson Troughs with Galaxy Surveys
NASA Astrophysics Data System (ADS)
Davies, Frederick B.; Becker, George D.; Furlanetto, Steven R.
2018-06-01
Recent observations have discovered long (up to ∼110 Mpc/h), opaque Gunn–Peterson troughs in the z ∼ 5.5 Lyα forest, which are challenging to explain with conventional models of the post-reionization intergalactic medium. Here, we demonstrate that observations of the galaxy populations in the vicinity of the deepest troughs can distinguish two competing models for these features: deep voids where the ionizing background is weak due to fluctuations in the mean free path of ionizing photons would show a deficit of galaxies, while residual temperature variations from extended, inhomogeneous reionization would show an overdensity of galaxies. We use large (∼550 Mpc/h) semi-numerical simulations of these competing explanations to predict the galaxy populations in the largest of the known troughs at z ∼ 5.7. We quantify the strong correlation of Lyα effective optical depth and galaxy surface density in both models, and estimate the degree to which realistic surveys can measure such a correlation. While a spectroscopic galaxy survey is ideal, we also show that a relatively inexpensive narrowband survey of Lyα-emitting galaxies is ∼90% likely to distinguish between the competing models.
The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies
NASA Astrophysics Data System (ADS)
Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.
2013-12-01
Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
The colour-magnitude relation as a constraint on the formation of rich cluster galaxies
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale
1998-10-01
The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour-magnitude relation: mergers between galaxies of unequal mass tend to reduce the slope of the relation and to increase its scatter. We show that random mergers between galaxies very rapidly remove any well-defined colour-magnitude correlation. This model is not physically motivated, however, and we prefer to examine the merger process using a self-consistent merger tree. In such a model there are two effects. First, massive galaxies preferentially merge with systems of similar mass. Secondly, the rate of mass growth is considerably smaller than for the random merger case. As a result of both of these effects, the colour-magnitude correlation persists through a larger number of merger steps. The passive evolution of galaxy colours and their averaging in dissipationless mergers provide opposing constraints on the formation of cluster galaxies in a hierarchical model. At the level of current constraints, a compromise solution appears possible. The bulk of the stellar population must have formed before z=1, but cannot have formed in mass units much less than about half the mass of a present-day L_* galaxy. In this case, the galaxies are on average old enough that stellar population evolution is weak, yet formed recently enough that mass growth resulting from mergers is small.
NASA Astrophysics Data System (ADS)
Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.
2016-03-01
We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.
The red-sequence of 72 WINGS local galaxy clusters
NASA Astrophysics Data System (ADS)
Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.
2011-12-01
We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
Study of central light concentration in nearby galaxies
NASA Astrophysics Data System (ADS)
Aswathy, S.; Ravikumar, C. D.
2018-06-01
We propose a novel technique to estimate the masses of supermassive black holes (SMBHs) residing at the centres of massive galaxies in the nearby Universe using simple photometry. Aperture photometry using SEXTRACTOR is employed to determine the central intensity ratio (CIR) at the optical centre of the galaxy image for a sample of 49 nearby galaxies with SMBH mass estimations. We find that the CIR of ellipticals and classical bulges is strongly correlated with SMBH masses whereas pseudo-bulges and ongoing mergers show significant scatter. Also, the CIR of low-luminosity AGNs in the sample shows significant connection with the 5 GHz nuclear radio emission suggesting a stronger link between the former and the SMBH evolution in these galaxies. In addition, it is seen that various structural and dynamical properties of the SMBH host galaxies are correlated with the CIR making the latter an important parameter in galaxy evolution studies. Finally, we propose the CIR to be an efficient and simple tool not only to distinguish classical bulges from pseudo-bulges but also to estimate the mass of the central SMBH.
Enhancement of AGN Activity in Distant Galaxy Clusters
NASA Astrophysics Data System (ADS)
Krishnan, Charutha; Hatch, Nina; Almaini, Omar
2017-07-01
I present our recent study of the prevalence of X-ray AGN in the high-redshift protocluster Cl 0218.3-0510 at z=1.62, and review the implications for our understanding of galaxy evolution. There has long been a consensus that X-ray AGN avoid clusters in the local universe, particularly their cores. The high-redshift universe appears to not follow these trends, as there is a reversal in the local anti-correlation between galaxy density and AGN activity. In this z=1.62 protocluster, we find a large overdensity of AGN by a factor of 23, and an enhancement in the AGN fraction among massive galaxies relative to the field by a factor of 2. I will discuss the comparison of the properties of AGN in the protocluster to the field, and explain how our results point towards similar triggering mechanisms in the two environments. I will also describe how our study of the morphologies of these galaxies provide tentative evidence towards galaxy mergers and interactions being responsible for triggering AGN, and explain the reversal of the local anti-correlation between galaxy density and AGN activity.
NASA Astrophysics Data System (ADS)
Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer
2018-02-01
We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK < -25.3 mag, or stellar mass M* ≳ 4 × 1011M⊙, within 108 Mpc. Our wide-field 107 arcsec × 107 arcsec IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ(R). While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.
Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity
NASA Astrophysics Data System (ADS)
Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.
2008-10-01
We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.
General properties of HII regions in galaxies
NASA Technical Reports Server (NTRS)
Smirnov, M. A.; Komberg, B. V.
1979-01-01
The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.
Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2016-01-01
Though Fourier transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein. In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large data sets of Dark Energy Spectroscopic Instrument, Euclid, and Large Synoptic Survey Telescope, FT techniques will therefore offer an important complement to simple pair or triplet counts.
Galaxy bias from galaxy-galaxy lensing in the DES science verification data
NASA Astrophysics Data System (ADS)
Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.
2018-01-01
We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Hughes, Annie; Schruba, Andreas
2016-11-01
The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue thatmore » our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.« less
Old, L.; Wojtak, R.; Mamon, G. A.; ...
2015-03-26
Our paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18–1.08 dex, i.e. a factor of ~1.5–12), with abundance-matchingmore » and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We also see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. Finally, we did not observe significantly higher scatter for either mock galaxy catalogues. These results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.« less
NASA Astrophysics Data System (ADS)
Erwin, Peter
2018-03-01
I use distance- and mass-limited subsamples of the Spitzer Survey of Stellar Structure in Galaxies (S4G) to investigate how the presence of bars in spiral galaxies depends on mass, colour, and gas content and whether large, Sloan Digital Sky Survey (SDSS)-based investigations of bar frequencies agree with local data. Bar frequency reaches a maximum of fbar ≈ 0.70 at M⋆ ˜ 109.7M⊙, declining to both lower and higher masses. It is roughly constant over a wide range of colours (g - r ≈ 0.1-0.8) and atomic gas fractions (log (M_{H I}/ M_{\\star }) ≈ -2.5 to 1). Bars are thus as common in blue, gas-rich galaxies are they are in red, gas-poor galaxies. This is in sharp contrast to many SDSS-based studies of z ˜ 0.01-0.1 galaxies, which report fbar increasing strongly to higher masses (from M⋆ ˜ 1010 to 1011M⊙), redder colours, and lower gas fractions. The contradiction can be explained if SDSS-based studies preferentially miss bars in, and underestimate the bar fraction for, lower mass (bluer, gas-rich) galaxies due to poor spatial resolution and the correlation between bar size and stellar mass. Simulations of SDSS-style observations using the S4G galaxies as a parent sample, and assuming that bars below a threshold angular size of twice the point spread function full width at half-maximum cannot be identified, successfully reproduce typical SDSS fbar trends for stellar mass and gas mass ratio. Similar considerations may affect high-redshift studies, especially if bars grow in length over cosmic time; simulations suggest that high-redshift bar fractions may thus be systematically underestimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, Philip J.; Buote, David A.; Brighenti, Fabrizio
2009-10-01
We present new mass measurements for the supermassive black holes (SMBHs) in the centers of three early-type galaxies. The gas pressure in the surrounding, hot interstellar medium (ISM) is measured through spatially resolved spectroscopy with the Chandra X-ray Observatory, allowing the SMBH mass (M {sub BH}) to be inferred directly under the hydrostatic approximation. This technique does not require calibration against other SMBH measurement methods and its accuracy depends only on the ISM being close to hydrostatic, which is supported by the smooth X-ray isophotes of the galaxies. Combined with results from our recent study of the elliptical galaxy NGCmore » 4649, this brings the number of galaxies with SMBHs measured in this way to four. Of these, three already have mass determinations from the kinematics of either the stars or a central gas disk, and hence join only a handful of galaxies with M {sub BH} measured by more than one technique. We find good agreement between the different methods, providing support for the assumptions implicit in both the hydrostatic and the dynamical models. The stellar mass-to-light ratios for each galaxy inferred by our technique are in agreement with the predictions of stellar population synthesis models assuming a Kroupa initial mass function (IMF). This concurrence implies that no more than {approx}10%-20% of the ISM pressure is nonthermal, unless there is a conspiracy between the shape of the IMF and nonthermal pressure. Finally, we compute Bondi accretion rates (M-dot{sub bondi}), finding that the two galaxies with the highest M-dot{sub bondi} exhibit little evidence of X-ray cavities, suggesting that the correlation with the active galactic nuclei jet power takes time to be established.« less
Etherington, J.; Thomas, D.; Maraston, C.; ...
2016-01-04
Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less
NASA Astrophysics Data System (ADS)
Merkel, Philipp M.; Schäfer, Björn Malte
2017-10-01
Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.
NASA Technical Reports Server (NTRS)
Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo
1995-01-01
We have conducted bivariate and multivariate statistical analysis of data measuring the integrated luminosity, shape, and potential depth of the Einstein sample of early-type galaxies (presented by Fabbiano et al. 1992). We find significant correlations between the X-ray properties and the axial ratios (a/b) of our sample, such that the roundest systems tend to have the highest L(sub x) and L(sub x)/L(sub B). The most radio-loud objects are also the roundest. We confirm the assertion of Bender et al. (1989) that galaxies with high L(sub x) are boxy (have negative a(sub 4)). Both a/b and a(sub 4) are correlated with L(sub B), but not with IRAS 12 um and 100 um luminosities. There are strong correlations between L(sub x), Mg(sub 2), and sigma(sub nu) in the sense that those systems with the deepest potential wells have the highest L(sub x) and Mg(sub 2). Thus the depth of the potential well appears to govern both the ability to reatin an ISM at the present epoch and to retain the enriched ejecta of early star formation bursts. Both L(sub x)/L(sub B) and L(sub 6) (the 6 cm radio luminosity) show threshold effects with sigma(sub nu) exhibiting sharp increases at log sigma(sub nu) approximately = 2.2. Finally, there is clearly an interrelationship between the various stellar and structural parameters: The scatter in the bivariate relationships between the shape parameters (a/b and a(sub 4)) and the depth parameter sigma(sub nu) is a function of abundance in the sense that, for a given a(sub 4) or a/b, the systems with the highest sigma(sub nu) also have the highest Mg(sub 2). Furthermore, for a constant sigma(sun nu), disky galaxies tend to have higher Mg(sub 2) than boxy ones. Alternatively, for a given abundance, boxy ellipticals tend to be more massive than disky ellipticals. One possibility is that early-type galaxies of a given mass, originating from mergers (boxy ellipticals), have lower abundances than 'primordial' (disky) early-type galaxies. Another is that disky inner isophotes are due not to primordial dissipation collapse, but to either the self-gravitating inner disks of captured spirals or the dissipational collapse of new disk structures from the premerger ISM. The high measured nuclear Mg(sub 2) values would thus be due to enrichment from secondary bursts of star formation triggered by the merging event.
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; ...
2017-03-10
In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less
SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilly, Simon J.; Carollo, C. Marcella
2016-12-10
There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken intomore » account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo
In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less
NASA Astrophysics Data System (ADS)
Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel
2018-06-01
We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜ 0.010 and σɛ, stat ˜ 0.012, respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5 per cent and 2.8 per cent at zeff = 0.38, 1.4 per cent and 2.4 per cent at zeff = 0.51, and 1.7 per cent and 2.6 per cent at zeff = 0.61. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.
Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro
2017-10-01
We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.
NASA Astrophysics Data System (ADS)
Totani, T.; Takeuchi, T. T.
2001-12-01
A new model of infrared galaxy counts and the cosmic background radiation (CBR) is developed by extending a model for optical/near-infrared galaxies. Important new characteristics of this model are that mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that the big grain dust temperature T dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T dust and total infrared luminosity L IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L IR-T dust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μ m) and CBR by this model. We found considerably different results from most of previous works based on the empirical L IR-T dust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40--80K). This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2--3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE\\ detections of FIR CBR. The authors thank the financial support by the Japan Society for Promotion of Science.
Montero-Dorta, Antonio D.; Bolton, Adam S.; Shu, Yiping
2017-02-24
When two galaxies that are distant from one another (and also distant from Earth) happen to lie along a single line of sight in the sky, the resulting phenomenon is known as a “gravitational lens.” The gravity of the more nearby galaxy warps the image of the more distant galaxy into multiple images or complete rings (know as “Einstein rings” since the quantitative description of the gravitational lensing effect relies on Einstein’s theory of gravity.) Strong gravitational lens systems have multiple scientific applications. If the more distant galaxy happens to contain a time-varying quasar (bright emission powered by a supermassivemore » black hole at the galaxy’s center) or supernova explosion, the time delay between multiple images can be used as a probe of the expansion rate of the universe (and other cosmological parameters.) Forecasting the incidence of gravitational lenses in future large-scale sky surveys relies on quantifying the population of potential lens galaxies in the universe in terms of their abundance and their lensing efficiency. The lensing efficiency is most directly correlated with the galaxy’s “velocity dispersion:” the characteristic speed with which stars in the galaxy are orbiting under the influence of the galaxy’s overall gravitational field. This paper uses previous results quantifying the combined demographics of galaxies in brightness and velocity dispersion to compute the demographics of massive “elliptical” galaxies in velocity dispersion alone, thereby providing the essential ingredient for forecasting the expected incidence of strong gravitational lensing by these types of galaxies in future sky surveys such as DESI and LSST. These results are also applicable to the association of massive galaxies with their associated dark-matter “halos,” which is an essential ingredient for the most accurate and informative extraction of cosmological parameters from the data sets produced by large-scale surveys of the universe.« less
A Bayesian hierarchical approach to galaxy-galaxy lensing
NASA Astrophysics Data System (ADS)
Sonnenfeld, Alessandro; Leauthaud, Alexie
2018-07-01
We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.
A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing
NASA Astrophysics Data System (ADS)
Sonnenfeld, Alessandro; Leauthaud, Alexie
2018-04-01
We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, M.; Kaneda, H.; Ishihara, D.
2015-07-01
We report CO{sub 2}/H{sub 2}O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO{sub 2}/H{sub 2}O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO{sub 2}/H{sub 2}O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in themore » relation between CO{sub 2}/H{sub 2}O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO{sub 2}/H{sub 2}O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO{sub 2}/H{sub 2}O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO{sub 2}/H{sub 2}O ice abundance ratios tend to be high in young star-forming galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Ye-Wei; Kong, Xu; Lin, Lin, E-mail: ywmao@pmo.ac.cn, E-mail: xkong@ustc.edu.cn, E-mail: linlin@shao.ac.cn
Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies,more » we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.« less
Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web
NASA Astrophysics Data System (ADS)
Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne
2017-09-01
We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
NASA Astrophysics Data System (ADS)
Mao, Ye-Wei; Kong, Xu; Lin, Lin
2014-07-01
Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.