Science.gov

Sample records for galaxy group implication

  1. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  2. INTERGALACTIC GAS IN GROUPS OF GALAXIES: IMPLICATIONS FOR DWARF SPHEROIDAL FORMATION AND THE MISSING BARYONS PROBLEM

    SciTech Connect

    Freeland, E.; Wilcots, E. E-mail: ewilcots@astro.wisc.edu

    2011-09-10

    Radio galaxies with bent jets are predominantly located in groups and clusters of galaxies. We use bent-double radio sources, under the assumption that their jets are bent by ram pressure, to probe intragroup medium (IGM) gas densities in galaxy groups. This method provides a direct measurement of the intergalactic gas density and allows us to probe intergalactic gas at large radii and in systems whose IGM is too cool to be detected by the current generation of X-ray telescopes. We find gas with densities of 10{sup -3} to 10{sup -4} cm{sup -3} at group radii from 15 to 700 kpc. A rough estimate of the total baryonic mass in intergalactic gas is consistent with the missing baryons being located in the IGM of galaxy groups. The neutral gas will be easily stripped from dwarf galaxies with total masses of 10{sup 6}-10{sup 7} M{sub sun} in the groups studied here. Indications are that intragroup gas densities in less-massive systems like the Local Group should be high enough to strip gas from dwarfs like Leo T and, in combination with tides, produce dwarf spheroidals.

  3. Cosmological implications of ROSAT observations of groups and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Jones, Christine; Forman, William

    1995-01-01

    We have combined ROSAT Position Sensitive Proportional Counter (PSPC) and optical observations of a sample of groups and clusters of galaxies to determine the fundamental parameters of these systems (e.g., the dark matter distribution, gas mass fraction, baryon mass fraction, mass-to-light ratio, and the ratio of total-to-luminous mass). Imaging X-ray spectroscopy of groups and clusters show that the gas is essentially isothermal beyond the central region, indicating that the total mass density (mostly dark matter) scales as rho(sub dark) varies as 1/r squared. The density profile of the hot X-ray emitting gas is fairly flat in groups with rho(sub gas) varies as 1/r and becomes progressively steeper in hotter richer systems, with rho(sub gas) varies as 1/r squared in the richest clusters. These results show, that in general, the hot X-ray-emitting gas is the most extended mass component in groups and clusters, the galaxies are the most centrally concentrated component, and the dark matter is intermediate between the two. The flatter density rofile of the hot gas compared to the dark matter produces a gas mass fraction that increases with radius within each object. There is also a clear trend of increasing gas mass fraction (from 2% to 30%) between elliptical galaxies and rich clusters due to the greater detectable extent of the X-ray emission in richer systems. For the few systems in which the X-ray emission can be traced to the virial radius (where the overdensity delta is approximately equal 200), the gas mass fraction (essentially the baryon mass fraction) approaches a roughly constant value of 30%, suggesting that this is the true primordial value. Based on standard big bang nucleosynthesis, the large baryon mass fraction implies that Omega = 0.1 - 0.2. The antibiased gas distribution suggests that feedback from galaxy formation and hydrodynamics play important roles in the formation of structure on the scale of galaxies to rich clusters. All the groups and

  4. Diffuse X-ray emission from the NGC 2300 group of galaxies - Implications for dark matter and galaxy evolution in small groups

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burstein, David

    1993-01-01

    The discovery of diffuse X-ray emission from the NGC 2300 group of galaxies using the ROSAT Position Sensitive Proportional Counter is reported. The gas distributions is roughly symmetric and extends to a radius of at least 0.2/h(50) Mpc. A Raymond-Smith hot plasma model provides an excellent fit the X-ray spectrum with a best-fit value temperature of 0.9 + -/15 or - 0.14 keV and abundance 0.06 + 0/.12 or - 0.05 solar. The assumption of gravitational confinement leads to a total mass of the group of 3.0 + 0.4 or - 0.5 x 10 exp 13 solar. Baryons can reasonably account for 4 percent of this mass, and errors could push this number not higher than 10-15 percent. This is one of the strongest pieces of evidence that dark matter dominates small groups such as this one. The intragroup medium in this system has the lowest metal abundance yet found in diffuse gas in a group or cluster.

  5. Diffuse X-ray emission from the NGC 2300 group of galaxies - Implications for dark matter and galaxy evolution in small groups

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burstein, David

    1993-01-01

    The discovery of diffuse X-ray emission from the NGC 2300 group of galaxies using the ROSAT Position Sensitive Proportional Counter is reported. The gas distributions is roughly symmetric and extends to a radius of at least 0.2/h(50) Mpc. A Raymond-Smith hot plasma model provides an excellent fit the X-ray spectrum with a best-fit value temperature of 0.9 + -/15 or - 0.14 keV and abundance 0.06 + 0/.12 or - 0.05 solar. The assumption of gravitational confinement leads to a total mass of the group of 3.0 + 0.4 or - 0.5 x 10 exp 13 solar. Baryons can reasonably account for 4 percent of this mass, and errors could push this number not higher than 10-15 percent. This is one of the strongest pieces of evidence that dark matter dominates small groups such as this one. The intragroup medium in this system has the lowest metal abundance yet found in diffuse gas in a group or cluster.

  6. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  7. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  8. Surface-brightness profiles of dwarf galaxies in the NGC 5044 Group: Implications for the luminosity-shape and scalelength-shape relationships as distance indicators

    NASA Astrophysics Data System (ADS)

    Young, C. K.; Currie, M. J.

    2001-04-01

    In a recent paper, which presents CCD photometry for fifteen dwarf and intermediate early-type galaxies in the NGC 5044 Group, it has been claimed that ``a few relatively bright galaxies with ``convex'' profiles destroy the known relation between total magnitude and the ``shape'' parameter... thus ruling out the use of this relation as a distance indicator for individual galaxies''. In the same paper, further reasons were cited supposedly ``limiting also its use as a distance indicator for groups of galaxies''. We demonstrate that none of the three relatively bright galaxies cited as possessing ``convex'' profiles actually has a convex profile, and that one of these objects should be excluded because it is a late-type galaxy. Of the two remaining objects, one has an anomalous profile shape whilst the other is brighter than one might expect from its colour alone. However, we show that all of the other issues raised have already been accounted for by Young & Currie (\\cite{you94}, \\cite{you95} & \\cite{you98}). The main implications of the new observations are: (1) that the case of one galaxy with an anomalous profile shape, N42, highlights the need for some a priori criteria to be defined in order to establish objectively which objects are not suitable for distance determinations; and (2) on the basis of another unusual galaxy, N50, colour has now been shown to be a poorer discriminant between objects of the same profile shape and scalelength (but of different central surface brightness) than previously thought. How significant this latter problem is depends on how common N50-like objects are. This consideration reinforces the case for always using the more general scalelength-shape relationship of Young & Currie (\\cite{you95}) in preference to the luminosity-shape one of Young & Currie (\\cite{you94}). Reassuringly, through a re-analysis of the same CCD photometry, we find that NGC 5044 Group galaxies observe a tight scalelength-shape relationship. This finding

  9. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  10. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  11. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  12. Reddening and Absorption Through Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, Paul

    1997-07-01

    This project involves a photometric study of galaxies seen through the bodies of several Local Group galaxies. The high resolution of WFPC2 images will be used with automated techniques to identify galaxies at various magnitude limits. For three different magnitude regimes we will use three different techniques for studying the optical effects of the dust content: 1} for the brighter galaxies the integrated colors will be determined and compared to those of similar Hubble types in the field, which follow a fairly narrow color- type relationship; 2} for a selection of galaxies that goes to somewhat fainter limits, we will be able to measure magnitudes in three colors, allowing us to determine reddening by comparison with the field galaxy color-color relations; and 3} the identified galaxies of all brightnesses will be counted, using automated techniques, and the counts will be compared to galaxy densities in the field. The goal is a map of the TOTAL extinction and reddening through the Local Group galaxies, which can be compared to maps of the HI, molecular gas and infrared radiation, so that astrophysical conclusions can be made.

  13. Small galaxy groups: defining selection criteria

    NASA Astrophysics Data System (ADS)

    Duplancic, F.; Alonso, S.; Coldwell, G.; Garcia Lambas, D.

    2017-10-01

    The present work presents a homogeneous selection criteria of small galaxy groups defined as systems with at least two and up to six members, compact and isolated, favoring mergers between galaxies. The definition of homogeneous selection criteria is the starting point for a comparative study of this type of systems, exempt of possible biases derived from differences in the selection function.

  14. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  15. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  16. Star Formation in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Paramo, Jorge

    We propose to obtain NUV and FUV images of a sample of nearby compact groups and their neighborhoods with the GALEX imaging facility. The main goals for this proposal are: (1) explore whether a relationship between the total star formation rates and the evolutionary state of the group holds, and also to explore the existence of interaction induced nuclear starburst activity in compact group galaxies; (2) study the super star clusters content of the systems in our sample and the relationship to the group properties; (3) search for extended star forming regions in the intragroup medium and (4) perform a morphological multiwavelength study of the sample galaxies in order to quantitatively describe the induced star formation activity with morphological criteria. A sample of field galaxies (already available) will be used to investigate the role of the compact group environment on the UV properties of our sample of compact group galaxies.

  17. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  18. Galaxy Groups within 3500 km s-1

    NASA Astrophysics Data System (ADS)

    Kourkchi, Ehsan; Tully, R. Brent

    2017-01-01

    We present an algorithm to find nearby galaxy groups within 3,500 km s-1 (~45 Mpc). Our algorithm is based on the direct observed scaling relations that relate luminosity, velocity dispersion and dimensions of groups. Using these scaling relations, in an iterative process, galaxies with almost the same radial velocities and in close angular proximity fall into groups. Since peculiar velocities and Hubble expansion rate are comparable at these local distances, radial velocities are not very good proxies for galaxies distances. Therefore, further manual investigations of the identified groups is inevitable to discard interlopers and/or to resolve confusing cases in crowded regions. The goal of this study is to explore the nature of smallest galaxy groups and to investigate the halo mass function below 8x1012 solar mass.

  19. Dynamical properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul; De Oliveira, Claudia M.; Huchra, John P.; Palumbo, Giorgio G.

    1992-01-01

    Radial velocities are presented for 457 galaxies in the 100 Hickson compact groups. More than 84 percent of the galaxies measured have velocities within 1000 km/s of the median velocity in the group. Ninety-two groups have at least three accordant members, and 69 groups have at least four. The radial velocities of these groups range from 1380 to 42,731 km/s with a median of 8889 km/s, corresponding to a median distance of 89/h Mpc. The apparent space density of these systems ranges from 300 to as much as 10 exp 8 sq h/sq Mpc, which exceeds the densities in the centers of rich clusters. The median projected separation between galaxies is 39/h kpc, comparable to the sizes of the galaxies themselves. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups, and a weak anticorrelation is found between crossing time and the luminosity contrast of the first-ranked galaxy.

  20. Stellar kinematics and structural properties of virgo cluster dwarf early-type galaxies from the SMAKCED project. I. Kinematically decoupled cores and implications for infallen groups in clusters

    SciTech Connect

    Toloba, E.; Guhathakurta, P.; Boissier, S.; Boselli, A.; Den Brok, M.; Falcón-Barroso, J.; Ryś, A.; Janz, J.; Lisker, T.; Laurikainen, E.; Salo, H.; Paudel, S.

    2014-03-10

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC. The frequency of occurrence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.

  1. Galaxies Die in Groups: An IRAC Autopsy

    NASA Astrophysics Data System (ADS)

    Wilman, D. J.; Pierini, D.; Tyler, K.; McGee, S. L.; Oemler, A., Jr.; Morris, S. L.; Balogh, M. L.; Bower, R. G.; Mulchaey, J. S.

    2008-10-01

    The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group-scale haloes which host most of these galaxies. Our z˜0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass selected M_{*} ≲ 2×10^{10}M_{⊙} sample is constructed using IRAC observations. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at λ_{obs}=8 micron. We term them InfraRed-Excess galaxies whether star formation and/or AGN activity are present. They include all known morphological late-types. The fraction of InfraRed Excess galaxies, f(IRE) drops with M_{*}, such that f(IRE)=0.5 at a ``crossover mass'' of M_{cr}˜ 1.3×10^{11}M_{⊙}. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, but most clearly at M_{*} ≲ 10^{11}M_{⊙}. Suppression of star formation must mainly occur in groups, and the observed trend of f(IRE) with M_{*} can be explained if suppression of M_{*} ≲ 10^{11}M_{⊙} galaxies occurs primarily in the group environment.

  2. Multiple Core Galaxies: Implications for M31

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  3. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  4. Lyman Alpha Blobs: Seeds of Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Hall, Agnar; Prescott, Moire

    2017-01-01

    Recently, evidence has been mounting that giant Lyman alpha (Lya) nebulae, or "blobs," at high redshift are coincident with regions of galaxy overdensity and likely the progenitors of galaxy groups. These Lya blobs are rare structures found at roughly 1 < z < 6 which have typical diameters of ~100 kpc and Lya luminosities of ~10^42 to 10^44 erg s^-1. Using Hubble Space Telescope (HST) imaging, we explore the environments of three systematically-selected blobs at 1.5 < z < 2.5. Comparing the total surface density of galaxies in a region centered on the blob to the average surface density of galaxies in the field, we find that all three blobs exhibit significant overdensity (up to a factor of 5-10). After narrowing down which galaxies are most likely to be associated with each Lya blob, we confirm that the raw overdensities are enhanced and find evidence of a luminosity gap in at least one of the three systems studied. These results suggest that Lya blobs offer new insight into the early phases of galaxy group and cluster formation.

  5. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  6. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    SciTech Connect

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Bekki, Kenji; Dopita, Michael A.; Nicholls, David C.; Kilborn, Virginia

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  7. Properties of intra-group stars and galaxies in galaxy groups: `normal' versus `fossil' groups

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    2006-06-01

    Cosmological [cold dark matter (ΛCDM)] TreeSPH simulations of the formation and evolution of 12 galaxy groups of virial mass ~1014Msolar have been performed. The simulations invoke star formation, chemical evolution with non-instantaneous recycling, metallicity-dependent radiative cooling, strong star-burst driven galactic super-winds and effects of a meta-galactic ultraviolet (UV) field. The intra-group (IG) stars are found to contribute 12-45 per cent of the total group B-band luminosity at z = 0. The lowest fractions are found for groups with only a small difference between the R-band magnitudes of the first and second ranked group galaxy (Δm12,R <~ 0.5), the larger fractions are typical of `fossil' groups (FGs, Δm12,R >= 2). A similar conclusion is obtained from BVRIJK surface brightness profiles of the IG star populations. The IG stars in the four FGs are found to be older than the ones in the eight `normal' groups (non-FGs), on average by about 0.3-0.5 Gyr. The typical colour of the IG stellar population is B - R = 1.4-1.5, for both types of systems in good agreement with observations. The mean iron abundance of the IG stars is slightly sub-solar in the central part of the groups (r ~ 100 kpc) decreasing to about 40 per cent solar at about half the virial radius. The IG stars are α-element enhanced with a trend of [O/Fe] increasing with r and an overall [O/Fe] ~ 0.45 dex, indicative of dominant enrichment from Type II supernovae. The abundance properties are similar for both types of systems. The velocity distributions of the IG stars are, at r >~ 30 kpc, significantly more radially anisotropic for FGs than for the non-FGs; this also holds for the velocity distributions of the group galaxies. This indicates that an important characteristic determining whether a group becomes fossil or not, apart from its formation time, as discussed by D'Onghia et al., is the `initial' velocity distribution of the group galaxies. For FGs, one can dynamically infer the

  8. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  9. Segregation effects in DEEP2 galaxy groups

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Ribeiro, A. L. B.; Lopes, P. A. A.

    2017-01-01

    We investigate segregation phenomena in galaxy groups in the range of 0.2 < z < 1. We study a sample of groups selected from the 4th Data Release of the DEEP2 galaxy redshift survey. We used only groups with at least eight members within a radius of 4 Mpc. Outliers were removed with the shifting gapper techinque and, then, the virial properties were estimated for each group. The sample was divided into two stacked systems: low(z ≤ 0.6) and high (z > 0.6) redshift groups. Assuming that the colour index (U - B)0 can be used as a proxy for the galaxy type, we found that the fraction of blue (star-forming) objects is higher in the high-z sample, with blue objects being dominant at MB > -19.5 for both samples, and red objects being dominant at MB < -19.5 only for the low-z sample. Also, the radial variation of the red fraction indicates that there are more red objects with R < R200 in the low-z sample than in the high-z sample. Our analysis indicates statistical evidence of kinematic segregation, at the 99 per cent c.l., for the low-z sample: redder and brighter galaxies present lower velocity dispersions than bluer and fainter ones. We also find a weaker evidence for spatial segregation between red and blue objects, at the 70 per cent c.l. The analysis of the high-z sample reveals a different result: red and blue galaxies have velocity dispersion distributions not statistically distinct, although redder objects are more concentrated than the bluer ones at the 95 per cent c.l. From the comparison of blue/red and bright/faint fractions, and considering the approximate lookback time-scale between the two samples (˜3 Gyr), our results are consistent with a scenario where bright red galaxies had time to reach energy equipartition, while faint blue/red galaxies in the outskirts infall to the inner parts of the groups, thus reducing spatial segregation from z ˜ 0.8 to z ˜ 0.4.

  10. Intracluster Light in Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony; Zabludoff, Ann I.; Zaritsky, Dennis F.

    2016-01-01

    We present recent results from our study on the origin and assembly history of the intracluster starlight (ICL) for a sample of 29 galaxy groups and clusters with 3x1013groups and clusters show clear negative color gradients. Such negative colour (and equivalently, metallicity) gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the brightest cluster galaxy (BCG). We also find ICL luminosities of 3-9 L* in the range 10 < r < 110 kpc for these clusters. Dwarf disruption alone cannot explain the total luminosity of the ICL and remain consistent with the observed evolution in the faint-end slope of the luminosity function. The results of our study are suggestive of a formation history in which the ICL is built-up by a combination of stripping of L* galaxies and/or dwarf disruption and disfavor significant contribution by major mergers with the BCG.This sample of groups and clusters is the largest with HST/WFC3 data for ICL analysis that spans two orders of magnitude in halo mass at redshifts >0.3. Because of this we can investigate how the ICL color profile changes as a function of cluster mass for the first time, as well as expand previous studies of the changing fraction of cluster luminosity that is contained in the BCG+ICL as a function of halo mass. We present our preliminary results and describe our next steps using this sample to investigate the intracluster light in massive halos.

  11. The Circular Velocity Function of Group Galaxies

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-01

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v c <~ 200 km s-1. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v c estimators, we find no transition from field to ΛCDM-shaped CVF above v c = 50 km s-1 as a function of group halo mass. All groups with 12.4 <~ log M halo/M ⊙ <~ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v c compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v c slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  12. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  13. The global warming of group satellite galaxies

    NASA Astrophysics Data System (ADS)

    Yozin, C.; Bekki, K.

    2016-08-01

    Recent studies adopting λRe, a proxy for specific angular momentum, have highlighted how early-type galaxies (ETGs) are composed of two kinematical classes for which distinct formation mechanisms can be inferred. With upcoming surveys expected to obtain λRe from a broad range of environments (e.g. SAMI, MaNGA), we investigate in this numerical study how the λRe-ɛe distribution of fast-rotating dwarf satellite galaxies reflects their evolutionary state. By combining N-body/SPH simulations of progenitor disc galaxies (stellar mass ≃109 M⊙), their cosmologically-motivated sub-halo infall history and a characteristic group orbit/potential, we demonstrate the evolution of a satellite ETG population driven by tidal interactions (e.g. harassment). As a general result, these satellites remain intrinsically fast-rotating oblate stellar systems since their infall as early as z = 2; mis-identifications as slow rotators often arise due to a bar/spiral lifecycle which plays an integral role in their evolution. Despite the idealistic nature of its construction, our mock λRe-ɛe distribution at z < 0.1 reproduces its observational counterpart from the ATLAS3D/SAURON projects. We predict therefore how the observed λRe-ɛe distribution of a group evolves according to these ensemble tidal interactions.

  14. Star Formation and Environment in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.

    H &alpha luminosities are presented in order to study the Star Formation Rates (SFRs) of a sample of galaxies in compact groups from Hickson's (1982) catalogue. Although the comparison of the SFRs of the disk galaxies in our sample with those of a sample of field galaxies yielded no difference between the average SFRs for disk galaxies in compact groups and in the field, environmental effects seem to influence the H &alpha luminosities of late and early-type galaxies in compact groups. No relationship was found between the total normalized H &alpha luminosities of the groups and some dynamical parameters, indicating that the dynamical state of the group does not influence the SFR of the group. The lack of dominant interaction induced starbursts in our sample is compatible with a scenario for compact groups of galaxies in which the dark matter of the group is arranged in a common halo, thereby preventing a fast collapse of the galaxies.

  15. The Local Group and Other Neighboring Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.

    2005-01-01

    Over the last few years, rapid progress has been made in distance measurements for nearby galaxies based on the magnitude of stars on the tip of the red giant branch. Current CCD surveys with the Hubble Space Telescope (HST) and large ground-based telescopes bring ~10% accurate distances for roughly a hundred galaxies within 5 Mpc. The new data on distances to galaxies situated in (and around) the nearest groups-the Local Group, M81 Group, Cen A/M83 Group, IC 342/Maffei Group, Sculptor filament, and Canes Venatici cloud-allowed us to determine their total mass from the radius of the zero-velocity surface, R0, which separates a group as bound against the homogeneous cosmic expansion. The values of R0 for the virialized groups turn out to be close each other, in the range of 0.9-1.3 Mpc. As a result, the total masses of the groups are close to each other, as well, yielding total mass to blue luminosity ratios of 10-40 Msolar L-1solar. The new total mass estimates are 3-5 times lower than old virial mass estimates of these groups. Because about half of galaxies in the Local volume belong to such loose groups, the revision of the amount of dark matter (DM) leads to a low local density of matter, Ωm~=0.04, which is comparable with the global baryonic fraction Ωb but much lower than the global density of matter, Ωm=0.27. To remove the discrepancy between the global and local quantities of Ωm, we assume the existence of two different DM components: (1) compact dark halos around individual galaxies and (2) a nonbaryonic dark matter ``ocean'' with ΩDM1~=0.07 and ΩDM2~=0.20, respectively. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  16. Unusually gas-rich central galaxies in small groups

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; xGASS Team

    2017-01-01

    Observations of gas in galaxies have shown dramatic differences between rich clusters and isolated field environments. However, pre-processing in intermediate group environments is expected to be responsible for much of the transformation between gas-rich blue and gas-poor red galaxies. We investigate this by taking advantage of the deepest observations to date of atomic and molecular gas in local galaxies from the GASS and COLD GASS surveys and their extensions to low stellar masses. This sample is uniquely suited to quantify gas and star formation properties of galaxies across environments, reaching the gas-poor regime of groups and clusters. We find that central galaxies in small groups are unusually gas rich and star-forming, compared to isolated galaxies. Below log Mst/Msun = 10, gas-poor group central galaxies are rare. We suggest that these central galaxies are being fed by the filaments of the cosmic web.

  17. Study of the global environment of small galaxy groups

    NASA Astrophysics Data System (ADS)

    Duplancic, F.; Dávila, F.; Coldwell, G.

    2017-07-01

    The present work presents a study of the global density environment of small galaxy groups. To this end we use a catalog of small galaxy systems constructed from the 10th Data Release of the Sloan Digital Sky Survey. To characterize the global environment of small galaxy groups we use different estimators, including the number of significant neighbors within a fixed aperture, the distance to the nearest neighbor and the number density profile of these systems. In order to perform a comparative study, we select different categories of systems considering galaxy pairs, triplets of galaxies and groups with at least four member galaxies. We found differences between the global environment of pairs compared to triplet of galaxies and groups. Galaxy pairs inhabit environments of lower global density than triplets and groups which are located in higher global density regions. This result is in agreement with different studies in the literature which propose that triplets of galaxies and compact groups have similarities in their fundamental properties and are different from galaxy pairs. Our findings suggest that the global density environment of small galaxy groups plays a fundamental role in the characterization of the main properties of these systems and their member galaxies.

  18. A COMPARISON OF THE CLUSTERING PROPERTIES BETWEEN GALAXIES AND GROUPS OF GALAXIES

    SciTech Connect

    Deng Xinfa

    2013-03-01

    In this study, I apply cluster analysis and perform comparative studies of clustering properties between galaxies and groups of galaxies. It is found that the number of objects N{sub max} of the richest system and the maximal length D{sub max} of the largest system for groups in all samples are apparently larger than ones for galaxies, and that galaxies preferentially form isolated, paired, and small systems, while groups preferentially form grouped and clustered systems. These results show that groups are more strongly clustered than galaxies, which is consistent with statistical results of the correlation function.

  19. Evolution of Galaxy Groups in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Raouf, Mojtaba; Khosroshahi, Habib G.; Dariush, A.

    2016-06-01

    We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model in recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.

  20. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  1. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  2. The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Feldmann, R.; Carollo, C. M.; Mayer, L.; Renzini, A.; Lake, G.; Quinn, T.; Stinson, G. S.; Yepes, G.

    2010-01-01

    We trace the evolution of central galaxies in three ~1013 M sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. In all three cases, the evolution in the group potential leads, at z = 0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion and which resemble either elliptical or S0 galaxies. Their z ~ 2-2.5 main progenitors are massive (M * ~ (3-10) × 1010 M sun), star-forming (20-60 M sun yr-1) galaxies which host substantial reservoirs of cold gas (~5 × 109 M sun) in extended gas disks. Our simulations thus show that star-forming galaxies observed at z ~ 2 are likely the main progenitors of central galaxies in galaxy groups at z = 0. At z ~ 2 the stellar component of all galaxies is compact, with a half-mass radius <1 kpc. The central stellar density stays approximatively constant from such early epochs down to z = 0. Instead, the galaxies grow inside out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to 2 orders of magnitude. Both major and minor mergers contribute to most (70+20 -15%) of the mass accreted outside the effective radius and thus drive an episodical evolution of the half-mass radii, particularly below z = 1. In situ star formation and secular evolution processes contribute to 14+18 -9% and 16+6 -11%, respectively. Overall, the simulated galaxies grow by a factor ~4-5 in mass and size since redshift z ~ 2. The short cooling time in the center of groups can foster a "hot accretion" mode. In one of the three simulated groups this leads to a dramatic rejuvenation of the central group galaxy at z < 1, affecting its morphology, kinematics, and colors. This episode is eventually terminated by a group-group merger. Mergers also appear to be responsible for the suppression of cooling flows in the other two groups. Passive stellar evolution and minor galaxy mergers gradually restore

  3. 3D structure of nearby groups of galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L.; Makarov, D.; Klypin, A.; Gottlöber, S.

    2016-10-01

    Using high accuracy distance estimates, we study the three-dimensional distribution of galaxies in five galaxy groups at a distance less than 5 Mpc from the Milky Way. Due to proximity of these groups our sample of galaxies is nearly complete down to extremely small dwarf galaxies with absolute magnitudes M B = -12. We find that the average number-density profile of the groups shows a steep power-law decline dn/dV ˜ R-3 at distances R=(100-500) kpc consistent with predictions of the standard cosmological model. We also find that there is no indication of a truncation or a cutoff in the density at the expected virial radius: the density profile extends at least to 1.5 Mpc. Vast majority of galaxies within 1.5 Mpc radius around group centres are gas-rich star-forming galaxies. Early-type galaxies are found only in the central ˜ 300 kpc region. Lack of dwarf spheroidal and dwarf elliptical galaxies in the field and in the outskirts of large groups is a clear indication that these galaxies experienced morphological transformation when they came close to the central region of forming galaxy group.

  4. The prevalence of dwarf galaxy compact groups over cosmic time

    NASA Astrophysics Data System (ADS)

    Wiens, Christopher

    2017-01-01

    Galaxy interactions are critical to the evolution of the universe, influencing everything from star formation to the structure of the known universe. By studying galaxy interactions through computer simulations, we are instantaneously able to observe processes that normally take billions of years. “Compact groups” are extremely dense assemblies of at least 3 but typically no more than 10 galaxies that are interacting gravitationally. These groups yield much information about galaxy interactions and mergers in dense environments but are difficult to observe at high redshifts. Compact groups of only dwarf galaxies probe a regime of galaxy evolution that has been hypothesized to be common in the early universe. Here we investigate the populations of such dwarf galaxy compact groups in the Millennium II simulation. Millennium II is a massive n-body simulation of cold dark matter particles on a time scale equivalent to the known universe; allowing us to access to high redshift galaxies and the ability to track their descendants. Our preliminary findings indicate that these dwarf galaxy compact groups do exist in the Millennium II simulation. In the simulation, there is a non-inconsequential number of dwarf compact groups with an evolutionary track that mirrors the more massive compact groups with a peak in groups around a redshift of 2.

  5. The star formation histories of Hickson compact group galaxies

    NASA Astrophysics Data System (ADS)

    Plauchu-Frayn, I.; Del Olmo, A.; Coziol, R.; Torres-Papaqui, J. P.

    2012-10-01

    Aims: We study the star formation fistory (SFH) of 210 galaxy members of 55 Hickson compact groups (HCG) and 309 galaxies from the Catalog of Isolated Galaxies (CIG). The SFH traces the variation of star formation over the lifetime of a galaxy, and consequently yields a snapshot picture of its formation. Comparing the SFHs in these extremes in galaxy density allows us to determine the main effects of compact groups (CG) on the formation of galaxies. Methods: We fit our spectra using the spectral synthesis code STARLIGHT and obtained the stellar population contents and mean stellar ages of HCG and CIG galaxies in three different morphological classes: early-type galaxies (EtG), early-type spirals (EtS), and late-type spirals (LtS). Results: We find that EtG and EtS galaxies in HCG show higher contents of old and intermediate stellar populations as well as an important deficit of the young stellar population, which clearly implies an older average stellar age in early galaxies in HCG. For LtS galaxies we find similar mean values for the stellar content and age in the two samples. However, we note that LtS can be split into two subclasses, namely old and young LtS. In HCG we find a higher fraction of young LtS than in the CIG sample, in addition, most of these galaxies belong to groups in which most of the galaxies are also young and actively forming stars. The specific star formation rate (SSFR) of spiral galaxies in the two samples differ. The EtS in HCG show lower SSFR values, while LtS peak at higher values compared with their counterparts in isolation. We also measured the shorter star formation time scale (SFTS) in HCG galaxies, which indicates that they have a shorter star formation activity than CIG galaxies. We take these observations as evidence that galaxies in CG have evolved more rapidly than galaxies in isolation, regardless of their morphology. Our observations are consistent with the hierarchical galaxy formation model, which states that CGs are

  6. Correlation functions for pairs and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kalinkov, M.; Kuneva, I.

    1990-01-01

    There are many studies on the correlation functions of galaxies, of clusters of galaxies, even of superclusters (e.g., Groth and Peebles 1977; Davies and Peebles 1983; Kalinkov and Kuneva 1985, 1986; Bahcall 1988 and references therein) but not so many on pairs and groups of galaxies. Results of the calculations of two-point correlation fuctions for some catalogs of pairs and groups of galaxies are given. It is assumed that the distances to pairs and groups of galaxies are given by their mean redshifts according to R = sigma (sup n, sub i-1) V sub i/nH (sub 0), where n is the number of galaxies in the system and H sub 0 = 100 km s(exp -1) Mpc(exp -1).

  7. The Hα kinematics of interacting galaxies in 12 compact groups

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Amram, P.; Mendes de Oliveira, C.; Plana, H.; Balkowski, C.; Marcelin, M.; Olave-Rojas, D.

    2014-08-01

    We present new Fabry-Perot observations for a sample of 42 galaxies located in 12 compact groups of galaxies: HCG 1, HCG 14, HCG 25, HCG 44, HCG 53, HCG 57, HCG 61, HCG 69, HCG 93, VV 304, LGG 455 and Arp 314. From the 42 observed galaxies, a total of 26 objects are spiral galaxies, which range from Sa to Im morphological types. The remaining 16 objects are E, S0 and S0a galaxies. Using these observations, we have derived velocity maps, monochromatic and velocity dispersion maps for 24 galaxies, where 18 are spiral, three are S0a, two are S0 and one is an Im galaxy. From the 24 velocity fields obtained, we could derive rotation curves for 15 galaxies; only two of them exhibit rotation curves without any clear signature of interactions. Based on kinematic information, we have evaluated the evolutionary stage of the different groups of the current sample. We identify groups that range from having no Hα emission to displaying an extremely complex kinematics, where their members display strongly perturbed velocity fields and rotation curves. In the case of galaxies with no Hα emission, we suggest that past galaxy interactions removed their gaseous components, thereby quenching their star formation. However, we cannot discard that the lack of Hα emission is linked with the detection limit for some of our observations.

  8. Morphology and luminosity segregation of galaxies in nearby loose groups

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.

    2003-08-01

    We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.

  9. The XMM view of the outskirts of galaxy groups

    NASA Astrophysics Data System (ADS)

    Gastaldello, F.

    2016-06-01

    I will present the results of XMM observations on the outskirts of the bright galaxy group NGC 5044 addressing mass, entropy and metal abundances. I will discuss the results that XMM can achieve by exploring the outskirts of groups providing a complementary and fundamental piece of informations to the scenario emerging for the more massive clusters of galaxies.

  10. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  11. Automatic Detection of Galaxy Groups by Probabilistic Hough Transform

    NASA Astrophysics Data System (ADS)

    Ibrahem, R. T.; Tino, P.; Pearson, R. J.; Ponman, T. J.; Babul, A.

    2015-12-01

    Galaxy groups play a significant role in explaining the evolution of the universe. Given the amounts of available survey data, automated discovery of galaxy groups is of utmost interest. We introduce a novel methodology, based on probabilistic Hough transform, for finding galaxy groups embedded in a rich background. The model takes advantage of a typical signature pattern of galaxy groups known as "fingers-of-God". It also allows us to include prior astrophysical knowledge as an inherent part of the method. The proposed method is first tested in large scale controlled experiments with 2-D patterns and then verified on 3-D realistic mock data (comparing with the well-known friends-of-friends method used in astrophysics). The experiments suggest that our methodology is a promising new candidate for galaxy group finders developed within a machine learning framework.

  12. Dwarf galaxies in the dynamically evolved NGC 1407 Group

    NASA Astrophysics Data System (ADS)

    Trentham, Neil; Tully, R. Brent; Mahdavi, Andisheh

    2006-07-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4m differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate-luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching MR = -12) is α = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 × 1013Msolar and M/LR = 340Msolar/Lsolar. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km s-1 with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  13. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  14. Kinematics of compact groups and morphologies of the member galaxies

    NASA Technical Reports Server (NTRS)

    Mendesdeoliveira, Claudia; Hickson, Paul

    1993-01-01

    We present the results of a kinematical and morphological study of galaxies in the Hickson compact groups. The redshift survey of 457 galaxies has been completed. The great majority of the galaxies have velocities within about 1000 km/s(exp -1) of the median velocity of the group. The velocities of the groups range from 1380 to 41731 km/s(exp -1) with a median of 8889 km/s(exp -1), corresponding to a median distance of 89 h(exp -1)Mpc. With the addition of the radial velocity selection criterion, a relatively large sample of physically dense compact groups was defined. The nature of the velocity dispersion-morphology relation (Hickson, Kindl and Huchra 1989, hereafter HKH) is investigated. This is the tendency of groups with high velocity dispersions to contain fewer late type galaxies. We find that this strong correlation is not due to any sample selection effects. The morphology concordance in compact groups (HKH), which is the trend for galaxies in a group to have similar morphological types, can be fully explained by the velocity dispersion-morphology correlation. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups. Groups with short crossing times typically contain fewer late-type galaxies. This may be evidence that significant dynamical evolution has occurred in these groups.

  15. Galaxy groups in the 2dF Galaxy Redshift Survey: luminosity and mass statistics

    NASA Astrophysics Data System (ADS)

    Martínez, H. J.; Zandivarez, A.; Merchán, M. E.; Domínguez, M. J. L.

    2002-12-01

    Several statistics are applied to groups and galaxies in groups in the 2° Field Galaxy Redshift Survey. First, we estimate the luminosity functions for different subsets of galaxies in groups. The results are well fitted by a Schechter function with parameters M*- 5 log (h) =-19.90 +/- 0.03 and α=-1.13 +/- 0.02 for all galaxies in groups, which is quite consistent with the results of Norberg et al. for field galaxies. When considering the four different spectral types defined by Madgwick et al. we find that the characteristic magnitude is typically brighter than in the field. We also observe a steeper value, α=-0.76 +/- 0.03, of the faint end slope for low star-forming galaxies when compared with the corresponding field value. This steepening is more conspicuous, α=-1.10 +/- 0.06, for those galaxies in more massive groups than that obtained in the lower-mass subset, . Secondly, we compute group total luminosities using the prescriptions of Moore, Frenk & White. We define a flux-limited group sample using a new statistical tool developed by Rauzy. The resulting group sample is used to determine the group luminosity function and we find a good agreement with previous determinations and semi-analytical models. Finally, the group mass function for the flux-limited sample is derived. An excellent agreement is obtained when comparing our determination with analytical predictions over two orders of magnitude in mass.

  16. Groups of galaxies in the ROSAT north ecliptic pole survey

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick

    1994-01-01

    The X-ray properties of groups of galaxies are presented. Their distribution of luminosity and temperature appears to be associated with the extrapolation of these distributions from rich clusters of galaxies. The properties of the ensemble of groups of galaxies are almost totally unknown. Only a few X-ray observations of groups that were selected by optical methods were published so far. A sample of eight groups with 'z' inferior to 0.04, of which three have 'z' inferior to 0.03 was investigated. The temperature and the luminosity functions at one point were determined.

  17. Evolution of dwarf galaxy properties in local group environments

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza Sigrid

    galaxy. We found that the inclusion of these relevant physical processes aligned the velocity functions and star formation histories of the dwarf galaxy populations closer to observations of the Local Group dwarf galaxies. By reproducing observations of dwarf galaxies we show how the inclusion of baryons in simulations relieves many of the discovered tensions between dark matter-only simulations and observations.

  18. The Mysterious Cheshire Cat Galaxy System. The First Case of a Collision Between Fossil Groups?

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy; Dupke, R.

    2011-01-01

    Fossil groups present a puzzle to current theories of structure formation. Despite the low number of bright galaxies, their high velocity dispersions and high gas temperatures seem to indicate cluster-like gravitational potentials. One extreme example of a potential fossil group is the Cheshire Cat gravitational lens group of galaxies. While it contains two bright central galaxies rather than one (surrounded by 25 galaxies at least two magnitudes fainter), these galaxies are moving at least 1100 km/s relative to one another and likely represent the collision of TWO fossil groups. We analyzed data from a moderately long Chandra observation of the Cheshire Cat and found and found the ICM to have a very hot ( 6 keV) core, but a low X-ray luminosity, which places it off the LX/TX relation for groups/clusters. Furthermore, the X-ray emission does not appear to be centered on either bright galaxy, but midway between them. We discuss the implications of the Chandra results and discuss whether this system represents the first example of a fossil-group/fossil group merger.

  19. Are Fossil Groups Early-forming Galaxy Systems?

    NASA Astrophysics Data System (ADS)

    Kundert, A.; D'Onghia, E.; Aguerri, J. A. L.

    2017-08-01

    Using the Illustris cosmological simulation, we investigate the origin of fossil groups in the {M}200={10}13{--}{10}13.5 {M}⊙ {h}-1 mass regime. We examine the formation of the two primary features of fossil groups: the large magnitude gap between their two brightest galaxies and their exceptionally luminous brightest group galaxy (BGG). For fossils and nonfossils identified at z = 0, we find no difference in their halo mass assembly histories at early times, departing from previous studies. However, we do find a significant difference in the recent accretion history of fossil and nonfossil halos; in particular, fossil groups show a lack of recent accretion and have in majority assembled 80% of their {M}200(z=0) mass before z˜ 0.4. For fossils, massive satellite galaxies accreted during this period have enough time to merge with the BGG by the present day, producing a more massive central galaxy. In addition, the lack of recent group accretion prevents replenishment of the bright satellite population, allowing for a large magnitude gap to develop within the past few Gyr. We thus find that the origin of the magnitude gap and overmassive BGG of fossils in Illustris depends on the recent accretion history of the groups and merger history of the BGGs after their collapse at z˜ 1. This indicates that selecting galaxy groups by their magnitude gap does not guarantee obtaining either early-forming galaxy systems or undisturbed central galaxies.

  20. The 2dF Galaxy Redshift Survey: the clustering of galaxy groups

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Baugh, Carlton M.; Eke, Vincent R.; Norberg, Peder; Cole, Shaun; Frenk, Carlos S.; Croton, Darren J.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2004-07-01

    We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of ~ 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than L* galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are 10 times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the ΛCDM model.

  1. Scaling relations in early-type galaxies belonging to groups

    NASA Astrophysics Data System (ADS)

    Khosroshahi, Habib G.; Raychaudhury, Somak; Ponman, Trevor J.; Miles, Trevor A.; Forbes, Duncan A.

    2004-04-01

    We present a photometric analysis of a large sample of early-type galaxies in 16 nearby groups, imaged with the Wide-Field Camera on the Isaac Newton Telescope. Using a two-dimensional surface brightness decomposition routine, we fit Sersic (r1/n) and exponential models to their bulge and disc components, respectively. Dividing the galaxies into three subsamples according to the X-ray luminosities of their parent groups, we compare their photometric properties. Galaxies in X-ray luminous groups tend to be larger and more luminous than those in groups with undetected or low X-ray luminosities, but no significant differences in n are seen. Both normal and dwarf elliptical galaxies in the central regions of groups are found to have cuspier profiles than their counterparts in group outskirts. Structural differences between dwarf and normal elliptical galaxies are apparent in terms of an offset between their `photometric planes' in the space of n, re and μ0. Dwarf ellipticals are found to populate a surface, with remarkably low scatter, in this space with significant curvature, somewhat similar to the surfaces of constant entropy proposed by Màrquez et al. Normal ellipticals are offset from this distribution in a direction of higher specific entropy. This may indicate that the two populations are distinguished by the action of galaxy merging on larger galaxies.

  2. Probing the intra-group medium of a z = 0.28 galaxy group

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Crighton, N. H. M.; Fumagalli, M.; Morris, S. L.; Stott, J. P.; Tejos, N.; Cantalupo, S.

    2017-06-01

    We present new MUSE observations of a galaxy group probed by a background quasar. The quasar sightline passes between multiple z = 0.28 galaxies, whilst showing at the same redshift low-ionized metal line species, including Ca ii, Mg i, Mg ii and Fe ii. Based on the galaxy redshifts measured from the MUSE data, we estimate the galaxies to be part of a small galaxy group with a halo mass of ≈6 × 1012 M⊙. We use the MUSE data to reveal the two-dimensional dynamical properties of the gas and stars in the group galaxies, and relate these to the absorber kinematics. With these data, we consider a number of scenarios for the nature of the gas probed by the sightline absorbers: a corotating gas halo associated with a single galaxy within the group; outflowing material from a single group member powered by recent star-formation; and cool dense gas associated with an intra-group medium. We find that the dynamics, galaxy impact parameters, star formation rates and the absorber strength suggest that the cool gas cannot be clearly associated with any single galaxy within the group. Instead, we find that the observations are consistent with a superposition of cool gas clouds originating with the observed galaxies as they fall into the group potential, and are now likely in the process of forming the intra-group medium.

  3. Distribution of Satellite Galaxies in High-redshift Groups

    NASA Astrophysics Data System (ADS)

    Wang, Yougang; Park, Changbom; Hwang, Ho Seong; Chen, Xuelei

    2010-08-01

    We use galaxy groups at redshifts between 0.4 and 1.0 selected from the Great Observatories Origins Deep Survey to study the color-morphological properties of satellite galaxies and investigate possible alignment between the distribution of the satellites and the orientation of their central galaxy. We confirm the bimodal color and morphological-type distribution for satellite galaxies at this redshift range: the red and blue classes correspond to the early and late morphological types, respectively, and the early-type satellites are on average brighter than the late-type ones. Furthermore, there is a morphological conformity between the central and satellite galaxies: the fraction of early-type satellites in groups with an early-type central is higher than those with a late-type central galaxy. This effect is stronger at smaller separations from the central galaxy. We find a marginally significant signal of alignment between the major axis of the early-type central galaxy and its satellite system, while for the late-type centrals no significant alignment signal is found. We discuss the alignment signal in the context of shape evolution of groups.

  4. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  5. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  6. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (i) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (iii) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (iv) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  7. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    SciTech Connect

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.; Eracleous, M.; Gronwall, C.; Gallagher, S. C.; Fedotov, K.; Hill, A. R.; Durrell, P. R.; Tzanavaris, P.; Hornschemeier, A. E.; Zabludoff, A. I.; Maier, M. L.; Johnson, K. E.; Walker, L. M.; Maybhate, A.; English, J.; Mulchaey, J. S.

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  8. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; Johnson, K. E.; Brandt, W. N.; Walker, L. M.; Eracleous, M.; Maybhate, A.; Gronwall, C.; English, J.; Hornschemeier, A. E.; Mulchaey, J. S.

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  9. Compact configurations within small evolving groups of galaxies

    NASA Astrophysics Data System (ADS)

    Mamon, G. A.

    Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).

  10. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  11. Properties of Galaxies and Groups: Nature versus Nurture

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias

    2011-09-01

    Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.

  12. Galaxy Groups in the 2Mass Redshift Survey

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shi, Feng; Mo, H. J.; Tweed, Dylan; Wang, Huiyuan; Zhang, Youcai; Li, Shijie; Lim, S. H.

    2016-11-01

    A galaxy group catalog is constructed from the 2MASS Redshift Survey (2MRS) with the use of a halo-based group finder. The halo mass associated with a group is estimated using a “GAP” method based on the luminosity of the central galaxy and its gap with other member galaxies. Tests using mock samples show that this method is reliable, particularly for poor systems containing only a few members. On average, 80% of all the groups have completeness \\gt 0.8, and about 65% of the groups have zero contamination. Halo masses are estimated with a typical uncertainty of ∼ 0.35 {dex}. The application of the group finder to the 2MRS gives 29,904 groups from a total of 43,246 galaxies at z≤slant 0.08, with 5286 groups having two or more members. Some basic properties of this group catalog is presented, and comparisons are made with other group catalogs in overlap regions. With a depth to z∼ 0.08 and uniformly covering about 91% of the whole sky, this group catalog provides a useful database to study galaxies in the local cosmic web, and to reconstruct the mass distribution in the local universe.

  13. HII regions in dwarf irregular galaxies of the local group

    NASA Technical Reports Server (NTRS)

    Hodge, Paul; Lee, Myung Gyoon

    1990-01-01

    Deep, narrowband H alpha Charge Coupled Device (CCD) surveys of HII regions were carried out in several dwarf irregular galaxies in and near the local group. Data are now complete for these galaxies: NGC 6822, GR 8, IC 10, IC 1613, Sextans A, Sextans B, and Sag Irr. Observations are complete for DDO 47, 53, 167, 168 and 187. Details of some of the results for the surveys completed so far are discussed. For NGC 6822, CCD survey at H alpha resulted in the detection of 145 HII regions in the local group irregular galaxy NGC 6822. Most of them are newly detected, faint surface-brightness objects. Positions, maps and dimensions are being published elsewhere. For GR 8, a deep narrowband H alpha imaging of the nearby dwarf irregular galaxy GR 8 revealed a total of 32 HII regions. Positions, H alpha luminosities, and sizes of these objects were determined. The H alpha luminosity function has the same shape as that for more luminous galaxies, except for size of sample effects. Most HII regions detected are at the very low luminosity end of the general luminosity function. For IC 10, a deep CCD narrowband H alpha imaging of the local group dwarf irregular galaxy IC 10 revealed a total of 144 HII regions. Positions, H alpha luminosities, and sizes of these objects were determined. The H alpha luminosity function has the same shape as that for more luminous galaxies.

  14. Population studies in groups and clusters of galaxies. III. A catalog of galaxies in five nearby groups

    SciTech Connect

    Ferguson, H.C.; Sandage, A. Mount Wilson and Las Campanas Observatories, Pasadena, CA Space Telescope Science Institute, Baltimore, MD )

    1990-07-01

    Five nearby groups of galaxies have been surveyed using large-scale plates from the 2.5 m duPont Telescope at Las Campanas Observatory. Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo, Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxies are included, from visual inspection of 14 plates, covering 31 deg square. Galaxies have been classified in the extended Hubble system, and group memberships have been assigned based on velocity (where available) and morphology. About half the galaxies listed are likely members of one of the nearby groups. The catalogs are complete to B(T) = 18, although the completeness limits vary slightly from group to group. Based on King model fits to the surface density profiles, the core radii of the groups range from 0.3 to 1 Mpc, and central densities range from 120 to 1900 galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysis indicates that all of the groups are likely to be gravitationally bound. 64 refs.

  15. Dust Production in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Zijlstra, Albert; Sloan, Greg; Bernard-Salas, Jeronimo; Blommaert, Joris A. D. L.; Cioni, Maria-Rosa; Devost, Daniel; Feast, Michael W.; Groenewegen, Martin A. T.; Habing, Harm; Hony, Sacha; Lagadec, Eric; Loup, Cecile; Matsuura, Mikako; Menzies, John W.; Sloan, Greg C.; Waters, L. B. F. M.; Whitelock, Patricia A.; Wood, Peter R.; van Loon, Jacco Th.

    2006-05-01

    The superwind phase on the Asymptotic Giant Branch is a crucial ingredient of stellar and galactic evolution. The superwind ejecta are responsible for much of the interstellar hydrogen of evolved galaxies, and are a dominant contributor to the dust input into the ISM. The superwind determines the final mass of stellar remnants, and therefore affects, e.g., the type-I supernova rate. The characteristics of the superwind are still very poorly known, especially at non-solar metallicities. Spitzer has contributed a large and invaluable dataset on Magellanic Cloud stars, measuring dust, molecular bands and allowing accurate mass-loss measurements. We now propose to extend the (age, metallicity) parameter range by observing a number of other Milky Way satellites. The carbon stars in these galaxies trace an older population than the Magellanic Clouds, and extend to much lower metallicities. They are therefore crucial to allow us to extrapolate the Magellanic Cloud measurements to metal-poor environments. We propose to acquire low-resolution spectra of stars in the Sagittarius dwarf galaxy, Carina, Sculptor and Fornax. The selected stars range in metallicity from -0.55 to -2.0, and in age from 5-8 Gyr. Two low-metallicity planetary nebulae in these galaxies are also included. We will study the dust continuum, dust minerals (SiC, MgS) and gas-phase molecular bands (especially acetylene). Mass loss rates will be determined using our dust models, and we will measure the fractional abundances of amorphous carbon dust and SiC grains. Only Spitzer can provide these crucial measurements of extra-galactic AGB stars. The result will be our first knowledge of mass loss efficiency, dust formation, and dust abundances, at low to very low metallicities. These data are necessary to obtain reliable models of mass loss and of stellar evolution.

  16. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    SciTech Connect

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D. E-mail: bjacobs@ifa.hawaii.edu E-mail: ikar@luna.sao.ru

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  17. Studying the dwarf galaxies in nearby groups of galaxies: Spectroscopic and photometric data

    NASA Astrophysics Data System (ADS)

    Hopp, U.; Vennik, J.

    2014-11-01

    Galaxy evolution by interaction-driven transformation is probably highly efficient in groups of galaxies. Dwarf galaxies with their shallow potential are expected to reflect the interaction most prominently in their observable structure. The major aim of this series of papers is to establish a data base which allows to study the impact of group interaction onto the morphology and star-forming properties of dwarf galaxies. Firstly, we present our selection rules for target groups and the morphological selection method of target dwarf member candidates. Secondly, the spectroscopic follow-up observations with the HET are presented. Thirdly, we applied own reduction methods based on adaptive filtering to derive surface photometry of the candidates. The spectroscopic follow-up indicate a dwarf identification success rate of roughly 55 %, and a group member success rate of about 33 %. A total of 17 new low surface-brightness members is presented. For all candidates, total magnitudes, colours, and light distribution parameters are derived and discussed in the context of scaling relations. We point out short comings of the SDSS standard pipeline for surface photometry for these dim objects. We conclude that our selection strategy is rather efficient to obtain a sample of dim, low surface brightness members of groups of galaxies within the Virgo super-cluster. The photometric scaling relation in these X-ray dim, rather isolated groups does not significantly differ from those of the galaxies within the local volume.

  18. ASKAP H I imaging of the galaxy group IC 1459

    NASA Astrophysics Data System (ADS)

    Serra, P.; Koribalski, B.; Kilborn, V.; Allison, J. R.; Amy, S. W.; Ball, L.; Bannister, K.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Bunton, J. D.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Forsyth, R.; Gough, R.; Gupta, N.; Hampson, G. A.; Harvey-Smith, L.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B.; Jacka, C.; Jackson, C. A.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kamphuis, P.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Meyer, M.; Mirtschin, P.; Neuhold, S.; Ng, A.; Norris, R. P.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A. E. T.; Shaw, R.; Shimwell, T. W.; Staveley-Smith, L.; Storey, M.; Sweetnam, A. W.; Troup, E.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Whiting, M.; Wilson, C.; Wong, O. I.; Wu, X.

    2015-09-01

    We present H I imaging of the galaxy group IC 1459 carried out with six antennas of the Australian Square Kilometre Array Pathfinder equipped with phased-array feeds. We detect and resolve H I in 11 galaxies down to a column density of ˜1020 cm-2 inside a ˜6 deg2 field and with a resolution of ˜1 arcmin on the sky and ˜8 km s-1 in velocity. We present H I images, velocity fields and integrated spectra of all detections, and highlight the discovery of three H I clouds - two in the proximity of the galaxy IC 5270 and one close to NGC 7418. Each cloud has an H I mass of ˜109 M⊙ and accounts for ˜15 per cent of the H I associated with its host galaxy. Available images at ultraviolet, optical and infrared wavelengths do not reveal any clear stellar counterpart of any of the clouds, suggesting that they are not gas-rich dwarf neighbours of IC 5270 and NGC 7418. Using Parkes data, we find evidence of additional extended, low-column-density H I emission around IC 5270, indicating that the clouds are the tip of the iceberg of a larger system of gas surrounding this galaxy. This result adds to the body of evidence on the presence of intragroup gas within the IC 1459 group. Altogether, the H I found outside galaxies in this group amounts to several times 109 M⊙, at least 10 per cent of the H I contained inside galaxies. This suggests a substantial flow of gas in and out of galaxies during the several billion years of the group's evolution.

  19. The M 101 group complex: new dwarf galaxy candidates and spatial structure

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Scalera, Roberto; Binggeli, Bruno; Jerjen, Helmut

    2017-06-01

    Context. The fine details of the large-scale structure in the local Universe provide important empirical benchmarks for testing cosmological models of structure formation. Dwarf galaxies are key object for such studies. Aims: Our aim was to enlarge the sample of known dwarf galaxies in the local Universe. We performed a search for faint unresolved low-surface-brightness dwarf galaxies in the M 101 group complex, including the region around the major spiral galaxies M 101, M 51, and M 63 lying at a distance of 7.0, 8.6, and 9.0 Mpc, respectively. The new dwarf galaxy sample can be used in a first step to test for significant substructure in the 2D distribution and in a second step to study the spatial distribution of the galaxy complex. Methods: Using filtering algorithms we surveyed 330 square degrees of imaging data obtained from the Sloan Digital Sky Survey. The images were visually inspected. The spatial distribution of known galaxies and candidates was analyzed and the system transformed into a M 101 eigenframe using the geometrical alignment of the group. Results: We discovered 15 new dwarf galaxies and carried out surface photometry in the g and r bands. The similarity of the photometric properties of these dwarfs to those of Local Group dwarfs suggest membership to the M 101 group complex. The sky distribution of the candidates follows the thin planar structure outlined by the known members of the three subgroups. The 3 Mpc long filamentary structure has a rms thickness of 67 kpc. The planar structure of the embedded M 101 subgroup is even thinner, with rms = 46 kpc. The formation of this structure might be due to the expansion of the bordering Local Void. Other implications are discussed as well. Conclusions: We show the viability of SDSS data to extend the sample of dwarfs in the local Universe and test cosmological models on small scales.

  20. Galaxy And Mass Assembly (GAMA): estimating galaxy group masses via caustic analysis

    NASA Astrophysics Data System (ADS)

    Alpaslan, Mehmet; Robotham, Aaron S. G.; Driver, Simon; Norberg, Peder; Peacock, John A.; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Hopkins, Andrew M.; Kelvin, Lee S.; Liske, Jochen; Loveday, Jon; Merson, Alexander; Nichol, Robert C.; Pimbblet, Kevin

    2012-11-01

    We have generated complementary halo mass estimates for all the groups in the Galaxy And Mass Assembly Galaxy Group Catalogue (GAMA G3Cv1) using a modified caustic mass estimation algorithm, originally developed by Diaferio & Geller. We calibrate the algorithm by applying it on a series of nine GAMA mock galaxy light cones and investigate the effects of using different definitions for group centre and size. We select the set of parameters that provide median-unbiased mass estimates when tested on mocks, and generate mass estimates for the real group catalogue. We find that on average, the caustic mass estimates agree with dynamical mass estimates within a factor of 2 in 90.8 ± 6.1 per cent groups and compare equally well to velocity dispersion based mass estimates for both high- and low-multiplicity groups over the full range of masses probed by the G3Cv1.

  1. Comparing the clustering of galaxies and galaxy group by using the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Brunner, R. J.

    2014-01-01

    By using the angular two-point correlation function, we measure the clustering strength of a clean sample of galaxies (explored in Wang, Brunner, & Dolence 2013) for the Sloan Digital Sky Survey Data Release Seven. By using these same data, we first find isolated pairs, triplets, quads, and larger groups of galaxies, and subsequently measure the clustering of these subsamples. We find the clustering strength increases with groups size, which supports the halo model of galaxy clustering and demonstrates the efficacy of our isolated group catalog for general studies such as the galaxy merger rate. Finally, we explore the effects of galaxy spectral type and photometric redshift on the clustering behavior of these galaxy group samples. References: Blake, C., Collister, A., Lahav, O. 2008, MNRAS, 385, 1257 Hickson, P. 1982, ApJ, 255, 382 Ross, A. J., Brunner, R. J. 2009, MNRAS, 399, 878 Wang Y., Brunner R. J., Dolence J. C. 2013, MNRAS, 432, 1961 Zehavi, I., et al. 2004, ApJ, 608, 16

  2. SPIDER - IX. Classifying galaxy groups according to their velocity distribution

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. L. B.; de Carvalho, R. R.; Trevisan, M.; Capelato, H. V.; La Barbera, F.; Lopes, P. A. A.; Schilling, A. C.

    2013-09-01

    We introduce a new method to study the velocity distribution of galaxy systems, the Hellinger Distance (HD), designed for detecting departures from a Gaussian velocity distribution. Testing different approaches to measure normality of a distribution, we conclude that HD is the least vulnerable method to type I and II statistical errors. We define a relaxed galactic system as the one with unimodal velocity distribution and a normality deviation below a critical value (HD < 0.05). In this work, we study the Gaussian nature of the velocity distribution of the Berlind group sample, and of the FoF groups from the Millennium simulation. For the Berlind group sample (z < 0.1), 67 per cent of the systems are classified as relaxed, while for the Millennium sample we find 63 per cent (z = 0). We verify that in multi-modal groups the average mass of modes in high-multiplicity (N ≥ 20) systems are significantly larger than in low-multiplicity ones (N < 20), suggesting that groups experience a mass growth at an increasing virialization rate towards z = 0, with larger systems accreting more massive subunits. We also investigate the connection between galaxy properties ([Fe/H], Age, eClass, g - r, Rpetro and <μpetro>) and the Gaussianity of the velocity distribution of the groups. Bright galaxies (Mr ≤ -20.7) residing in the inner and outer regions of groups do not show significant differences in the listed quantities regardless if the group has a Gaussian (G) or a Non-Gaussian (NG) velocity distribution. However, the situation is significantly different when we examine the faint galaxies (-20.7 < Mr ≤ -17.9). In G groups, there is a remarkable difference between the galaxy properties of the inner and outer galaxy populations, testifying how the environment is affecting the galaxies. Instead, in NG groups there is no segregation between the properties of galaxies in the inner and outer regions, showing that the properties of these galaxies still reflect the physical

  3. The Tully-Fisher relations for Hickson compact group galaxies

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Mendes de Oliveira, C.; Plana, H.; Amram, P.; Epinat, B.

    2013-07-01

    We used K-band photometry, maximum rotational velocities derived from Fabry-Perot data and H I observed and predicted masses to study, for the first time, the K band, stellar and baryonic Tully-Fisher relations for galaxies in Hickson compact groups. We compared these relations with the ones defined for galaxies in less dense environments from the Gassendi HAlpha survey of Spirals and from a sample of gas-rich galaxies. We find that most of the Hickson compact group galaxies lie on the K-band Tully-Fisher relation defined by field galaxies with a few low-mass outliers, namely HCG 49b and HCG 96c, which appear to have had strong recent burst of star formation. The stellar Tully-Fisher relation for compact group galaxies presents a similar dispersion to that of the K-band relation, and it has no significant outliers when a proper computation of the stellar mass is done for the strongly star-forming galaxies. The scatter in these relations can be reduced if the gaseous component is taken into account, i.e. if a baryonic Tully-Fisher relation is considered. In order to explain the positions of the galaxies off the K-band Tully-Fisher relation, we favour a scenario in which their luminosities are brightened due to strong star formation or AGN activity. We argue that strong bursts of star formation can affect the B- and K-band luminosities of HCG 49b and HCG 96c and in the case of the latter also AGN activity may affect the K-band magnitude considerably, without affecting their total masses.

  4. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  5. The ESO slice project (ESP) galaxy redshift survey VI. Groups of galaxies

    NASA Astrophysics Data System (ADS)

    Ramella, M.; Zamorani, G.; Zucca, E.; Stirpe, G. M.; Vettolani, G.; Balkowski, C.; Blanchard, A.; Cappi, A.; Cayatte, V.; Chincarini, G.; Collins, C.; Guzzo, L.; MacGillivray, H.; Maccagni, D.; Maurogordato, S.; Merighi, R.; Mignoli, M.; Pisani, A.; Proust, D.; Scaramella, R.

    1999-02-01

    In this paper we identify objectively and analyze groups of galaxies in the recently completed ESP survey (23(h) 23(m) <= alpha_ {1950} <= 01(h) 20(m) and 22(h) 30(m) <= alpha_ {1950} <= 22(h) 52(m) ; -40(o) 45' <= delta_ {1950} <= -39(o) 45'). We find 231 groups above the number overdensity threshold delta rho /rho =80 in the redshift range 5000 km s(-1) <= cz <= 60000 km s(-1). These groups contain 1250 members, 40.5% of the 3085 ESP galaxies within the same cz range. The median velocity dispersion (corrected for measurement errors and computed at the redshift of the group) is sigma_ {ESP,median} = 194 km s(-1). We show that our result is reliable in spite of the particular geometry of the ESP survey (two rows of tangent circular fields of radius theta = 15 arcmin), which causes most systems to be only partially surveyed. In general, we find that the properties of ESP groups are consistent with those of groups in shallower (and wider) catalogs (e.g. CfA2N and SSRS2). As in shallower catalogs, ESP groups trace very well the geometry of the large scale structure. Our results are of particular interest because the depth of the ESP survey allows us to sample group properties over a large number of structures. We also compare luminosity function and spectral properties of galaxies that are members of groups with those of isolated galaxies. We find that galaxies in groups have a brighter M(*) with respect to non-member galaxies; the slope alpha is the same, within the errors, in the two cases. We find that 34% (467/1360) of ESP galaxies with detectable emission lines are members of groups. The fraction of galaxies without detectable emission lines in groups is significantly higher: 45% (783/1725). More generally, we find a gradual decrease of the fraction of emission line galaxies among members of systems of increasing richness. This result confirms that the morphology-density relation found for clusters also extends toward systems of lower density. Based on

  6. Compact Galaxy Groups: A Multi-wavelength Perspective Into Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, Iraklis; HCG Collaboration

    2011-01-01

    Galaxies are seldom found in isolation. As a small unit of large clusters, individual members are subject to the volition of their groupings and evolve most commonly through interactions and mergers. In the parameter-space between too many friends and none at all lie compact galaxy groups. The ones classified by Hickson (1982; Hickson compact groups, or HCGs) share the distinctive characteristics of low membership, isolation and high density. They exhibit low velocity dispersions, which which lead to prolonged interactions, when such events occur, or quasi-secular evolution, when they do not. They are also HI-deficient, to a very intriguing extent. I will be discussing multi-wavelength observations of a sample of 12 HCGs in the context of galaxy evolution in general. For example, in HCG 7 we observed the strengthening of interactions due to the complexity of the tidal field, in a system that is likely headed toward a dry merger. In the low mass grouping of HCG 31 we recorded morphological transformation reminiscent of the intermediate redshift universe, with multiple simultaneous interactions leading to the build-up of a gaseous intra-group medium. These results, along with many more, allow us to examine the overall themes that arise from the study of the aforementioned dozen: the usage of gas; the possibility of rapid morphological transformation of compact group galaxies; and the role of groups as the tail end of the galaxy clustering N-distribution.

  7. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  8. Multi-wavelengths studies of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.

    2016-09-01

    Fossil systems are understood to be the end product of galaxy mergers within groups and clusters. Their halo morphology points to their relaxed/virialised nature, thus allowing them to employed as observational probes for the evolution of cosmic structures, their thermodynamics and dark matter distribution. Cosmological simulations, and their underlying models, are broadly consistent with the early formation epoch for fossils. In a series of studies we have looked into the dark matter, IGM and galaxy properties, across a wide range of wavelengths, from X-ray through optical and IR to the Radio, to achieve a better understating of fossil systems, the attributed halo age, IGM heating and their AGNs and use them as laboratories to probe galaxy formation models. We combine luminosity gap with luminosity segregation to identify the most dynamically relaxed systems which allows us to reveal brand new connections between galaxies and their environments.

  9. Galaxy interactions in the Hickson Compact Group 88

    NASA Astrophysics Data System (ADS)

    Brosch, Noah

    2015-12-01

    I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertized to be non-interacting, or to be in a very early interaction stage, but this is not the case. The observations reported here were done using a `luminance' filter, essentially a very broad R filter, reaching a low surface brightness level of ≈26 mag arcsec-2. Additional observations were obtained in a narrow spectral band approximately centred on the rest-frame H α line from the group. Contrary to previous studies, my observations show that at least two of the major galaxies have had significant interactions in the past, although probably not between themselves. I report the discovery of a faint extended tail emerging from the brightest of the group galaxies, severe isophote twisting and possible outer shells around another galaxy, and map the H II regions in all the galaxies.

  10. How Typical Are the Local Group Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Dalcanton, Julianne J.; Skillman, Evan D.; Holtzman, Jon; Williams, Benjamin F.; Gilbert, Karoline M.; Seth, Anil C.; Cole, Andrew; Gogarten, Stephanie M.; Rosema, Keith; Karachentsev, Igor D.; McQuinn, Kristen B. W.; Zaritsky, Dennis

    2011-12-01

    We compare the cumulative star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D <~ 4 Mpc), in order to understand how typical the LG dwarf galaxies are relative to those in the nearby universe. The SFHs were derived in a uniform manner from high-quality optical color-magnitude diagrams constructed from Hubble Space Telescope imaging. We find that the mean cumulative SFHs of the LG dwarfs are comparable to the mean cumulative SFHs of the ANGST sample for the three different morphological types (dwarf spheroidals/ellipticals: dSph/dE; dwarf irregulars: dI; transition dwarfs: dTrans). We also discuss effects such as population gradients and systematic uncertainties in the stellar models that may influence the derived SFHs. Both the ANGST and LG dwarf galaxies show a consistent and strong morphology-density relationship, emphasizing the importance of environment in the evolution of dwarf galaxies. Specifically, we confirm that dIs are found at lower densities and higher luminosities than dSphs, within this large sample. We also find that dTrans are located in similar environments to those occupied by dwarf irregular galaxies, but have systematically lower luminosities that are more comparable to those of dwarf spheroidals. The similarity of the SFHs and morphology-density relationships of the LG and ANGST dwarf galaxies suggests that the LG dwarfs are a good representation of dwarf galaxies in the local universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. BVRI photometric analysis for the galaxy group NGC 4410

    NASA Astrophysics Data System (ADS)

    Pérez Grana, J. A.; Kemp, S. N.; Katsiyannis, A. C.; Franco-Balderas, A.; de La Fuente, E.; Meaburn, J.; Khosroshahi, H. G.

    2008-07-01

    We present a BVRI CCD (Charge Coupled Device) surface photometry analysis of the galaxy group NGC 4410, which contains four galaxies in interaction. Along with our photometric study, we show residual images (after subtracting isophotal models) and unsharp masked images to uncover any hidden structures in this system of galaxies; we have also performed a two-dimensional bulge-disk decomposition for NGC 4410C and D, and a major axis sector profile for NGC 4410A. We have calculated BVRI surface brightnesses and colors within regions such as galaxy centers, bridges, tails and optical knots in the NGC 4410 system, generating B-V color maps and color profiles. The information obtained was used to discover the predominant stellar populations. The colors of the galaxies imply ages of ~2×109 to ~2×1010 years for models using a range of metallicities. The bluer knots and H II regions have colors implying ages of a minimum of 5×108 years, but possibly as high as 3×109 years for stellar populations formed in the interaction. These results lead us to conclude that there is a moderate star formation rate and a tranquil evolving state of the system with a long timescale for interaction, much longer than the typical dynamical timescales of 108 years. Although we note that NGC 4410D has a blue nucleus (possible nuclear starburst?), bulge, bar, and short spiral arms, and may be interacting with a H I gas cloud. Some observed structures in NGC 4410A are coincident with previously studied H II regions, a tidal arm and optical/radio knots found in this galaxy. An optical knot E coincident with a radio knot may be an optical synchrotron emission or an H II region. The galaxy NGC 4410B appears to be a boxy giant elliptical with a possible dusty disk embedded (similar to Cen A?) and NGC 4410C is confirmed as a lenticular galaxy.

  12. Faint dwarf galaxies in Hickson Compact Group 90*

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-12-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with Very Large Telescope/Visible Multi-Object Spectrograph. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a colour range of (U - I)0 ≃ 1.1-2.2 mag and surface brightness levels of μU ≃ 28.1 mag arcsec-2 and μI ≃ 27.4 mag arcsec-2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M*|Z⊙ ≃ 105.7 - 6.3 M⊙ and M_{*}|_{0.02 Z_{⊙} ≃ 10^{6.3-8} M_{⊙}. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46-63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  13. The Origin of the Galaxy and Local Group

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss; Freeman, Ken; Matteucci, Francesca

    This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci's chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series - and this one too - are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book. *%K Physics, Astrophysics, Near Field Cosmology, Galaxy, Local Group *%O Milky Way

  14. Galaxy group dynamics using the GAMA survey and predictions from semi-analytics and cosmological simulation.

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Robotham, Aaron; Lagos, Claudia; Driver, Simon P.

    2017-01-01

    We aim to discuss the dynamics of galaxies in group environment. We present our current findings on the contentious issue of the stellar mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We will discuss our main results that show negligible mass segregation in galaxy groups, which also show a lack of redshift evolution.

  15. Elliptical galaxies kinematics within general relativity with renormalization group effects

    SciTech Connect

    Rodrigues, Davi C.

    2012-09-01

    The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374 (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)

  16. Viral coefficient and hidden mass in the galaxy groups

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.; Orlov, Victor V.; Kiseleva, Ljudmila G.

    1990-01-01

    The purpose is the verification of the virial mass estimations for small galaxy groups. The dynamical evolution of triple and quintuple galaxies was studied by the numerical simulations. The dependence of the virial coefficient k(t) versus time was derived. Initial k(O) = O. The function k(t) has some strong oscillations from 0.02 to 0.99. Generally, these oscillations are quasiperiodical ones. Such a behavior of k(t) is caused by formation in a system of close isolated temporary double subsystems. A strong correlation between the virial coefficient and the least mutual distance in the system is observed. Such wide oscillations may add into the estimation of virial mass of the galaxy groups an uncertainty of more than one order. An additional uncertainty is introduced by the projection effect. This uncertainty for the individual estimations of the masses approach three orders. Thus any individual estimation of the virial mass is impossible for small galaxy groups. Some possibility of statistical estimation (median or average) of the total mass, including a hidden mass, is shown for the homogeneous samples. The authors propose a method for these estimations based on a comparison of the medians of dynamical parameters (a mean size in projection and a dispersion of relative radial velocities) for the simulated and observed ensembles of the galaxy groups. This method has been applied to a sample of 46 probably physical triplets of galaxies. The probable median of the hidden mass in a volume of the triplet is about 4 M, where M is the total mass of visible matter.

  17. The birthplace of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Diaferio, Antonaldo; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We use complete redshift surveys to study the redshift neighborhoods of 38 Hickson compact groups (HCGs). Twenty-nine of these HCGs (76%) are embedded in rich looser systems which we call HCG associations. Analysis of the redshift neighborhood of HCGs outside the CfA survey suggests that most HCGs are embedded in more extended physical systems. Rich loose groups extracted from the CfA survey (Ramella et al. (1994)) have physical properties similar to those of the HCG associations. These rich loose groups often contain compact configurations. N-body experiments (Diaferio (1994)) suggest that compact configurations analogous to HCGs form continually during the collapse of rich loose groups. These observational and numerical results suggest that rich loose groups are the birthplace of HCGs.

  18. Loose groups of galaxies in the Perseus-Pisces survey

    NASA Astrophysics Data System (ADS)

    Trasarti-Battistoni, R.

    1998-06-01

    We present a large catalog of loose groups of galaxies in the Southern Galactic Hemisphere, selected from the Perseus-Pisces redshift Survey (PPS). Particular care is taken in order to obtain group samples as homogeneous as possible to previously published catalogs. All our catalogs contain about 200 groups, significantly more than in most previous studies where group samples were obtained from galaxy data sets of comparable quality to (but smaller extent than) PPS. Groups are identified with the adaptive Friends-Of-Friends (FOF) algorithm of \\cite[Huchra & Geller (1982),]{HG82} with suitable normalizations D_0=0.231 \\ h(-1) Mpc and V_0=350 \\ km \\ s(-1) at cz_0=1000 \\ km \\ s(-1) . The luminosity function (LF) normalization phi_ *=0.02 \\ h(3) \\ Mpc(-3) appropriate for PPS yields a number density threshold delta n/n ~ 180 for the adopted D_0, instead of delta n/n ~ 80 used in previous studies of other samples. However, the customary choice of D_0 obtained (through the LF) from a fixed mass overdensity delta rho / rho =80, well motivated in theory, suffers from important observational uncertainties and sample-to-sample variations of the LF normalization, and from major uncertainties in the relation between galaxy density n and mass density rho . We discuss how to self-consistently match FOF parameters among different galaxy samples. We then separately vary several FOF and sample parameters, and discuss their effect on group properties. Loose groups in PPS nicely trace the large scale structure (LSS) in the parent galaxy sample. The group properties vary little with different redshift corrections, redshift cut-off, and galaxy LF, but are rather sensitive to the adopted links D_0 and V_0. More precisely, the typical group size (velocity dispersion) is linearly related to the adopted distance (velocity) link, while it is rather insensitive to the adopted velocity (distance) link. Physical properties of groups in PPS and in directly comparable samples show good

  19. ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES

    SciTech Connect

    Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena

    2010-08-10

    We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.

  20. Most Distant Group of Galaxies Known in the Universe

    NASA Astrophysics Data System (ADS)

    2002-04-01

    New VLT Discovery Pushes Back the Beginnings Summary Using the ESO Very Large Telescope (VLT) , a team of astronomers from The Netherlands, Germany, France and the USA [1] have discovered the most distant group of galaxies ever seen , about 13.5 billion light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to cover the huge distance. We therefore observe those galaxies as they were at a time when the Universe was only about 10% of its present age . The astronomers conclude that this group of early galaxies will develop into a rich cluster of galaxies, such as those seen in the nearby Universe. The newly discovered structure provides the best opportunity so far for studying when and how galaxies began to form clusters after the initial Big Bang , one of the greatest puzzles in modern cosmology. PR Photo 11a/02 : Sky field with the distant cluster of galaxies. PR Photo 11b/02 : Spectra of some of the galaxies in the cluster. Radio Galaxies as cosmic signposts A most intriguing question in modern astronomy is how the first groupings or "clusters" of galaxies emerged from the gas produced in the Big Bang. Some theoretical models predict that densely populated galaxy clusters ("rich clusters" in current astronomical terminology) are built up through a step-wise process. Clumps develop in the primeval gas, and stars condense out of these clumps to form small galaxies. Then these small galaxies merge together to form larger units. The peculiar class of "radio galaxies" is particularly important for investigating such scenarios. They are called so because their radio emission - a result of violent processes believed to be related to massive black holes located at the centres of these galaxies - is stronger by 5 - 10 orders of magnitude than that of our own Milky Way galaxy. In fact, this radio emission is often so intense that the galaxies can be spotted at extremely large distances, and thus at the remote epoch when

  1. The formation of Local Group planes of galaxies

    NASA Astrophysics Data System (ADS)

    Shaya, Ed J.; Tully, R. Brent

    2013-12-01

    The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the

  2. H I OBSERVATIONS OF FIVE GROUPS OF GALAXIES

    SciTech Connect

    Freeland, E.; Wilcots, E.; Stilp, A.

    2009-07-15

    We present the results of H I observations of five groups of galaxies spanning a range of velocity dispersion and spiral fraction (brightest optical group member in parenthesis): NGC 7582 (NGC 7552), USGC U207 (NGC 2759), USGC U070 (NGC 664), USGC U412 (NGC 3822), USGC U451 (NGC 4065). Neutral intragroup gas is detected in three of the five groups. We present the discovery of a previously uncataloged galaxy in the USGC U070 group at {alpha}(2000) = 01{sup h}45{sup m}27{sup s}, {delta}(2000) = +0436'19'', which we are designating FSW J014526.92+043619.1. We compile an H I mass function for the group environment and find that the faint-end slope is consistent with being flat.

  3. Galaxy And Mass Assembly: search for a population of high-entropy galaxy groups

    NASA Astrophysics Data System (ADS)

    Pearson, R. J.; Ponman, T. J.; Norberg, P.; Robotham, A. S. G.; Babul, A.; Bower, R. G.; McCarthy, I. G.; Brough, S.; Driver, S. P.; Pimbblet, K.

    2017-08-01

    Observations with the Chandra X-ray Observatory are used to examine the hot gas properties within a sample of 10 galaxy groups selected from the Galaxy And Mass Assembly survey's optical Friends-of-Friends group catalogue. Our groups have been screened to eliminate spurious and unrelaxed systems, and the effectiveness of this procedure is demonstrated by the detection of intergalactic hot gas in 80 per cent of our sample. However, we find that 9 of the 10 are X-ray underluminous by a mean factor of ∼4 compared to typical X-ray-selected samples. Consistent with this, the majority of our groups have gas fractions that are lower and gas entropies somewhat higher than those seen in typical X-ray-selected samples. Two groups, which have high 2σ lower limits on their gas entropy, are candidates for the population of high-entropy groups predicted by some active galactic nucleus feedback models.

  4. Searching for merging groups of galaxies with Suzaku

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Maejima, Masato; Babazaki, Yasunori; Kobayashi, Hiroaki; Matsumoto, Hironori; Tawara, Yuzuru; Yamasaki, Noriko Y.; Sasaki, Shin; Sousbie, Thierry

    2015-08-01

    Observational studies for merging group systems are important in terms of understanding dynamical evolution into cluster systems from group-scale halos in structure formation of the Universe. However, observational samples are very limited due to mainly its low surface brightness. Thus, to search for new merging group-scale halos, 11 fields were selected in total and Suzaku X-ray observatory which possesses both high sensitivity especially in the soft energy band below 1 keV and stable background was used. Seven fields are regions located around junctions of galaxy filaments where intense structure formation is expected. The other regions include an optically-identified group in the field of view where an interaction between central and satellite galaxies is observed in optical. A galaxy-galaxy merger including a central massive galaxy can be an indicator of a major merger for group systems because a single massive galaxy can be a perturber for such low mass systems. We conducted both imaging and spectral analysis for all the fields and discovered significant excess X-ray signals compared to background components from all the fields in their images and spectra. At least 5 systems show complex morphologies with multiple peaks in their intensity maps and no corresponding early-type galaxies exist for some of the peaks, which suggests that the systems are experiencing on-going mergers. Resultant temperatures, abundances, luminosities are 1-2 keV, <0.5 solar and 1042-43 erg s-1, respectively and thus the spectral analysis revealed that the excess X-ray emissions originate from group-scale halos associated with a merging event even though no significant deviation was found compared with a known Lx-kT relation (Kawahara et al. 2011, Mitsuishi et al. 2014, Mitsuishi et al. in prep.). In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, infrared, optical and X-ray to comprehend the merger phenomena and

  5. Nearby groups of galaxies in the Hercules-Bootes constellations

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Kashibadze, O. G.; Karachentseva, V. E.

    2017-04-01

    We consider a sample of 412 galaxies with radial velocities $V_{\\rm LG} < 2500$ km s$^{-1}$ situated in the sky region of ${\\rm RA}=13^h\\hspace{-0.4em}.\\,0$ ... $19^h\\hspace{-0.4em}.\\,0$, ${\\rm Dec}=+10^{\\circ}$ ... $+40^{\\circ}$ between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at $SGB < 10^{\\circ}$ and motion from the Local Void at $SGB > 60^{\\circ}$. A half of the Hercules-Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC5353. A typical group is characterized by the velocity dispersion of $67$ km s$^{-1}$, the harmonic radius of $182$ kpc, the stellar mass of $4.3 \\times10^{10} M_{\\odot}$ and the virial-to-stellar mass ratio of $32$. The binary galaxies have the mean radial velocity difference of $37$ km s$^{-1}$, the projected separation of $96$ kpc, the mean integral stellar mass of $2.6\\times 10^9 M_{\\odot}$ and the mean virial-to-stellar mass ratio of about $8$. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to $37$ being almost the same as that in the Local Volume.

  6. Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set

    NASA Astrophysics Data System (ADS)

    Yates, Robert M.; Thomas, Peter A.; Henriques, Bruno M. B.

    2017-01-01

    We present an analysis of the iron abundance in the hot gas surrounding galaxy groups and clusters. To do this, we first compile and homogenize a large data set of 79 low-redshift (tilde{z} = 0.03) systems (159 individual measurements) from the literature. Our analysis accounts for differences in aperture size, solar abundance, and cosmology, and scales all measurements using customized radial profiles for the temperature (T), gas density (ρgas), and iron abundance (ZFe). We then compare this data set to groups and clusters in the L-GALAXIES galaxy evolution model. Our homogenized data set reveals a tight T-ZFe relation for clusters, with a scatter in ZFe of only 0.10 dex and a slight negative gradient. After examining potential measurement biases, we conclude that some of this negative gradient has a physical origin. Our model suggests greater accretion of hydrogen in the hottest systems, via stripping from infalling satellites, as a cause. In groups, L-GALAXIES over-estimates ZFe, indicating that metal-rich gas removal (via e.g. AGN feedback) is required. L-GALAXIES is consistent with the observed ZFe in the intracluster medium (ICM) of the hottest clusters at z = 0, and shows a similar rate of ICM enrichment as that observed from at least z ˜ 1.3 to the present day. This is achieved without needing to modify any of the galactic chemical evolution (GCE) model parameters. However, the ZFe in intermediate-T clusters could be under-estimated in our model. We caution that modifications to the GCE modelling to correct this disrupt the agreement with observations of galaxies' stellar components.

  7. Tidal dwarf galaxies in gas-rich groups

    NASA Astrophysics Data System (ADS)

    Sweet, Sarah M.

    2014-09-01

    I develop new methods for identifying and measuring tidal dwarf galaxies, using a sample of galaxies within Hi-rich groups that have no evidence of advanced major mergers. These groups are taken from the Survey of Ionization in Neutral Gas Galaxies (SINGG, Meurer et al., 2006), an optical follow-up survey to the HI Parkes All Sky Survey (HIPASS, Barnes et al., 2001). Fifteen of the fields contain four or more emission line galaxies and are named Choir groups. I detect new dwarf galaxies that are too small to be individually detectable in HIPASS; they are detectable in the SINGG narrow-band imaging because of their star formation and membership of these HI-rich groups. The Choir groups are compact, with a mean projected separation between the two brightest members of 190 kpc. They have comparable star formation efficiency (the ratio of star formation rate to HI mass) to the remaining SINGG fields. The Choir member galaxies also match the wider SINGG sample in their radii, Hα equivalent width and surface brightness. I define a new, more robust calibration for the metallicity diagnostic for identifying tidal dwarf galaxy candidates in the absence of tidal tails, based on the luminosity-metallicity relation with a consistent metallicity definition. Using that calibration, SDSS dwarfs fainter than MR = -16 have a mean metallicity of 12 + log(O/H) = 8.28 (±) 0.10, regardless of their luminosity. Tidal dwarf galaxy candidates in the literature are elevated above this at 12 + log(O/H) = 8.70 (±) 0.05 on average. Our hydrodynamical simulations also predict that tidal dwarf galaxies should have metallicities elevated above the normal luminosity-metallicity relation. I compare 53 star-forming galaxies in 9 of the Hi gas-rich Choir groups and find those brighter than MR ~ -16 to be consistent with the normal relation defined by the SDSS sample. At fainter magnitudes my sample has a wide range in metallicity, suggestive of varying Hi content and environment. Three (16%) of

  8. Properties of Galaxies and Groups at z < 1.4

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Lopes, P. A. A.; Ribeiro, A. L. B.

    2014-10-01

    In this work, we analyze a sample of galaxy groups constructed from the fourth data release of the Deep Extragalactic Evolutionary Probe 2 (DEEP2) including the Extended Groth Strip (EGS). This sample was obtained by Gerke et al. (2012) using the Voronoi-Delaunay Method. We selected 105 galaxy groups with at least 8 members in a radius of 4 Mpc. For each group we estimated its properties such as velocity dispersion (σ), physical radius (R_{200}) and mass (M_{200}). We also classify the groups as Gaussian and non-Gaussian (dynamic evolved or not) based on their galaxy velocity distributions. This classification is based on the following statistical tests: Anderson-Darling, Kolmogorov-Smirnov, Shapiro-Wilk, Jarque-Bera, Cramer-von Mises, D'Agostino and Dip test. When the Dip test confirms the hypothesis of the unimodality and all other tests prove the normality of the system, the group is classified as Gaussian. The behavior of gaussianity was checked varying the distance to the center of the group in 2-4 times its physical radius. Our results show that the number of systems classified as non-Gaussian groups grows with the increase of the physical radius.

  9. New low surface brightness dwarf galaxies in the Centaurus group

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Jerjen, Helmut; Binggeli, Bruno

    2017-01-01

    Context. The distribution of satellite galaxies around the Milky Way and Andromeda and their correlation in phase space pose a major challenge to the standard ΛCDM model of structure formation. Other nearby groups of galaxies are now being scrutinized to test for the ubiquity of the phenomenon. Aims: We conducted an extensive CCD imaging survey for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region, encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Methods: Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey camera at the 4 m Blanco telescope at CTIO. The surface brightness limit reached for unresolved dwarf galaxies is μr ≈ 29 mag arcsec-2. The faintest suspected Centaurus members found have mr ≈ 19.5 mag or Mr ≈ -8.8 mag at the mean distance of the group. The images were enhanced using different filtering techniques. Results: We found 41 new dwarf galaxy candidates, which together with the previously discovered 16 dwarf candidates in the M 83 subgroup amounts to almost a doubling of the number of known galaxies in the Centaurus complex, if the candidates are confirmed. We carried out surface photometry in g and r, and report the photometric parameters derived therefrom, for all new candidates as well as previously known members in the surveyed area. The photometric properties of the candidates, when compared to those of Local Group dwarfs and previously known Centaurus dwarfs, suggest membership in the Centaurus group. The sky distribution of the new objects is generally

  10. The Galaxy Content of SDSS Clusters And Groups

    SciTech Connect

    Hansen, Sarah M.; Sheldon, Erin S.; Wechsler, Risa H.; Koester, Benjamin P.; /Chicago U., Astron. Astrophys. Ctr.

    2007-11-09

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of Brightest Cluster Galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {le} z {le} 0.3. The size of the dataset allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r200 of clusters with mass above 3x10{sup 13}h{sup -1}M{sub {circle_dot}}, the luminosity function of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite luminosity function does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25}M{sub i} - 5log{sub 10}h = -19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L{sub BCG} {approx} M{sup 0.3}{sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub log}L {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  11. THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS

    SciTech Connect

    Hansen, Sarah M.; Wechsler, Risa H.; Koester, Benjamin P.

    2009-07-10

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {<=} z {<=} 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r {sub 200} of clusters with mass above 3 x 10{sup 13} h {sup -1} M {sub sun}, the luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25} M{sub i} - 5log{sub 10} h =-19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L {sub BCG} {approx} M {sup 0.3} {sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub logL} {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  12. The Fastest Galaxy Evolution in an Unbiased Compact Group Sample with WISE

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Ho; Hwang, Ho Seong; Sohn, Jubee; Lee, Myung Gyoon

    2017-02-01

    We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with {M}r< -19.77 and 0.01< z< 0.0741, drawn from Sohn et al., which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12 μ {{m}} with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]–[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.

  13. Integrated HI emission in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Ai, Mei; Zhu, Ming; Fu, Jian

    2017-09-01

    The integrated HI emission from hierarchical structures such as groups and clusters of galaxies can be detected by FAST at intermediate redshifts. Here we propose to use FAST to study the evolution of the global HI content of clusters and groups over cosmic time by measuring their integrated HI emissions. We use the Virgo Cluster as an example to estimate the detection limit of FAST, and have estimated the integration time to detect a Virgo type cluster at different redshifts (from z = 0.1 to z = 1.5).We have also employed a semi-analytic model (SAM) to simulate the evolution of HI contents in galaxy clusters. Our simulations suggest that the HI mass of a Virgo-like cluster could be 2–3 times higher and the physical size could be more than 50% smaller when redshift increases from z = 0.3 to z = 1. Thus the integration time could be reduced significantly and gas rich clusters at intermediate redshifts can be detected by FAST in less than 2 hours of integration time. For the local Universe, we have also used SAM simulations to create mock catalogs of clusters to predict the outcomes from FAST all sky surveys. Comparing with the optically selected catalogs derived by cross matching the galaxy catalogs from the SDSS survey and the ALFALFA survey, we find that the HI mass distribution of the mock catalog with 20 s of integration time agrees well with that of observations. However, the mock catalog with 120 s of integration time predicts many more groups and clusters that contain a population of low mass HI galaxies not detected by the ALFALFA survey. A future deep HI blind sky survey with FAST would be able to test such prediction and set constraints on the numerical simulation models. The observational strategy and sample selections for future FAST observations of galaxy clusters at high redshifts are also discussed.

  14. Star Formation in Undergraduate ALFALFA Team Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Durbala, Adriana; Finn, Rose; Haynes, Martha P.; Coble, Kimberly A.; Craig, David W.; Hoffman, G. Lyle; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Troischt, Parker; Undergraduate ALFALFA Team; ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around 36 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. By studying a large range of environments and considering the spatial distributions of star formation, we probe mechanisms of gas depletion and morphological transformation. The project uses ALFALFA HI observations, optical observations, and digital databases like SDSS, and incorporates work undertaken by faculty and students at different institutions within the UAT. Here we present results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO, including an analysis of radial star formation rates and extents of galaxies in the NGC 5846, Abell 779, NRGb331, and HCG 69 groups/clusters. This work has been supported by NSF grant AST-1211005 and AST-1637339.

  15. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  16. Understanding the unique assembly history of central group galaxies

    SciTech Connect

    Vulcani, Benedetta; Bundy, Kevin; Lackner, Claire; Leauthaud, Alexie; Treu, Tommaso; Mei, Simona; Coccato, Lodovico; Kneib, Jean Paul; Auger, Matthew; Nipoti, Carlo

    2014-12-10

    Central galaxies (CGs) in massive halos live in unique environments with formation histories closely linked to that of the host halo. In local clusters, they have larger sizes (R{sub e} ) and lower velocity dispersions (σ) at fixed stellar mass M {sub *}, and much larger R{sub e} at a fixed σ than field and satellite galaxies (non-CGs). Using spectroscopic observations of group galaxies selected from the COSMOS survey, we compare the dynamical scaling relations of early-type CGs and non-CGs at z ∼ 0.6 to distinguish possible mechanisms that produce the required evolution. CGs are systematically offset toward larger R{sub e} at fixed σ compared to non-CGs with similar M {sub *}. The CG R{sub e} -M {sub *} relation also shows differences, primarily driven by a subpopulation (∼15%) of galaxies with large R{sub e} , while the M {sub *}-σ relations are indistinguishable. These results are accentuated when double Sérsic profiles, which better fit light in the outer regions of galaxies, are adopted. They suggest that even group-scale CGs can develop extended components by these redshifts that can increase total R{sub e} and M {sub *} estimates by factors of ∼2. To probe the evolutionary link between our sample and cluster CGs, we also analyze two cluster samples at z ∼ 0.6 and z ∼ 0. We find similar results for the more massive halos at comparable z, but much more distinct CG scaling relations at low-z. Thus, the rapid, late-time accretion of outer components, perhaps via the stripping and accretion of satellites, would appear to be a key feature that distinguishes the evolutionary history of CGs.

  17. Planetary nebulae in the Magellanic Clouds and Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Warren A.

    2012-08-01

    The Magellanic Clouds are close enough to the Milky Way to provide an excellent environment in which to study extragalactic PNe. Most of these PNe are bright enough to be spectroscopically observed and spatially resolved. With the latest high resolution detectors on today's large telescopes it is even possible to directly observe a large number of central stars. Magellanic Cloud (MC) PNe provide several astrophysical benefits including low overall extinction and a good sample size covering a large range of dynamic evolutionary timescales while the known distances provide a direct estimation of luminosity and physical dimensions. Multi-wavelength surveys are revealing intriguing differences between MC and Galactic PNe. Over the past 5 years there has been a substantial increase in the number of PNe discovered in the Large Magellanic Cloud (LMC) in particular. Deep surveys have allowed the faint end of the luminosity function to be investigated, finally providing a strong clue to its overall shape. In so doing, the surveys are approaching completeness, estimated at ~80% in the LMC (~120 deg2) and ~65% in the Small Magellanic Cloud (SMC) (~20 deg2). The number of galaxies comprising the Local Group (LG) and its outskirts has been growing steadily over the past 5 years and now numbers 48. Most of the 7 newly discovered galaxies are dwarf spheroidal (dSph) in structure and range from 7.6 to 755 kpc from the Milky Way. Nonetheless, there are no published searches for PNe in any of these galaxies to date. Apart from the LMC and Milky Way, the number of PN discoveries has been very modest and only one additional LG galaxy has been surveyed for PNe over the past 5 years. This paper provides the number of Local Group PNe currently known and estimates each galaxy's total PN population.

  18. Neutral Gas Outside the Disks of Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.

    2017-03-01

    Of the three kinds of neutral gas found outside the stellar disks of Local Group galaxies, only the products of interaction, like the Magellanic Stream, have a clearly understandable origin. Both the high-velocity clouds and the faint H I between M31 and M33 remain a mystery. New observations of the region between M31 and M33 with the Green Bank Telescope show that the H I there resides in clouds with a size and mass similar to that of dwarf galaxies, but without stars. These clouds might be products of an interaction, or condensations in the hot circumgalactic medium of M31, but both these models have difficulties. The prevalence of clouds like this in the Local Group remains to be determined.

  19. A photometric catalog of compact groups of galaxies

    SciTech Connect

    Hickson, P.; Auman, J.R.; Kindl, E. )

    1989-08-01

    The paper presents astrometry, photometry, and morphological types, derived from CCD images, for 463 galaxies in the 100 compact groups selected by Hickson. Some minor revisions to the membership of the original catalog are made, based on these new images. The completeness of the catalog is considered as a function of group magnitude and Galactic latitude. At high Galactic latitude the catalog is estimated to be 90 percent complete for groups with total B(T) magnitude 13.0 or less. It is less complete at lower Galactic latitude because of obscuration and high stellar density. 28 refs.

  20. Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Genel, Shy; Bryan, Greg

    2017-08-01

    Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.

  1. Evolution of Compact and Fossil Groups of Galaxies from Semi-analytical Models of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Farhang, Amin; Khosroshahi, Habib G.; Mamon, Gary A.; Dariush, Ali. A.; Raouf, Mojtaba

    2017-05-01

    We compare the mean mass assembly histories of compact and fossil galaxy groups in the Millennium Dark Matter Simulation and an associated semi-analytic galaxy formation model. Tracing the halo mass of compact groups (CGs) from z = 0 to z = 1 shows that, on average, 55% of the halo mass in CGs is assembled since z˜ 1, compared to 40% of the halo mass in fossil groups (FGs) on the same time interval, indicating that compared to FGs, CGs are relatively younger galaxy systems. At z = 0, for a given halo mass, FGs tend to have a larger concentration than CGs. Investigating the evolution of CG’s parameters reveals that they become more compact with time. CGs at z = 0.5 see their magnitude gaps increase exponentially, but it takes ˜10 Gyr for them to reach a magnitude gap of 2 mag. The slow growth of the magnitude gap leads to only a minority (˜41%) of CGs selected at z = 0.5 turning into a FG by z = 0. Also, while three-quarters of FGs go through a compact phase, most fail to meet the CG isolation criterion, leaving only ˜30% of FGs fully satisfying the CG selection criteria. Therefore, there is no strong link of CGs turning into FGs or FGs originating from CGs. The relation between CGs and FGs is thus more complex, and in most cases, FGs and CGs follow different evolutionary tracks.

  2. THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2012-10-01

    Understanding the interaction between galaxies and their surroundings is central to building a coherent picture of galaxy evolution. Here we use Galaxy Evolution Explorer imaging of a statistically representative sample of 23 galaxy groups at z Almost-Equal-To 0.06 to explore how local and global group environments affect the UV properties and dust-corrected star formation rates (SFRs) of their member galaxies. The data provide SFRs out to beyond 2R{sub 200} in all groups, down to a completeness limit and limiting galaxy stellar mass of 0.06 M{sub Sun} yr{sup -1} and 1 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. At fixed galaxy stellar mass, we find that the fraction of star-forming group members is suppressed relative to the field out to an average radius of R Almost-Equal-To 1.5 Mpc Almost-Equal-To 2R{sub 200}, mirroring results for massive clusters. For the first time, we also report a similar suppression of the specific SFR within such galaxies, on average by 40% relative to the field, thus directly revealing the impact of the group environment in quenching star formation within infalling galaxies. At fixed galaxy density and stellar mass, this suppression is stronger in more massive groups, implying that both local and global group environments play a role in quenching. The results favor an average quenching timescale of {approx}> 2 Gyr and strongly suggest that a combination of tidal interactions and starvation is responsible. Despite their past and ongoing quenching, galaxy groups with more than four members still account for at least {approx}25% of the total UV output in the nearby universe.

  3. Fossil group origins. VII. Galaxy substructures in fossil systems

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Girardi, M.; Aguerri, J. A. L.; Boschin, W.; Barrena, R.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Kundert, A.; Méndez-Abreu, J.; Sánchez-Janssen, R.

    2016-02-01

    Context. Fossil groups (FG) are expected to be the final product of galaxy merging within galaxy groups. In simulations, they are predicted to assemble their mass at high redshift. This early formation allows for the innermost M∗ galaxies to merge into a massive central galaxy. Then, they are expected to maintain their fossil status because of the few interactions with the large-scale structure. In this context, the magnitude gap between the two brightest galaxies of the system is considered a good indicator of its dynamical status. As a consequence, the systems with the largest gaps should be dynamically relaxed. Aims: In order to examine the dynamical status of these systems, we systematically analyze, for the first time, the presence of galaxy substructures in a sample of 12 spectroscopically-confirmed fossil systems with redshift z ≤ 0.25. Methods: We apply a number of tests to investigate the substructure in fossil systems in the two-dimensional space of projected positions out to R200. Moreover, for a subsample of five systems with at least 30 spectroscopically-confirmed members we also analyze the substructure in the velocity and in the three-dimensional velocity-position spaces. Additionally, we look for signs of recent mergers in the regions around the central galaxies. Results: We find that an important fraction of fossil systems show substructure. The fraction depends critically on the adopted test, since each test is more sensitive to a particular type of substructure. Conclusions: Our interpretation of the results is that fossil systems are not, in general, as relaxed as expected from simulations. Our sample of 12 spectroscopically-confirmed fossil systems need to be extended to compute an accurate fraction, but our conclusion is that this fraction is similar to the fraction of substructure detected in nonfossil clusters. This result points out that the magnitude gap alone is not a good indicator of the dynamical status of a system. However, the

  4. Constraints on the Optical Depth of Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-01

    Future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel’dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average {τ }500 (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

  5. Constraints on the optical depth of galaxy groups and clusters

    DOE PAGES

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-10

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  6. Groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.

  7. Hot X-ray gas in galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Sun, Ming

    I investigate several aspects of X-ray gas in galaxies, groups and clusters, all related to the fundamental problems of radiative cooling and AGN feedback. A sample of 14 relaxed clusters and groups are studied, with an emphasis on their temperature and entropy profiles. Three clusters with isothermal temperature distributions are discovered which also have isentropic gas cores and weaker central radio activity than other cooling core clusters. This suggests a connection between gas cooling and feedback from supermassive black holes. A comparison of entropy profiles shows that within 0.1 virial radii, group entropy profiles are flatter than those of hot clusters and those predicted from simulations involving only gravity. From 0.1 to 0.35 virial radius, the slope of the cluster entropy profiles is consistent with simulations. Interesting systems (e.g., a hot but X-ray faint group and an isothermal group with a very high gas density core) in the sample are also discussed. I also present work on the X-ray coronae of galaxies in rich clusters, including detailed studies of coronae in A1367 and a small corona in NGC 1265. Cool X-ray coronae of early-type galaxies (0.5-1 keV), pressure confined in hot (>3 keV) clusters, are found to be common, although their properties have been significantly modified by the ICM environment. Despite the effects of gas stripping, ICM evaporation and AGN outbursts of the central SMBH, the survival of these small and vulnerable coronae puts interesting constraints on the physics of the interactions of the coronae. For example, transport processes (e.g., heat conduction) must be strongly suppressed, presumably by magnetic fields and the coronae must avoid disruption by energy output from the central AGN.

  8. The motions of clusters and group of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Gramann, Mirt; Cen, Renyue

    1994-01-01

    The distributions of peculiar velocities of rich clusters and of groups of galaxies are investigated for different cosmological models and are compared with observations. Four cosmological models are studied: standard cold dark matter (CDM) (omega = 1); low-density CDM (omega = 0.3); hot dark matter (HDM) (omega = 1); and primeval baryonic isocurvature (PBI) (omega = 0.3). All models are normalized to the microwave background fluctuations observed by Cosmic Background Explorer (COBE). We find that rich clusters of galaxies exhibit a Maxwellian distribution of peculiar velocities in all models, as expected from a Gaussian initial density field. The clusters appear to be fundamental and efficient tracers of the large-scale velocity field. The cluster three-dimensional velocity distribution typically peaks at v approximately 600 km/s and extends to high cluster velocities of v approximately 2000 km/s. The low-density CDM model exhibits somewhat lower velocities: it peaks at approximately 400 km/s and extends to approximately 1200 km/s. Approximately 10% (approximately 1% for low-density CDM) of all model rich clusters move with high peculiar velocities of V greater than or = 10(exp 3) km/s. The highest velocity clusters frequently originate in dense superclusters. The model velocity distributions of rich clusters are compared with the model velocity distributions of small groups of galaxies, and of the total matter. The group velocity distribution is, in general, similar to the velocity distribution of the rich clusters. The matter velocity distribution is similar to that of the rich clusters for the omega = 0.3 models; these models exhibit Maxwellian velocity distributions for clusters, for groups, and for matter that are all similar to one another. The mass distribution in the omega = 1 models, however, exhibits a longer tail of high velocities than do the clusters. This high-velocity tail originates mostly from the high velocities that exist within rich clusters

  9. Towards a realistic population of simulated galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Le Brun, Amandine M. C.; McCarthy, Ian G.; Schaye, Joop; Ponman, Trevor J.

    2014-06-01

    We present a new suite of large-volume cosmological hydrodynamical simulations called cosmo-OWLS. They form an extension to the OverWhelmingly Large Simulations (OWLS) project, and have been designed to help improve our understanding of cluster astrophysics and non-linear structure formation, which are now the limiting systematic errors when using clusters as cosmological probes. Starting from identical initial conditions in either the Planck or WMAP7 cosmologies, we systematically vary the most important `sub-grid' physics, including feedback from supernovae and active galactic nuclei (AGN). We compare the properties of the simulated galaxy groups and clusters to a wide range of observational data, such as X-ray luminosity and temperature, gas mass fractions, entropy and density profiles, Sunyaev-Zel'dovich flux, I-band mass-to-light ratio, dominance of the brightest cluster galaxy and central massive black hole (BH) masses, by producing synthetic observations and mimicking observational analysis techniques. These comparisons demonstrate that some AGN feedback models can produce a realistic population of galaxy groups and clusters, broadly reproducing both the median trend and, for the first time, the scatter in physical properties over approximately two decades in mass (1013 M⊙ ≲ M500 ≲ 1015 M⊙) and 1.5 decades in radius (0.05 ≲ r/r500 ≲ 1.5). However, in other models, the AGN feedback is too violent (even though they reproduce the observed BH scaling relations), implying that calibration of the models is required. The production of realistic populations of simulated groups and clusters, as well as models that bracket the observations, opens the door to the creation of synthetic surveys for assisting the astrophysical and cosmological interpretation of cluster surveys, as well as quantifying the impact of selection effects.

  10. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, L. M.; Johnson, K. E.; Gallagher, S. C.; Hibbard, J. E.; Hornschemeier, A. E.; Charlton, J. C.; Jarrett, T. H.

    2010-06-01

    We find evidence for accelerated evolution in compact group galaxies from the distribution in mid-infrared colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) compared to the distributions of several other samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. Neither the Coma Center or interacting samples show evidence of a gap, leading us to speculate that the gap is unique to the environment of high galaxy density where gas has not been fully processed or stripped.

  11. K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mohr, Joseph J.

    2004-12-01

    We investigate the near-infrared K-band properties of the brightest cluster galaxies (BCGs) in a sample of 93 X-ray galaxy clusters and groups, using data from the Two Micron All Sky Survey. Our cluster sample spans a factor of 70 in mass, making it sensitive to any cluster mass-related trends. We derive the cumulative radial distribution for the BCGs in the ensemble and find that 70% of the BCGs are centered in the cluster to within 5% of the virial radius r200; this quantifies earlier findings that BCG position coincides with the cluster center as defined by the X-ray emission peak. We study the correlations between the luminosity of the BCGs (Lb) and the mass and the luminosity of the host clusters, finding that BCGs in more massive clusters are more luminous than their counterparts in less massive systems and that the BCGs become less important in the overall cluster light (L200) as cluster mass increases. By examining a large sample of optically selected groups, we find that these correlations hold for galactic systems less massive than our clusters (<3×1013 Msolar). From the differences between luminosity functions in high- and low-mass clusters, we argue that BCGs grow in luminosity mainly by merging with other luminous galaxies as the host clusters grow hierarchically; the decreasing BCG luminosity fraction (Lb/L200) with cluster mass indicates that the rate of luminosity growth in BCGs is slow compared to the rate at which clusters acquire galaxy light from the field or other merging clusters. Utilizing the observed correlation between the cluster luminosity and mass and a merger tree model for cluster formation, we estimate that the amount of intracluster light (ICL) increases with cluster mass; our calculations suggest that in 1015 Msolar clusters more than 50% of total stellar mass is in ICL, making the role of ICL very important in the evolution and thermodynamic history of clusters. The cluster baryon fraction accounting for the ICL is in good

  12. Searching for Diffuse Light in the M96 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-01

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ B = 30.1 and μ V = 29.5, we find no diffuse, large-scale optical counterpart to the "Leo Ring," an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ B >~ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  13. Searching for diffuse light in the M96 galaxy group

    SciTech Connect

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-10

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ{sub B} = 30.1 and μ{sub V} = 29.5, we find no diffuse, large-scale optical counterpart to the 'Leo Ring', an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ{sub B} ≳ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  14. X-ray scaling laws for galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Horner, Donald John

    Scaling laws between galaxy cluster properties, such as the x-ray luminosity- temperature relation (L-T), the total mass-temperature relation (M-T), and velocity dispersion-temperature relation (?-T) reflect the underlying physics in clus ter formation and evolution. The differences between empirically determined and theoretically predicted scaling laws can give useful insights into physical processes happening in clusters. To determine these scaling laws, we have developed a data reduction pipeline for clusters observed by the ASCA x-ray satellite to create a sample of 273 clusters and groups with measured x-ray luminosities, average temperatures, and metal abundances. This is the largest such sample yet created and will form a baseline for future studies with improved instruments like Chandra and XMM-Newton. We compare our ASCA cluster catalog to data in the literature to examine some of the biases and systematics that affect measurement of x-ray properties, and illuminate issues that affect the science results derived from such x-ray samples. We derive the L-T relationship over several orders of magnitude in luminosity, from rich clusters to groups. In combination with data from the literature, we examine the M-T relationship for a variety of mass estimators. We then examine the ?-T relationship and other correlations between the optical and x-ray propertie s of galaxy clusters. In general, we find that these scaling laws are affected by non-gravitational processes which require additional physics, e.g., energy injection by supernovae. We also see little evolution of galaxy cluster properties with redshift to z - 0.5.

  15. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  16. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  17. Exploring stellar metallicities in dwarf galaxies and their implications

    NASA Astrophysics Data System (ADS)

    Ross, Teresa Lynn

    In this thesis I discuss issues involving stellar metallicities in dwarf galaxies. Stars reflect the gas composition at the time they formed, thereby making the metallicity distribution function (MDF -- the relative number of stars as a function of metallicity) a record of the chemical evolution within a galaxy. I measure photometric metallicities using Wide Field Camera 3 (WFC3) observations aboard the Hubble Space Telescope. Advantages of photometric metallicities include measuring every star in the field down to fainter magnitudes than allowed by spectroscopy. I quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine WFC3 filters using Dartmouth isochrones and Kurucz model atmospheres. The photometric metallicities were tested and calibrated with five well studied Galactic clusters spanning three orders of magnitude in metallicity: M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791. The greatest accuracy in assigning metallicity was found using the (F390M--F555W) color, with the main advantage being the increased color sensitivity at low metallicity. MDFs for a population, along with chemical evolution models provide evolutionary information about gas flows and enrichment within that galaxy. I measured photometric metallicities in Leo I, Leo II, IC 1613, and Phoenix, and analytical chemical evolution models were fit to their MDFs. The MDF shapes, chemical evolution models and dynamic histories suggest that the galactic conditions during periods of star formation influenced the metallicities. I find that the narrower MDFs are indicative of interactions occurring in concert with star formation, while a broader MDF indicates a passive evolution. Additionally, I explore ways to combine chemical evolution models and star formation histories (SFH), to quantify the metallicity evolution with time. The SFHs of Weisz et al. (2014) are assessed for their potential to determine MDFs for 40 Local Group dwarf galaxies. The SFH

  18. Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups

    NASA Astrophysics Data System (ADS)

    Crossett, Jacob P.; Pimbblet, Kevin A.; Jones, D. Heath; Brown, Michael J. I.; Stott, John P.

    2017-01-01

    We have investigated the effect of group environment on residual star formation in galaxies, using Galaxy Evolution Explorer near-ultraviolet (NUV) galaxy photometry with the Sloan Digital Sky Survey group catalogue of Yang et al. We compared the (NUV - r) colours of grouped and non-grouped galaxies, and find a significant increase in the fraction of red sequence galaxies with blue (NUV - r) colours outside of groups. When comparing galaxies in mass-matched samples of satellite (non-central), and non-grouped galaxies, we found a >4σ difference in the distribution of (NUV - r) colours, and an (NUV - r) blue fraction >3σ higher outside groups. A comparison of satellite and non-grouped samples has found the NUV fraction is a factor of ˜2 lower for satellite galaxies between 1010.5 and 10^{10.7} M_{⊙}, showing that higher mass galaxies are more likely to have residual star formation when not influenced by a group potential. There was a higher (NUV - r) blue fraction of galaxies with lower Sérsic indices (n < 3) outside of groups, not seen in the satellite sample. We have used stellar population models of Bruzual & Charlot with multiple burst, or exponentially declining star formation histories to find that many of the (NUV - r) blue non-grouped galaxies can be explained by a slow (˜2 Gyr) decay of star formation, compared to the satellite galaxies. We suggest that taken together, the difference in (NUV - r) colours between samples can be explained by a population of secularly evolving, non-grouped galaxies, where star formation declines slowly. This slow channel is less prevalent in group environments where more rapid quenching can occur.

  19. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-06-01

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E >~ 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ~ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ~ 1. This allows for a larger rms amplitude of the density power spectrum,

  20. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    SciTech Connect

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E. E-mail: aeb@cita.utoronto.ca

    2012-06-10

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E {approx}> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z {approx} 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers-counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z {approx} 1. This allows for a larger rms amplitude of the density

  1. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, K. E.; Gallagher, S. C.; Hibbard, J. E.; Hornschemeier, A. E.; Charlton, J. C.; Jarrett, T. H.

    2010-01-01

    We find evidence for accelerated evolution in compact group galaxies from the mid-infrared distribution in colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) and the distributions of several comparison samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. None of the other samples we studied show evidence of a gap, leading us to speculate that it is unique to the environment present in compact groups and clusters; one of high density where gas has not been fully processed or stripped.

  2. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    SciTech Connect

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-11-15

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 {mu}m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  3. Mid-infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-11-01

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 μm color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  4. THE NATURE OF FOSSIL GALAXY GROUPS: ARE THEY REALLY FOSSILS?

    SciTech Connect

    La Barbera, F.; Sorrentino, G.; De Carvalho, R. R.; De la Rosa, I. G.; Gal, R. R.; Kohl-Moreira, J. L.

    2009-04-15

    We use SDSS-DR4 photometric and spectroscopic data out to redshift z {approx} 0.1 combined with ROSAT All Sky Survey X-ray data to produce a sample of 25 fossil groups (FGs), defined as bound systems dominated by a single, luminous elliptical galaxy with extended X-ray emission. We examine possible biases introduced by varying the parameters used to define the sample, and the main pitfalls are also discussed. The spatial density of FGs, estimated via the V/V {sub MAX} test, is 2.83 x 10{sup -6} h {sup 3} {sub 75} Mpc{sup -3} for L{sub X} > 0.89 x 10{sup 42} h {sup -2} {sub 75} erg s{sup -1} consistent with Vikhlinin et al., who examined an X-ray overluminous elliptical galaxy sample (OLEG). We compare the general properties of FGs identified here with a sample of bright field ellipticals generated from the same data set. These two samples show no differences in the distribution of neighboring faint galaxy density excess, distance from the red sequence in the color-magnitude diagram, and structural parameters such as a {sub 4} and internal color gradients. Furthermore, examination of stellar populations shows that our 25 FGs have similar ages, metallicities, and {alpha}-enhancement as the bright field ellipticals, undermining the idea that these systems represent fossils of a physical mechanism that occurred at high redshift. Our study reveals no difference between FGs and field ellipticals, suggesting that FGs might not be a distinct family of true fossils, but rather the final stage of mass assembly in the universe.

  5. Evolution of Group Galaxies from the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Li, I. H.; Yee, H. K. C.; Hsieh, B. C.; Gladders, M.

    2012-04-01

    We study the evolution of the red-galaxy fraction (f red) in 905 galaxy groups with 0.15 <= z < 0.52. The galaxy groups are identified by the "probability friends-of-friends" algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z ~ 0.5 and that they have a formation epoch of z >~ 2. In general, groups at lower redshifts exhibit larger f red than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f red by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M *), total group stellar mass (M *, grp, a proxy for group halo mass), normalized group-centric radius (r grp), and local galaxy density (Σ5). We find that M * is the dominant parameter such that there is a strong correlation between f red and galaxy stellar mass. Furthermore, the dependence of f red on the environmental parameters is also a strong function of M *. Massive galaxies (M * >~ 1011 M ⊙) show little dependence of f red on r grp, M *, grp, and Σ5 over the redshift range. The dependence of f red on these parameters is primarily seen for galaxies with lower masses, especially for M * <~ 1010.6 M ⊙. We observe an apparent "group down-sizing" effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f red. We find a dependence of f red on both r grp and Σ5 after the other parameters are controlled. At a fixed r grp, there is a significant dependence of f red on Σ5, while r grp gradients of f red are seen for galaxies in similar Σ5 regions. This indicates that galaxy group environment has a residual effect over that of local galaxy density (or vice versa), and both parameters need

  6. Analysis of the structure of disk galaxies in the NGC 2300 group

    NASA Astrophysics Data System (ADS)

    Il'ina, M. A.; Sil'chenko, O. K.

    2016-10-01

    Data from the 6-m telescope of the Special Astrophysical Observatory obtained using the SCORPIO instrument in imaging mode are used to study member galaxies of the NGC 2300 group. Surface photometry has been carried out for the five largest galaxies in the group, whose isophotal parameters and the parameters of their large-scale structural components (disks and bulges) have been determined. The morphological type of the central galaxy in the group has been refined, and shown to be elliptical. Studies of structural features in non-central disk galaxies have revealed an enhanced percent of bars: bars were found in all disk galaxies of this group, with all of these being compact structures. The similarity of the structural features of the disks of the group galaxies suggests that these disksmay be being restructured in the process of the current merger of the two X-ray subgroups comprising NGC 2300: the group NGC 2300 itself and the group NGC 2276.

  7. Dwarf Galaxy Discoveries from the KMTNet Supernova Program. I. The NGC 2784 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Park, Hong Soo; Moon, Dae-Sik; Zaritsky, Dennis; Pak, Mina; Lee, Jae-Joon; Kim, Sang Chul; Kim, Dong-Jin; Cha, Sang-Mok

    2017-10-01

    We present BVI surface photometry of 31 dwarf galaxy candidates discovered in a deep image stack from the KMTNet Supernova Program of ∼30 square degrees centered on the nearby NGC 2784 galaxy group. Our final images have a 3σ surface brightness detection limit of {μ }V≈ 28.5 mag arcsec‑2. The faintest central surface brightness that we measure is {μ }0,V=26.1 mag arcsec‑2. If these candidates are at the distance of NGC 2784, then they have absolute magnitudes greater than {M}V=-9.5 mag and effective radii larger than 170 pc. Their radial number density decreases exponentially with distance from the center of NGC 2784 until it flattens beyond a radius of 0.5 Mpc. We interpret the baseline density level to represent the background contamination and estimate that 22 of the 31 new candidates are dwarf members of the group. The candidate’s average color, < {(B-V)}0> ≈ 0.7, and Sérsic structural parameters are consistent with those parameters for the dwarf populations of other groups. We find that the central population of dwarfs is redder and brighter than the rest of the population. The measured faint-end slope of the luminosity function, α ≈ -1.33, is steeper than that of the Local Group, but consistent with published results for other groups. Such comparisons are complicated by systematic differences among different studies, but will be simpler when the KMTNet survey, which will provide homogenous data for 15–20 groups, is completed. Based on data collected at KMTNet Telescopes.

  8. THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES

    SciTech Connect

    Feldmann, R.; Carollo, C. M.; Mayer, L.

    2011-08-01

    The physical mechanisms and timescales that determine the morphological signatures and the quenching of star formation of typical ({approx}L*) elliptical galaxies are not well understood. To address this issue, we have simulated the formation of a group of galaxies with sufficient resolution to track the evolution of gas and stars inside about a dozen galaxy group members over cosmic history. Galaxy groups, which harbor many elliptical galaxies in the universe, are a particularly promising environment to investigate morphological transformation and star formation quenching, due to their high galaxy density, their relatively low velocity dispersion, and the presence of a hot intragroup medium. Our simulation reproduces galaxies with different Hubble morphologies and, consequently, enables us to study when and where the morphological transformation of galaxies takes place. The simulation does not include feedback from active galactic nuclei showing that it is not an essential ingredient for producing quiescent, red elliptical galaxies in galaxy groups. Ellipticals form, as suspected, through galaxy mergers. In contrast with what has often been speculated, however, these mergers occur at z > 1, before the merging progenitors enter the virial radius of the group and before the group is fully assembled. The simulation also shows that quenching of star formation in the still star-forming elliptical galaxies lags behind their morphological transformation, but, once started, takes less than a billion years to complete. As long envisaged the star formation quenching happens as the galaxies approach and enter the finally assembled group, due to quenching of gas accretion and (to a lesser degree) stripping. A similar sort is followed by unmerged, disk galaxies, which, as they join the group, are turned into the red-and-dead disks that abound in these environments.

  9. Galex Catalog And Atlas Of Our Local Group Of Galaxies

    NASA Astrophysics Data System (ADS)

    Madore, Barry

    The NASA Galaxy Evolution Explorer (GALEX) mission contains the most comprehensive collection of ultraviolet imaging of Local Group galaxies likely to exist for decades. Unfortunately, this impressive resource will be under-utilized because the standard GALEX pipeline and source catalogs are not designed to properly measure point sources in crowded fields. We propose to solve this problem and unlock this great wealth of data obtained by NASA by constructing the GALEX Catalog and Atlas of Our Local Group Galaxies which shall include 49 GALEX observed Local Group members within 1.5 Mpc including the Large and Small Magellanic Clouds in their entirety. The PSF- fitting photometry method has already been tested and increases the number of detected point sources by 300% over the standard GALEX pipeline. Our catalogs will provide approximately 5-6 million point source measurements. We have also developed a novel method for producing wide field background-balanced mosaics of GALEX data. This has already been implemented for the Magellanic Clouds and the method will be applied to the other largest Local Group Members (M31 and M33). The Atlas images we produce will combine imaging data from all GALEX surveys to achieve maximum depth. Quality assurance of the images and catalogs will be done by the proposers in the course of undertaking a number of science-driven projects that require cross-matching the ultraviolet point sources of the Magellanic Clouds to similar resolution optical (MCPS) and infrared (SAGE) source catalogs. The Catalogs and Atlas (including the Magellanic Clouds cross-matched catalogs) will be made available to the astronomical community by providing them to the Mikulski Archive for Space Telescopes (MAST, the official GALEX archive) as a High Level Science Product as well as assimilated on an object-by- object basis into the NASA/IPAC Extragalactic Database (NED) and thereby made immediately accessible in VO-compatible format. This program will enhance

  10. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  11. Dark matter in the local group of galaxies

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Buettner, D. J.

    We describe the neutrino flavor (e = electron, μ = muon, τ = tau) masses as mi=e,μ,τ = m + Δmi with |Δmi| m < 1 and probably |Δmi| m ≪ 1. The quantity m is the degenerate neutrino mass. Because neutrino flavor is not a quantum number, this degenerate mass appears in the neutrino equation-of-state [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2014), doi:10.1142/s0218271815500042.]. We apply a Monte Carlo computational physics technique to the Local Group (LG) of galaxies to determine an approximate location for a Dark Matter embedding Condensed Neutrino Object (CNO) [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2016), doi:10.1142/s0218271816500899.]. The calculation is based on the rotational properties of the only spiral galaxies within the LG: M31, M33 and the Milky Way. CNOs could be the Dark Matter everyone is looking for and we estimate the CNO embedding the LG to have a mass 5.17 × 1015 M⊙ and a radius 1.316 Mpc, with the estimated value of m ≃ 0.8 eV/c2. The up-coming KATRIN experiment [https://www.katrin.kit.edu.] will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.

  12. Compact groups of galaxies selected by stellar mass: the 2MASS compact group catalogue

    NASA Astrophysics Data System (ADS)

    Díaz-Giménez, Eugenia; Mamon, Gary A.; Pacheco, Marcela; Mendes de Oliveira, Claudia; Alonso, M. Victoria

    2012-10-01

    We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59 per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N ≥ 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup ˜ 9 and radial velocity of ˜6000 km s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000 km s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000 km s-1 is 8.0 × 10-5 h3 Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40 per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large first-second ranked galaxy magnitude gap according to Tremaine-Richstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies

  13. Central regions of the early-type galaxies in the NGC 3169 group

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.; Afanasiev, V. L.

    2006-08-01

    We have investigated the central regions of the galaxies in the NGC 3169/NGC 3166/NGC 3156 group with the multipupil fiber spectrograph of the 6-m telescope; the first (central) galaxy in the group is a spiral (Sa) one and the other two galaxies are lenticular ones. The group is known to have an extended HI cloud with a size of more than 100 kpc that is associated in its position, orientation, and rotation with the central galaxy NGC 3169. The mean age of the stellar populations in the centers of all three galaxies has been found to be approximately the same, ˜1 Gyr. Since the galaxies are early-type ones and since NGC 3166 and NGC 3156 show no global star formation, we are dealing here with a synchronous star formation burst in the centers of all three galaxies.

  14. THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. I. WHICH ENVIRONMENT AFFECTS GALAXY EVOLUTION?

    SciTech Connect

    Carollo, C. Marcella; Cibinel, Anna; Lilly, Simon J.; Miniati, Francesco; Cameron, Ewan; Peng, Yingjie; Pipino, Antonio; Rudick, Craig S.; Norberg, Peder; Silverman, John D.; Van Gorkom, Jacqueline; Finoguenov, Alexis

    2013-10-20

    The Zurich Environmental Study (ZENS) is based on a sample of ∼1500 galaxy members of 141 groups in the mass range ∼10{sup 12.5-14.5} M{sub ☉} within the narrow redshift range 0.05 < z < 0.0585. ZENS adopts novel approaches, described here, to quantify four different galactic environments, namely: (1) the mass of the host group halo; (2) the projected halo-centric distance; (3) the rank of galaxies as central or satellites within their group halos; and (4) the filamentary large-scale structure density. No self-consistent identification of a central galaxy is found in ∼40% of <10{sup 13.5} M{sub ☉} groups, from which we estimate that ∼15% of groups at these masses are dynamically unrelaxed systems. Central galaxies in relaxed and unrelaxed groups generally have similar properties, suggesting that centrals are regulated by their mass and not by their environment. Centrals in relaxed groups have, however, ∼30% larger sizes than in unrelaxed groups, possibly due to accretion of small satellites in virialized group halos. At M > 10{sup 10} M{sub ☉}, satellite galaxies in relaxed and unrelaxed groups have similar size, color, and (specific) star formation rate distributions; at lower galaxy masses, satellites are marginally redder in relaxed relative to unrelaxed groups, suggesting quenching of star formation in low-mass satellites by physical processes active in relaxed halos. Overall, relaxed and unrelaxed groups show similar stellar mass populations, likely indicating similar stellar mass conversion efficiencies. In the enclosed ZENS catalog, we publish all environmental diagnostics as well as the galaxy structural and photometric measurements described in companion ZENS papers II and III.

  15. ESO 255-IG 07, a compact group of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Bergvall, N.; Ekman, A.; Lauberts, A.

    1981-03-01

    Photographic, photometric, and spectroscopic properties are studied for the galaxy system ESO 255-IG 07 = 0626-471. The system is composed of four main galaxies of normal sizes and luminosities in what looks like a common halo. It is suggested that the halo consists of stars being torn out from the individual galaxies as a consequence of the interaction. Although the galaxies morphologically seem to be of early Hubble types, ionized gas is found to extend over a significant part of all four galaxies and also in a bridge connecting the two northernmost galaxies. Indications of enhanced nuclear activity are found in the northernmost galaxy; it is suggested that cloud-cloud collisions are frequent and could trigger the star formation and enhanced nuclear activity observed.

  16. X-ray emission from clusters and groups of galaxies.

    PubMed

    Mushotzky, R

    1998-01-06

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  17. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  18. BRIGHTEST SATELLITE GALAXY ALIGNMENT OF SLOAN DIGITAL SKY SURVEY GALAXY GROUPS

    SciTech Connect

    Li Zhigang; Wang Yougang; Chen Xuelei; Yang Xiaohu; Xie Lizhi; Wang Xin E-mail: wangygcluster@gmail.com E-mail: lzxie@bao.ac.cn E-mail: wangxin@pha.jhu.edu

    2013-05-01

    We study the alignment signal between the distribution of the brightest satellite galaxies (BSGs) and the major axes of their host groups using the Sloan Digital Sky Survey group catalog constructed by Yang et al. After correcting for the effect of group ellipticity, a statistically significant ({approx}5{sigma}) major-axis alignment is detected and the alignment angle is found to be 43. Degree-Sign 0 {+-} 0. Degree-Sign 4. More massive and richer groups show a stronger BSG alignment. The BSG alignment around blue brightest central galaxies (BCGs) is slightly stronger than that around red BCGs. Red BSGs have a much stronger major-axis alignment than blue BSGs. Unlike BSGs, other satellites do not show very significant alignment with their group's major axis. We further explore BSG alignment using the semi-analytic model (SAM) constructed by Guo et al. In general, we found good agreement of the model with observations: BSGs in the SAM show a strong major-axis alignment that depends on group mass and richness in the same way as in observations and none of the other satellites exhibit prominent alignment. However, a discrepancy also exists in that the SAM shows a BSG color dependence opposite of that in observations, which is most probably induced by a missing large-scale environment ingredient in the SAM. The combination of two popular scenarios can explain the BSG alignment we detected. First, satellites merged into the group along the surrounding filaments, which are strongly aligned with the major axis of the group. Second, BSGs entered their host group more recently than other satellites, so they have preserved more information about their assembling history and major-axis alignment. In the SAM, we found positive evidence for the second scenario in the fact that BSGs merged into groups statistically more recently than other satellites. We also found that most of the BSGs (80%) were BCGs before they merged into groups and earlier merging BSGs tend to be closer to

  19. Intracluster medium cooling, AGN feedback, and brightest cluster galaxy properties of galaxy groups. Five properties where groups differ from clusters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V.; Reiprich, T. H.; Schellenberger, G.; Eckmiller, H. J.; Mittal, R.; Israel, H.

    2014-12-01

    Aims: We aim to investigate cool-core and non-cool-core properties of galaxy groups through X-ray data and compare them to the AGN radio output to understand the network of intracluster medium (ICM) cooling and feedback by supermassive black holes. We also aim to investigate the brightest cluster galaxies (BCGs) to see how they are affected by cooling and heating processes, and compare the properties of groups to those of clusters. Methods: Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC), and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the BCG was obtained using radio catalogue data and/or literature, which in turn was compared to the cooling time of the ICM to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used a scaling relation to constrain the masses of the supermassive black holes, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The results obtained for the group sample were also compared to previous results for clusters. Results: The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen: 1) for clusters, all SCCs have a central temperature drop, but for groups this is not the case as some have centrally rising temperature profiles despite very short cooling times; 2) while for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups; 3) for clusters, there are indications of an anticorrelation trend between radio luminosity and CCT. However, for groups this trend is absent; 4) the indication of

  20. Pseudo bulges in galaxy groups: the role of environment in secular evolution

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2017-05-01

    We examine the dependence of the fraction of galaxies containing pseudo bulges on environment for a flux limited sample of ˜5000 galaxies from the Sloan Digital Sky Survey (SDSS). We have separated bulges into classical and pseudo bulge categories based on their position on the Kormendy diagram. Pseudo bulges are thought to be formed by internal processes and are a result of secular evolution in galaxies. We attempt to understand the dependence of secular evolution on environment and morphology. Dividing our sample of disc + bulge galaxies based on group membership into three categories: central and satellite galaxies in groups and isolated field galaxies, we find that pseudo bulge fraction is almost equal for satellite and field galaxies. Fraction of pseudo bulge hosts in central galaxies is almost half of the fraction of pseudo bulges in satellite and field galaxies. This trend is also valid when only galaxies are considered only spirals or S0. Using the projected fifth nearest neighbour density as measure of local environment, we look for the dependence of pseudo bulge fraction on environmental density. Satellite and field galaxies show very weak or no dependence of pseudo bulge fraction on environment. However, fraction of pseudo bulges hosted by central galaxies decreases with increase in local environmental density. We do not find any dependence of pseudo bulge luminosity on environment. Our results suggest that the processes that differentiate the bulge types are a function of environment while processes responsible for the formation of pseudo bulges seem to be independent of environment.

  1. Pseudo bulges in galaxy groups: the role of environment in secular evolution

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2017-01-01

    We examine the dependence of the fraction of galaxies containing pseudo bulges on environment for a flux limited sample of ˜5000 SDSS galaxies. We have separated bulges into classical and pseudo bulge categories based on their position on the Kormendy diagram. Pseudo bulges are thought to be formed by internal processes and are a result of secular evolution in galaxies. We attempt to understand the dependence of secular evolution on environment and morphology. Dividing our sample of disc+bulge galaxies based on group membership into three categories: central and satellite galaxies in groups and isolated field galaxies, we find that pseudo bulge fraction is almost equal for satellite and field galaxies. Fraction of pseudo bulge hosts in central galaxies is almost half of the fraction of pseudo bulges in satellite and field galaxies. This trend is also valid when only galaxies are considered only spirals or S0. Using the projected fifth nearest neighbour density as measure of local environment, we look for the dependence of pseudo bulge fraction on environmental density. Satellite and field galaxies show very weak or no dependence of pseudo bulge fraction on environment. However, fraction of pseudo bulges hosted by central galaxies decreases with increase in local environmental density. We do not find any dependence of pseudo bulge luminosity on environment. Our results suggest that the processes that differentiate the bulge types are a function of environment while processes responsible for the formation of pseudo bulges seem to be independent of environment.

  2. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  3. Galaxy clusters and groups in the ALHAMBRA survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Fernández-Soto, A.; Arnalte-Mur, P.; López-Sanjuan, C.; Molino, A.; Schoenell, W.; Jiménez-Teja, Y.; Merson, A. I.; Huertas-Company, M.; Díaz-García, L. A.; Martínez, V. J.; Cenarro, A. J.; Dupke, R.; Márquez, I.; Masegosa, J.; Nieves-Seoane, L.; Pović, M.; Varela, J.; Viironen, K.; Aguerri, J. A. L.; Olmo, A. Del; Moles, M.; Perea, J.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Delgado, R. M. González; Cristóbal-Hornillos, D.; Hurtado-Gil, L.; Husillos, C.; Infante, L.; Prada, F.; Quintana, J. M.

    2015-09-01

    We present a catalogue of 348 galaxy clusters and groups with 0.2 < z < 1.2 selected in the 2.78 deg2 Advanced Large, Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The high precision of our photometric redshifts, close to 1 per cent, and the wide spread of the seven ALHAMBRA pointings ensure that this catalogue has better mass sensitivity and is less affected by cosmic variance than comparable samples. The detection has been carried out with the Bayesian Cluster Finder, whose performance has been checked in ALHAMBRA-like light-cone mock catalogues. Great care has been taken to ensure that the observable properties of the mocks photometry accurately correspond to those of real catalogues. From our simulations, we expect to detect galaxy clusters and groups with both 70 per cent completeness and purity down to dark matter halo masses of Mh ˜ 3 × 1013 M⊙ for z < 0.85. Cluster redshifts are expected to be recovered with ˜0.6 per cent precision for z < 1. We also expect to measure cluster masses with σ _{M_h|M^*_{CL}}˜ 0.25-0.35 dex precision down to ˜ 3 × 1013 M⊙, masses which are 50 per cent smaller than those reached by similar work. We have compared these detections with previous optical, spectroscopic and X-rays work, finding an excellent agreement with the rates reported from the simulations. We have also explored the overall properties of these detections such as the presence of a colour-magnitude relation, the evolution of the photometric blue fraction and the clustering of these sources in the different ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that, for a fixed stellar mass, the environment is playing a crucial role at lower redshifts (z < 0.5).

  4. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including

  5. Mirror neurons: their implications for group psychotherapy.

    PubMed

    Schermer, Victor L

    2010-10-01

    Recently discovered mirror neurons in the motor cortex of the brain register the actions and intentions of both the organism and others in the environment. As such, they may play a significant role in social behavior and groups. This paper considers the potential implications of mirror neurons and related neural networks for group therapists, proposing that mirror neurons and mirror systems provide "hard-wired" support for the group therapist's belief in the centrality of relationships in the treatment process and exploring their value in accounting for group-as-a-whole phenomena. Mirror neurons further confirm the holistic, social nature of perception, action, and intention as distinct from a stimulus-response behaviorism. The implications of mirror neurons and mirroring processes for the group therapist role, interventions, and training are also discussed.

  6. A multi-wavelength analysis of Hickson Compact Groups of galaxies

    NASA Astrophysics Data System (ADS)

    Bitsakis, T.; Charmandaris, V.

    2012-01-01

    We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically "old" or "young", depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. Dynamically "old" groups are more compact and display higher velocity dispersions than "young" groups. Late-type galaxies in dynamically "young" groups have specific star formation rates (sSFRs), NUV-r, and mid-infrared colors which are similar to those of field and early stage interacting pair spirals. Late-type galaxies in dynamically "old" groups have redder NUV-r colors, as they have likely experienced several tidal encounters in the past building up their stellar mass, and display lower sSFRs. We identify several late-type galaxies which have sSFRs and colors similar to those of elliptical galaxies, since they lost part of their gas due to numerous interactions with other group members. Also, 25% of the elliptical galaxies in these groups have bluer UV/optical colors than normal ellipticals in the field, probably due to star formation as they accreted gas from other galaxies of the group, or via merging of dwarf companions. Finally, our SED modeling suggests that in 13 groups, 10 of which are dynamically "old", there is diffuse cold dust in the intragroup medium. All this evidence point to an evolutionary scenario in which

  7. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Tuvikene, T.; Kipper, R.; Libeskind, N. I.

    2017-06-01

    Context. Galaxy groups and clusters are the main tools used to test cosmological models and to study the environmental effect of galaxy formation. Aims: This work provides a catalogue of galaxy groups and clusters, as well as potentially merging systems based on the SDSS main galaxy survey. Methods: We identified galaxy groups and clusters using the modified friends-of-friends (FoF) group finder designed specifically for flux-limited galaxy surveys. The FoF group membership is refined by multimodality analysis to find subgroups and by using the group virial radius and escape velocity to expose unbound galaxies. We look for merging systems by comparing distances between group centres with group radii. Results: The analysis results in a catalogue of 88 662 galaxy groups with at least two members. Among them are 6873 systems with at least six members which we consider to be more reliable groups. We find 498 group mergers with up to six groups. We performed a brief comparison with some known clusters in the nearby Universe, including the Coma cluster and Abell 1750. The Coma cluster in our catalogue is a merging system with six distinguishable subcomponents. In the case of Abell 1750 we find a clear sign of filamentary infall toward this cluster. Our analysis of mass-to-light ratio (M/L) of galaxy groups reveals that M/L slightly increases with group richness. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A100

  8. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    NASA Technical Reports Server (NTRS)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  9. Group-galaxy correlations in redshift space as a probe of the growth of structure

    NASA Astrophysics Data System (ADS)

    Mohammad, F. G.; de la Torre, S.; Bianchi, D.; Guzzo, L.; Peacock, J. A.

    2016-05-01

    We investigate the use of the cross-correlation between galaxies and galaxy groups to measure redshift-space distortions (RSD) and thus probe the growth rate of cosmological structure. This is compared to the classical approach based on using galaxy auto-correlation. We make use of realistic simulated galaxy catalogues that have been constructed by populating simulated dark matter haloes with galaxies through halo occupation prescriptions. We adapt the classical RSD dispersion model to the case of the group-galaxy cross-correlation function and estimate the RSD parameter β by fitting both the full anisotropic correlation function ξs(rp, π) and its multipole moments. In addition, we define a modified version of the latter statistics by truncating the multipole moments to exclude strongly non-linear distortions at small transverse scales. We fit these three observable quantities in our set of simulated galaxy catalogues and estimate statistical and systematic errors on β for the case of galaxy-galaxy, group-group, and group-galaxy correlation functions. When ignoring off-diagonal elements of the covariance matrix in the fitting, the truncated multipole moments of the group-galaxy cross-correlation function provide the most accurate estimate, with systematic errors below 3 per cent when fitting transverse scales larger than 10 h-1 Mpc. Including the full data covariance enlarges statistical errors but keep unchanged the level of systematic error. Although statistical errors are generally larger for groups, the use of group-galaxy cross-correlation can potentially allow the reduction of systematics while using simple linear or dispersion models.

  10. Galaxy Group Stephan's Quintet Video File HubbleMinute: Battle Royale in Stephan's Quintet

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Hubble Space Telescope's closeup view of Stephan's Quintet, a group of five galaxies, reveals a string of brighter star clusters that separate like a diamond necklace. Astronomers studying the compact galaxy group Stephan's Quintet have seen creative destruction in the many collisions taking place among its galaxies. This HubbleMinute discusses what astronomers are learning and hope to learn from exploring the quintet.

  11. Galaxy Group Stephan's Quintet Video File HubbleMinute: Battle Royale in Stephan's Quintet

    NASA Astrophysics Data System (ADS)

    2001-07-01

    The Hubble Space Telescope's closeup view of Stephan's Quintet, a group of five galaxies, reveals a string of brighter star clusters that separate like a diamond necklace. Astronomers studying the compact galaxy group Stephan's Quintet have seen creative destruction in the many collisions taking place among its galaxies. This HubbleMinute discusses what astronomers are learning and hope to learn from exploring the quintet.

  12. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    SciTech Connect

    Paudel, Sanjaya; Ree, Chang H.

    2014-11-20

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s{sup –1} to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited.

  13. THE PRESSURE PROFILES OF HOT GAS IN LOCAL GALAXY GROUPS

    SciTech Connect

    Sun, M.; Sarazin, C.; Sehgal, N.; Voit, G. M.; Donahue, M.; Jones, C.; Forman, W.; Vikhlinin, A.

    2011-02-01

    Recent measurements of the Sunyaev-Zel'dovich (SZ) angular power spectrum from the South Pole Telescope and the Atacama Cosmology Telescope demonstrate the importance of understanding baryon physics when using the SZ power spectrum to constrain cosmology. This is challenging since roughly half of the SZ power at l = 3000 is from low-mass systems with 10{sup 13} h {sup -1} M{sub sun} < M{sub 500} < 1.5 x 10{sup 14} h {sup -1} M{sub sun}, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. The group Y{sub sph,500}-M{sub 500} relation agrees with the one for clusters derived by Arnaud et al. The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.

  14. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  15. Resolving the Tip of the Red Giant Branch of Two New Candidate Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik

    2014-10-01

    We propose to use ACS/WFC to observe two faint dwarf galaxies recently discovered via their HI emission. Based on a blind HI search of 40 HI clumps from 7500 square degrees of the GALFA-HI survey, these two candidates are the only objects with optical counterparts. They show HI and Halpha emission consistent with nearby galaxies, and have blue stars that are barely resolved in ground-based optical imaging with good seeing. These resolved stars are consistent with the galaxies being at Local Group distances. If they are in the Local Group, these galaxies are both less luminous and more compact than the recently-discovered Leo P, also found first with HI observations. They may then also be the faintest known star-forming galaxies. The ground-based imaging leaves large distance uncertainty, however, because the tip of the red giant branch cannot be resolved. We propose one orbit per galaxy of ACS/WFC imaging in F606W and F814W to measure accurate TRGB distances and determine if they truly are Local Group galaxies. If so, these galaxies provide tests on both the efficacy of Lambda CDM in predicting the properties of dwarf galaxies in low density environments, and the lowest-luminosity data points on models of galaxy star formation.

  16. Understanding `Galaxy Groups' as a Unique Structure in the Universe

    NASA Astrophysics Data System (ADS)

    John, Reju Sam; Paul, Surajit; Gupta, Prateek; Kumar, Harish

    2017-07-01

    `Galaxy groups' have hardly been realized as a separate class of objects with specific characteristics in the structural hierarchy of the universe. The presumption that the self-similarity of dark matter structures is a valid prescription for the baryonic universe also at all scales has rendered smaller structures undetectable by current observational facilities, leading to lesser dedicated studies on them. Some recent reports on deviation of {L_x}-T scaling in groups from that of clusters have motivated us to study their physical properties in depth. In this article, we report the extensive study on physical properties of groups in comparison with clusters through cosmological hydrodynamic plus N-body simulations using ENZO 2.2 code. We have included cooling and heating physics and star formation feedback in the simulation. And produced a mock sample of 362 objects with mass ranging from 5×10^{12} M_{⊙} to 2.5×10^{15} M_{⊙}. Strikingly, we have found that objects with a mass below ˜ 8×10^{13} M_{⊙} do not follow any of the cluster self-similar laws in hydrostatics, not even in thermal and non-thermal regimes. Two distinct scaling laws are observed to be followed with breaks at ˜ 6-8× 10^{13} M_{⊙} for mass, ˜1 keV for temperature and ˜1 Mpc for radius. This places groups as a distinct entity in the hierarchical structures, well demarcated from clusters. This study reveals that groups are mostly far away from virialization, suggesting the need for formulating new models for deciphering their physical parameters. They are also shown to have high turbulence and more non-thermal energy stored, indicating better visibility in the non-thermal regime.

  17. Understanding `galaxy groups' as a unique structure in the universe

    NASA Astrophysics Data System (ADS)

    Paul, S.; John, R. S.; Gupta, P.; Kumar, H.

    2017-10-01

    'Galaxy groups' have hardly been realized as a separate class of objects with specific characteristics in the structural hierarchy. The presumption that the self-similarity of dark matter structures is a valid prescription for the baryonic universe at all scales has rendered smaller structures undetectable by current observational facilities, leading to lesser dedicated studies on them. Some recent reports that indicate a deviation from LX-T scaling in groups compared to clusters have motivated us to study their physical properties in depth. In this article, we report the extensive study on physical properties of groups in comparison to the clusters through cosmological hydrodynamic plus N-body simulations using enzo 2.2 code. As additional physics, radiative cooling, heating due to supernova and star motions, star formation and stellar feedback have been implemented. We have produced a mock sample of 362 objects with mass ranging from 5 × 1012 M⊙ to 2.5 × 1015 M⊙. Strikingly, we have found that objects with mass below ∼8 × 1013 M⊙ do not follow any of the cluster self-similar laws in hydrostatics, not even in thermal and non-thermal energies. Two distinct scaling laws are observed to be followed with breaks at ∼8 × 1013 M⊙ for mass, ∼1 keV for temperature and ∼1 Mpc for radius. This places groups as a distinct entity in the hierarchical structures, well demarcated from clusters. This study reveals that groups are mostly far away from virialization, suggesting the need for formulating new models for deciphering their physical parameters. They are also shown to have high turbulence and more non-thermal energy stored, indicating better visibility in the non-thermal regime.

  18. The Role of Group Dynamics in the Evolution of Galaxies out to z ~ 1

    NASA Astrophysics Data System (ADS)

    Hou, Annie; Parker, L. C.; Harris, W. E.; Group Environment; Evolution Collaboration (GEEC)

    2013-01-01

    It is well known that the properties of observed galaxies depend, at least on some part, on the properties of their host environments. We are particularly interested in investigating how the dynamics of the group environment influence galaxy evolution. We study the dynamical state of massive galaxy groups over a wide range of redshifts (0 < z < 1), using the Sloan Digital Sky Survey (SDSS), Group Environment and Evolution Collaboration (GEEC) and higher redshift GEEC2 catalogs. We look for both substructure and non-Gaussian velocity distributions in all of our systems in order to determine the dynamical state. We then use panchromatic data to study the observed galaxy properties (i.e. colour, blue fractions, star formation rates) as function of the dynamical state of their host group. In this work we are probing both the dynamical evolution of groups and the importance of group dynamics on galaxy evolution at a wide range of redshifts.

  19. Gas distribution and clumpiness in the galaxy group NGC 2563

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Mulchaey, John; Nagai, Daisuke; Bonamente, Massimiliano

    2017-08-01

    We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of ∼430 ks, allow the gas density to be detected beyond R200 and the gas temperature out to 0.75 R200. This represents the first observational measurement of the physical properties of a poor groups beyond R500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.

  20. An X-ray View of Galaxies in Compact Groups and the Coma Cluster Infall Region

    NASA Astrophysics Data System (ADS)

    Desjardins, Tyler D.

    2015-01-01

    As the majority of galaxies in the nearby universe exist in groups and clusters, it is imperative for our understanding of galaxy evolution to examine the effects these environments have on their member galaxies. In particular, compact groups of galaxies (CGs) occupy an interesting part of the parameter space having low velocity dispersions and high number densities. These characteristics increase the likelihood of multi-galaxy interactions over long timescales. Infrared observations of galaxies in CGs have suggested that CG members experience accelerated evolution from star-forming to passive. Using X-ray imaging spectroscopy from the Chandra X-ray Observatory, I characterize the luminosity and morphology of the hot intragroup gas in 19 CGs and compare the results with known galaxy cluster scaling relations and other group properties. Only the most massive CGs have hot intragroup gas similar to galaxy clusters. At low group masses, the hot gas becomes associated with individual galaxies and is linked to star formation. The low derived hot gas densities and low galaxy velocities imply that ram-pressure stripping, a common quenching process in galaxy clusters, is probably not the cause of the accelerated evolution in CGs. Using deep XMM observations, I also examine the X-ray emission from individual galaxies in the Coma cluster infall region, inside which the galaxies have infrared properties suggestive of accelerated evolution similar to CG members. While the Coma galaxies have X-ray emission consistent with known scaling relations between X-ray luminosity, star formation rate, and stellar mass, a CG galaxy comparison sample shows enhanced X-ray emission sometimes an order of magnitude more luminous than the expected value. Thus, while the mid-infrared properties of CG and Coma infall galaxies are similar, the X-ray data reveal that there are marked differences between these environments. While it has been hypothesized that low gas-phase metallicity may cause

  1. Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Kilborn, Virginia; Audcent-Ross, Fiona; Baumgardt, Holger; Bekki, Kenji

    2016-01-01

    We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L = 0.73 ± 0.39 M⊙/L⊙) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly falling rotation curve, reaching zero rotational velocity outside the turnover radius of rturn = 1.2re. This may be (1) a polar ring galaxy, with a tilted bar within a face-on disc; (2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as Hα emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the Hα light that remains must be sufficiently bright to be detected; this is only the case for three (14 per cent) galaxies in our sample. We conclude that the falling rotation curves expected of TDGs are intrinsically difficult to detect.

  2. Chemical substructure and inhomogeneous mixing in Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Venn, K. A.

    Evidence for inhomogeneous mixing in the Carina, Draco, and Sculptor dwarf galaxies is examined from chemical abundance patterns. Inhomogeneous mixing at early times is indicated in the classical dwarf galaxies, though cannot be ascertained in ultra faint dwarfs. Mixing efficiencies can affect the early metallicity distribution function, the pre-enrichment levels in globular clusters, and also have an impact on the structure of dwarf systems at early times. Numerical models that include chemical evolution explicitly do a better job in reproducing the observations, and make interesting predictions for the nature of dwarf galaxies and their first stars at the earliest times.

  3. VizieR Online Data Catalog: Friends-of-friends galaxy group finder (Tempel+, 2016)

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-01-01

    To delineate galaxy groups in the local Universe, we used galaxy data from the extragalactic distance database (EDD2; Tully et al., 2009AJ....138..323T). The sample encompasses three datasets. As the main source, we used the Two Micron All Sky Survey (Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) Redshift Survey (2MRS) galaxies brighter than 11.75 mag in the Ks band (for a description of the catalogue, see Huchra et al., 2012, Cat. J/ApJS/199/26). We only used galaxies that are securely off the Galactic plane: Galactic latitude |b|>5°. Since the galaxy sample becomes extremely sparse farther away, we only used galaxies with a cosmic microwave background (CMB) corrected redshift z=0...0.1 (up to 430Mpc). This selection restricts our 2MRS sample to 43480 galaxies. For our analysis, we complemented the main 2MRS sample with two other sources. From the CosmicFlows-2 survey that contains 8198 galaxies with redshift-independent distance estimates (CF2; Tully et al., 2013, Cat. J/AJ/146/86), we added 3627 (of these, 2799 galaxies do not have a measured Ks magnitude). In addition, we made use of the 2M++ catalogue Lavaux & Hudson (2011, Cat. J/MNRAS/416/2840), which combines elements from the 2MRS, the 6DF Galaxy Survey (Jones et al. 2009MNRAS.399..683J, Cat. VII/259), and the Sloan Digital Sky Survey (York et al., 2000AJ....120.1579Y). Of the 64745 galaxies of the 2M++, we added 31271 galaxies down to Ks<12.54, which extends the sample well beyond the 2MRS magnitude limit. Our final galaxy dataset includes 78378 galaxies. (4 data files).

  4. The Role of Groups in the Evolution of Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    2003-07-01

    Groups are the most common environment experienced by galaxies, yet they remain the least studied. The tidal fields and dynamical friction encountered by galaxies in groups probably holds the key to understanding the role of environment in driving the evolution of galaxies since z ~ 1. To study the evolution of galaxies in the group environment, we propose the first unbiased HST study of groups at moderate redshifts. Unlike previous HST group samples, that relied on radio or X-ray properties, our kinematically selected sample is drawn from a large redshift survey and is not biased towards unusually dense groups. HST imaging is essential to determine the morphology of galaxies in these systems and contrast this with the properties of galaxies in denser and more evolved groups and rich clusters at these epochs. HST data are also required to adequately compare the properties of groups at intermediate redshifts with local group samples derived from the 2df and Sloan surveys. We will combine the HST images with deep ground-based observations to study how morphologies and stellar populations of galaxies in groups have evolved in time. These observations are key to understanding the decline in the volume averaged star formation rate in the universe.

  5. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.

    2017-01-01

    The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm 1-4 . If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes 5 , the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies 6-9 , and there is observational 10 and theoretical 11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment 12-14 , making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M ⊙), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

  6. Galaxy Zoo: the interplay of quenching mechanisms in the group environment★

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Bamford, S. P.; Hart, R. E.; Kruk, S. J.; Masters, K. L.; Nichol, R. C.; Simmons, B. D.

    2017-08-01

    Does the environment of a galaxy directly influence the quenching history of a galaxy? Here, we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and near ultra-violet (NUV) detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining star formation history for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching time-scale of ∼ 2.5 Gyr from star forming to complete quiescence, during an average infall time (from ∼10R200 to 0.01R200) of ∼ 2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms that are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms that are correlated with satellite velocity, such as ram-pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead, an interplay of mergers, mass and morphological quenching and environment-driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.

  7. The Heavy Element Abundance in Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence

    2000-01-01

    Over the past few years we have analyzed a sample of clusters observed by the Advanced Spacecraft for Cosmology Astrophysics (ASCA) X-ray satellite. We performed spatially resolved X-ray spectroscopy of a sample of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. The spectral analysis was done using ASCA/SIS (Solid state Imaging Spectrometer) data combined with imaging data from ROSAT/PSPC (German acronym for X-ray satellite/Position Sensitive Proportional Counter) and Einstein/IPC (Imaging Proportional Counter) observations. We derived temperature profiles using single-temperature fits for all of the clusters in the sample, and also corrected for the presence of cold gas in the center of so-called 'cooling flow' clusters. For all of the clusters in the sample we derived Si and Fe abundance profiles. For a few of the clusters we also were able to derive Ne and S abundance profiles. We compared the elemental abundances derived at similar overdensities in all of the clusters in the sample. We also compared element mass-to-light ratios for the entire sample. We concluded that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discussed the importance of preheating of the intracluster medium by Type II supernovae on the cluster scaling relations.

  8. The Heavy Element Abundance in Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence

    2000-01-01

    Over the past few years we have analyzed a sample of clusters observed by the Advanced Spacecraft for Cosmology Astrophysics (ASCA) X-ray satellite. We performed spatially resolved X-ray spectroscopy of a sample of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. The spectral analysis was done using ASCA/SIS (Solid state Imaging Spectrometer) data combined with imaging data from ROSAT/PSPC (German acronym for X-ray satellite/Position Sensitive Proportional Counter) and Einstein/IPC (Imaging Proportional Counter) observations. We derived temperature profiles using single-temperature fits for all of the clusters in the sample, and also corrected for the presence of cold gas in the center of so-called 'cooling flow' clusters. For all of the clusters in the sample we derived Si and Fe abundance profiles. For a few of the clusters we also were able to derive Ne and S abundance profiles. We compared the elemental abundances derived at similar overdensities in all of the clusters in the sample. We also compared element mass-to-light ratios for the entire sample. We concluded that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discussed the importance of preheating of the intracluster medium by Type II supernovae on the cluster scaling relations.

  9. A search for extragalactic pulsars in the local group galaxies IC 10 and Barnard’s galaxy

    NASA Astrophysics Data System (ADS)

    Noori, H. Al; Roberts, M. S. E.; Champion, D.; McLaughlin, M.; Ransom, Scott; Ray, P. S.

    2017-06-01

    As of today, more than 2500 pulsars have been found, nearly all in the Milky Way, with the exception of ∼28 pulsars in the Small and Large Magellanic Clouds. However, there have been few published attempts to search for pulsars deeper in our Galactic neighborhood. Two of the more promising Local Group galaxies are IC 10 and NGC 6822 (also known as Barnard’s Galaxy) due to their relatively high star formation rate and their proximity to our galaxy. IC 10 in particular, holds promise as it is the closest starburst galaxy to us and harbors an unusually high number of Wolf-Rayet stars, implying the presence of many neutron stars. We observed IC 10 and NGC 6822 at 820 MHz with the Green Bank Telescope for ∼15 and 5 hours respectively, and put a strong upper limit of 0.1 mJy on pulsars in either of the two galaxies. We also performed single pulse searches of both galaxies with no firm detections.

  10. Characterisation of an isolated galaxy sample: Astrophysical implications

    NASA Astrophysics Data System (ADS)

    Argudo Fernandez, Maria del Carmen

    2013-11-01

    In order to understand the evolution of galaxies, it is necessary to have a reference sample where the effects of the environment are minimised and quantified. Recent advances in large redshift galaxy surveys, such as the Sloan Digital Sky Survey (SDSS-DR9), allow to reach a 3-dimensional picture of the environment. In the first two parts of the thesis, we present, in the framework of the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies), a revision of the isolation degree and a study of the 3-dimensional environment for galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973). Using the 3-dimensional information, new catalogues of isolated galaxies, isolated pairs, and isolated triplets are assembled in the third part of the thesis. The main aims of this thesis are: * to refine the photographic-based CIG and to provide an improvement of the quantification of the isolation degree with respect to previous works, using both photometry and spectroscopy; * to identify and quantify the effects of the physical satellite distribution around galaxies in the CIG, as well as the effects of the Large Scale Structure (LSS); * to construct a catalogue of galaxies isolated in 3-dimension, and build catalogues of physically associated isolated pairs and isolated triplets. We develop an automatic method to search for neighbours around each CIG galaxy in the SDSS, within a projected area up to 3 Mpc. To recover the physically bound neighbour galaxies we focus on the satellites which are within the escape speed of each CIG galaxy. The local number density, at the 5 th nearest neighbour, and the tidal strength affecting the CIG galaxy are estimated to quantify the local and LSS isolation degrees. For the first time, the environment and the isolation degree of CIG galaxies are quantified using digital data. Besides, the availability of the spectroscopic data allows us to check the validity of the CIG isolation criterion, and shows that it is not

  11. RR Lyrae variables in the Andromeda group galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Soung-Chul

    2011-08-01

    /H ]AndXI = -1.75; [Fe/H] AndXIII = --1.74) are consistent with the values calculated from the RGB slope indicating that our measurements are not significantly affected by the evolutionary effects of RRL stars. The distance to each galaxy was calculated using the absolute V magnitudes of the RRab stars. We obtained (m -- M)0, V = 24.54 for And XI and this value becomes (m -- M)0,V = 24.71 for And XIII. We discuss the origins of And XI and And XIII based on a comparative analysis of the luminosity-metallicity (L-M) relation of Local Group dwarf galaxies.

  12. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-07-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.

  13. Resolving the Galaxies within a Giant Lyα Nebula: Witnessing the Formation of a Galaxy Group?

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Dey, Arjun; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Eisenhardt, Peter; Le Floc'h, Emeric; Jannuzi, Buell T.; Kashikawa, Nobunari; Matsuda, Yuichi; Soifer, B. T.

    2012-06-01

    Detailed analysis of the substructure of Lyα nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Lyα nebula at z ≈ 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity (~0.1 L*) sources—17 primarily young, small (Re ≈ 1-2 kpc), disky galaxies including an obscured active galactic nucleus—that are all substantially offset (gsim20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Lyα emission; and (3) several nearly coincident, spatially extended emission components—Lyα, He II, and UV continuum—that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Lyα nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Lyα nebula system and suggest that large Lyα nebulae may be the seeds of galaxy groups or low-mass clusters.

  14. RESOLVING THE GALAXIES WITHIN A GIANT Ly{alpha} NEBULA: WITNESSING THE FORMATION OF A GALAXY GROUP?

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Soifer, B. T.; Eisenhardt, Peter; Le Floc'h, Emeric; Matsuda, Yuichi

    2012-06-20

    Detailed analysis of the substructure of Ly{alpha} nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Ly{alpha} nebula at z Almost-Equal-To 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity ({approx}0.1 L*) sources-17 primarily young, small (R{sub e} Almost-Equal-To 1-2 kpc), disky galaxies including an obscured active galactic nucleus-that are all substantially offset ({approx}>20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Ly{alpha} emission; and (3) several nearly coincident, spatially extended emission components-Ly{alpha}, He II, and UV continuum-that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Ly{alpha} nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Ly{alpha} nebula system and suggest that large Ly{alpha} nebulae may be the seeds of galaxy groups or low-mass clusters.

  15. Midlife Crises in Dwarf Galaxies in the NGC 5353/4 Group

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent; Trentham, Neil

    2008-04-01

    This third paper in a series about the dwarf galaxy populations in groups within the Local Supercluster concerns the intermediate mass (2.1 × 1013 M sun) NGC 5353/4 Group with a core dominated by S0 systems and a periphery of mostly spiral systems. Dwarf galaxies are strongly concentrated toward the core. The mass-to-light ratio M/LR = 105 M sun/L sun is a factor of 3 lower than for the two groups studied earlier in the series. The properties of the group suggest it is much less dynamically evolved than those two groups of early-type galaxies. By comparison, the NGC 5353/4 Group lacks superluminous systems but has a large fraction of intermediate-luminosity galaxies; or equivalently, a luminosity function with a flatter faint-end slope. The luminosity function for the NGC 5353/4 Group should steepen as the intermediate-luminosity galaxies merge. Evidence for the ongoing collapse of the group is provided by the unusually large incidence of star-formation activity in small galaxies with early morphological types. The pattern in the distribution of galaxies with activity suggests a succession of infall events. Residual gas in dwarfs that enter the group is used up in sputtering events. The resolution of midlife crises is exhaustion.

  16. Assessing colour-dependent occupation statistics inferred from galaxy group catalogues

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Hearin, Andrew; Padmanabhan, Nikhil; Berlind, Andreas; Mo, H. J.; Tinker, Jeremy; Yang, Xiaohu

    2015-09-01

    We investigate the ability of current implementations of galaxy group finders to recover colour-dependent halo occupation statistics. To test the fidelity of group catalogue inferred statistics, we run three different group finders used in the literature over a mock that includes galaxy colours in a realistic manner. Overall, the resulting mock group catalogues are remarkably similar, and most colour-dependent statistics are recovered with reasonable accuracy. However, it is also clear that certain systematic errors arise as a consequence of correlated errors in group membership determination, central/satellite designation, and halo mass assignment. We introduce a new statistic, the halo transition probability (HTP), which captures the combined impact of all these errors. As a rule of thumb, errors tend to equalize the properties of distinct galaxy populations (i.e. red versus blue galaxies or centrals versus satellites), and to result in inferred occupation statistics that are more accurate for red galaxies than for blue galaxies. A statistic that is particularly poorly recovered from the group catalogues is the red fraction of central galaxies as a function of halo mass. Group finders do a good job in recovering galactic conformity, but also have a tendency to introduce weak conformity when none is present. We conclude that proper inference of colour-dependent statistics from group catalogues is best achieved using forward modelling (i.e. running group finders over mock data) or by implementing a correction scheme based on the HTP, as long as the latter is not too strongly model dependent.

  17. Exploring X-Ray Binary Populations in Compact Group Galaxies with Chandra

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Lenkić, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-02-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  18. Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-01-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  19. Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-01-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  20. The environmental history of group and cluster galaxies in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Weinmann, Simone; Poggianti, Bianca M.; Aragón-Salamanca, Alfonso; Zaritsky, Dennis

    2012-06-01

    We use publicly available galaxy merger trees, obtained applying semi-analytic techniques to a large high-resolution cosmological simulation, to study the environmental history of group and cluster galaxies. Our results highlight the existence of an intrinsic history bias which makes the nature versus nurture (as well as the mass versus environment) debate inherently ill posed. In particular, we show that (i) surviving massive satellites were accreted later than their less massive counterparts, from more massive haloes and (ii) the mixing of galaxy populations is incomplete during halo assembly, which creates a correlation between the time a galaxy becomes satellite and its present distance from the parent halo centre. The weakest trends are found for the most massive satellites, as a result of efficient dynamical friction and late formation times of massive haloes. A large fraction of the most massive group/cluster members are accreted on to the main progenitor of the final halo as central galaxies, while about half of the galaxies with low and intermediate stellar masses are accreted as satellites. Large fractions of group and cluster galaxies (in particular those of low stellar mass) have therefore been ‘pre-processed’ as satellites of groups with mass ˜1013 M⊙. To quantify the relevance of hierarchical structure growth on the observed environmental trends, we have considered observational estimates of the passive galaxy fractions and their variation as a function of halo mass and clustercentric distance. Comparisons with our theoretical predictions require relatively long times (˜5-7 Gyr) for the suppression of star formation in group and cluster satellites. It is unclear how such a gentle mode of strangulation can be achieved by simply relaxing the assumption of instantaneous stripping of the hot gas reservoir associated with accreting galaxies, or if the difficulties encountered by recent galaxy formation models in reproducing the observed trends

  1. Cluster of galaxies & Cosmology - X-ray analysis of fossil group RXJ1720.1+2360

    NASA Astrophysics Data System (ADS)

    Lozada, Monica

    2012-09-01

    We present the results on the X-ray analysis of fossil group of galaxies RXJ1720.1+2360. Fossil Groups are systems associated to extended emission in X-rays with one single central elliptical galaxy surrounded by very faint companions. This unusual lack of bright galaxies in the group is presumably due to galactic cannibalism. In this study we present for the first time the imaging and spectral analysis of the XMM-Newton data of RXJ1720.1+2360. This work is part of a systematic study to determine the X-ray properties of fossil groups.

  2. IRAS 23532+2513: a compact group including a Seyfert 1 and a starburst galaxy.

    NASA Astrophysics Data System (ADS)

    Zou, Z.-L.; Xia, X.-Y.; Deng, Z.-G.; Wu, H.

    1995-12-01

    The very luminous infrared source IRAS 23532 coincides with a compact group of galaxies including MCG 04-01-002, MCG 04-01-003 and MCG 04-01-004. Spectroscopic observations show that the bright-nucleus galaxy MCG 04-01-002 is a Seyfert 1 and the disturbed spiral galaxy MCG 04-01-003 is a starburst galaxy. CCD images in V band reveal that clear tidal interaction exists between those two objects. This is another example of tidal interaction triggering starburst and Seyfert activity.

  3. Flocculent and grand design spiral structure in field, binary and group galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, D. M.; Elmegreen, B. G.

    1982-12-01

    A 12-division morphological system emphasizing arm continuity, length and symmetry has been developed for the classification of all spiral galaxies according to the regularity of their spiral arm structure. Arm classifications were tabulated for 305 barred and nonbarred spiral galaxies; of these, 79 are isolated, 52 are binary and 174 are in groups. Among the isolated SA galaxies, 68 + or - 10% have irregular and fragmented, or 'flocculent', spiral structures. Only 32 + or - 10% have symmetric spiral arms in the classic grand design pattern. Flocculent spirals are the most common structures of galaxies without companions or bars. Since flocculent galaxies may have bars and companions, and grand design galaxies may have neither bars nor companions, such perturbations are neither perfectly effective nor always necessary in the driving of grand design patterns.

  4. Constraints on the dynamical evolution of the galaxy group M81

    NASA Astrophysics Data System (ADS)

    Oehm, W.; Thies, I.; Kroupa, P.

    2017-05-01

    According to the standard model of cosmology, galaxies are embedded in dark matter haloes that are made of particles beyond the standard model of particle physics, thus extending the mass and the size of the visible baryonic matter by typically two orders of magnitude. The observed gas distribution throughout the nearby M81 group of galaxies shows evidence for past significant galaxy-galaxy interactions but without a merger between the present-day members having occurred. This group is here studied for possible dynamical solutions within the dark matter standard model. In order to cover a comprehensive set of initial conditions, the inner three core members M81, M82 and NGC 3077 are treated as a three-body model based on Navarro-Frenk-White profiles. The possible orbits of these galaxies are examined statistically taking into account dynamical friction. Long living, non-merging initial constellations that allow multiple galaxy-galaxy encounters comprise unbound galaxies only, which are arriving from a far distance and happen to simultaneously encounter each other within the recent 500 Myr. Our results are derived by the employment of two separate and independent statistical methods, namely a Markov chain Monte Carlo method and the genetic algorithm using the sap system environment. The conclusions reached are confirmed by high-resolution simulations of live self-consistent systems (N-body calculations). Given the observed positions of the three galaxies, the solutions found comprise predictions for their proper motions.

  5. Constraints on the dynamical evolution of the galaxy group M81

    NASA Astrophysics Data System (ADS)

    Oehm, W.; Thies, I.; Kroupa, P.

    2017-01-01

    According to the standard model of cosmology, galaxies are embedded in dark matter haloes that are made of particles beyond the standard model of particle physics, thus extending the mass and the size of the visible baryonic matter by typically two orders of magnitude. The observed gas distribution throughout the nearby M81 group of galaxies shows evidence for past significant galaxy-galaxy interactions but without a merger between the present-day members having occurred. This group is here studied for possible dynamical solutions within the dark matter standard model. In order to cover a comprehensive set of initial conditions, the inner three core members M81, M82 and NGC 3077 are treated as a three-body model based on Navarro-Frenk-White profiles. The possible orbits of these galaxies are examined statistically taking into account dynamical friction. Long living, non-merging initial constellations that allow multiple galaxy-galaxy encounters comprise unbound galaxies only, which are arriving from a far distance and happen to simultaneously encounter each other within the recent 500 Myr. Our results are derived by the employment of two separate and independent statistical methods, namely a Markov chain Monte Carlo method and the genetic algorithm using the sap system environment. The conclusions reached are confirmed by high-resolution simulations of live self-consistent systems (N-body calculations). Given the observed positions of the three galaxies, the solutions found comprise predictions for their proper motions.

  6. VizieR Online Data Catalog: Sample of Compact Group (CG) galaxies (Scudder+, 2012)

    NASA Astrophysics Data System (ADS)

    Scudder, J. M.; Ellison, S. L.; Mendel, J. T.

    2013-04-01

    We construct a sample of 75863 star-forming galaxies with robust metallicity and star formation rate (SFR) measurements from the Sloan Digital Sky Survey Data Release 7, from which we select a clean sample of compact group (CG) galaxies. The CGs are defined to be close configurations of at least four galaxies that are otherwise apparently isolated. Our selection results in a sample of 112 spectroscopically identified CG galaxies, which can be further divided into groups that are either embedded within a larger structure, such as a cluster or large group, or truly isolated systems. The CGs then serve as a probe into the influence of large-scale environment on a galaxy's evolution, while keeping the local density fixed at high values. W (2 data files).

  7. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  8. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  9. Exercises for distance estimates of the Local Group galaxies using Cepheid variables.

    NASA Astrophysics Data System (ADS)

    Sato, F.

    This paper presentes exercises for distance estimates of the Local Group galaxies LMC, SMC, M31, and NGC 6822 by use of data of the Cepheid variables in them and those in our own Galaxy taken from various literatures. The exercises are suitable for students of senior high schools and /or of liberal arts course of universities.

  10. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    SciTech Connect

    Das, M.; Honey, M.; Saito, T.; Iono, D.; Ramya, S.

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  11. The low-luminosity galaxy population in the NGC5044 Group

    NASA Astrophysics Data System (ADS)

    Cellone, Sergio A.; Buzzoni, Alberto

    2005-01-01

    We present multicolour imaging for a sample of 33 dwarf and intermediate-luminosity galaxies in the field of the NGC5044 Group, complemented with mid-resolution spectroscopy for a subsample of 13 objects. With these data, a revised membership and morphological classification is made for the galaxies in the sample. We were able to confirm all but one of the `definite members' included in the spectroscopic subsample, galaxies which were originally classified based on morphological criteria. An important fraction of background galaxies, however, is probably present among `likely' and `possible' members. The presence of a nucleus could be detected in just five out of the nine galaxies originally classified as dE,N, confirming the intrinsic difficulty of photographic-plate morphological classification for this kind of object. Our deep surface photometry provided clear evidence for disc structure in at least three galaxies previously catalogued as dE or dS0. Their transition-type properties are also evident from the colour-magnitude diagram, where they lie near the late-type galaxy locus, suggesting an evolutionary connection between a parent disc-galaxy population and at least some present-day dEs. Six new dSph candidates were also found, most of them at small projected distances from NGC5044, the central galaxy of the group. The NGC5044 Group appears clearly defined in redshift space, with a mean heliocentric radial velocity of = 2461 +/- 84km s-1 (z= 0.0082), and a moderate dispersion of σvr= 431 km s-1. Our kinematical data show no luminosity segregation for early-type galaxies: both dwarf and bright E/S0 systems show very similar velocity distributions (σvr~ 290 km s-1). This is in contrast to late-type galaxies, which seem to display a broader distribution (σvr~ 680 km s-1).

  12. EVOLUTION OF GROUP GALAXIES FROM THE FIRST RED-SEQUENCE CLUSTER SURVEY

    SciTech Connect

    Li, I. H.; Yee, H. K. C.; Hsieh, B. C.; Gladders, M. E-mail: hyee@astro.utoronto.ca E-mail: gladders@oddjob.uchicago.edu

    2012-04-20

    We study the evolution of the red-galaxy fraction (f{sub red}) in 905 galaxy groups with 0.15 {<=} z < 0.52. The galaxy groups are identified by the 'probability friends-of-friends' algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z {approx} 0.5 and that they have a formation epoch of z {approx}> 2. In general, groups at lower redshifts exhibit larger f{sub red} than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f{sub red} by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M{sub *}), total group stellar mass (M{sub *,grp}, a proxy for group halo mass), normalized group-centric radius (r{sub grp}), and local galaxy density ({Sigma}{sub 5}). We find that M{sub *} is the dominant parameter such that there is a strong correlation between f{sub red} and galaxy stellar mass. Furthermore, the dependence of f{sub red} on the environmental parameters is also a strong function of M{sub *}. Massive galaxies (M{sub *} {approx}> 10{sup 11} M{sub Sun }) show little dependence of f{sub red} on r{sub grp}, M{sub *,grp}, and {Sigma}{sub 5} over the redshift range. The dependence of f{sub red} on these parameters is primarily seen for galaxies with lower masses, especially for M{sub *} {approx}< 10{sup 10.6} M{sub Sun }. We observe an apparent 'group down-sizing' effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f{sub red}. We find a dependence of f{sub red} on both r{sub grp} and {Sigma}{sub 5} after the other parameters are controlled. At a fixed r{sub grp}, there is a significant dependence of f{sub red} on {Sigma}{sub 5}, while r{sub grp

  13. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - II. A connection with compact groups?

    NASA Astrophysics Data System (ADS)

    Duplancic, Fernanda; O'Mill, Ana Laura; Lambas, Diego G.; Sodré, Laerte; Alonso, Sol

    2013-08-01

    We analyse a sample of 71 triplets of luminous galaxies derived from the work of O'Mill et al. We compare the properties of triplets and their members with those of control samples of compact groups, the 10 brightest members of rich clusters and galaxies in pairs. The triplets are restricted to have members with spectroscopic redshifts in the range 0.01 ≤ z ≤ 0.14 and absolute r-band luminosities brighter than Mr = -20.5. For these member galaxies, we analyse the stellar mass content, the star formation rates, the Dn(4000) parameter and (Mg - Mr) colour index. Since galaxies in triplets may finally merge in a single system, we analyse different global properties of these systems. We calculate the probability that the properties of galaxies in triplets are strongly correlated. We also study total star formation activity and global colours, and define the triplet compactness as a measure of the percentage of the system total area that is filled by the light of member galaxies. We concentrate in the comparison of our results with those of compact groups to assess how the triplets are a natural extension of these compact systems. Our analysis suggests that triplet galaxy members behave similarly to compact group members and galaxies in rich clusters. We also find that systems comprising three blue, star-forming, young stellar population galaxies (blue triplets) are most probably real systems and not a chance configuration of interloping galaxies. The same holds for triplets composed of three red, non-star-forming galaxies, showing the correlation of galaxy properties in these systems. From the analysis of the triplet as a whole, we conclude that, at a given total stellar mass content, triplets show a total star formation activity and global colours similar to compact groups. However, blue triplets show a high total star formation activity with a lower stellar mass content. From an analysis of the compactness parameter of the systems we find that light is even more

  14. Local group irregular galaxies LGS 3 and Pegasus

    SciTech Connect

    Christian, C.A.; Tully, R.B.

    1983-07-01

    The Galileo/IFA 500 x 500 CCD camera was used to resolve red giant stars in the gas-rich dwarf galaxy LGS 3 at magnitudes fainter than V = 21.8. Depending on whether these stars are >10/sup 9/ yr old or 10/sup 8/--10/sup 9/ yr old, the distance of the galaxy is 0.7--1.2 Mpc. Although H I gas has been detected in this system, there has been no significant star formation for at least the last 7 x 10/sup 7/ yr. The CM diagram of LGS 3 is compared with the CM diagrams of the Pegasus irregular galaxy discussed by Hoessel and Mould. A distance of 1.3 Mpc is suggested for Pegasus, rather than the larger distance preferred by Hoessel and Mould or the very much larger distance offered by Sandage and Tammann.

  15. The effect of cosmic web filaments on the properties of groups and their central galaxies

    NASA Astrophysics Data System (ADS)

    Poudel, A.; Heinämäki, P.; Tempel, E.; Einasto, M.; Lietzen, H.; Nurmi, P.

    2017-01-01

    Context. The nature versus nurture scenario in galaxy and group evolution is a long-standing problem not yet fully understood on cosmological scales. Aims: We study the properties of groups and their central galaxies in different large-scale environments defined by the luminosity density field and the cosmic web filaments. Methods: We use the luminosity density field constructed using 8 h-1 Mpc smoothing to characterize the large-scale environments. We use the Bisous model to extract the filamentary structures in different large-scale environments. We study the properties of galaxy groups as a function of their dynamical mass in different large-scale environments. Results: We find differences in the properties of central galaxies and their groups in and outside of filaments at fixed halo and large-scale environments. In high-density environments, the group mass function has higher number densities in filaments compared to that outside of filaments towards the massive end. The relation is the opposite in low-density environments. At fixed group mass and large-scale luminosity density, mass-to-light ratios show that groups in filaments are slightly more luminous than those outside of filaments. At fixed group mass and large-scale luminosity density, central galaxies in filaments have redder colors, higher stellar masses, and lower specific star formation rates than those outside of filaments. However, the differences in central galaxy and group properties in and outside of filaments are not clear in some group mass bins. We show that the differences in central galaxy properties are due to the higher abundances of elliptical galaxies in filaments. Conclusions: Filamentary structures in the cosmic web are not simply visual associations of galaxies, but rather play an important role in shaping the properties of groups and their central galaxies. The differences in central galaxy and group properties in and outside of cosmic web filaments are not simple effects related

  16. Outskirts of Local Group Dwarf Galaxies Revealed by Subaru Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka

    2017-03-01

    Local Group galaxies are important targets since their stellar populations can be resolved, and their properties can be investigated in detail with the help of stellar evolutionary models. The newly-built instrument for the 8.2m Subaru Telescope, Hyper Suprime-Cam (HSC), which has a 1 Giga pixel CCD camera with 1.5 degrees field of view, is the best instrument for observing Local Group galaxies. We have carried out a survey for Local Group dwarf galaxies using HSC aiming to shed light on the outskirts of these galaxies. The survey covers target galaxies out beyond the tidal radii down to a depth unexplored by previous surveys. Thanks to the high spatial resolution and high sensitivity provided by the Subaru Telescope, we are able to investigate properties such as spatial distribution and stellar population from the very center of galaxies to the outskirts. In this article, I will show results for the dwarf irregular galaxy NGC 6822 and the dwarf spheroidal galaxy Ursa Minor.

  17. The GEEC2 spectroscopic survey of Galaxy groups at 0.8 < z < 1

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; McGee, Sean L.; Mok, Angus; Wilman, David J.; Finoguenov, Alexis; Bower, Richard G.; Mulchaey, John S.; Parker, Laura C.; Tanaka, Masayuki

    2014-09-01

    We present the data release of the Gemini-South GMOS spectroscopy in the fields of 11 galaxy groups at 0.8 < z < 1, within the COSMOS field. This forms the basis of the Galaxy Environment Evolution Collaboration 2 (GEEC2) project to study galaxy evolution in haloes with M ˜ 1013 M⊙ across cosmic time. The final sample includes 162 spectroscopically confirmed members with R < 24.75, and is >50 per cent complete for galaxies within the virial radius, and with stellar mass Mstar > 1010.3 M⊙. Including galaxies with photometric redshifts, we have an effective sample size of ˜400 galaxies within the virial radii of these groups. We present group velocity dispersions, dynamical and stellar masses. Combining with the GCLASS sample of more massive clusters at the same redshift, we find the total stellar mass is strongly correlated with the dynamical mass, with log M200 = 1.20(log Mstar - 12) + 14.07. This stellar fraction of ˜1 per cent is lower than predicted by some halo occupation distribution models, though the weak dependence on halo mass is in good agreement. Most groups have an easily identifiable most massive galaxy (MMG) near the centre of the galaxy distribution, and we present the spectroscopic properties and surface brightness fits to these galaxies. The total stellar mass distribution in the groups, excluding the MMG, compares well with an NFW (Navarro Frenk & White) profile with concentration 4, for galaxies beyond ˜0.2R200. This is more concentrated than the number density distribution, demonstrating that there is some mass segregation.

  18. The Evolution of Galaxy Number Density at z < 8 and Its Implications

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher J.; Wilkinson, Aaron; Duncan, Kenneth; Mortlock, Alice

    2016-10-01

    The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However, there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to z ˜ 8 to determine how the number densities of galaxies change as a function of time and mass limit. We show that the increase in the total number density of galaxies (ϕ T), more massive than M * = 106 M ⊙, decreases as ϕ T ˜ t -1, where t is the age of the universe. We further show that this evolution turns over and rather increases with time at higher mass lower limits of M * > 107 M ⊙. By using the M * = 106 M ⊙ lower limit we further show that the total number of galaxies in the universe up to z = 8 is {2.0}-0.6+0.7× {10}12 (2 trillion), almost a factor of 10 higher than would be seen in an all sky survey at Hubble Ultra-Deep Field depth. We discuss the implications for these results for galaxy evolution, as well as compare our results with the latest models of galaxy formation. These results also reveal that the cosmic background light in the optical and near-infrared likely arise from these unobserved faint galaxies. We also show how these results solve the question of why the sky at night is dark, otherwise known as Olbers’ paradox.

  19. The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample

    NASA Astrophysics Data System (ADS)

    Lenkić, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Hornschemeier, Ann E.; Durrell, Pat R.; Gronwall, Caryl

    2016-07-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 μm photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 μm photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-`red'), also have bluer UV colours, higher specific SFRs, and tend to lie in H I-rich groups, while galaxies that are MIR-inactive (MIR-`blue') have redder UV colours, lower specific SFRs, and tend to lie in H I-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M⊙ yr-1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  20. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5–1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (i.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy–galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (i) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ∼1.5–5 x SFR and ∼1–4 x SFR, respectively; and (ii) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ∼100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ∼Mpc scales, i.e., from gas not initially associated with the galaxies upon infall. Consequently

  1. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  2. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  3. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  4. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  5. THE EPOCH OF ASSEMBLY OF TWO GALAXY GROUPS: A COMPARATIVE STUDY

    SciTech Connect

    Nichols, Matthew; Bland-Hawthorn, Joss

    2013-10-01

    Nearby galaxy groups of comparable mass to the Local Group show global variations that reflect differences in their evolutionary history. Satellite galaxies in groups have higher levels of gas deficiency as the distance to their host decreases. The well established gas-deficiency profile of the Local Group reflects an epoch of assembly starting at z ∼< 10. We investigate whether this gas-deficiency profile can be used to determine the epoch of assembly for other nearby groups. We choose the M81 group as this has the most complete inventory, both in terms of membership and multi-wavelength observations. We expand our earlier evolutionary model of satellite dwarf galaxies to not only confirm this result for the Local Group but also show that the more gas-rich M81 group is likely to have assembled at a later time (z ∼< 1-3) than the Local Group.

  6. Strangers in the Night: Discovery of a Dwarf Spheroidal Galaxy on Its First Local Group Infall

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Peñarrubia, J.; Ibata, R.; McConnachie, A.; Martin, N.; Irwin, M.; Blain, A.; Lewis, G. F.; Letarte, B.; Lo, K.; Ludlow, A.; O'neil, K.

    2007-06-01

    We present spectroscopic observations of the And XII dwarf spheroidal galaxy using DEIMOS/Keck II, showing it to be moving rapidly through the Local Group (-556 km s-1 heliocentric velocity, -281 km s-1 relative to Andromeda), falling into the Local Group from ~115 kpc beyond Andromeda's nucleus. And XII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H I gas mass of <3×103 Msolar suggests that And XII's gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest that the dwarf is close to the escape velocity of M31 for published mass models. And XII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.

  7. The influence of the environment in compact galaxy groups: an infrared perspective

    NASA Astrophysics Data System (ADS)

    Charmandaris, V.; Bitsakis, T.

    2011-12-01

    We present a comprehensive study on the influence of the environment of compact galaxy groups to the evolution of their members using a multi-wavelength analysis, from the UV to the far-IR, on a sample of 32 Hickson Compact Groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha et al. (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We contrast our findings with control samples of field galaxies, early-stage interacting pairs, and galaxies in clusters. We find that classifying the evolutionary state of HCGs as dynamically ``old'' or ``young'' depending on whether or not they contain more than 25% or early-type galaxies is physical and consistent with past classifications based on their gas content. Late-type galaxies in dynamically ``young" groups have sSFR, as well as NUV-r and mid-infrared colors, which are similar to those of field and early stage interacting pairs. However, late-type galaxies in dynamically ``old'' groups have redder NUV-r colors, as they have likely experienced several tidal encounters in the past and built up their stellar mass, and they display lower sSFRs. Finally our model suggests that in 13 groups, 10 of which are dynamically ``old``, there is diffuse dust in the intragroup medium. All these evidence point to an evolutionary scenario in which it takes time for the group environment to visibly affect the properties of its members. Early on the influence of close companions to group galaxies is similar to the one of galaxy pairs in the field. However, as the time progresses, the effects of tidal torques and minor merging shape the morphology and star formation history of the group galaxies, leading to an increase of the fraction of early type members and a rapid built up of the stellar mass in the remaining late type galaxies.

  8. Fresh Activity in Old Systems: Radio AGNs in Fossil Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L.

    2012-08-01

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L 1.4 GHz > 1023 W Hz-1) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  9. Galaxy Evolution in Compact Groups from the UV to the Infrared

    NASA Astrophysics Data System (ADS)

    Bitsakis, Theodoros

    2013-01-01

    We present our results on the impact of the environment of compact galaxy groups to the evolution of their members. We performed multiwavelength analysis, from the UV to the far-IR, for the 32 Hickson compact groups (HCGs) for which high quality Spitzer mid-IR maps were available. To expand our analysis we have used a larger more complete sample of 1770 compact groups defined by applying the Hickson's criteria to the whole SDSS database. We have fitted the SEDs of all galaxies of the first sample, using the state-of-the-art model of Da Cunha et al. (2008) and accurately estimated their stellar masses, star formation rates (SFRs), and extinction, as well as their IR luminosity and dust content. We have also performed UV/GALEX photometry and obtained the near-IR/2MASS and mid-IR/WISE fluxes of all galaxies in SDSS groups in order to examine how their surface brightnesses (SBs), SFRs and nuclear activity vary as a function of their environment. As comparison/control samples we have used field, early-stage interacting pair, and cluster galaxies. We find that classifying the evolutionary state of compact groups as dynamically ``young'' (``old'') depending on whether (or not) they contain less than 25% of early-type galaxies is physical and consistent with past classifications. Late-type galaxies in ``young'' groups have specific SFR, as well as NUV-r and mid-IR colors, which are similar to those of field and interacting pairs. However, late-type galaxies in ``old'' groups have redder colors, as they had built-up their stellar masses due to numerous tidal encounters in the past. Yet, the mass distributions of late-type galaxies hosting an AGN are independent of the dynamical state of their group. Finally, we find that the SB profiles of the late-type galaxies evolve into earlier type systems before their SFR is reduced substantially. We suggest an evolutionary scenario in which it takes time for the group environment to visibly affect the properties of its members. The

  10. MCG 06-45-001 - Not a local group galaxy

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Sage, Leslie J.

    1990-01-01

    Observations of (C-12)O and (C-13)O J = 1 to 0 for MCG 06-45-001 are examined. It is argued that two features of CO emission with velocities of 1 and 10 km/s indicate that the object is similar to the Galactic molecular clouds in the immediate vicinity, and not to a spiral galaxy as suggested previously. It is considered that CO emission cannot arise from a spiral galaxy at a distance of 2-5 Mpc and that the object is unlikely to be a nearby dwarf. The feature at 10 km/s is considered to arise from a molecular cloud associated with an H II region, which produces the observed IRAS flux.

  11. Stellar systems in the direction of the Hickson Compact Group 44. I. Low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, A. V.; Faifer, F. R.; Escudero, C. G.

    2016-11-01

    Context. In spite of the numerous studies of low-luminosity galaxies in different environments, there is still no consensus about their formation scenario. In particular, a large number of galaxies displaying extremely low-surface brightnesses have been detected in the last year, and the nature of these objects is under discussion. Aims: In this paper we report the detection of two extended low-surface brightness (LSB) objects (μeffg' ≃ 27 mag) found, in projection, next to NGC 3193 and in the zone of the Hickson Compact Group (HCG) 44, respectively. Methods: We analyzed deep, high-quality, GEMINI-GMOS images with ELLIPSE within IRAF in order to obtain their brightness profiles and structural parameters. We also searched for the presence of globular clusters (GC) in these fields. Results: We have found that, if these LSB galaxies were at the distances of NGC 3193 and HCG 44, they would show sizes and luminosities similar to those of the ultra-diffuse galaxies (UDGs) found in the Coma cluster and other associations. In that case, their sizes would be rather larger than those displayed by the Local Group dwarf spheroidal (dSph) galaxies. We have detected a few unresolved sources in the sky zone occupied by these galaxies showing colors and brightnesses typical of blue globular clusters. Conclusions: From the comparison of the properties of the galaxies presented in this work with those of similar objects reported in the literature, we have found that LSB galaxies display sizes covering a quite extended continous range (reff 0.3-4.5 kpc), in contrast to "normal" early-type galaxies, which show reff 1.0 kpc with a low dispersion. This fact might point to different formation processes for both types of galaxies.

  12. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; Konstantopoulos, Iraklis, S.; Zabludoff, Ann I.

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  13. CHEMICAL ABUNDANCES OF SEVEN IRREGULAR AND THREE TIDAL DWARF GALAXIES IN THE M81 GROUP

    SciTech Connect

    Croxall, Kevin V.; Van Zee, Liese; Lee, Henry; Miller, Bryan W.; Skillman, Evan D.; Lee, Janice C.; Cote, Stephanie; Kennicutt, Robert C. E-mail: vanzee@astro.indiana.ed E-mail: skillman@astro.umn.ed E-mail: stephanie.cote@nrc-cnrc.gc.c E-mail: bmiller@gemini.ed

    2009-11-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H II regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H II region had a detection of the temperature sensitive [O III] lambda4363 line, allowing a 'direct' determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies, and the observed oxygen abundances are typically in agreement with the well-known metallicity-luminosity relation. However, three candidate 'tidal dwarf' galaxies lie well off this relation: UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sight as the M81 tidal debris field. We propose that these H II regions formed from previously enriched gas which was stripped from nearby massive galaxies (e.g., NGC 3077 and M81) during a recent tidal interaction.

  14. The frequency and properties of young tidal dwarf galaxies in nearby groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2017-03-01

    We present the results of a multi-wavelength investigation of the dwarf galaxy populations in three interacting galaxy groups: NGC 871/6/7, NGC 3166/9, NGC 4725/47. Using degree-scale Giant Metrewave Radio Telescope Hi mosaics and deep optical photometry from the Canada-France-Hawaii Telescope, we measured the Hi and stellar properties of the gas-rich low-mass group members to classify each one as a classical dwarf galaxy, a short-lived tidal knot or a tidal dwarf galaxy (TDG). Our observations detect several dwarf irregulars and various tidal knots. We identify four potentially long-lived tidal objects in the three groups, implying that TDGs are not readily produced. The tidal objects examined in this small survey also appear to have a wider variety of properties than TDGs formed in current simulations.

  15. Friends-of-friends galaxy group finder with membership refinement. Application to the local Universe

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-04-01

    Context. Groups form the most abundant class of galaxy systems. They act as the principal drivers of galaxy evolution and can be used as tracers of the large-scale structure and the underlying cosmology. However, the detection of galaxy groups from galaxy redshift survey data is hampered by several observational limitations. Aims: We improve the widely used friends-of-friends (FoF) group finding algorithm with membership refinement procedures and apply the method to a combined dataset of galaxies in the local Universe. A major aim of the refinement is to detect subgroups within the FoF groups, enabling a more reliable suppression of the fingers-of-God effect. Methods: The FoF algorithm is often suspected of leaving subsystems of groups and clusters undetected. We used a galaxy sample built of the 2MRS, CF2, and 2M++ survey data comprising nearly 80 000 galaxies within the local volume of 430 Mpc radius to detect FoF groups. We conducted a multimodality check on the detected groups in search for subgroups. We furthermore refined group membership using the group virial radius and escape velocity to expose unbound galaxies. We used the virial theorem to estimate group masses. Results: The analysis results in a catalogue of 6282 galaxy groups in the 2MRS sample with two or more members, together with their mass estimates. About half of the initial FoF groups with ten or more members were split into smaller systems with the multimodality check. An interesting comparison to our detected groups is provided by another group catalogue that is based on similar data but a completely different methodology. Two thirds of the groups are identical or very similar. Differences mostly concern the smallest and largest of these other groups, the former sometimes missing and the latter being divided into subsystems in our catalogue. The catalogues are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  16. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  17. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  18. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color–magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = ‑9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  19. The mass assembly of galaxy groups and the evolution of the magnitude gap

    NASA Astrophysics Data System (ADS)

    Dariush, Ali A.; Raychaudhury, Somak; Ponman, Trevor J.; Khosroshahi, Habib G.; Benson, Andrew J.; Bower, Richard G.; Pearce, Frazer

    2010-07-01

    We investigate the assembly of groups and clusters of galaxies using the Millennium dark matter simulation and the associated Millennium gas simulations, and semi-analytic catalogues of galaxies. In particular, in order to find an observable quantity that could be used to identify early-formed groups, we study the development of the difference in magnitude between their brightest galaxies to assess the use of magnitude gaps as possible indicators. We select galaxy groups and clusters at redshift z = 1 with dark matter halo mass M(R200) >= 1013 h-1 Msolar, and trace their properties until the present time (z = 0). We consider only the systems with X-ray luminosity LX,bol >= 0.25 × 1042h-2ergs-1 at redshift z = 0. While it is true that a large magnitude gap between the two brightest galaxies of a particular group often indicates that a large fraction of its mass was assembled at an early epoch, it is not a necessary condition. More than 90per cent of fossil groups defined on the basis of their magnitude gaps (at any epoch between 0 < z < 1) cease to be fossils within 4 Gyr, mostly because other massive galaxies are assembled within their cores, even though most of the mass in their haloes might have been assembled at early times. We show that compared to the conventional definition of fossil galaxy groups based on the magnitude gap Δ m12 >= 2 (in the R-band, within 0.5 R200 of the centre of the group), an alternative criterion Δ m14 >= 2.5 (within the same radius) finds 50per cent more early-formed systems, and those that on average retain their fossil phase longer. However, the conventional criterion performs marginally better at finding early-formed groups at the high-mass end of groups. Nevertheless, both criteria fail to identify a majority of the early-formed systems.

  20. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    SciTech Connect

    Tzanavaris, P.; Hornschemeier, A. E.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  1. VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Held, E. V.; Gullieuszik, M.; Saviane, I.; Sabbadin, F.; Momany, Y.; Rizzi, L.; Bresolin, F.

    The study of very metal-poor dwarf irregular (dIrr) galaxies is fundamental to test the cosmological scenarios of galaxy formation. Among Local Group galaxies, Leo A and SagDIG are probably the most metal-poor dwarfs, as suggested by estimates of their nebular abundances based on the empirical method [I. Saviane, L. Rizzi, E.V. Held, F. Bresolin, Y. Momany in Astron. Astrophys. 390, 59 (2002); E.D. Skillman, R. Terlevich, J. Melnick in Mon. Not. R. Astron. Soc. 240, 563 (1989); L. van Zee, E.D. Skillman, M.P. Haynes in Astrophys. J. 637, 269 (2006)].

  2. A 3D analysis of the metal distribution in the compact group of galaxies HCG 31

    NASA Astrophysics Data System (ADS)

    Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe

    2015-02-01

    We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.

  3. SLOSHING COLD FRONTS IN GALAXY GROUPS AND THEIR PERTURBING DISK GALAXIES: AN X-RAY, OPTICAL, AND RADIO CASE STUDY

    SciTech Connect

    Gastaldello, Fabio; Di Gesu, Laura; Ghizzardi, Simona; Rossetti, Mariachiara; Giacintucci, Simona; Girardi, Marisa; Roediger, Elke; Brighenti, Fabrizio; Buote, David A.; Humphrey, Philip J.; Eckert, Dominique; Ettori, Stefano; Mathews, William G.

    2013-06-10

    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

  4. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Bartelmann, Matthias; Benítez, Narciso; Infante, Leopoldo; and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  5. The luminosity-specific Planetary Nebulae density in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Buzzoni, A.; Arnaboldi, M.

    The value of the α ratio, the number of PNe per unit bolometric luminosity in a galaxy, is computed using stellar population synthesis models covering the whole range of Hubble types of galaxies.Model predictions are compared with the PNe counts in the Local Group, which indicate a fairly constant value of α - between 1 and 6 PNe per 10^7 solar luminosities - along the Hubble sequence.

  6. Tracing the evolution within nearby galaxy groups: a multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Bettoni, Daniela; Marino, Antonina; Rampazzo, Roberto; Plana, Henri; Rosado, Margarita; Galletta, Giuseppe; Mazzei, Paola; Bianchi, Luciana; Buson, Lucio M.; Ambrocio-Cruz, Patricia; Gabbasov, Ruslan

    2015-03-01

    Evolutionary scenarios suggest that several mechanisms (from inner secular evolution to accretion/merging) may transform galaxy members, driving groups from an active star forming phase to a more passive, typical of dense environments. We are investigating this transition in a nearby group sample, designed to cover a wide range of properties (see also Marino et al. (2010), Bettoni et al. (2011) and Marino et al. (2012)). We study two groups, USGC U268 and USGC U376 located in different regions of the Leo cloud, through a photometric and kinematic characterization of their member galaxies. We revisit the group membership, using results from recent red-shift surveys, and we investigate their substructures. U268, composed of 10 catalogued members and 11 new added members, has a small fraction (~24%) of early-type galaxies (ETGs). U376 has 16 plus 8 new added members, with ~38% of ETGs. We find the significant substructuring in both groups suggesting that they are likely accreting galaxies. U268 is located in a more loose environment than U376. For each member galaxy, broad band integrated and surface photometry have been obtained in far-UV (FUV) and near-UV (NUV) with GALEX, and in u, g, r, i, z (SDSS) bands. Hα imaging and 2D high resolution kinematical data have been obtained using PUMA Scanning Fabry-Perot interferometer at the 2.12 m telescope in San Pedro Mártir (Baja California, México). We improved the galaxy classification and we detected morphological and kinematical distortions that may be connected to either on-going and/or past interaction/accretion events or environmental induced secular evolution. U268 appears more active than U376, with a large fraction of galaxies showing interaction signatures (60% vs. 13%). The presence of bars among late-type galaxies is ~10% in U268 and 29% in U376. The cumulative distribution of (FUV - NUV) colors of galaxies in U268 is significantly different (bluer) than that of U376's galaxies. Most (80%) of the early

  7. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  8. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  9. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  10. THE RELATION BETWEEN MORPHOLOGY AND DYNAMICS OF POOR GROUPS OF GALAXIES

    SciTech Connect

    Tovmassian, Hrant M.; Plionis, M. E-mail: mplionis@astro.noa.gr

    2009-05-10

    We investigate the relation between the projected morphology and the velocity dispersion of groups of galaxies using two recently compiled group catalogs, one based on the Two Micron All Sky Survey redshift survey (Crook et al.) and the other on the Sloan Digital Sky Survey Data Release 5 galaxy catalog (Tago et al.). We analyze a suitable subsample of groups from each catalog selected such that it minimizes possible systematic effects. We find that the velocity dispersion of groups is strongly correlated with the group-projected shape and size, with elongated and larger groups having a lower velocity dispersion. Such a correlation could be attributed to the dynamical evolution of groups, with groups in the initial stages of formation, before virialization is complete, having small velocity dispersion, a large size, and an elongated shape that reflects the anisotropic accretion of galaxies along filamentary structures. However, we show that the same sort of correlations could also be reproduced in prolatelike groups, irrespective of their dynamical state, if the net galaxy motion is preferentially along the group elongation, since then the groups oriented close to the line of sight will appear more spherical, will have a small projected size and high-velocity dispersion, while groups oriented close to the sky plane will appear larger in projection, more elongated, and will have smaller velocity dispersion. Although both factors must play a role in shaping the observed correlations, we attempt to disentangle them by performing tests that relate only to the dynamical evolution of groups (i.e., calculating the fraction of early-type galaxies in groups and the projected group compactness). Indeed we find a strong positive (negative) correlation between the group velocity dispersion (group-projected major axis) with the fraction of early-type galaxy members. We conclude that (1) the observed dependences of the group velocity dispersion on the group-projected size and

  11. X-RAY GROUPS OF GALAXIES IN THE AEGIS DEEP AND WIDE FIELDS

    SciTech Connect

    Erfanianfar, G.; Lerchster, M.; Nandra, K.; Connelly, J. L.; Mirkazemi, M.; Finoguenov, A.; Tanaka, M.; Laird, E.; Bielby, R.; Faber, S. M.; Kocevski, D.; Jeltema, T.; Newman, J. A.; Coil, A. L.; Brimioulle, F.; Davis, M.; McCracken, H. J.; Willmer, C.; Gerke, B.; and others

    2013-03-10

    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800 ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z {approx} 0.066-1.544 and virial mass range M{sub 200} {approx} 1.34 Multiplication-Sign 10{sup 13}-1.33 Multiplication-Sign 10{sup 14} M{sub Sun }. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.

  12. The dependence of galaxy group star formation rates and metallicities on large-scale environment

    NASA Astrophysics Data System (ADS)

    Scudder, Jillian M.; Ellison, Sara L.; Mendel, J. Trevor

    2012-07-01

    We construct a sample of 75 863 star-forming galaxies with robust metallicity and star formation rate (SFR) measurements from the Sloan Digital Sky Survey Data Release 7, from which we select a clean sample of compact group (CG) galaxies. The CGs are defined to be close configurations of at least four galaxies that are otherwise apparently isolated. Our selection results in a sample of 112 spectroscopically identified CG galaxies, which can be further divided into groups that are either embedded within a larger structure, such as a cluster or large group, or truly isolated systems. The CGs then serve as a probe into the influence of large-scale environment on a galaxy's evolution, while keeping the local density fixed at high values. We find that the SFRs of star-forming galaxies in CGs are significantly different between isolated and embedded systems. Galaxies in isolated systems show significantly enhanced SFR, relative to a control sample matched in mass and redshift, a trend not seen in the embedded systems. Galaxies in isolated systems exhibit a median SFR enhancement at a fixed stellar mass of +0.07 ± 0.03 dex. These dependences on large-scale environment are small in magnitude relative to the apparent influence of local-scale effects found in previous studies, but the significance of the difference in SFRs between our two samples constrains the effect of large-scale environment to be non-zero. We find no significant change in the gas-phase interstellar metallicity for either the isolated or embedded CG sample relative to their controls. However, simulated samples that include artificial offsets indicate that we are only sensitive to metallicity changes of log O/H> 0.13 dex (at 99 per cent confidence), which is considerably larger than the typical metallicity differences seen in previous environmental studies.

  13. Measurable relationship between bright galaxies and their faint companions in WHL J085910.0+294957, a galaxy cluster at z = 0.30: vestiges of infallen groups?

    SciTech Connect

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-20

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (M{sub i} ≤ –18) galaxies and their faint (–18 < M{sub i} ≤ –15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (∼2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (∼2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  14. Measurable Relationship between Bright Galaxies and Their Faint Companions in WHL J085910.0+294957, a Galaxy Cluster at z = 0.30: Vestiges of Infallen Groups?

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-01

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (Mi <= -18) galaxies and their faint (-18 < Mi <= -15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (~2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (~2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  15. GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING

    SciTech Connect

    George, Matthew R.; Bundy, Kevin; Leauthaud, Alexie; Finoguenov, Alexis; Tinker, Jeremy; Lin, Yen-Ting; Mei, Simona; Kneib, Jean-Paul; Ilbert, Olivier; Aussel, Herve; Le Floc'h, Emeric; Behroozi, Peter S.; Busha, Michael T.; Capak, Peter; Coccato, Lodovico; Covone, Giovanni; Faure, Cecile; Fiorenza, Stephanie L.; and others

    2011-12-01

    Understanding the mechanisms that lead dense environments to host galaxies with redder colors, more spheroidal morphologies, and lower star formation rates than field populations remains an important problem. As most candidate processes ultimately depend on host halo mass, accurate characterizations of the local environment, ideally tied to halo mass estimates and spanning a range in halo mass and redshift, are needed. In this work, we present and test a rigorous, probabilistic method for assigning galaxies to groups based on precise photometric redshifts and X-ray-selected groups drawn from the COSMOS field. The groups have masses in the range 10{sup 13} {approx}< M{sub 200c}/M{sub Sun} {approx}< 10{sup 14} and span redshifts 0 < z < 1. We characterize our selection algorithm via tests on spectroscopic subsamples, including new data obtained at the Very Large Telescope, and by applying our method to detailed mock catalogs. We find that our group member galaxy sample has a purity of 84% and completeness of 92% within 0.5 R{sub 200c}. We measure the impact of uncertainties in redshifts and group centering on the quality of the member selection with simulations based on current data as well as future imaging and spectroscopic surveys. As a first application of our new group member catalog which will be made publicly available, we show that member galaxies exhibit a higher quenched fraction compared to the field at fixed stellar mass out to z {approx} 1, indicating a significant relationship between star formation and environment at group scales. We also address the suggestion that dusty star-forming galaxies in such groups may impact the high-l power spectrum of the cosmic microwave background and find that such a population cannot explain the low power seen in recent Sunyaev-Zel'dovich measurements.

  16. A GROUP-GALAXY CROSS-CORRELATION FUNCTION ANALYSIS IN zCOSMOS

    SciTech Connect

    Knobel, C.; Lilly, S. J.; Carollo, C. M.; Caputi, K.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Renzini, A.; Scodeggio, M.; Franzetti, P.; Garilli, B.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Cucciati, O.; Iovino, A.; De la Torre, S.; De Ravel, L.; and others

    2012-08-10

    We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 {<=} z {<=} 0.8 between the clustering strength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. Some exceptions are the richest groups at high redshift (estimated to be more massive than 10{sup 13.5} M{sub Sun }), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3{sigma} effect), which is attributed to the extremely large structure that is present in the COSMOS field at z {approx} 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.

  17. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  18. RR Lyrae stars in local group galaxies. I. NGC 185

    SciTech Connect

    Saha, A.; Hoessel, J.G. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-01-01

    Deep CCD images of NGC 185 taken with the 4-shooter on the Hale 5-m telescope have been processed to find and photometrically measure RR Lyrae stars. 176 variable stars have been found, of which 151 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The RR Lyrae stars in this galaxy have a very wide distribution of periods indicating a wide range of metallicity. The mean magnitudes of the RR Lyraes is determined to be 25.20 mag. A distance modulus of 23.79 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. 33 refs.

  19. THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES

    SciTech Connect

    Brook, C. B.; Cintio, A. Di; Knebe, A.; Yepes, G.; Gottlöber, S.; Hoffman, Y.; Garrison-Kimmel, S.

    2014-03-20

    We contend that a single power-law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low-mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated Local Group realizations, which we determine using local volume simulations. For the stellar mass range 10{sup 7} M {sub ☉}galaxies, we find that the stellar mass-halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. This steep relation between stellar and halo masses would indicate that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to-halo mass relation will decrease dramatically if the Local Group completeness limit was 10{sup 6.5} M {sub ☉} or below, highlighting the importance of pushing such limit to lower masses and larger volumes.

  20. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  1. Revised Mass-to-light Ratios for Nearby Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; McDonald, Michael; Courteau, Stéphane

    2015-02-01

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M 500 ~ 1014-1015 M ⊙), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/Li and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/Li and the fraction of blue galaxies (g - i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/Li ~= 1.7 ± 0.2 M ⊙/L i, ⊙, a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ~60% increase in M*/Li .

  2. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. II. GALAXY STRUCTURAL MEASUREMENTS AND THE CONCENTRATION OF MORPHOLOGICALLY CLASSIFIED SATELLITES IN DIVERSE ENVIRONMENTS

    SciTech Connect

    Cibinel, A.; Carollo, C. M.; Lilly, S. J.; Miniati, F.; Cameron, E.; Peng, Y.; Pipino, A.; Rudick, C. S.; Silverman, J. D.; Van Gorkom, J. H.; Finoguenov, A.; Norberg, P. E-mail: marcella@phys.ethz.ch

    2013-10-20

    We present structural measurements for the galaxies in the 0.05 < z < 0.0585 groups of the Zurich Environmental Study, aimed at establishing how galaxy properties depend on four environmental parameters: group halo mass (M{sub GROUP}), group-centric distance (R/R{sub 200}), ranking into central or satellite, and large-scale structure density (δ{sub LSS}). Global galaxy structure is quantified both parametrically and non-parametrically. We correct all these measurements for observational biases due to point-spread function blurring and surface brightness effects as a function of galaxy size, magnitude, steepness of light profile, and ellipticity. Structural parameters are derived also for bulges, disks, and bars. We use the galaxy bulge-to-total ratios (B/T) together with the calibrated non-parametric structural estimators to implement a quantitative morphological classification that maximizes purity in the resulting morphological samples. We investigate how the concentration C of satellite galaxies depends on galaxy mass for each Hubble type and on M{sub GROUP}, R/R{sub 200}, and δ{sub LSS}. At galaxy masses M ≥ 10{sup 10} M{sub ☉}, the concentration of disk satellites increases with increasing stellar mass separately within each morphological bin of B/T. The known increase in concentration with stellar mass for disk satellites is thus due, at least in part, to an increase in galaxy central stellar density at constant B/T. The correlation between concentration and galaxy stellar mass becomes progressively steeper for later morphological types. The concentration of disk satellites shows a barely significant dependence on δ{sub LSS} or R/R{sub 200}. The strongest environmental effect is found with group mass for >10{sup 10} M{sub ☉} disk-dominated satellites, which are ∼10% more concentrated in high mass groups than in lower mass groups.

  3. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  4. The HI Content of Galaxies in Groups and Clusters as Measured by ALFALFA

    NASA Astrophysics Data System (ADS)

    Odekon, Mary Crone; Koopmann, Rebecca A.; Haynes, Martha P.; Finn, Rose A.; McGowan, Christopher; Micula, Adina; Reed, Lyle; Giovanelli, Riccardo; Hallenbeck, Gregory

    2016-06-01

    We present the HI content of galaxies in nearby groups and clusters as measured by the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey, including constraints from ALFALFA detection limits. Our sample includes 22 systems at distances between 70 and 160 Mpc over the mass range 12.5<' {log} M/{M}⊙ < 15.0, for a total of 1986 late-type galaxies. We find that late-type galaxies in the centers of groups lack HI at fixed stellar mass relative to the regions surrounding them. Larger groups show evidence of a stronger dependence of HI properties on environment, despite a similar dependence of color on environment at fixed stellar mass. We compare several environment variables to determine which is the best predictor of galaxy properties; group-centric distance r and r/{R}200 are similarly effective predictors, while local density is slightly more effective and group size and halo mass are slightly less effective. While both central and satellite galaxies in the blue cloud exhibit a significant dependence of HI content on local density, only centrals show a strong dependence on stellar mass, and only satellites show a strong dependence on halo mass. Finally, we see evidence that HI is deficient for blue cloud galaxies in denser environments even when both stellar mass and color are fixed. This is consistent with a picture where HI is removed or destroyed, followed by reddening within the blue cloud. Our results support the existence of pre-processing in isolated groups, along with an additional rapid mechanism for gas removal within larger groups and clusters, perhaps ram-pressure stripping.

  5. Clusters and groups of galaxies in the 2dF galaxy redshift survey: A new catalogue

    NASA Astrophysics Data System (ADS)

    Tago, E.; Einasto, J.; Saar, E.; Einasto, M.; Suhhonenko, I.; Jõeveer, M.; Vennik, J.; Heinämäki, P.; Tucker, D. L.

    2006-05-01

    We create a new catalogue of groups and clusters, applying the friends-of-friends method to the 2dF GRS final release. We investigate various selection effects due to the use of a magnitude limited sample. For this purpose we follow the changes in group sizes and mean galaxy number densities within groups when shifting nearby observed groups to larger distances. We study the distribution of sizes of dark matter haloes in N-body simulations and compare properties of these haloes and the 2dF groups. We show that at large distances from the observer luminous and intrinsically greater groups dominate, but in these groups only very bright members are seen, which form compact cores of the groups. These two effects almost cancel each other, so that the mean sizes and densities of groups do not change considerably with distance. Our final sample contains 10750 groups in the Northern part, and 14465 groups in the Southern part of the 2dF survey with membership N_gal ≥ 2. We estimate the total luminosities of our groups, correcting for group members fainter than the observational limit of the survey. The cluster catalogue is available at our web-site (\\texttt{http://www.aai.ee/˜maret/2dfgr.html}).

  6. Compact Groups of Galaxies with Complete Spectroscopic Redshifts in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Hwang, Ho Seong; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Lee, Myung Gyoon; Lee, Gwang-Ho

    2015-12-01

    Dynamical analysis of compact groups provides important tests of models of compact group formation and evolution. By compiling 2066 redshifts from FLWO/FAST, from the literature, and from SDSS DR12 in the fields of compact groups in tet{McC09}, we construct the largest sample of compact groups with complete spectroscopic redshifts in the redshift range 0.01 < z < 0.22. This large redshift sample shows that the interloper fraction in the tet{McC09} compact group candidates is ˜ 42%. A secure sample of 332 compact groups includes 192 groups with four or more member galaxies and 140 groups with three members. The fraction of early-type galaxies in these compact groups is 62%, higher than for the original Hickson compact groups. The velocity dispersions of early- and late-type galaxies in compact groups change little with groupcentric radius; the radii sampled are less than 100 h^{-1} kpc, smaller than the radii typically sampled by members of massive clusters of galaxies. The physical properties of our sample compact groups include size, number density, velocity dispersion, and local environment; these properties slightly differ from those derived for the original Hickson compact groups and for the DPOSS II compact groups. Differences result from subtle differences in the way the group candidates were originally selected. The abundance of the compact groups changes little with redshift over the range covered by this sample. The approximate constancy of the abundance for this sample is a potential constraint on the evolution of compact groups on a few Gigayear timescale.

  7. Kinematics of the ionized gas in the Local Group irregular galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Valdez-Gutiérrez, M.; Rosado, M.; Georgiev, L.; Borissova, J.; Kurtev, R.

    2001-01-01

    We present Hα and [S Ii] observations for the Local Group irregular galaxy IC 1613 using the PUMA scanning Fabry-Perot interferometer. Our goal is to analyze the kinematics of the ionized gas in the complex sample of superbubbles located in the whole extension of our field (10\\arcmin ), which includes most of the optical emission of this galaxy, and to study the inter-relationship between young stellar associations and nebulae based on a previous study that we have made on the stellar associations of the central region of this galaxy. The ionized gas in this galaxy is distributed in classical H Ii regions and in a series of superbubbles (also called giant shells) covering a large fraction of the optical extent of the galaxy. We present a catalog of kinematical properties of both the H Ii regions of this galaxy and the superbubbles. We have also compared the kinematics of the ionized gas in H Ii regions to search for possible dynamic differences between neutral and ionized gas.

  8. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  9. What have we learned from the XMM-Newton surveys of Local Group Galaxies?

    NASA Astrophysics Data System (ADS)

    Haberl, F.

    2016-06-01

    The study of X-ray source populations and diffuse X-ray emission in nearby galaxies is of major importance in understanding the X-ray output of more distant galaxies as well as learning about processes that occur on interstellar scales within our own Galaxy. Depending on the star formation history of the galaxies different types of X-ray sources dominate the total X-ray emission. With modern observatories like XMM-Newton the various classes of X-ray sources (high and low mass X-ray binaries, supernova remnants, super-soft sources) can be studied to the faintest end of their luminosity distribution in Local Group galaxies. XMM-Newton successfully surveyed the large spiral galaxies M31 and M33 and the star forming, irregular Magellanic Clouds. I'll summarise the most important results we have obtained from older populations like low mass X-ray binaries and classical novae in M31 to the younger populations of high mass X-ray binaries and supernova remnants in the Magellanic Clouds. I'll discuss still open questions in this field of research which can be addressed using the high sensitivity of the XMM-Newton instruments.

  10. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  11. RR Lyrae stars in Local Group galaxies. IV - IC 1613

    NASA Astrophysics Data System (ADS)

    Saha, A.; Freedman, Wendy L.; Hoessel, John G.; Mossman, Amy E.

    1992-09-01

    Deep charge-coupled device images of a field in IC 1613 away from the star forming central regions were taken with the '4-shooter' on the Hale 5 m telescope, and processed to find photometrically measure variable stars. Fifteen RR Lyrae stars were found, and periods, light curves, and finding charts for them are presented. The mean magnitude of RR Lyrae stars in this galaxy is deduced to be 24.90 mag. Assuming the absolute g magnitude for RR Lyraes to be Mg = 0.73 mag, and using extinction Ag = 0.07 mag, a distance modulus of 24.10 +/- 0.27 mag is derived. The finding of RR Lyrae stars indicates the unambiguous presence of an old population. The distance modulus derived from them is smaller than that derived from the Cepheids by an amount which is dependent upon the RR Lyrae zero-point calibration adopted, and may be as large as 0.3 mag. The difference has the same sense and magnitude as the discrepancy in the LMC. The probable sources of the problem are discussed.

  12. RR Lyrae stars in local group galaxies. II. NGC 147

    SciTech Connect

    Saha, A.; Hoessel, J.G.; Mossman, A.E. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-07-01

    Deep CCD images of NGC 147 taken with the 4-shooter on the Hale 5 m telescope have been processed to find and photometrically measure RR Lyrae stars. 36 variable stars have been found, of which 32 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The mean magnitude of the RR Lyraes is determined to be 25.25 mag. A distance modulus 23.92 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. A wide range of periods is seen for the RR Lyrae stars, indicating a correspondingly wide range of metallicities for the stars in NGC 147. The distance modulus derived here places NGC 147 at a distance of 154 kpc from the center of M31, and in conjunction with the line sight velocities of these two galaxies, this implies a lower limit of 7.2 x 10 to the 11th solar masses for the mass of M31. 23 refs.

  13. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Maejima, Masato; Kobayashi, Hiroaki; Babazaki, Yasunori; Matsumoto, Hironori; Tawara, Yuzuru; Miller, Eric D.

    2015-08-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 4 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively while no significant emissions from diffuse sources were found from the other two targets. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to

  14. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki

    2016-07-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift

  15. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    NASA Astrophysics Data System (ADS)

    Schellenberger, G.; Vrtilek, J. M.; David, L.; O'Sullivan, E.; Giacintucci, S.; Johnston-Hollitt, M.; Duchesne, S. W.; Raychaudhury, S.

    2017-08-01

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, a 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.

  16. Merger Histories of Galaxy Halos and Implications for Disk Survival

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.

    2008-05-16

    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  17. THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP

    SciTech Connect

    McConnachie, Alan W.

    2012-07-15

    Positional, structural, and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates reliably placing them within 3 Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the quasi-isolated dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies that are found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups, such as Maffei, Sculptor, and IC 342. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, such as distances, velocities, magnitudes, mean metallicities, as well as structural and dynamical characteristics, are collated, homogenized (as far as possible), and presented in tables that will be continually updated to provide a convenient and current online resource. As well as discussing the provenance of the tabulated values and possible uncertainties affecting their usage, the membership and spatial extent of the MW sub-group, M31 sub-group, and the Local Group are explored. The morphological diversity of the entire sample and notable sub-groups is discussed, and timescales are derived for the Local Group members in the context of their orbital/interaction histories. The scaling relations and mean stellar metallicity trends defined by the dwarfs are presented, and the origin of a possible 'floor' in central surface brightness (and, more speculatively, stellar mean metallicity) at

  18. DARK MATTER DISTRIBUTION IN GALAXY GROUPS FROM COMBINED STRONG LENSING AND DYNAMICS ANALYSIS

    SciTech Connect

    Thanjavur, Karun; Crampton, David; Willis, Jon

    2010-05-10

    Using a combined analysis of strong lensing and galaxy dynamics, we characterize the mass distributions and the mass-to-light (M/L) ratios of galaxy groups, virialized structures in the mass range of few x 10{sup 14} M{sub sun}, which form an important transition regime in the hierarchical assembly of mass in {Lambda}CDM cosmology. Our goals are to not only map the mass distributions, but to also test whether the underlying density distribution at this mass scale is dark matter dominated, Navarro-Frenk-White (NFW) like as hypothesized by the standard cosmogony, or isothermal as observed in baryon-rich massive field galaxies. We present details of our lensing + galaxy dynamics formalism built around three representative density profiles, the dark matter dominant NFW and Hernquist distributions, compared with the softened isothermal sphere which matches baryon-rich galaxy scale objects. By testing the effects on the characteristics of these distributions due to variations in their parameters, we show that mass measurements in the core of the group (r/r{sub vir} {approx} 0.2), determined jointly from a lens model and from differential velocity dispersion estimates, may effectively distinguish between these density distributions. We apply our method to multi-object spectroscopy observations of two groups, SL2SJ143000+554648 and SL2SJ143139+553323, drawn from our catalog of galaxy group scale lenses discovered in CFHTLS-Wide imaging. With the lensing and dynamical mass estimates from our observations along with a maximum likelihood estimator built around our model, we estimate the concentration index characterizing each density distribution and the corresponding virial mass of each group. Our likelihood estimation indicates that both groups are dark matter dominant and rejects the isothermal distribution at >>3{sigma} level. For both groups, the estimated i-band M/L ratios of {approx}260 M{sub sun} L{sub sun} {sup -1} are similar to other published values for groups

  19. Status of The Dynamical Census of Galaxies and Groups in the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila; Hall, Kirsten; Moffett, Amanda J.; Norris, Mark A.; Stark, David; Hoversten, Erik A.; Snyder, Elaine M.; Bittner, Ashley; Norman, Dara J.; Naluminsa, Elizabeth; Crawford, Steve; Vaisanen, Petri; Baker, Ashley; Berlind, Andreas A.; Rosenberg, Daniel; Beauchemin, Ryan William; Bonfield, Charles; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy of a Local VolumE (RESOLVE) survey is measuring either velocity dispersions or rotation velocities for ~1500 galaxies and ~200 multi-galaxy groups within >50,000 cubic Mpc of the z~0 universe, above a galaxy baryonic mass limit of ~10^9 Msun. Our kinematic census combines multi-slit, IFU, Fabry-Perot, long-slit, and radio linewidth data from the SOAR, SALT, Gemini, AAT, GBT, and Arecibo telescopes, with telescope/instrument combinations optimized for individual galaxy properties. We present a status update of the data taken, particularly focusing on the RESOLVE Early Science region overlapping Stripe 82. We also discuss challenges for dynamical measurements including measuring galaxy inclinations, determining the mix of support from rotational and random motions, and measuring dynamical masses for groups with few members. Finally, we conclude with a preliminary velocity function for the RESOLVE Early Science region. This work has been supported by the NSF through grants AST-0955368 and OCI-1156614, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society of Fellows Dissertation Completion Fellowship.

  20. A catalog of compact groups of galaxies in the RSDSS commissioning data

    SciTech Connect

    Lee, Brian C.; Allam, Sahar S.; Tucker, Douglas L.; Annis, James; Blanton, Michael R.; Johnston, David E.; Scranton, Ryan; Acebo, Yamina; Bahcall, Neta A.; Bartelmann, Matthias; Bohringer, Hans; Ellman, Nancy; Grebel, Eva K.; Infante, Leopoldo; Loveday, Jon; McKay, Timothy A.; Prada, Francisco; Schneider, Donald P.; Stoughton, Chris; Szalay, Alexander S.; Vogeley, Michael S.; Voges, Wolfgang; Yanny, Brian

    2003-11-18

    Compact groups (CGs) of galaxies--relatively poor groups of galaxies in which the typical separations between members is of the order of a galaxy diameter--offer an exceptional laboratory for the study of dense galaxian environments with short (<1Gyr) dynamical time-scales. In this paper, we present an objectively defined catalog of CGs in 153 sq deg of the Sloan Digital Sky Survey Early Data Release (SDSS EDR). To identify CGs, we applied a modified version of Hickson's (1982) criteria aimed at finding the highest density CGs and thus reducing the number of chance alignments. Our catalog contains 175 CGs down to a limiting galaxy magnitude of r* = 21. The resulting catalog has a median depth of approximately z = 0.13, substantially deeper than previous CG catalogs. Since the SDSS will eventually image up to one quarter of the celestial sphere, we expect our final catalog, based upon the completed SDSS, will contain on the order of 5,000-10,000 CGs. This catalog will be useful for conducting studies of the general characteristics of CGs, their environments, and their component galaxies.

  1. X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku

    NASA Astrophysics Data System (ADS)

    Thölken, Sophia; Lovisari, Lorenzo; Reiprich, Thomas H.; Hasenbusch, Jan

    2016-07-01

    Context. In the last few years, the outskirts of galaxy clusters have been studied in detail and the analyses have brought up interesting results such as indications of possible gas clumping and the breakdown of hydrostatic, thermal, and ionization equilibrium. These phenomena affect the entropy profiles of clusters, which often show deviations from the self-similar prediction around R200. However, significant uncertainties remain for groups of galaxies. In particular the question, of whether entropy profiles are similar to those of galaxy clusters. Aims: We investigated the gas properties of the galaxy group UGC 03957 up to 1.4 R200 ≈ 1.4 Mpc in four azimuthal directions with the Suzaku satellite. We checked for azimuthal symmetry and obtained temperature, entropy, density, and gas mass profiles. Previous studies point to deviations from equilibrium states at the outskirts of groups and clusters and so we studied the hydrodynamical status of the gas at these large radii. Methods: We performed a spectral analysis of five Suzaku observations of UGC 03957 with ~138 ks good exposure time in total and five Chandra snapshot observations for point source detection. We investigated systematic effects such as point spread function and uncertainties in the different background components, and performed a deprojection of the density and temperature profile. Results: We found a temperature drop of a factor of ~3 from the center to the outskirts that is consistent with previous results for galaxy clusters. The metal abundance profile shows a flat behavior towards large radii, which is a hint for galactic winds as the primary ICM enrichment process. The entropy profile is consistent with numerical simulations after applying a gas mass fraction correction. Feedback processes and AGN activity might be one explanation for entropy modification, imprinting out to larger radii in galaxy groups than in galaxy clusters. Previous analyses for clusters and groups often showed an

  2. Intergalactic Stellar Distributions in the Interacting M81/M82 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Sun, W.-H.; Zhou, X.; Chen, W.-P.; Burstein, D.; Windhorst, R. A.; Ma, J.; Byun, Y.-I.; Jiang, Z.-J.; Chen, J.-S.

    2005-09-01

    Previous H I observations of the M81/M82/NGC 3077 galaxy group clearly show a widespread H I distribution within this galaxy group. While the gas is vulnerable to tidal disruption from a galaxy encounter, are there also stars embedded in this H I distribution? Our deep, 1 deg2 exposures of the M81/M82 group in 10 optical bands using the Beijing-Arizona-Taipei-Connecticut (BATC) filter set clearly reveal widespread stellar distributions that coincide with the atomic hydrogen clouds-considered to be the relics of the merging process of the galaxies-splayed over the region. The spectral energy distributions of the stellar groups to the east and west of M81 (including the ``Arp Loop'') are similar to that measured at the southeast edge of the optical disk of M82. This similarity in stellar radiation, combined with the observed peculiar rotational velocity of M82, suggests that the diffuse stellar population in the intergalactic space around M81 is possibly a relic of the tidally disrupted disk of M82 during the last close encounter. Alternately, the stars could have formed in situ in the H I as it was drawn out of the galaxies. Recent measurements of distances to and radial velocities of M81 (3.63 Mpc and 48 km s-1, respectively) and M82 (3.9 Mpc and 296 km s-1) lend further support to the notion of a close passage between these two galaxies several hundred million years ago.

  3. Redshift Survey of Galaxies around a Selected Sample of Compact Groups

    NASA Astrophysics Data System (ADS)

    de Carvalho, Reinaldo R.; Ribeiro, André L. B.; Capelato, Hugo V.; Zepf, Stephen E.

    We report the results of a spectroscopic survey of faint galaxies in the regions surrounding Hickson compact groups. Our sample is composed of 17 groups within 9000 km s-1. The spectra were taken at the prime focus of the Tololo 4 m telescope, using the ARGUS fiber-fed spectrograph. From these observations, redshifts were determined for the faint galaxies previously identified by de Carvalho, Ribeiro, & Zepf in the surroundings of the groups. Statistical methods were applied to the resultant catalog in order to determine the kinematical structure of each group. This analysis confirms the idea that the Hickson sample of compact groups contains a wide variety of projection and dynamical configurations. Our results demonstrate the necessity of new spectroscopic surveys around compact groups in order to assess their complete velocity distribution.

  4. Star Formation Suppression in Compact Group Galaxies: A New Path to Quenching?

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.; Bitsakis, T.; Lanz, L.; Lacy, M.; Charmandaris, V.; Cluver, M.; Dopita, M. A.; Guillard, P.; Jarrett, T.; Kewley, L. J.; Nyland, K.; Ogle, P. M.; Rasmussen, J.; Rich, J. A.; Verdes-Montenegro, L.; Xu, C. K.; Yun, M.

    2015-10-01

    We present CO(1-0) maps of 12 warm H2-selected Hickson Compact Groups (HCGs), covering 14 individually imaged warm H2 bright galaxies, with the Combined Array for Research in Millimeter Astronomy. We found a variety of molecular gas distributions within the HCGs, including regularly rotating disks, bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and early-type galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression of < {S} > =10+/- 5, distributed bimodally, with five objects exhibiting suppressions of {S} ≳ 10 and depletion timescales ≳10 Gyr. This SF inefficiency is also seen in the efficiency per freefall time of Krumholz et al. We investigate the gas-to-dust ratios of these galaxies to determine if an incorrect LCO-M(H2) conversion caused the apparent suppression and find that HCGs have normal gas-to-dust ratios. It is likely that the cause of the apparent suppression in these objects is associated with shocks injecting turbulence into the molecular gas, supported by the fact that the required turbulent injection luminosity is consistent with the bright H2 luminosity reported by Cluver et al. Galaxies with high SF suppression ({S} ≳ 10) also appear to be those in the most advanced stages of transition across both optical and infrared color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work on poststarburst galaxies with molecular reservoirs, indicates that galaxies do not need to expel their molecular reservoirs prior to quenching SF and transitioning from blue spirals to red early-type galaxies. This may imply that SF quenching can

  5. On the recovery of the local group motion from galaxy redshift surveys

    SciTech Connect

    Nusser, Adi; Davis, Marc; Branchini, Enzo E-mail: mdavis@berkeley.edu

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  6. On the Recovery of the Local Group Motion from Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Davis, Marc; Branchini, Enzo

    2014-06-01

    There is an ~150 km s-1 discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s-1 in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the Ks = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ~100 h -1 Mpc. Deeper redshift surveys are needed to reach the "convergence scale" of ≈250 h -1 Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the "Kaiser rocket" which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ~90 km s-1. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  7. Local Group Dwarf Galaxies in the LCDM Cosmology: Theory Meets Observations

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik Jon

    2012-05-01

    Dwarf galaxies include some of the most extreme low-luminosity objects in the universe, and provide important windows into a wide variety of processes in galaxy formation and evolution. In this thesis, I describe a series of comparisons between observations of dwarf galaxies and predictions of the ΛCDM concordance cosmology, with a focus on Local Group satellites. I first correct the Milky Way satellite luminosity function for luminosity bias under the assumption of a typical ΛCDM satellite distribution, finding consistency with the observations and a prediction of possibly hundreds of faint Milky Way satellites. I also describe a new technique to connect the luminous properties of these satellites (as well as brighter galaxies) to their expected dark matter halo properties. I further consider the brightest Milky Way satellite, the Large Magellanic cloud (LMC), in a cosmological context by comparing it to similar galaxies in the Sloan Digital Sky Survey (SDSS). This shows that ΛCDM n-body simulations provide a good match to observations of such satellites. I also show that, while LMC-like satellites are not uncommon, the LMC is unusual in how blue it is, especially given that the SDSS satellites are significantly redder than typical galaxies of their size. Finally, I present a large new data for faint satellites of M31, the nearest galaxy similar to the Milky Way, providing a second data point for detailed studies of faint satellite systems. I also shows that its satellites are very similar in their general properties to that of the Milky Way satellites.

  8. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  9. A new method for finding and characterizing galaxy groups via low-frequency radio surveys

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.

    2017-09-01

    We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ∼2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.

  10. The Low-luminosity Galaxy Population in the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Cellone, S. A.; Buzzoni, A.

    Detailed surface photometry for 79 (mostly dwarf) galaxies in the NGC5044 Group area is analysed, revealing the existence of different morphologies among objects originally classified as early-type dwarfs. Particularly, a significant fraction of bright dwarf "ellipticals" show a distinct bulge+disc structure; we thus re-classify these objects as dwarf lenticulars (dS0).

  11. Observations of dwarfs in nearby voids: implications for galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Pustilnik, Simon A.

    2016-10-01

    The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on their evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/LB and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M* and the second evolutionary parameter - gas mass-fraction f g). The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30\\%, indicating slower evolution. Besides, the fraction of ~10\\% of the whole void sample or ~30\\% of the least luminous void LSB dwarfs show the oxygen deficiency by a factor of 2-5. The majority of this group appear very gas-rich, with f g ~(95-99)%, while their outer parts appear rather blue, indicating the time of onset of the main star-formation episode of less than 1-4 Gyr. Such unevolved LSBD galaxies appear not rare among the smallest void objects, but turned out practically missed to date due to the strong observational selection effects. Our results evidense for unusual evolutionary properties of the sizable fraction of void galaxies, and thus, pose the task of better modelling of dwarf galaxy formation and evolution in voids.

  12. An objective determination of blue star groupings in the Andromeda galaxy.

    NASA Astrophysics Data System (ADS)

    Battinelli, P.; Efremov, Y.; Magnier, E. A.

    1996-10-01

    We have used an objective method, the Path Linkage Criterion (PLC), to identify large groupings of young stars in the Andromeda Galaxy. Previously, work has been done to objectively identify the structures which correspond in size to the OB associations observed in the Galaxy and Magellanic Clouds (Magnier et al. 1993). In this work, we attempt to identify structures which correspond to the 500 pc-sized complexes described by Efremov et al. (1987) and to test for a hierarchical arrangement of the observed structures. We find that complex-sized structures can naturally be identified using the PLC, and that there is indeed a hierarchical arrangement of the complexes and associations identified.

  13. The Tavistock Group: Empirical Findings and Implications for Group Therapy.

    ERIC Educational Resources Information Center

    Rugel, Robert P.; Meyer, Darrell J.

    1984-01-01

    Presents a factor analysis for subjects (N=52) participating in a Tavistock Group. Indicates the importance of the emergence of workable structures for leaders and members and the expression of affection and commentary on group processes. Output, input, self-understanding, and catharsis were the most valued factors. (Author/JAC)

  14. Young star clusters in the interacting galaxies of Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Miah, J. A.; Sharples, R. M.; Cho, J.

    2015-03-01

    Deep images of Hickson Compact Group 90 (HCG 90) have been obtained using the Advanced Camera for Surveys on the Hubble Space Telescope. We report results for star clusters observed in the interacting pair of galaxies NGC 7174 and NGC 7176. We present magnitude and colour distributions for the observed cluster population and find that the majority of objects show colours similar to intermediate/old age (>1 Gyr) globular clusters. However, a significant population of blue star clusters are also observed which may have formed from the tidal interaction currently occurring between the two galaxies. We find luminosity function turnover magnitudes of m^{TO}g = 25.1 ± 0.1 and m^{TO}z = 24.3 ± 0.1 for the g and z bands, respectively, implying distances of Dg = 28.8 ± 2.6 Mpc and Dz = 34.7 ± 3.1 Mpc to these galaxies, using the globular cluster luminosity function method. Lastly, we determine a total cluster population of approximately NGC ≃ 212 ± 10 over all magnitudes and a low specific frequency of SN ˜ 0.6 ± 0.1 for this pair of interacting elliptical and spiral galaxies. The small globular cluster population is likely due to tidal interactions taking place between the two galaxies which may have stripped many progenitor clusters away and formed the diffuse light observed at the core of HCG 90.

  15. HUBBLE SPACE TELESCOPE Observations of the Local Group Dwarf Galaxy Leo I

    NASA Astrophysics Data System (ADS)

    Gallart, Carme; Freedman, Wendy L.; Mateo, Mario; Chiosi, Cesare; Thompson, Ian B.; Aparicio, Antonio; Bertelli, Gianpaolo; Hodge, Paul W.; Lee, Myung G.; Olszewski, Edward W.; Saha, Abhijit; Stetson, Peter B.; Suntzeff, Nicholas B.

    1999-04-01

    We present deep HST F555W (V) and F814W (I) observations of a central field in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting color-magnitude diagram (CMD) reaches I~=26 and reveals the oldest ~=10-15 Gyr old turnoffs. Nevertheless, a horizontal branch is not obvious in the CMD. Given the low metallicity of the galaxy, this likely indicates that the first substantial star formation in the galaxy may have been somehow delayed in Leo I in comparison with the other dSph satellites of the Milky Way. The subgiant region is well and uniformly populated from the oldest turnoffs up to the 1 Gyr old turnoff, indicating that star formation has proceeded in a continuous way, with possible variations in intensity but no big gaps between successive bursts, over the galaxy's lifetime. The structure of the red clump of core He-burning stars is consistent with the large amount of intermediate-age population inferred from the main sequence and the subgiant region. In spite of the lack of gas in Leo I, the CMD clearly shows star formation continuing until 1 Gyr ago and possibly until a few hundred Myr ago in the central part of the galaxy.

  16. LENTICULAR GALAXIES AT THE OUTSKIRTS OF THE LEO II GROUP: NGC 3599 AND NGC 3626

    SciTech Connect

    Sil'chenko, O. K.; Shulga, A. P.; Moiseev, A. V. E-mail: alina.shulga@gmail.co

    2010-11-15

    We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of three-dimensional spectroscopy, long-slit spectroscopy, and imaging, with the aim of identifying the epoch and mechanisms of their transformation from spirals. Both galaxies have appeared to bear complex features obviously resulting from minor merging: decoupled gas kinematics, nuclear star-forming rings, and multi-tiered oval large-scale stellar disks. The weak emission line nucleus of NGC 3599 bears all signs of Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. We conclude that the transformation of these lenticular galaxies took place about 1-2 Gyr ago, through gravitational mechanisms unrelated to the hot intragroup medium of Leo II.

  17. Hierarchical Formation in Action: Characterizing Accelerated Galaxy Evolution in Compact Groups Using Whole-sky WISE Data

    NASA Astrophysics Data System (ADS)

    Zucker, Catherine; Walker, Lisa May; Johnson, Kelsey; Gallagher, Sarah; Alatalo, Katherine; Tzanavaris, Panayiotis

    2016-04-01

    Compact groups provide an environment to study the growth of galaxies amid multiple prolonged interactions. With their dense galaxy concentrations and relatively low velocity dispersions, compact groups mimic the conditions of hierarchical galaxy assembly. Compact group galaxies are known to show a bimodality in Spitzer IRAC infrared color space: galaxies are preferentially either quiescent with low specific star formation rates (SSFRs) or prolifically forming stars—galaxies with moderate levels of specific star formation are rare. Previous Spitzer IRAC studies identifying this “canyon” have been limited by small number statistics. We utilize whole-sky Wide-field Infrared Survey Explorer (WISE) data to study 163 compact groups, thereby tripling our previous sample and including more galaxies with intermediate mid-IR colors indicative of moderate SSFRs. We define a distinct WISE mid-IR color space ≤ft({log}≤ft[\\tfrac{{f}12}{{f}4.6}\\right]\\right) versus ≤ft({log}≤ft[\\tfrac{{f}22}{{f}3.4}\\right]\\right) that we use to identify canyon galaxies from the larger sample. We confirm that compact group galaxies show a bimodal distribution in the mid-infrared and identify 37 canyon galaxies with reliable photometry and intermediate mid-IR colors. Morphologically, we find that the canyon harbors a large population of both Sa-Sbc and E/S0 type galaxies, and that they fall on the optical red sequence rather than the green valley. Finally, we provide a catalog of WISE photometry for 567 of 652 galaxies selected from the sample of 163 compact groups.

  18. Infrared Surface Brightness Analysis of Galaxies in Compact Groups

    NASA Astrophysics Data System (ADS)

    Plauchu-Frayn, I.; Coziol, R.; Bravo-Alfaro, H.

    Observations were carried out during seven nights at the 2.12m telescope of the Observatorio Astronómico Nacional, located in Baja Califormia, México. The images were obtained with the NIR Camera CAMILA using J and K' filters for seven groups (Plauchu-Frayn et al. 2006).

  19. Fraction of the X-ray selected AGNs with optical emission lines in galaxy groups

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Qirong; Bian, Weihao; Chen, Xi; Yan, Pengfei

    2017-04-01

    Compared with numerous X-ray dominant active galactic nuclei (AGNs) without emission-line signatures in their optical spectra, the X-ray selected AGNs with optical emission lines are probably still in the high-accretion phase of black hole growth. This paper presents an investigation on the fraction of these X-ray detected AGNs with optical emission-line spectra in 198 galaxy groups at z<1 in a rest frame 0.1-2.4 keV luminosity range 41.3 < log(LX/erg s^{-1}) < 44.1 within the Cosmological Evolution Survey (COSMOS) field, as well as its variations with redshift and group richness. For various selection criteria of member galaxies, the numbers of galaxies and the AGNs with optical emission lines in each galaxy group are obtained. It is found that, in total 198 X-ray groups, there are 27 AGNs detected in 26 groups. AGN fraction is on average less than 4.6 (±1.2)% for individual groups hosting at least one AGN. The corrected overall AGN fraction for whole group sample is less than 0.98 (±0.11) %. The normalized locations of group AGNs show that 15 AGNs are found to be located in group centers, including all 6 low-luminosity group AGNs (L_{ 0.5-2 keV} < 10^{42.5} erg s^{-1}). A week rising tendency with z are found: overall AGN fraction is 0.30-0.43% for the groups at z<0.5, and 0.55-0.64% at 0.5 < z < 1.0. For the X-ray groups at z>0.5, most member AGNs are X-ray bright, optically dull, which results in a lower AGN fractions at higher redshifts. The AGN fraction in isolated fields also exhibits a rising trend with redshift, and the slope is consistent with that in groups. The environment of galaxy groups seems to make no difference in detection probability of the AGNs with emission lines. Additionally, a larger AGN fractions are found in poorer groups, which implies that the AGNs in poor groups might still be in the high-accretion phase, whereas the AGN population in rich clusters is mostly in the low-accretion, X-ray dominant phase.

  20. ANCIENT STARS BEYOND THE LOCAL GROUP: RR LYRAE VARIABLES AND BLUE HORIZONTAL BRANCH STARS IN SCULPTOR GROUP DWARF GALAXIES

    SciTech Connect

    Da Costa, G. S.; Jerjen, H.; Rejkuba, M.; Grebel, E. K.

    2010-01-10

    We have used Hubble Space Telescope Advanced Camera for Surveys images to generate color-magnitude diagrams that reach below the magnitude of the horizontal branch in the Sculptor Group dwarf galaxies ESO294-010 and ESO410-005. In both diagrams, blue horizontal branch stars are unambiguously present, a signature of the existence of an ancient stellar population whose age is comparable to that of the Galactic halo globular clusters. The result is reinforced by the discovery of numerous RR Lyrae variables in both galaxies. The occurrence of these stars is the first direct confirmation of the existence of ancient stellar populations beyond the Local Group and indicates that star formation can occur at the earliest epochs even in low-density environments.

  1. The Warm Circumgalactic Medium: 105-6 K Gas Associated with a Single Galaxy Halo or with an Entire Group of Galaxies?

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Oppenheimer, Benjamin D.; Pratt, Cameron T.; Berlind, Andreas A.

    2017-03-01

    In preparation for a Hubble Space Telescope (HST) observing project using the Cosmic Origins Spectrograph (COS), the positions of all AGN targets having high-S/N far-UV G130M spectra were cross-correlated with a large catalog of low-redshift galaxy groups homogenously selected from the spectroscopic sample of the Sloan Digital Sky Survey (SDSS). Searching for targets behind only those groups at z = 0.1-0.2 (which places the O vi doublet in the wavelength region of peak COS sensitivity), we identified only one potential {{S}}/{{N}}=15{--}20 target, FBQS 1010+3003. An O vi-only absorber was found in its G130M spectrum at z = 0.11326, close to the redshift of a foreground small group of luminous galaxies at z = 0.11685. Because there is no associated Lyα absorption, any characterization of this absorber is necessarily minimal; however, the O vi detection likely traces “warm” gas in collisional ionization equilibrium at T ≈ 3 × 105 K. While this discovery is consistent with being interface gas between cooler, photoionized clouds and a hotter intra-group medium, it could also be warm, interface gas associated with the circumgalactic medium (CGM) of the single closest galaxy. In this case, a detailed analysis of the galaxy distribution (complete to 0.2 {L}* ) strongly favors the individual galaxy association. This analysis highlights the necessity of both high-{{S}}/{{N}}> 20 COS data and a deep galaxy redshift survey of the region in order to test more rigorously the association of O vi-absorbing gas with a galaxy group. A Cycle 23 HST/COS program is currently targeting 10 UV-bright AGN behind 12 low-redshift galaxy groups to test the warm, group gas hypothesis.

  2. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    SciTech Connect

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-02-20

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M {sub 500} ∼ 10{sup 14}-10{sup 15} M {sub ☉}), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L{sub i} and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L{sub i} and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L{sub i} ≅ 1.7 ± 0.2 M {sub ☉}/L {sub i,} {sub ☉}, a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L{sub i}.

  3. Internal Kinematics of Groups of Galaxies in the Sloan Digital Sky Survey Data Release 7

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Mao, Shude; Han, Jiaxin; Peng, Qiuying; Yang, Xiaohu; Mo, H. J.; van den Bosch, Frank

    2012-10-01

    We present measurements of the velocity dispersion profile (VDP) for galaxy groups in the final data release of the Sloan Digital Sky Survey (SDSS). For groups of given mass, we estimate the redshift-space cross-correlation function (CCF) with respect to a reference galaxy sample, ξ(s)(rp , π), the projected CCF, wp (rp ), and the real-space CCF, ξcg(r). The VDP is then extracted from the redshift distortion in ξ(s)(rp , π), by comparing ξ(s)(rp , π) with ξcg(r). We find that the velocity dispersion (VD) within virial radius (R 200) shows a roughly flat profile, with a slight increase at radii below ~0.3R 200 for high-mass systems. The average VD within the virial radius, σ v , is a strongly increasing function of central galaxy mass. We apply the same methodology to N-body simulations with the concordance Λ cold dark matter cosmology but different values of the density fluctuation parameter σ8, and we compare the results to the SDSS results. We show that the σ v - M * relation from the data provides stringent constraints on both σ8 and σ ms , the dispersion in log M * of central galaxies at fixed halo mass. Our best-fitting model suggests σ8 = 0.86 ± 0.03 and σ ms = 0.16 ± 0.03. The slightly higher value of σ8 compared to the WMAP7 result might be due to a smaller matter density parameter assumed in our simulations. Our VD measurements also provide a direct measure of the dark matter halo mass for central galaxies of different luminosities and masses, in good agreement with the results obtained by Mandelbaum et al. from stacking the gravitational lensing signals of the SDSS galaxies.

  4. Intergalactic Stellar Distributions in the Interacting M81/M82 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Sun, W.-H.; Zhou, Xu; Chen, W.-P.; Burstein, D.; Windhorst, R. A.; Ma, J.; Byun, Y.-I.; Jiang, Z.-J.; Chen, J.-S.

    2005-12-01

    Previous HI observations of the M81/M82/NGC3077 system clearly show widespread HI distribution within this galaxy group. While the gas is vulnerable to tidal disruption of a galaxy encounter, are there also stars imbedded in this HI distribution? Our deep exposures of the M81+M82 group in 10 optical bands using the Beijing-Arizona-Taipei-Connecticut (BATC) filter set clearly reveal, for the first time, widespread stellar distributions that coincide with the atomic hydrogen clouds - considered to be the relics of the merging process of the galaxies - splayed over the region. The spectral energy distributions of the stellar groups to the east and west of M81 (including the "Arp" Loop) are similar to that measured at the southeast edge of the optical disk of M82. This similarity in stellar radiation, combined with the observed peculiar rotational velocity of M82, suggests that the diffuse stellar population in the intergalactic space around M81 is mainly the relic of the tidally-disrupted disk of M82 during the last close encounter. Recent measurements of distances to and CBR radial velocities of M81 (3.63 Mpc and 48 km/s) and M82 (3.9 Mpc and 296 km/s) lend further support to the notion of a close passage between these two galaxies several hundred million years ago.

  5. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  6. VizieR Online Data Catalog: Compact groups of galaxies in LCRS (Allam+, 2000)

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.

    2002-01-01

    We have recently extracted a catalog of compact groups of galaxies (CGs) from the Las Campanas Redshift Survey. This catalog of Las Campanas Compact Groups (LCCGs) contains 76 CGs with a median redshift of zmed~0.08. The physical properties of these CGs are similar to those form Hickson (1982, Cat. ) and the Barton et al. (1996AJ....112..871B) catalogs. Here, we present an atlas of our catalog and briefly describe its general properties. (2 data files).

  7. Galaxy Interactions in Compact Groups. I. The Galactic Winds of HCG16

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2013-05-01

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  8. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    SciTech Connect

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  9. IMAGE RELEASE: New Hydrogen Clouds in the M81 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A composite radio-optical image shows five new clouds of hydrogen gas discovered using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT). The spiral galaxy M81 and its satellite, M82, are seen in visible light (white); intergalactic hydrogen gas revealed by the GBT is shown in red; and additional hydrogen gas earlier detected by the Very Large Array is shown in green. The M81 Group of galaxies, 11.8 million light-years from Earth, are interacting gravitationally with each other, as shown clearly by the gas streaming among them. The newly-discovered gas clouds, each containing from 14 to 57 million times the mass of our Sun, are similar to gas clouds also found near our own Milky Way Galaxy. Astronomers analyzing these M81 Group clouds conclude that they are likely remnants of earlier interactions among the galaxies and that this indicates that their analogs near the Milky Way had a similar origin. The research team is: Katie Chynoweth, a graduate student at Vanderbilt University; Glen Langston of the National Radio Astronomy Observatory (NRAO); Min Yun of the University of Massachusetts; Felix J. Lockman of NRAO; Kate Rubin of Lick Observatory; and Sarah Scoles of Cornell University. The astronomers presented their findings to the American Astronomical Society's meeting in Austin, Texas. Credit: Chynoweth et al., NRAO/AUI/NSF, Digital Sky Survey. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  10. Mass of the Local Group from Proper Motions of Distant Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland

    2010-09-01

    The Local Group and its two dominant spirals, the Milky Way and M31, have become the benchmark for testing many aspects of cosmological and galaxy formation theories, due to many exciting new discoveries in the past decade. However, it is difficult to put results in a proper cosmological context, because our knowledge of the mass M of the Local Group remains uncertain by a factor 4. In units of 10^{12} solar masses, a spherical infall model for the zero-velocity surface gives M 1.3; the sum of estimates for the Milky Way and M31 masses gives M 2.6; and the Local Group Timing argument for the M31 orbit gives M 5.6. It is possible to discriminate between the proposed masses by calculating the orbits of galaxies at the edge of the Local Group, which requires knowledge of transverse velocity components. We therefore propose to use ACS/WFC to determine the proper motions of the 4 dwarf galaxies near the edge of the Local Group {Cetus, Leo A, Tucana, Sag DIG} for which deep first epoch data {with 5-7 year time baselines} already exist in the HST Archive. Our team has extensive expertise with HST astrometric science, and our past/ongoing work for, e.g., Omega Cen, LMC/SMC and M31 show that the necessary astrometric accuracy is within the reach of HST's demonstrated capabilities. We have developed, tested, and published a new technique that uses compact background galaxies as astrometric reference sources, and we have already reduced the first epoch data. The final predicted transverse velocity accuracy, 36 km/s when averaged over the sample, will be sufficient to discriminate between each of the proposed Local Group masses at 2-sigma significance {4-sigma between the most extreme values}. Our project will yield the most accurate Local Group mass determination to date, and only HST can achieve the required accuracy.

  11. Do the stellar populations of the brightest two group galaxies depend on the magnitude gap?

    NASA Astrophysics Data System (ADS)

    Trevisan, M.; Mamon, G. A.; Khosroshahi, H. G.

    2017-02-01

    We investigate how the stellar populations of the inner regions of the first and the second brightest group galaxies (respectively BGGs and SBGGs) vary as a function of magnitude gap, using a Sloan Digital Sky Survey-based sample of 550 groups with elliptical BGGs. The sample is complete in redshift, luminosity, and for Δ M_{12} up to 2.5 mag, and contains 59 large-gap groups (LGGs, with Δ M_{12} > 2.0 mag). We determine ages, metallicities, and star formation histories (SFHs) of BGGs and SBGGs using the STARLIGHT code with two different single stellar population models (which lead to important disagreements in SFHs), and also compute [α/Fe] from spectral indices. After removing the dependence with galaxy velocity dispersion or with stellar mass, there is no correlation with magnitude gap of BGG ages, metallicities, [α/Fe], and SFHs. The lack of trends of BGG SFHs with magnitude gap suggests that BGGs in LGGs have undergone more mergers than those in small-gap groups, but these mergers are either dry or occurred at very high redshift, which in either case would leave no detectable imprint in their spectra. We show that SBGGs in LGGs lie significantly closer to the BGGs (in projection) than galaxies with similar stellar masses in normal groups, which appears to be a sign of the earlier entry of the former into their groups. Nevertheless, the stellar population properties of the SBGGs in LGGs are compatible with those of the general population of galaxies with similar stellar masses residing in normal groups.

  12. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values

  13. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  14. Dwarf galaxy planes: the discovery of symmetric structures in the Local Group

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.; Kroupa, Pavel; Jerjen, Helmut

    2013-11-01

    Both major galaxies in the Local Group (LG) are surrounded by thin planes of mostly co-orbiting satellite galaxies, the vast polar structure (VPOS) around the Milky Way (MW) and the Great Plane of Andromeda (GPoA) around M31. We summarize the current knowledge concerning these structures and compare their relative orientations by re-determining their properties in a common coordinate system. The existence of similar, coherent structures around both major LG galaxies motivates an investigation of the distribution of the more distant non-satellite galaxies in the LG. This results in the discovery of two planes (diameters of 1-2 Mpc) which contain almost all nearby non-satellite galaxies. The two LG planes are surprisingly symmetric. They are inclined by only 20° relative to the galactic disc of M31, are similarly thin (heights of ≈60 kpc) and have near-to-identical offsets from the MW and from M31. They are inclined relative to each other by 35°. Comparing the plane orientations with each other and with additional features reveals indications for an intimate connection between the VPOS and the GPoA. They are both polar with respect to the MW, have similar orbital directions and are inclined by about 45°±7° relative to each other. The Magellanic Stream approximately aligns with the VPOS and the GPoA, but also shares its projected position and line-of-sight velocity trend with a part of the dominating structure of non-satellite dwarf galaxies. In addition, the recent proper motion measurement of M31 indicates a prograde orbit of the MW-M31 system, the VPOS and the GPoA. The alignment with other features such as the Supergalactic Plane and the overdensity in hypervelocity stars are discussed as well. We end with a short summary of the currently proposed scenarios trying to explain the LG galaxy structures as either originating from cosmological structures or from tidal debris of a past galaxy encounter. We emphasize that there currently exists no full detailed

  15. Investigating the Relation between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters

    NASA Astrophysics Data System (ADS)

    de Carvalho, R. R.; Ribeiro, A. L. B.; Stalder, D. H.; Rosa, R. R.; Costa, A. P.; Moura, T. C.

    2017-09-01

    We investigate the dependence of stellar population properties of galaxies on group dynamical stage for a subsample of the Yang catalog. We classify groups according to their galaxy velocity distribution into Gaussian (G) and Non-Gaussian (NG). Using two totally independent approaches, we have shown that our measurement of Gaussianity is robust and reliable. Our sample covers Yang’s groups in the redshift range 0.03 ≤slant z ≤slant 0.1, with mass ≥slant {10}14{M}⊙ . The new method, called Hellinger Distance, to determine whether a group has a velocity distribution Gaussian or NG is very effective in distinguishing between the two families. NG groups present halo masses higher than the G ones, confirming previous findings. Examining the skewness and kurtosis of the velocity distribution of G and NG groups, we find that faint galaxies in NG groups are mainly infalling, for the first time, into the groups. We show that considering only faint galaxies in the outskirts; those in NG groups are older and more metal-rich than those in G groups. Also, examining the Projected Phase Space of cluster galaxies, we see that bright and faint galactic systems in G groups are in dynamical equilibrium—which does not seem to be the case in NG groups. These findings suggest that NG systems have a higher infall rate, assembling more galaxies that have experienced preprocessing before entering the group.

  16. Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.

    2007-10-01

    The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.

  17. Is the Pegasus Dwarf Galaxy a Member of the Local Group?

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon

    1995-10-01

    Deep VI CCD photometry of the Pegasus dwarf irregular galaxy shows that tip of the red giant branch (RGB) is located at I = 21.15+-0.10 mag and (V-I) = 1.58+-0.03. Using the I magnitude of the tip of the RGB(TRGB), the distance modulus of the Pegasus galaxy is estimated to be (m-M)o = 25.13+-0.11 mag(corresponding to a distance of d = 1060+-50kpc). This result is in a good agreement with the recent distance estimate based on the TRGB method by Aparicio[1994, ApJ, 437, L27], (m-M)o = 24.9 (d = 950kpc). However, our distance estimate is much smaller than that based on the Cepheid variable candidates by Hoessel et al.[1990, AJ, 100, 1151], (m-M)o = 26.22+-0.20(d = 1750+-160 kpc) mag. The color-magnitude diagram illustrates that the Cepheid candidates used by Hoessel et al. are not located in the Cepheid instability strip, but in the upper part of the giant branch. This result shows that the Cepheid candidates studied by Hoessel et al. are probably not Cepheids, but other types of variable stars. Taking the average of our distance estimate and Aparicio's, the distance to the Pegasus galaxy is d = 1000+-80 kpc. Considering the distance and velocity of the Pegasus galaxy with respect to the center of the Local Group, we conclude that the Pegasus galaxy is probably a member of the Local Group.

  18. How the extinction of extragalactic background light affects surface photometry of galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Micheva, G.; Östlin, G.

    2009-08-01

    The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction - the extragalactic background light (EBL) - comes from behind. We argue that since this part of the sky flux can be subjected to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar haloes, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the haloes of disc galaxies and for the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. Finally, we discuss how EBL extinction effects may be exploited to provide an independent constraint on the surface brightness of the EBL, using a combination of surface photometry and direct star counts.

  19. Evolutionary properties of the low-luminosity galaxy population in the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Cellone, S. A.; Saracco, P.; Zucca, E.

    2012-03-01

    In this third paper of a series we present Johnson-Gunn B, g, V, r, i, z multicolour photometry for 79 objects, including a significant fraction of the faintest galaxies around NGC 5044, assessing group membership on the basis of apparent morphology (through accurate Sérsic-profile fitting) and low-resolution (R= 500-1000) optical spectroscopy to estimate the redshift for 21 objects. Early- and late-type systems are found to be clearly separate in Sérsic parameter space, with the well-known luminosity versus shape relation being mostly traced by different morphological types spanning different ranges in the shape parameter n. A significantly blue colour is confirmed for Magellanic irregulars (Sm/Ims), while a drift toward bluer integrated colours is also an issue for dwarf ellipticals (dEs). Both features point to moderate but pervasive star-formation activity even among nominally 'quiescent' stellar systems. Together, dEs and Ims provide the bulk of the galaxy luminosity function, around M(g) ≃-18.0 ± 1.5, while the S0 and dwarf spheroidal (dSph) components dominate the bright and faint-end tails of the distribution respectively. This special mix places the NGC 5044 Group just 'midway' between the high-density cosmic aggregation scale typical of galaxy clusters and the low-density environment of looser galaxy clumps like our Local Group. The bright mass of the 136 member galaxies with available photometry and morphological classification, as inferred from appropriate M/L model fitting, amounts to a total of 2.3 × 1012 M⊙. This is one seventh of the total dynamical mass of the group, according to its X-ray emission. The current star-formation rate within the group turns to be about 23 M⊙ yr-1, a figure that may however be slightly increased as a result of the evident activity among dwarf ellipticals, as shown by enhanced Hβ emission in their spectra. Lick narrow-band indices have been computed for 17 galaxies, probing all the relevant atomic and

  20. Properties of galaxy groups in the Sloan Digital Sky Survey - II. Active galactic nucleus feedback and star formation truncation

    NASA Astrophysics Data System (ADS)

    Weinmann, Simone M.; van den Bosch, Frank C.; Yang, Xiaohu; Mo, H. J.; Croton, Darren J.; Moore, Ben

    2006-11-01

    Successfully reproducing the galaxy luminosity function (LF) and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and active galactic nucleus (AGN) feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies, fblue(L, M), as a function of galaxy luminosity, L, and halo mass, M. In this paper, we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine fblue(L, M). To demonstrate the potential power of these data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional LF, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellites in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modelling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and, in particular, to discriminate between various models for AGN feedback and other star formation truncation mechanisms.

  1. Search for high-energy γ-ray emission from galaxies of the Local Group with Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Lenain, J.-P.; Walter, R.

    2011-11-01

    Context. With the discovery of high-energy γ-ray emission from the Andromeda galaxy (M 31) by the Fermi/LAT collaboration, normal galaxies begin to arise from the shadows for the first time, providing insight into cosmic ray acceleration in external galaxies. Aims: We search for high-energy γ-ray emission from those galaxies in the Local Group that have so far not been investigated: M 81, M 83, IC 342, Maffei 1, Maffei 2, and M 94. Methods.Fermi/LAT public data from August 4, 2008 to January 1, 2011 were analysed for these galaxies. We compared the results to other starburst and normal galaxies detected so far at high energies: the Magellanic clouds, M 31, and the starburst galaxies M 82 and NGC 253. Results: No significant detection is found in the data for the sources in our sample, and we derive upper limits on their photon flux. After comparing the results to other Local Group objects, we find that the derived upper limits are fully compatible with expectations from cosmic rays interacting with the interstellar medium within the host galaxies. In the case of M 33 and M 83, a detection in Fermi/LAT data should be imminent. The expected fluxes for the other sources in the sample are below the sensitivity of Fermi/LAT, even after 10 years of observation. Collective emission from compact objects in the host galaxies is also found to be negligible compared to the expected emission from cosmic ray interactions.

  2. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    SciTech Connect

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  3. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  4. Implications of a variable IMF for the interpretation of observations of galaxy populations

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn

    2016-11-01

    We investigate the effect of a metallicity-dependent stellar initial mass function (IMF), as deduced observationally by Martín-Navarro et al., on the inferred stellar masses and star formation rates (SFRs) of a representative sample of 186 886 SDSS galaxies. Relative to a Chabrier IMF, for which we show the implied masses to be close to minimal, the inferred masses increase in both the low- and high-metallicity regimes due to the addition of stellar remnants and dwarf stars, respectively. The resulting galaxy stellar mass function (GSMF) shifts towards higher masses by 0.5 dex, without affecting the high-mass slope (and thus the need for effective quenching). The implied low-redshift SFR density increases by an order of magnitude. However, these results depend strongly on the assumed IMF parametrization, which is not directly constrained by the observations. Varying the low-end IMF slope instead of the high-end IMF slope, while maintaining the same dwarf-to-giant ratio, results in a much more modest GSMF shift of 0.2 dex and a 10 per cent increase in the SFR density relative to the Chabrier IMF. A bottom-heavy IMF during the late, metal-rich evolutionary stage of a galaxy would help explain the rapid quenching and the bimodality in the galaxy population by on the one hand making galaxies less quenched (due to the continued formation of dwarf stars) and on the other hand reducing the gas consumption time-scale. We conclude that the implications of the observational evidence for a variable IMF could vary from absolutely dramatic to mild but significant.

  5. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  6. The Araucaria Project: Precise distances to Local Group galaxies from near-infrared photometry of RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina

    2017-09-01

    We present results of the Araucaria Project's investigation of RR Lyrae stars as distance indicators in nearby galaxies. With an aid of near-infrared period-luminositymetallicity relations available in the literature we determined distance moduli to five Local Group galaxies with the uncertainty of about 5%.

  7. New probable dwarf galaxies in northern groups of the Local Supercluster

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Huchtmeier, W. K.

    2007-08-01

    We have searched for nearby dwarf galaxies in 27 northern groups with characteristic distances 8 15 Mpc based on the Second Palomar Sky Survey prints. In a total area of about 2000 square degrees, we have found 90 low-surface-brightness objects, more than 60% of which are absent from known catalogs and lists. We have classified most of these objects (˜80%) as irregular dwarf systems. The first 21-cm line observations of the new objects with the 100-m Effelsberg radio telescope showed that the typical linear diameters (1 2 kpc), internal motions (˜30 km s-1), and hydrogen masses (˜2 × 107 M ⊙) of the new galaxies correspond to those expected for the dwarf population of nearby groups.

  8. VizieR Online Data Catalog: New dwarf galaxies in northern groups (Karachentsev+, 2007)

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Huchtmeier, W. K.

    2008-01-01

    We have searched for nearby dwarf galaxies in 27 northern groups with characteristic distances 8-15Mpc based on the Second Palomar Sky Survey prints. In a total area of about 2000 square degrees, we have found 90 low-surface-brightness objects, more than 60% of which are absent from known catalogs and lists. We have classified most of these objects (80%) as irregular dwarf systems. The first 21-cm line observations of the new objects with the 100-m Effelsberg radio telescope showed that the typical linear diameters (1-2kpc), internal motions (30km/s), and hydrogen masses (2x107M{sun}) of the new galaxies correspond to those expected for the dwarf population of nearby groups. (2 data files).

  9. Redshift-Space Distortions and f(z) from Group-Galaxy Correlations

    NASA Astrophysics Data System (ADS)

    Mohammad, F. G.; de la Torre, S.; Guzzo, L.; Bianchi, D.; Peacock, J. A.

    2016-10-01

    We investigate the accuracy achievable on measurements of the the growth rate of structure f(z) using redshift-space distortions (RSD), when (a) these are measured on the group-galaxy cross correlation function; (b) the latter is expanded over a modified version of the conventional spherical armonics, ``truncated multipole moments''. Simulation results give first indications that this combination can push systematic errors on f(z) below 3%, using scales r >= 10h -1 Mpc.

  10. X-ray-selected galaxy groups in Boötes

    SciTech Connect

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Goulding, Andrew; Andrade-Santos, Felipe

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and perform a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group

  11. Project Galaxy - Sustianable Resource Supply and Environmental Implications

    SciTech Connect

    Downing, Mark; Wimmer, Robert

    2012-03-01

    Understanding what it takes to move from a corn-based liquid fuels industry to one that is cellulosic-based requires a complex transition over time. This transition implies, among other things, a shift from annual cropping systems considered under United States Department of Agriculture (USDA) policy as commodity crops, to perennial lignocellulosic crops that are herbaceous and wood-based. Because of changes in land use as well as biomass and other crop supplies, land-based environmental amenities such as water quality, soil health and tilth, air quality, and animal and avian species populations and their diversity change also. Environmental effects are measured as magnitudes (how much they are impacted), and direction of the impact (either positive or negative). By developing a series of quantitative and qualitative metrics, the larger issue of defining relative sustainability may be addressed, and this can be done at a finer detail of regional (scale) and environmental amenity-specific impacts. Although much literature exists about research relevant to specific environmental variables, there is no published, documented, nor research literature on direct application of environmental over-compliance with regards a 'biorefinery.' Our three goals were to (1) understand and quantify bioenergy sustainability and some key environmental effects in a generic set of examples; (2) explain the effort and means to define and quantify specific qualitative environmental measures, and to determine a way to understand changes in these measures over time and what their implications might be; and (3) use these outcomes to evaluate potential sites in any geographic area. This would permit assessment of candidate locations, combined with an understanding of co-production of fuels, chemicals, and electric power, to interpret sustainability measures and the relationship between environmental sustainability and economic sustainability. The process of determining environmental

  12. The special growth history of central galaxies in groups and clusters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo

    2017-05-01

    Central galaxies (CGs) in galaxy groups and clusters are believed to form and assemble a good portion of their stellar mass at early times, but they also accrete significant mass at late times via galactic cannibalism, that is merging with companion group or cluster galaxies that experience dynamical friction against the common host dark-matter halo. The effect of these mergers on the structure and kinematics of the CG depends not only on the properties of the accreted satellites, but also on the orbital parameters of the encounters. Here we present the results of numerical simulations aimed at estimating the distribution of merging orbital parameters of satellites cannibalized by the CGs in groups and clusters. As a consequence of dynamical friction, the satellites' orbits evolve losing energy and angular momentum, with no clear trend towards orbit circularization. The distributions of the orbital parameters of the central-satellite encounters are markedly different from the distributions found for halo-halo mergers in cosmological simulations. The orbits of satellites accreted by the CGs are on average less bound and less eccentric than those of cosmological halo-halo encounters. We provide fits to the distributions of the central-satellite merging orbital parameters that can be used to study the merger-driven evolution of the scaling relations of CGs.

  13. The special growth history of central galaxies in groups and clusters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo

    2017-01-01

    Central galaxies (CGs) in galaxy groups and clusters are believed to form and assemble a good portion of their stellar mass at early times, but they also accrete significant mass at late times via galactic cannibalism, that is merging with companion group or cluster galaxies that experience dynamical friction against the common host dark-matter halo. The effect of these mergers on the structure and kinematics of the CG depends not only on the properties of the accreted satellites, but also on the orbital parameters of the encounters. Here we present the results of numerical simulations aimed at estimating the distribution of merging orbital parameters of satellites cannibalized by the CGs in groups and clusters. As a consequence of dynamical friction, the satellites' orbits evolve losing energy and angular momentum, with no clear trend towards orbit circularization. The distributions of the orbital parameters of the central-satellite encounters are markedly different from the distributions found for halo-halo mergers in cosmological simulations. The orbits of satellites accreted by the CGs are on average less bound and less eccentric than those of cosmological halo-halo encounters. We provide fits to the distributions of the central-satellite merging orbital parameters that can be used to study the merger-driven evolution of the scaling relations of CGs.

  14. Suzaku observations of metal distribution out to 0.5 r180 in the intracluster medium of four galaxy groups

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Matsushita, Kyoko; Sato, Kosuke

    We studied the distributions of metal abundances and metal-mass-to-light ratios in the intracluster medium of four galaxy groups, MKW 4, HCG 62, the NGC 1550 group, and the NGC 5044 group, out to ˜ 0.5 r_{180} observed with Suzaku.The Fe abundance decreases with radius, and about 0.2-0.4 solar beyond 0.1 r _{180}. At a given radius in units of r_{180}, the Fe abundance in the ICM of the four galaxy groups were consistent or smaller than those of clusters of galaxies. The Mg/Fe and Si/Fe ratios in the ICM are nearly constant at the solar ratio out to 0.5 r_{180}. Since the metals have been synthesized in galaxies, we collected K-band luminosities of galaxies from Two Micron All Sky Survey catalogue and calculated the integrated iron-mass-to-light-ratios (IMLR), or the ratios of the iron mass in the ICM to light from stars in galaxies. The groups with smaller gas mass to light ratios have smaller IMLR values and the IMLR inversely correlated with the entropy excess. Based on these abundance features, we discussed the past history of metal enrichment process in groups of galaxies. These results and discussions were shown in Sasaki et al. 2014,ApJ,781,36.

  15. Metal Distributions out to 0.5 r 180 in the Intracluster Medium of Four Galaxy Groups Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Matsushita, Kyoko; Sato, Kosuke

    2014-01-01

    We studied the distributions of metal abundances and metal-mass-to-light ratios in the intracluster medium (ICM) of four galaxy groups, MKW 4, HCG 62, the NGC 1550 group, and the NGC 5044 group, out to ~0.5 r 180 observed with Suzaku. The iron abundance decreases with radius and is about 0.2-0.4 solar beyond 0.1 r 180. At a given radius in units of r 180, the iron abundance in the ICM of the four galaxy groups was consistent with or smaller than those of clusters of galaxies. The Mg/Fe and Si/Fe ratios in the ICM are nearly constant at the solar ratio out to 0.5 r 180. We also studied systematic uncertainties in the derived metal abundances, comparing the results from two versions of atomic data for astrophysicists (ATOMDB) and single- and two-temperature model fits. Since the metals have been synthesized in galaxies, we collected K-band luminosities of galaxies from the Two Micron All Sky Survey catalog and calculated the integrated iron-mass-to-light-ratios (IMLR), or the ratios of the iron mass in the ICM to light from stars in galaxies. The groups with smaller gas-mass-to-light ratios have smaller IMLR values and the IMLR is inversely correlated with the entropy excess. Based on these abundance features, we discussed the past history of metal enrichment processes in groups of galaxies.

  16. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 galaxies. Aims: NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods: In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  17. VizieR Online Data Catalog: Galaxy groups in the VIMOS-VLT Deep Survey (Cucciati+, 2010)

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Marinoni, C.; Iovino, A.; Bardelli, S.; Adami, C.; Mazure, A.; Scodeggio, M.; Maccagni, D.; Temporin, S.; Zucca, E.; de, Lucia G.; Blaizot, J.; Garilli, B.; Meneux, B.; Zamorani, G.; Le Fevre, O.; Cappi, A.; Guzzo, L.; Bottini, D.; Le Brun, V.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Arnouts, S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Lamareille, F.; McCracken, H. J.; Marano, B.; Merighi, R.; Paltani, S.; Pella, R.; Pollo, A.; Pozzetti, L.; Vergani, D.; Perez-Montero, E.

    2010-08-01

    We have compiled a homogeneous catalogue of optical galaxy groups identified in the VVDS-02h field (0.7x0.7deg2^) by means of the VDM algorithm, in the range 0.2<=z<=1.0. We give the coordinates (RA, DE and z) and a few properties (velocity dispersion, number of galaxy members) of the so-found groups. We also list the galaxies that belong to these groups (ID, RA, DE, z, quality of redshift measurement). (2 data files).

  18. A comprehensive HST BVI catalogue of star clusters in five Hickson compact groups of galaxies

    NASA Astrophysics Data System (ADS)

    Fedotov, K.; Gallagher, S. C.; Durrell, P. R.; Bastian, N.; Konstantopoulos, I. S.; Charlton, J.; Johnson, K. E.; Chandar, R.

    2015-05-01

    We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two subpopulations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with MV < -9 correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with MV < -7.8 correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.

  19. Probing the Histories of Local Group Dwarf Galaxies with Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Ordoñez, Antonio J.; Sarajedini, Ata

    2017-01-01

    I have identified and characterized the Cepheid and RR Lyrae variables in several Local Group dwarf galaxies using archival Hubble Space Telescope imaging. Template light curve fitting routines have been applied to the observations in order to accurately characterize the properties of these variable stars. The pulsation properties of these stars help to constrain their masses and ages, which in turn shed light on the evolution of their respective host systems. I will summarize what this work has yielded in the context of dwarf galaxy evolution and the accretion history of the Milky Way halo. I will also discuss simulated observations on artificial light curves which we have used to characterize different observing strategies and analysis techniques for studies of pulsating variable stars.

  20. THE EFFECT OF ENVIRONMENT ON MILKY-WAY-MASS GALAXIES IN A CONSTRAINED SIMULATION OF THE LOCAL GROUP

    SciTech Connect

    Creasey, Peter; Scannapieco, Cecilia; Nuza, Sebastián E.; Gottlöber, Stefan; Steinmetz, Matthias; Yepes, Gustavo

    2015-02-10

    In this Letter, we present, for the first time, a study of star formation rate (SFR), gas fraction, and galaxy morphology of a constrained simulation of the Milky Way (MW) and Andromeda (M31) galaxies compared to other MW-mass galaxies. By combining with unconstrained simulations, we cover a sufficient volume to compare these galaxies’ environmental densities ranging from the field to that of the Local Group (LG). This is particularly relevant as it has been shown that, quite generally, galaxy properties depend intimately upon their environment, most prominently when galaxies in clusters are compared to those in the field. For galaxies in loose groups such as the LG, however, environmental effects have been less clear. We consider the galaxy’s environmental density in spheres of 1200 kpc (comoving) and find that while environment does not appear to directly affect morphology, there is a positive trend with SFRs. This enhancement in star formation occurs systematically for galaxies in higher density environments, regardless whether they are part of the LG or in filaments. Our simulations suggest that the richer environment at megaparsec scales may help replenish the star-forming gas, allowing higher specific SFRs in galaxies such as the MW.

  1. EVOLUTION IN THE H I GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH

    SciTech Connect

    Hess, Kelley M.; Wilcots, Eric M. E-mail: ewilcots@astro.wisc.edu

    2013-11-01

    We present an analysis of the neutral hydrogen (H I) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey α.40 data release allows us, for the first time, to study the H I properties of over 740 galaxy groups in the volume of sky common to the Sloan Digital Sky Survey (SDSS) and ALFALFA surveys. We assigned ALFALFA H I detections a group membership based on an existing magnitude/volume-limited SDSS Data Release 7 group/cluster catalog. Additionally, we assigned group ''proximity' membership to H I detected objects whose optical counterpart falls below the limiting optical magnitude—thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group H I mass. We find that only 25% of the H I detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and H I detections in groups as a function of parent dark matter halo mass to reveal strong evidence that H I is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of H I rich galaxies at their center and the H I distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest H I mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the H I selected halo occupation distribution for both low and high mass halos.

  2. The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Weisz, Daniel R.; Quataert, Eliot

    2017-06-01

    We use Monte Carlo simulations to explore the statistical challenges of constraining the characteristic mass (mc) and width (σ) of a lognormal sub-solar initial mass function (IMF) in Local Group dwarf galaxies using direct star counts. For a typical Milky Way (MW) satellite (MV = -8), jointly constraining mc and σ to a precision of ≲ 20 per cent requires that observations be complete to ≲ 0.2 M⊙, if the IMF is similar to the MW IMF. A similar statistical precision can be obtained if observations are only complete down to 0.4 M⊙, but this requires measurement of nearly 100× more stars, and thus, a significantly more massive satellite (MV ˜ -12). In the absence of sufficiently deep data to constrain the low-mass turnover, it is common practice to fit a single-sloped power law to the low-mass IMF, or to fit mc for a lognormal while holding σ fixed. We show that the former approximation leads to best-fitting power-law slopes that vary with the mass range observed and can largely explain existing claims of low-mass IMF variations in MW satellites, even if satellite galaxies have the same IMF as the MW. In addition, fixing σ during fitting leads to substantially underestimated uncertainties in the recovered value of mc (by a factor of ˜4 for typical observations). If the IMFs of nearby dwarf galaxies are lognormal and do vary, observations must reach down to ˜mc in order to robustly detect these variations. The high-sensitivity, near-infrared capabilities of the James Webb Space Telescope and Wide-Field Infrared Survey Telescope have the potential to dramatically improve constraints on the low-mass IMF. We present an efficient observational strategy for using these facilities to measure the IMFs of Local Group dwarf galaxies.

  3. AGN feedback in galaxy groups: the delicate touch of self-regulated outflows

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; D'Ercole, A.; Melioli, C.

    2011-08-01

    Active galactic nucleus (AGN) heating, through massive subrelativistic outflows, might be the key to solve the long-lasting ‘cooling flow problem’ in cosmological systems. In a previous paper, we showed that cold accretion feedback and, to a lesser degree, Bondi self-regulated models are in fact able to quench cooling rates for several Gyr, at the same time preserving the main cool-core features, like observed density and temperature profiles. Is it true also for lighter systems, such as galaxy groups? The answer is globally yes, although with remarkable differences. Adopting a modified version of the adaptive mesh refinement code FLASH 3.2, we found that successful 3D simulations with cold and Bondi models are almost convergent in the galaxy group environment, with mechanical efficiencies in the range 5 × 10-4-10-3 and 5 × 10-2-10-1, respectively. The evolutionary storyline of galaxy groups is dominated by a quasi-continuous gentle injection with sub-Eddington outflows (with the mechanical power P˜ 1044 erg s-1, v˜ 104 km s-1). The cold and hybrid accretion models present, in addition, very short quiescence periods, followed by moderate outbursts (10 times the previous phase), which generate a series of 10-20 kpc size cavities with high density contrast, temperatures similar to the ambient medium and cold rims. After shock heating, a phase of turbulence promotes gas mixing and diffusion of metals, which peak along the jet-axis (up to 40 kpc) during active phases. At this stage, the tunnel, produced by the enduring outflow (hard to detect in the mock X-ray surface brightness maps), is easily fragmented, producing tiny buoyant bubbles, typically a few kpc in size. In contrast to galaxy clusters, the AGN self-regulated feedback has to be persistent, with a ‘delicate touch’, rather than rare and explosive strokes. This evolutionary difference dictates that galaxy groups are not scaled-down versions of clusters: AGN heating might operate in different

  4. The early chemical enrichment histories of two Sculptor group dwarf galaxies as revealed by RR lyrae variables

    SciTech Connect

    Yang, Soung-Chul; Kim, Sang Chul; Kyeong, Jaemann; Wagner-Kaiser, Rachel; Sarajedini, Ata

    2014-03-20

    We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys on board the Hubble Space Telescope, we have identified a sample of RRL candidates in both dTrans galaxies (219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005). The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of ([Fe/H]){sub ESO294} = –1.77 ± 0.03 and ([Fe/H]){sub ESO410} = –1.64 ± 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: (1) the ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through 'prompt initial enrichment' or an 'initial nucleosynthetic spike' from the very first massive stars, or (2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55. We also study the environmental effects of the formation and evolution of our target dTrans galaxies by comparing their properties with those of 79 volume limited (D {sub ☉} < 2 Mpc) dwarf galaxy samples in terms of the luminosity-metallicity relation and the H I gas content. The presence of these RRL stars strongly supports the idea that although the Sculptor Group galaxies have a considerably

  5. Limits on the AGN Activities in X-Ray-underluminous Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Dwarakanath, K. S.; Nath, Biman B.

    2006-12-01

    We have observed four X-ray-underluminous groups of galaxies using the Giant Metrewave Radio Telescope (GMRT). The groups NGC 524, 720, 3607, and 4697 are underluminous in relation to the extrapolation of the LX-T relation from rich clusters and do not show any evidence of current AGN activities that can account for such a departure. The GMRT observations carried out at low frequencies (235 and 610 MHz) were aimed at detecting low surface brightness, steep-spectrum sources indicative of past AGN activities in these groups. No such radio emissions were detected in any of these four groups. The corresponding upper limits on the total energy in relativistic particles is ~3×1057 ergs. This value is more than a factor of 100 less than that required to account for the decreased X-ray luminosities (or enhanced entropies) of these four groups in the AGN-heating scenario. Alternatively, the AGN activity must have ceased ~4 Gyr ago, allowing the relativistic particles to diffuse out to such a large extent (~250 kpc) that their radio emission could have been undetected by the current observations. If the latter scenario is correct, the ICM was preheated before the assembly of galaxy clusters.

  6. The Tully-Fisher Relations of the Eridanus Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Omar, A.; Dwarakanath, K. S.

    2006-03-01

    The Tully-Fisher (TF) or the luminosity-linewidth relations of the galaxies in the Eridanus group are constructed using the HI rotation curves and the luminosities in the optical and in the near-infrared bands. The slopes of the TF relations (absolute magnitude vs log 2 flat) are -8.6 ±1.1, -10.0 ±1 5, -10.7 ±2.1, and -9.7 ±1.3 in the R, J, H, and K bands respectively for galaxies having flat HI rotation curves. These values of the slopes are consistent with those obtained from studies of other groups and clusters. The scatter in the TF relations is in the range 0.5-1.1 mag in different bands. This scatter is considerably larger com-pared to those observed in other groups and clusters. It is suggested that the larger scatter in the TF relations for the Eridanus group is related to the loose structure of the group. If the TF relations are constructed using the baryonic mass (stellar +HI +Helium mass) instead of the stellar lumi-nosity, nearly identical slopes are obtained in the R and in the near-infrared bands. The baryonic TF (baryonic mass vs log 2 flat) slope is in the range 3.5-4.1.

  7. A search for CO in the Local Group dwarf irregular galaxy WLM

    NASA Astrophysics Data System (ADS)

    Taylor, C. L.; Klein, U.

    2001-02-01

    We present 12CO J = 1-> 0 and J = 2-> 1 observations of the low metallicity (12 + log(O/H) = 7.74) Local Group dwarf irregular galaxy WLM made with the 15 m SEST and 14 m FCRAO telescopes. Despite the presence a number of HII regions, we find no CO emission. We obtain low upper limits on the integrated intensity (I_CO<= 0.18 K km s-1 for CO (1->0)). The non-detection is consistent with the result of Taylor, Kobulnicky & Skillman (\\cite{TKS}), that dwarf galaxies below a metallicity of ~ 7.9 are not detected in CO emission. WLM shows that this trend continues for low metallicity galaxies even as their metallicities approach 7.9. These results are consistent with the models of the metal poor ISM by Norman & Spaans (\\cite{NS}). By comparing our CO data with observations of star formation in WLM, we find evidence for a high CO to H_2 conversion factor.

  8. Carbon star survey in the Local Group. VII. NGC 3109 a galaxy without a stellar halo

    NASA Astrophysics Data System (ADS)

    Demers, S.; Battinelli, P.; Letarte, B.

    2003-11-01

    We present a CFH12K wide field survey of the carbon star population in and around NGC 3109. Carbon stars, the brightest members of the intermediate-age population, were found nearly exclusively in and near the disk of NGC 3109, ruling out the existence of an extensive intermediate-age halo like the one found in NGC 6822. Over 400 carbon stars identified have = -4.71, confirming the nearly universality of mean magnitude of C star populations in Local Group galaxies. Star counts over the field reveal that NGC 3109 is a truncated disk shaped galaxy without an extensive stellar halo. The minor axis star counts reach the foreground density between 4' and 5', a distance that can be explained by an inclined disk rather than a spheroidal halo. We calculate a global C/M ratio of 1.75 +/- 0.20, a value expected for such a metal poor galaxy. The complete Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/795

  9. Spatialy Resolved Star Formation History Movies of 9 Dwarf Irregular Galaxies In The M81 Group.

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, E.; Cannon, J.; Dolphin, A.; Kennicutt, R.; Lee, J.; Walter, F.

    2007-12-01

    The role of 'feedback' i.e., supernovae, stellar winds, outflows, in the process of star formation (SF), interstellar medium (ISHM) structure alteration, and galaxy evolution remains an interesting and open question. One way to help define the role of feedback is through observational constraints. Recent HST/ACS observations of 9 dwarf irregular galaxies (dIrrs) in the M81 group will help characterize the spatial and temporal components of feedback in a set of diverse dIrrs, spanning a factor of 6 magnitudes in luminosity, 1000 in current star formation rate, and 0.5 dex in metallicity. Here, I present movies that trace the star formation activity in the recent ( 0.5 Gyrs) history of each M81 dI in our sample. I am able to see how star formation events relate to one another both in time and space. We are able to clearly see the SF duty cycle, periods of activity and quiescence, as well as how events may serve to trigger future events by their spatial and temporal proximity. The M81 dIrr SF movies provide us with unique insight into how stars form and how they impact the evolution of each galaxy. Support for this work is provided by NASA/HST grant GO-10605.01.

  10. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  11. xGASS: Gas-rich central galaxies in small groups and their connections to cosmic web gas feeding

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Catinella, Barbara; Cortese, Luca; Saintonge, Amélie; Brown, Toby; Wang, Jing

    2017-01-01

    We use deep HI observations obtained as part of the extended GALEX Arecibo SDSS survey (xGASS) to study the cold gas properties of central galaxies across environments. We find that, below stellar masses of 1010.2 M⊙, central galaxies in groups have an average atomic hydrogen gas fraction ˜0.3dex higher than those in isolation at the same stellar mass. At these stellar masses, group central galaxies are usually found in small groups of N=2 members. The higher HI content in these low mass group central galaxies is mirrored by their higher average star formation activity and molecular hydrogen content. At larger stellar masses, this difference disappears and central galaxies in groups have similar (or even smaller) gas reservoirs and star formation activity compared to those in isolation. We discuss possible scenarios able to explain our findings and suggest that the higher gas content in low mass group central galaxies is likely due to contributions from the cosmic web or HI-rich minor mergers, which also fuel their enhanced star formation activity.

  12. xGASS: gas-rich central galaxies in small groups and their connections to cosmic web gas feeding

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Catinella, Barbara; Cortese, Luca; Saintonge, Amélie; Brown, Toby; Wang, Jing

    2017-04-01

    We use deep H i observations obtained as part of the extended GALEX Arecibo SDSS survey (xGASS) to study the cold gas properties of central galaxies across environments. We find that below stellar masses of 1010.2 M⊙, central galaxies in groups have an average atomic hydrogen gas fraction ˜0.3 dex higher than those in isolation at the same stellar mass. At these stellar masses, group central galaxies are usually found in small groups of N = 2 members. The higher H i content in these low-mass group central galaxies is mirrored by their higher average star formation activity and molecular hydrogen content. At larger stellar masses, this difference disappears and central galaxies in groups have similar (or even smaller) gas reservoirs and star formation activity compared to those in isolation. We discuss possible scenarios able to explain our findings and suggest that the higher gas content in low-mass group central galaxies is likely due to the contributions from the cosmic web or H i-rich minor mergers, which also fuel their enhanced star formation activity.

  13. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  14. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.

    2015-07-01

    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  15. The Arecibo Legacy Fast ALFA HI Survey: The Rich Galaxy Group Zwicky 1400+0949

    NASA Astrophysics Data System (ADS)

    Balonek, Thomas J.; Walsh, B. M.; ALFALFA Consortium

    2006-12-01

    The Zwicky Cluster 1400+0949 (also known as the NGC 5416 group, one of the richest nearby galaxy groups) has been mapped as part of the Arecibo Legacy Fast ALFA (ALFALFA) extragalactic HI survey. This blind survey will map 7000 square degrees of the high galactic latitude sky visible from Arecibo, generating a HI line spectral database covering the redshift range -1600 to 18,000 km/s with about 5 km/s resolution. We present a catalog and atlas of ALFALFA HI detections in the region surrounding Zw 1400+0949, cz 6000 km/s. Using the observed HI velocities, and optical redshifts from the NASA Extragalactic Database (NED) for non-detected galaxies, we determine group membership and study the relationship of this group to surrounding structures. This work has been partially supported by NSF grants AST-0307661 and AST-0607007, by a grant from the Brinson Foundation, by Colgate University (the Faculty Research Council and the Division of Natural Sciences and Mathematics), and by the National Astronomy and Ionosphere Center (NAIC).

  16. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; van Uitert, Edo; Viola, Massimo; Baldry, Ivan; Brough, Sarah; Brown, Michael J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; de Jong, Jelte T. A.; Kuijken, Konrad; McFarland, John; Miller, Lance; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Robotham, Aaron S. G.; Schneider, Peter; Kleijn, Gijs Verdoes

    2015-12-01

    We use the first 100 deg2 of overlap between the Kilo-Degree Survey and the Galaxy And Mass Assembly survey to determine the average galaxy halo mass of ˜10 000 spectroscopically confirmed satellite galaxies in massive (M > 1013 h-1 M⊙) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses log ≈ 11.7-12.2 consistent across group-centric distance within the errorbars. Given their typical stellar masses, log ˜ 10.5, such total masses imply stellar mass fractions of / ≈ 0.04 h-1. The average subhalo hosting these satellite galaxies has a mass Msub ˜ 0.015Mhost independent of host halo mass, in broad agreement with the expectations of structure formation in a Λ cold dark matter universe.

  17. The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field

    NASA Astrophysics Data System (ADS)

    Gerke, Brian F.; Newman, Jeffrey A.; Faber, S. M.; Cooper, Michael C.; Croton, Darren J.; Davis, Marc; Willmer, Christopher N. A.; Yan, Renbin; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2007-04-01

    We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour-magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour-magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z ~ 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z = 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z ~ 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour-overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z ~ 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z ~ 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and

  18. An abundance of phenomena: mergers, AGN feedback, radio galaxies, sloshing, and filaments in the NGC 741 group

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; Schellenberger, Gerrit; David, Laurence P.; O'Sullivan, Ewan; Giacintucci, Simona; Johnston-Hollitt, Melanie; Duchesne, Stefan; Raychaudhury, Somak

    2017-08-01

    While AGN and mergers are thought to play important roles in group and cluster evolution, their effects in galaxy groups are poorly understood. We show recent results from an analysis of deep Chandra and XMM-Newton observations of NGC 741, which provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly-bent jets, a 100kpc radio trail, intriguing narrow X-ray filaments, and gas sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.

  19. A study of galaxy groups and clusters - The case for a clumpy intergalactic medium.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Tarter, J.

    1973-01-01

    A nonuniform model for a dense intergalactic medium is constructed under the assumption that all groups and clusters of galaxies are gravitationally bound by ionized gas. Catalogs by de Vaucouleurs and Abell are utilized to provide an almost complete sample of the spatial distribution of groups and clusters over a wide range of richness, and a distribution function is derived for galaxy groups and clusters as a function of velocity dispersion. A simple scaling law is applied to predict velocity dispersions for the very rich Abell clusters. Thermal bremsstrahlung emission from the intracluster gas accounts for the observed emission over 2 to 10 keV from several rich clusters, and also contributes up to 20% of the diffuse X-ray background over a considerable fraction of the observed range. The amount of X-ray emitting gas is restricted to a small fraction of the virial mass, with the remainder of the binding mass present as cooler ionized clouds. Available soft X-ray and ultraviolet diffuse background observations are used to define a narrow range of permissible temperatures and densities for these clouds.

  20. Entropy amplification from energy feedback in simulated galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Borgani, S.; Finoguenov, A.; Kay, S. T.; Ponman, T. J.; Springel, V.; Tozzi, P.; Voit, G. M.

    2005-07-01

    We use hydrodynamical simulations of galaxy clusters and groups to study the effect of pre-heating on the entropy structure of the intracluster medium. Our simulations account for non-gravitational heating of the gas either by imposing a minimum entropy floor at redshift zh= 3 in adiabatic simulations, or by considering feedback by galactic winds powered by supernova (SN) energy in runs that include radiative cooling and star formation. In the adiabatic simulations we find that the entropy is increased out to the external regions of the simulated haloes as a consequence of the transition from clumpy to smooth accretion induced by extra heating. This result is in line with the predictions of the semi-analytical model by Voit et al. However, the introduction of radiative cooling substantially reduces this entropy amplification effect. While we find that galactic winds of increasing strength are effective in regulating star formation, they have a negligible effect on the entropy profile of cluster-sized haloes. Only in models where the action of the winds is complemented with diffuse heating corresponding to a pre-collapse entropy do we find a sizeable entropy amplification out to the virial radius of the groups. Observational evidence for entropy amplification in the outskirts of galaxy clusters and groups therefore favours a scenario for feedback that distributes heating energy in a more diffuse way than predicted by the model for galactic winds from SN explosions explored here.

  1. A study of galaxy groups and clusters - The case for a clumpy intergalactic medium.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Tarter, J.

    1973-01-01

    A nonuniform model for a dense intergalactic medium is constructed under the assumption that all groups and clusters of galaxies are gravitationally bound by ionized gas. Catalogs by de Vaucouleurs and Abell are utilized to provide an almost complete sample of the spatial distribution of groups and clusters over a wide range of richness, and a distribution function is derived for galaxy groups and clusters as a function of velocity dispersion. A simple scaling law is applied to predict velocity dispersions for the very rich Abell clusters. Thermal bremsstrahlung emission from the intracluster gas accounts for the observed emission over 2 to 10 keV from several rich clusters, and also contributes up to 20% of the diffuse X-ray background over a considerable fraction of the observed range. The amount of X-ray emitting gas is restricted to a small fraction of the virial mass, with the remainder of the binding mass present as cooler ionized clouds. Available soft X-ray and ultraviolet diffuse background observations are used to define a narrow range of permissible temperatures and densities for these clouds.

  2. The far-ultraviolet signature of the 'missing' baryons in the Local Group of galaxies.

    PubMed

    Nicastro, Fabrizio; Zezas, Andreas; Elvis, Martin; Mathur, Smita; Fiore, Fabrizio; Cecchi-Pestellini, Cesare; Burke, Douglas; Drake, Jeremy; Casella, Piergiorgio

    2003-02-13

    The number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars. Here we show that the amplitude of the average velocity vector of 'high velocity' O vi (O5+) absorption clouds detected in a survey of ultraviolet emission from active galactic nuclei decreases significantly when the vector is transformed to the frames of the Galactic Standard of Rest and the Local Group of galaxies. At least 82 per cent of these absorbers are not associated with any 'high velocity' atomic hydrogen complex in our Galaxy, and are therefore likely to result from a primordial warm-hot intergalactic medium pervading an extended corona around the Milky Way or the Local Group. The total mass of baryons in this medium is estimated to be up to approximately 10(12) solar masses, which is of the order of the mass required to dynamically stabilize the Local Group.

  3. Mass-to-Light-Ratios of the galaxy clusters and groups observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Matsushita, K.; Sato, K.; Abe, Y.; Akamatsu, H.; Fujita, Y.; Kanno, Y.; Simionescu, A.; Tamura, T.; Werner, N.

    2016-06-01

    We analyzed 15 nearby (z < 0.06 ) clusters and groups observed with Suzaku out to ˜ 2 r_{500}. We derived Fe abundance profiles in the ICM, electron density, cumulative gas mass and Fe mass. We also collected K-band luminosities of galaxies and calculated the ratio of the cumulative gas mass and Fe mass in the ICM to the K-band luminosity (gas-mass-to-light ratio and iron-mass-to-light ratio, respectively). The Coma, Perseus, and medium systems have relatively flat radial profiles of the metal abundances at 0.3 solar within 0.5-1 r_{500}, and ˜ 0.2 solar beyond r_{500}. The gas-mass-to-light-ratios and iron-mass-to-light-ratios ratios increase with radius out to r_{500} and become flatter beyond the radius. The weighted average of the iron-mass-to-light ratios of the clusters at 1.6 r_{500} agrees with the expectation with the Salpeter initial-mass-function of stars, and we do not need a top-heavy slope. In contrast, groups and poor clusters have lower gas-mass-to-light ratios and lower iron-mass-to-light ratios than that of rich systems, with the higher entropy excess. Above these results, we discuss an early metal enrichment in galaxy clusters and groups.

  4. Brightest group galaxies: stellar mass and star formation rate (paper I)

    NASA Astrophysics Data System (ADS)

    Gozaliasl, Ghassem; Finoguenov, Alexis; Khosroshahi, Habib G.; Mirkazemi, Mohammad; Erfanianfar, Ghazaleh; Tanaka, Masayuki

    2016-05-01

    We study the distribution and evolution of the stellar mass and the star formation rate (SFR) of the brightest group galaxies (BGGs) over 0.04 < z < 1.3 using a large sample of 407 X-ray galaxy groups selected from the COSMOS, AEGIS, and XMM-LSS fields. We compare our results with predictions from the semi-analytic models based on the Millennium simulation. In contrast to model predictions, we find that, as the Universe evolves, the stellar mass distribution evolves towards a normal distribution. This distribution tends to skew to low-mass BGGs at all redshifts implying the presence of a star-forming population of the BGGs with MS ˜ 1010.5 M⊙ which results in the shape of the stellar mass distribution deviating from a normal distribution. In agreement with the models and previous studies, we find that the mean stellar mass of BGGs grows with time by a factor of ˜2 between z = 1.3 and z = 0.1, however, the significant growth occurs above z = 0.4. The BGGs are not entirely a dormant population of galaxies, as low-mass BGGs in low-mass haloes are more active in forming stars than the BGGs in more massive haloes, over the same redshift range. We find that the average SFR of the BGGs evolves steeply with redshift and fraction of the passive BGGs increases as a function of increasing stellar mass and halo mass. Finally, we show that the specific SFR of the BGGs within haloes with M200 ≤ 1013.4 M⊙ decreases with increasing halo mass at z < 0.4.

  5. Mergers in galaxy groups. I. Structure and properties of elliptical remnants

    SciTech Connect

    Taranu, Dan S.; Dubinski, John; Yee, H. K. C.

    2013-11-20

    We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

  6. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Capak, Peter L.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.; Masters, Daniel C.

    2017-09-01

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope (β UV) and the infrared excess (IRX; L IR/L UV) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX‑β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX‑β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX‑β diagram.

  7. VizieR Online Data Catalog: GEEC2 spectroscopic survey of Galaxy groups (Balogh+, 2014)

    NASA Astrophysics Data System (ADS)

    Balogh, M. L.; McGee, S. L.; Mok, A.; Wilman, D. J.; Finoguenov, A.; Bower, R. G.; Mulchaey, J. S.; Parker, L. C.; Tanaka, M.

    2015-04-01

    GEEC2 is a spectroscopic survey of galaxies in 11 groups, one of which was serendipitously discovered in the background of the target, within the COSMOS field. The spectroscopy was obtained with GMOS-South over two semesters (2010A and 2011A). The original goal of the survey was to observe ~20 groups, with 3-4 spectroscopic masks each, to allow an investigation of the intrinsic scatter within group populations. However, repeated attempts to complete the programme have been thwarted by bad weather, scheduling conflicts at Gemini, and variance in ranking from semester to semester. Following the lack of any time awarded in 2012B, attempts to extend the sample have been abandoned for the moment. Details of the target selection and spectroscopic observations have been presented in Papers I-III. (4 data files).

  8. Galaxy evolution in nearby loose groups - II. Photometric and kinematic characterization of USGC U268 and USGC U376 group members in the Leo cloud

    NASA Astrophysics Data System (ADS)

    Marino, A.; Plana, H.; Rampazzo, R.; Bianchi, L.; Rosado, M.; Bettoni, D.; Galletta, G.; Mazzei, P.; Buson, L.; Ambrocio-Cruz, P.; Gabbasov, R. F.

    2013-01-01

    This paper is the second of a series of papers in which we are exploring the coevolution of galaxies and groups in the local Universe, by adopting a multiwavelength approach. Here, we present the photometric and kinematic characterization of two groups, USGC U268 and USGC U376 (U268 and U376 hereafter), which are located in different regions of the Leo cloud. We revisit the group membership, using results from recent redshift surveys, and we investigate their substructures. U268, which is composed of 10 catalogued members and 11 new added members, has a small fraction (≈24 per cent) of early-type galaxies (ETGs). U376 has 16 catalogued members plus eight new added members, with ≈38 per cent of ETGs. We find that there are significant substructures in both groups, which suggests that they are likely to be accreting galaxies. U268 is located in a more loose environment than U376. For each member galaxy, broad-band integrated and surface photometry have been obtained in far-ultraviolet (FUV) and near-ultraviolet (NUV) with the Galaxy Evolution Explorer (GALEX), and in the u, g, r, i and z (Sloan Digital Sky Survey) bands. Hα imaging and two-dimensional high-resolution kinematical data have been obtained using the scanning Fabry-Pérot interferometer (PUMA) at the 2.12-m telescope at San Pedro Mártir (Baja California, Mexico). We have improved the galaxy classification and we have detected morphological and kinematical distortions that might be connected either to ongoing and/or past interaction/accretion events or to environmental-induced secular evolution. U268 appears to be more active than U376, with a large fraction of galaxies showing interaction signatures (60 per cent versus 13 per cent). The presence of bars among late-type galaxies is ≈10 per cent in U268 and ≈29 per cent in U376. The cumulative distribution of the FUV-NUV colours of galaxies in U268 is significantly different from that in U376, with galaxies in U268 being bluer than those in U376

  9. B2 1637+29, a massive radio galaxy probing a poor but gas-rich group

    SciTech Connect

    De Ruiter, H.R.; Parma, P.; Fanti, R.; Ekers, R.D.

    1988-06-01

    New VLA and CCD observations of the radio source B2 1637+29, a member of the faint B2 sample of low-luminosity radio galaxies, are reported. The environment of the galaxy is discussed, and a description of the radio source morphology is given. The CCD image reveals that the optical counterpart is a double galaxy with radio jets emanating from the nucleus of the brighter of the two galaxies. It is shown that the galaxy is the dominant member of a poor group of galaxies, and it is argued that it moves with an average velocity of a few hundred km/s with respect to an intergalactic gas cloud with mass of 10 to the 13th solar or more. The relevance of the enviroment of the radio galaxy to the source morphology is discussed, and an explanation for the highly peculiar features, such as the undulation in the radio tail and the difference in both length and brightness of the main and counter jet, is proposed. 32 references.

  10. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a

  11. Galaxy evolution through resolved stellar populations in the nearby Centaurus A group .

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Grebel, E. K.; Ferguson, A. M. N.; Koch, A.; Rejkuba, M.; Da Costa, G.; Jerjen, H.; Irwin, M. J.; Bernard, E. J.; Arimoto, N.; Jablonka, P.; Kobayashi, C.

    The CenA group is a nearby dense complex (˜4 Mpc) dominated by an active elliptical galaxy, hosting more than 60 dwarf companions with a variety of morphological types and stellar contents. We study the resolved stellar populations of a sample of dwarfs using optical and near-infrared data from ACS/HST and ISAAC/VLT. We characterize their recent star formation histories and metallicity content, and compare them to what is known for Local Group dwarfs, underlining similarities and differences. Our results probe the fu ndamental interplay between nature and nurture in the evolution of dwarfs in such a dense environment. We further present the results of the first deep survey of resolved stellar populations in the remote outer halo of our nearest giant elliptical, CenA (VIMOS/VLT optical data). Tracing its halo structure (radial profile, extent and metallicity) out to a remarkable ˜85 kpc and comparing the halo stellar populations to those of CenA's dwarf companions enables us to constrain the mechanisms that contributed to the build-up of CenA in the context of cosmological galaxy formation models.

  12. Hierarchical inference of the relationship between concentration and mass in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Lieu, Maggie; Farr, Will M.; Betancourt, Michael; Smith, Graham P.; Sereno, Mauro; McCarthy, Ian G.

    2017-07-01

    Mass is a fundamental property of galaxy groups and clusters. In principle, weak gravitational lensing will enable an approximately unbiased measurement of mass, but parametric methods for extracting cluster masses from data require the additional knowledge of halo concentration. Measurements of both mass and concentration are limited by the degeneracy between the two parameters, particularly in low-mass, high-redshift systems where the signal to noise is low. In this paper, we develop a hierarchical model of mass and concentration for mass inference, we test our method on toy data and then apply it to a sample of galaxy groups and poor clusters down to masses of ˜ 1013 M⊙. Our fit and model gives a relationship among masses, concentrations and redshift that allow prediction of these parameters from incomplete and noisy future measurements. Additionally, the underlying population can be used to infer an observationally based concentration-mass relation. Our method is equivalent to a quasi-stacking approach with the degree of stacking set by the data. We also demonstrate that mass and concentration derived from pure stacking can be offset from the population mean with differing values depending on the method of stacking.

  13. The large scale gas and dust distribution in the galaxy: Implications for star formation

    NASA Technical Reports Server (NTRS)

    Sodroski, T. J.; Dwek, E.; Hauser, M. G.; Kerr, F. J.

    1987-01-01

    Infrared Astronomy Observations are presented for the diffuse infrared (IR) emissions from the galactic plane at wavelengths of 60 and 100 microns and the total far infrared intensity and its longitudinal variations in the disk were derived. Using available CO, 5 GHz radio-continuum, and HI data, the IR luminosity per hydrogen mass and the ingrared excess (IRE) ratio in the Galaxy were derived. The longitudinal profiles of the 60 and 100 micron emission were linearly decomposed into three components that are associated with molecular (H2), neutral (HI), and ionized (HII) phases in the interstellar medium (ISM), and the relevant dust properties were derived in each phase. Implications of the findings for various models of the diffuse IR emisison and for star formation in the galactic disk are discussed.

  14. A census of AGB stars in Local Group galaxies. II. NGC 185 and NGC 147

    NASA Astrophysics Data System (ADS)

    Nowotny, W.; Kerschbaum, F.; Olofsson, H.; Schwarz, H. E.

    2003-05-01

    We present results of our ongoing photometric survey of Local Group galaxies, using a four filter technique based on the method of Wing (\\cite{Wing71}) to identify and characterise the late-type stellar content. Two narrow band filters centred on spectral features of TiO and CN allow us to distinguish between AGB stars of different chemistries [M-type (O-rich) and C-type (C-rich)]. The major parts of two dwarf galaxies of the M 31 subgroup - NGC 185 and NGC 147 - were observed. From photometry in V and i we estimate the tip of the RGB, and derive distance moduli respectively. With additional photometric data in the narrow band filters TiO and CN we identify 154 new AGB carbon stars in NGC 185 and 146 in NGC 147. C/M ratios are derived, as well as mean absolute magnitudes , bolometric magnitudes M_bol, luminosity functions, and the spatial/radial distributions of the C stars in both galaxies. Based on observations made with the Nordic Optical Telescope operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strabg.fr/cgi-bin/qcat?J/A+A/403/93

  15. Hot versus cold: The dichotomy in spherical accretion of cooling flows onto supermassive black holes in elliptical galaxies, galaxy groups, and clusters

    SciTech Connect

    Guo, Fulai; Mathews, William G.

    2014-01-10

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ∼100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z {sub ☉}, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R {sub e} ∼ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  16. Probing the Dark Matter Content of Local Group Dwarf Spheroidal Galaxies with FLAMES

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark I.; Kleyna, Jan T.; Gilmore, Gerard F.; Evans, N. Wyn; Koch, Andreas; Grebel, Eva K.; Wyse, Rosemary F. G.; Harbeck, Daniel R.

    2006-06-01

    We present preliminary kinematic results from our VLT programme of spectroscopic observations in the Carina dwarf spheroidal galaxy using the FLAMES multi-object spectrograph. These new data suggest that the dark matter halo of this galaxy has a uniform density core. The implications for our understanding of the nature of the dark matter are discussed. Z% Aaronson M. 1983, ApJ 266, L11 Belokurov V. et al. 2006, ApJL, submitted, astro-ph/0604355 Goerdt T. et al. 2006, MNNRAS 368, 1073 Harbeck D. et al. 2001, AJ 122, 3092 Kleyna J. T. et al. 2001, ApJ 564, L115 Kleyna J. T. et al. 2003, ApJ 588, L21 Koch A. et al. 2006a, The Messenger 123, 38 Koch A. et al. 2006b, AJ 131, 895 Majewski S. R. et al. 2005, AJ 130, 2677 Martin N. et al. 2006, MNRAS 367, L69 Mateo M. et al. 1993, AJ 105, 510 Mateo M. 1997, ASP Conf. Ser. 116, 259 Mateo M. et al. 1998, AJ 116, 2315 Monelli M. et al. 2003, AJ 126, 218 Munoz R. R. et al. 2005, ApJ 631, L137 Shetrone M. D. et al. 2001, ApJ 548, 592 Tolstoy E. et al. 2006, The Messenger 123, 33 Wilkinson M. I. et al. 2002, MNRAS 330, 778 Wilkinson M. I. et al. 2004, MNRAS 611, L21 Wilkinson M. I. et al. 2006, in proceedings of XXIst IAP meeting, EDP sciences, astro-ph/0602186 Willman B. et al. 2005, ApJ 626, L85 Wyse R. F. G. et al. 2006, ApJ 639, L13 Zucker D. B. et al. 2006, ApJ 643, L103

  17. Life Before the Fall: Star Formation of Galaxies in Groups Prior to Cluster Assembly at z~0.37

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy; Gonzalez, Anthony; Moustakas, John; Zaritsky, Dennis

    2005-06-01

    We propose to obtain a deep MIPS 24 micron map (18'x18') of a protocluster made of 4 distinct galaxy groups that are gravitationally bound to each other at z=0.37. The galaxy groups already have a total combined mass comparable to the Coma cluster, but they have at least 4 times as many emission line galaxies as Coma. The SG1120 complex thus provides an unprecedented opportunity for determining when and how star formation is quenched (or briefly enhanced) in the galaxies that will evolve into cluster members. MIPS is ideal for measuring the emission due to warm dust at mid-IR wavelengths. This sensitive tracer of integrated star formation enables us to identify weakly star-forming members (~1 solar mass/year) to very dusty, strongly star-forming ones, e.g. ultra-luminous infrared galaxies (ULIRGs) and the possible progenitors of post-starburst (E+A) members. Combining mid-IR with the deep, wide-field X-ray/optical/near-IR imaging and spectroscopy we already have in hand, we will trace how star formation varies as a function of environment and how quickly cluster galaxies build up their stellar masses.

  18. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    NASA Technical Reports Server (NTRS)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; Lonsdale, Carol; Petty, Sara; Sayers, Jack; Stanford, Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  19. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Fieldsstarf

    NASA Astrophysics Data System (ADS)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48^{+0.13}_{-0.09}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which

  20. A CHANDRA OBSERVATION OF THE NEARBY SCULPTOR GROUP Sd GALAXY NGC 7793

    SciTech Connect

    Pannuti, Thomas G.; Staggs, Wayne D.; Schlegel, Eric M.; Filipovic, Miroslav D.; Payne, Jeffrey L.; Petre, Robert

    2011-07-15

    We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793 as part of a multiwavelength study of supernova remnants (SNRs) in nearby galaxies. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources is L{sub X} (0.2-10.0 keV) {approx}3x10{sup 36} erg s{sup -1}. A total of 22 discrete sources were detected at the {approx}3{sigma} level or greater including one ultraluminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one H II region, and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and Roentgensatellit observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxy's diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of {Gamma} = -0.65 {+-} 0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L{sub X} with a poor-fitting slope of {Gamma} = -0.62 {+-} 0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of

  1. Resolved Stellar Populations of the interacting galaxies of the M81 group

    NASA Astrophysics Data System (ADS)

    Okamoto, Sakurako; Arimoto, Nobuo; Ferguson, Annette M. N.; Bernard, Edouard J.; Irwin, Mike J.; Yamada, Yoshihiko; Utsumi, Yousuke

    2017-03-01

    We present the results from the state-of-the-art wide-field survey of the M81 galaxy group that we are conducting with Hyper Suprime-Cam on Subaru Telescope. Our photometry reaches about 2 mag below the tip of the red giant branch (RGB) and reveals the spatial distribution of both old and young stars over an area of 5°2 around the M81. The young main-sequence (MS) stars closely follow the HI distribution and can be found in a stellar stream between M81 and NGC 3077 and in numerous outlying stellar associations. Our survey also reveals for the first time the very extended (>2 × R25) halos of RGB stars around M81, M82, and NGC 3077, as well as faint tidal streams that link these systems. The gravitational interactions between M81, M82 and NGC 3077 galaxies induced star formation in tidally stripped gas, and also significantly perturbed the older stellar components leading to disturbed halo morphologies.

  2. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION

    SciTech Connect

    Ouchi, Masami; Mobasher, Bahram; Shimasaku, Kazuhiro; Ono, Yoshiaki; Nakajima, Kimihiko; Okamura, Sadanori; Ferguson, Henry C.; Fall, S. Michael; Kashikawa, Nobunari; Morokuma, Tomoki; Dickinson, Mark; Giavalisco, Mauro; Ohta, Kouji

    2009-12-01

    We present results of our large area survey for z'-band dropout galaxies at z = 7 in a 1568 arcmin{sup 2} sky area covering the SDF and GOODS-N fields. Combining our ultra-deep Subaru/Suprime-Cam z'- and y-band (lambda{sub eff} = 1 mum) images with legacy data of Subaru and Hubble Space Telescope, we have identified 22 bright z-dropout galaxies down to y = 26, one of which has a spectroscopic redshift of z = 6.96 determined from Lyalpha emission. The z = 7 luminosity function yields the best-fit Schechter parameters of phi* = 0.69{sup +2.62}{sub -0.55} x 10{sup -3} Mpc{sup -3}, M*{sub UV} = -20.10 +- 0.76 mag, and alpha = -1.72 +- 0.65, and indicates a decrease from z = 6 at a >95% confidence level. This decrease is beyond the cosmic variance in our two fields, which is estimated to be a factor of approx<2. We have found that the cosmic star formation rate density drops from the peak at z = 2-3 to z = 7 roughly by a factor of approx10 but not larger than approx100. A comparison with the reionization models suggests either that the universe could not be totally ionized by only galaxies at z = 7, or more likely that properties of galaxies at z = 7 are different from those at low redshifts having, e.g., a larger escape fraction (approx>0.2), a lower metallicity, and/or a flatter initial mass function. Our SDF z-dropout galaxies appear to form 60 Mpc long filamentary structures, and the z = 6.96 galaxy with Lyalpha emission is located at the center of an overdense region consisting of four UV bright dropout candidates, which might suggest an existence of a well-developed ionized bubble at z = 7.

  3. X-ray emission from clusters and groups of galaxies

    PubMed Central

    Mushotzky, Richard

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures. PMID:9419327

  4. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo

    2017-06-01

    We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.

  5. Galaxy Groups, CDM/CHDM Cosmologies, and the Value of Ω0

    NASA Astrophysics Data System (ADS)

    Nolthenius, Richard; Klypin, Anatoly A.; Primack, Joel R.

    1997-05-01

    We present techniques for identifying and analyzing galaxy groups and apply them to large-scale particle-mesh (PM) N-body simulations of structure formation in three Ω0 = 1 cosmological models: cold plus hot dark matter (CHDM), with Ωcold = 0.6, Ων = 0.3, and Ωbaryon = 0.1 at bias b≡σ-18=1.5 and two cold dark matter (CDM) models, at bias b = 1.5 and b = 1.0. Groups are identified with the adaptive friends-of-friends algorithm of Nolthenius. Our most important conclusions follow. The standard group M/L method gives Ω0 ~= 0.08 for the CfA1 survey (for redshift link parameter V5 = 350), and, applied to our Ω0 = 1 simulations, it gives Ω0 ~= 0.12 for CHDM (V5 = 350) and Ω0 ~= 0.35 for CDM (V5 = 600). This Ω bias appears to be even stronger at higher resolution. We show quantitatively how three different effects conspire to produce this large discrepancy, and we conclude that low observed Ω values need not argue for a low-Ω universe. Our preferred statistics of groups show promise in becoming powerful discriminators between Gaussian cosmological models, whose Ων differ and are robust against several methods for assigning luminosity to dark matter halos, and for merging CfA1 data. However, our latest results at higher resolution show such strong sensitivity to how massive overmergers are broken up that more reliable ways of identifying luminous galaxies within large-scale simulations will be necessary before these statistics can provide reliable discrimination. When overmergers are broken up, the median virial-to-DM mass Mvir/MDM of three-dimensional-selected groups is ~1 for all simulations. Groups with MDM > 1014 M⊙ appear virialized in all simulations. We measure global (not pairwise) velocity biases bv, similar to previous studies. Within three-dimensional-selected groups, CHDM and CDM with b = 1.5 show a stronger bias of bv = 0.7-0.8, while CDM with b = 1.0 shows groups of bv ~= 1.

  6. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II - The local group galaxy M33

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Wilson, Christine D.; Madore, Barry F.

    1991-01-01

    A true distance modulus to the nearby spiral galaxy M33 has been determined based on CCD photometry obtained at BVRI wavelengths. M33 is presently one of five nearby galaxies used in the calibration of the IR Tully-Fisher relation, and thereby in the determination of the Hubble constant. Using period-luminosity relations at several wavelengths offers the advantage that the distance moduli derived can be corrected for the effects of interstellar extinction. These data indicate that there is internal reddening affecting the Cepheid photometry in M33 which must be accounted for if a true distance modulus is to be obtained for this galaxy. Adopting a true distance modulus to the LMC of 18.5 mag, the new CCD data yield a true distance to M33 of 24.64 + or - 0.09 mag, corresponding to a linear distance of 840 kpc. A mean value of the total color excess (foreground and internal) for the Cepheids in M33 is estimated to be E(B - V) = 0.10 + or - 0.09 mag, assuming a value for the total mean LMC Cepheid color excess of 0.10 mag.

  7. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II - The local group galaxy M33

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Wilson, Christine D.; Madore, Barry F.

    1991-01-01

    A true distance modulus to the nearby spiral galaxy M33 has been determined based on CCD photometry obtained at BVRI wavelengths. M33 is presently one of five nearby galaxies used in the calibration of the IR Tully-Fisher relation, and thereby in the determination of the Hubble constant. Using period-luminosity relations at several wavelengths offers the advantage that the distance moduli derived can be corrected for the effects of interstellar extinction. These data indicate that there is internal reddening affecting the Cepheid photometry in M33 which must be accounted for if a true distance modulus is to be obtained for this galaxy. Adopting a true distance modulus to the LMC of 18.5 mag, the new CCD data yield a true distance to M33 of 24.64 + or - 0.09 mag, corresponding to a linear distance of 840 kpc. A mean value of the total color excess (foreground and internal) for the Cepheids in M33 is estimated to be E(B - V) = 0.10 + or - 0.09 mag, assuming a value for the total mean LMC Cepheid color excess of 0.10 mag.

  8. VizieR Online Data Catalog: Hickson Compact Groups of Galaxies I. (Allam+, 1996)

    NASA Astrophysics Data System (ADS)

    Allam, S.; Assendorp, R.; Longo, G.; Braun, M.; Richter, G.

    1996-03-01

    The Far Infrared (FIR) properties of galaxies which are members of compact groups bear relevant information on the dynamical status and the physical properties of these structures. All studies published so far have been undermined by the poor sensitivity and spatial resolution of the IRAS-PSC and IRAS Sky Survey data. We used the HIRAS software available at the IRAS server at the Laboratory for Space Research in Groningen to fully exploit the redundancy of the IRAS data and to approach the theoretical diffraction limit of IRAS. Among the 97 groups which were observed by IRAS, 62 were detected in at least one band, while reliable upper limits were derived for all the others. Among the detected groups, 49 were fully or partially resolved, i.e. it was possible to discriminate which member or members emit most of the FIR light. At 60μm, for instance, 87 individual sources were detected in 62 groups. In order to ease the comparison with data obtained at other wavelengths - and in particular in the X and radio domains - we give co-added and HIRAS maps for all the detected groups. (1 data file).

  9. Testing the Origin and Evolution of Fossil Groups of Galaxies with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Dupke, Renato

    2009-10-01

    Fossil groups (FGs) present a puzzle to current theories of structure formation. Despite the low number of bright galaxies, their high sigma and high gas T_X indicate cluster-like potential wells. The measured c200 seem are high indicating early formation epochs, in contradiction with the observed lack of large cool cores. There are few FGs with deep X-ray data to date, and their idiosyncratic characteristics may contribute to enhance these apparent contradictions. To zero in on their origin and formation mechanisms it is fundamental to increase the number of FGs with good quality X-ray data. Here, we propose to build the 1st large X-ray sample of bona-fide FGs. True diffuse emission has been verified through 2 Chandra programs. This will allow us to significantly constrain FG's formation mechanisms.

  10. Population studies in groups and clusters of galaxies. IV - Comparison of the luminosity functions and morphological-type distributions in seven nearby groups

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Sandage, Allan

    1991-01-01

    Published observational data on the Leo, Dorado, NGC 1400, NGC 5044, Antlia, Fornax, and Virgo groups of galaxies are analyzed in terms of the luminosity functions and morphological types of their members. The data sets employed are characterized, and the results are presented in extensive tables and graphs and discussed in detail. While the fractions of early and late galaxies in the groups are similar, the ratio of dwarfs to giants (D/G) in the early galaxies varies monotonically with the richness of the cluster, leading to artificial flattening at the faint end of the total luminosity function in environments with low D/G. The luminosity function for dwarfs in all environments is found to have a slope of about -1.3.

  11. Population studies in groups and clusters of galaxies. IV. Comparison of the luminosity functions and morphological-type distributions in seven nearby groups

    SciTech Connect

    Ferguson, H.C.; Sandage, A. Observatories of the Carnegie Institution, Pasadena, CA Space Telescope Science Institute, Baltimore, MD )

    1991-03-01

    Published observational data on the Leo, Dorado, NGC 1400, NGC 5044, Antlia, Fornax, and Virgo groups of galaxies are analyzed in terms of the luminosity functions and morphological types of their members. The data sets employed are characterized, and the results are presented in extensive tables and graphs and discussed in detail. While the fractions of early and late galaxies in the groups are similar, the ratio of dwarfs to giants (D/G) in the early galaxies varies monotonically with the richness of the cluster, leading to artificial flattening at the faint end of the total luminosity function in environments with low D/G. The luminosity function for dwarfs in all environments is found to have a slope of about -1.3. 54 refs.

  12. Scaling relations and the fundamental line of the local group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Woo, Joanna; Courteau, Stéphane; Dekel, Avishai

    2008-11-01

    We study the scaling relations between global properties of dwarf galaxies in the local group. In addition to quantifying the correlations between pairs of variables, we explore the `shape' of the distribution of galaxies in log parameter space using standardized principal component analysis, the analysis is performed first in the 3D structural parameter space of stellar mass M*, internal velocity V and characteristic radius R* (or surface brightness μ*). It is then extended to a 4D space that includes a stellar population parameter such as metallicity Z or star formation rate . We find that the local group dwarfs basically define a one-parameter `fundamental line' (FL), primarily driven by stellar mass, M*. A more detailed inspection reveals differences between the star formation properties of dwarf irregulars (dI's) and dwarf ellipticals (dE's), beyond the tendency of the latter to be more massive. In particular, the metallicities of dI's are typically lower by a factor of 3 at a given M* and they grow faster with increasing M*, showing a tighter FL in the 4D space for the dE's. The structural scaling relations of dI's resemble those of the more massive spirals, but the dI's have lower star formation rates for a given M* which also grow faster with increasing M*. On the other hand, the FL of the dE's departs from the fundamental plane of bigger ellipticals. While the one-parameter nature of the FL and the associated slopes of the scaling relations are consistent with the general predictions of supernova feedback from Dekel & Woo, the differences between the FL's of the dE's and the dI's remain a challenge and should serve as a guide for the secondary physical processes responsible for these two types.

  13. Properties of Galaxy Groups Selected from Chandra X-ray Observations of the Boötes Field

    NASA Astrophysics Data System (ADS)

    Vajgel, B.; Lopes, P. A. A.; Jones, C.; Forman, W. R.; Murray, S. S.

    2014-10-01

    Galaxy groups are not simply scaled down versions of rich clusters (e.g. Mulchaey 2000, Voit 2005). Due to a group's shallow gravitational potential, feedback processes play an important role in the group's evolution. It is important to understand galaxy groups since, in hierarchical clustering, they are the building blocks of large scale structure. Thus, in addition to determining the characteristics of groups, it is important to determine the mass function over the range that includes poor clusters and groups. We present the properties of the galaxy groups selected in the Chandra X-Boötes survey (Kenter et al. 2005). Group redshifts are measured from the AGES (Kochanek et al. 2012) spectroscopic data. We use photometric data from the NOAO Deep Wide Field Survey (NDWFS) (Jannuzi & Dey 1999) to estimate the group richness (N_{gals}) and the optical luminosity (L_{opt}). Our final sample comprises 32 systems at z < 0.80, with 14 below z = 0.35. For these systems we estimate velocity dispersions (σ_{gr}) and perform a virial analysis to obtain the radius (R_{200} and R_{500}) and mass (M_{200} and M_{500}) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L_{X}). We examine the performance of the group properties σ_{gr}, L_{opt} and L_{X}, as proxies for the group mass. Understanding how these observables measure the total mass is important to estimate how well the cluster/group mass function is determined. By extending the mass function to the group regime, we predict the number of groups that new X-ray surveys, eROSITA, will detect.

  14. Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.

    2017-09-01

    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.

  15. Entropy, gas fraction, and temperature scaling relations of galaxy clusters and groups at R200

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Irwin, Jimmy; Wik, Daniel R.; Sun, Ming; Sarazin, Craig L.; Fujita, Yutaka; Reiprich, Thomas

    2017-06-01

    With the growing number of galaxy clusters and groups measured in X-ray out to R200, it is possible to study the scaling relations between the enclosed gas fraction (fgas,200), entropy (K200), and temperature (T500), where the gas fraction and entropy are of great interest to constrain cosmological parameters and to understand the thermodynamic history of clusters or group formations, respectively. We will present scaling relations using 22 groups and clusters with published X-ray data in the literature. The power law slope of the K200-T200 relation is 0.638+/-0.205, which is shallower than the gravity heating-only baseline model of 1 and the K200-T200 relation. For massive clusters (T200 > 2 to 3 keV), K200 is lower than the baseline model, while no such entropy deficit was found for low-mass groups. The entropy deficit at R200 for massive clusters cannot be fully accounted for by the bias or deviation in the gas fraction. The enclosed baryon fraction at R200 is broadly consistent with the cosmic value. Physical properties of the outskirts of individual clusters, e.g., the nearest non-cool core cluster, Antlia, and a massive cluster, Abell 1689, will also be highlighted.

  16. D1005+68: A New Faint Dwarf Galaxy in the M81 Group

    NASA Astrophysics Data System (ADS)

    Smercina, Adam; Bell, Eric F.; Slater, Colin T.; Price, Paul A.; Bailin, Jeremy; Monachesi, Antonela

    2017-07-01

    We present the discovery of d1005+68, a new faint dwarf galaxy in the M81 Group, using observations taken with the Subaru Hyper Suprime-Cam. d1005+68's color-magnitude diagram is consistent with a distance of {3.98}-0.43+0.39 Mpc, establishing group membership. We derive an absolute V-band magnitude, from stellar isochrone fitting, of {M}V=-{7.94}-0.50+0.38, with a half-light radius of {r}h={188}-41+39 pc. These place d1005+68 within the radius-luminosity locus of Local Group and M81 satellites and among the faintest confirmed satellites outside the Local Group. Assuming an age of 12 Gyr, d1005+68's red giant branch is best fit by an isochrone of [Fe/H] = -1.90 ± 0.24. It has a projected separation from nearby M81 satellite BK5N of only 5 kpc. As this is well within BK5N’s virial radius, we speculate that d1005+68 may be a satellite of BK5N. If confirmed, this would make d1005+68 one of the first detected satellites-of-a-satellite.

  17. Resolving the stellar outskirts of six Milky Way-like galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, A.; Bell, E. F.; Radburn-Smith, D. J.; Harmsen, B.; de Jong, R. S.; Bailin, J.; Holwerda, B. W.; Streich, D.

    2017-03-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of galaxy's halos are available, mainly for the Milky Way and M31. The Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey is the largest study to date of the resolved stellar populations in the outskirts of disk galaxies and its observations offer a direct test of model predictions. Here we present the results we obtain for six highly inclined nearby Milky Way-mass spiral galaxies. We find a great diversity in the properties of their stellar halos.

  18. The bow shock, cold fronts and disintegrating cool core in the merging galaxy group RX J0751.3+5012

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Edge, A. C.; Sanders, J. S.; Nulsen, P. E. J.; Baum, S. A.; Donahue, M.; O'Dea, C. P.

    2014-10-01

    We present a new Chandra X-ray observation of the off-axis galaxy group merger RX J0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produced by the motion through the ambient medium, and the first detection of a group merger shock front. We detect a clear density and temperature jump associated with a bow shock of Mach number M = 1.9 ± 0.4 ahead of the northern group. Using galaxy redshifts and the shock velocity of 1100 ± 300 km s-1, we estimate that the merger axis is only ˜10° from the plane of the sky. From the projected group separation of ˜90 kpc, this corresponds to a time since closest approach of ˜0.1 Gyr. The northern group hosts a dense, cool core with a ram pressure stripped tail of gas extending ˜100 kpc. The sheared sides of this tail appear distorted and broadened by Kelvin-Helmholtz instabilities. We use the presence of this substructure to place an upper limit on the magnetic field strength and, for Spitzer-like viscosity, show that the development of these structures is consistent with the critical perturbation length above which instabilities can grow in the intragroup medium. The northern group core also hosts a galaxy pair, UGC 4052, with a surrounding IR and near-UV ring ˜40 kpc in diameter. The ring may have been produced by tidal stripping of a smaller galaxy by UGC 4052 or it may be a collisional ring generated by a close encounter between the two large galaxies.

  19. Spectroscopic Confirmation of the Dwarf Spheroidal Galaxy d0994+71 as a Member of the M81 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Sand, David; Guhathakurta, Puragra; Chiboucas, Kristin; Crnojević, Denija; Simon, Joshua D.

    2016-10-01

    We use Keck/DEIMOS spectroscopy to measure the first velocity and metallicity of a dwarf spheroidal (dSph) galaxy beyond the Local Group using resolved stars. Our target, d0944+71, is a faint dSph found in the halo of the massive spiral galaxy M81 by Chiboucas et al. We coadd the spectra of 27 individual stars and measure a heliocentric radial velocity of -38 ± 10 km s-1. This velocity is consistent with d0944+71 being gravitationally bound to M81. We coadd the spectra of the 23 stars that are consistent with being red giant branch stars and measure an overall metallicity of [Fe/H] = -1.3 ± 0.3 based on the calcium triplet lines. This metallicity is consistent with d0944+71 following the metallicity-luminosity relation for Local Group dSphs. We investigate several potential sources of observational bias but find that our sample of targeted stars is representative of the metallicity distribution function of d0944+71 and any stellar contamination due to seeing effects is negligible. The low ellipticity of the galaxy and its position in the metallicity-luminosity relation suggest that d0944+71 has not been affected by strong tidal stripping.

  20. Precision cosmology with baryons: non-radiative hydrodynamics of galaxy groups

    NASA Astrophysics Data System (ADS)

    Rabold, Manuel; Teyssier, Romain

    2017-05-01

    The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or Large Synoptic Survey Telescope (LSST). As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized haloes, which contribute the most to the weak-lensing power spectrum. We perform high-resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 haloes, comparing the profiles to popular analytical models. We find that the total mass profile is well fitted by a Navarro, Frenk & White model, with parameters slightly modified from the dark matter only simulation. We also find that the Komatsu & Seljak hydrostatic solution provides a good fit to the gas profiles, with however significant deviations, arising from strong turbulent mixing in the core and from non-thermal, turbulent pressure support in the outskirts. The turbulent energy follows a shallow, rising linear profile with radius, and correlates with the halo formation time. Using only three main structural halo parameters as variables (total mass, concentration parameter and central gas density), we can predict, with an accuracy better than 20 per cent, the individual gas density and temperature profiles. For the average total mass profile, which is relevant for power spectrum calculations, we even reach an accuracy of 1 per cent. The robustness of these predictions has been tested against resolution effects, different types of initial conditions and hydrodynamical schemes.

  1. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  2. The Local Group Galaxy IC 1613 and its asymptotic giant branch variables

    NASA Astrophysics Data System (ADS)

    Menzies, John W.; Whitelock, Patricia A.; Feast, Michael W.

    2015-09-01

    JHKS photometry is presented from a 3-yr survey of the central regions of the Local Group dwarf irregular galaxy IC 1613. The morphologies of the colour-magnitude and colour-colour diagrams are discussed with particular reference to the supergiants and M- and C-type asymptotic giant branch (AGB) stars. Mean JHKS magnitudes, amplitudes and periods are given for five O-rich and nine C-rich Mira variables for which bolometric magnitudes are also estimated. A distance of 750 kpc ((m - M)0 = 24.37 ± 0.08 mag) is derived for IC 1613 by fitting a period-luminosity (PL) relation to the C-rich Miras. This is in agreement with values from the literature. The AGB stars exhibit a range of ages. A comparison with theoretical isochrones suggests that four luminous O-rich Miras are as young as 2 × 108 yr. One of these has a lithium absorption line in its spectrum, demonstrating that it is undergoing hot bottom burning (HBB). This supports the idea that HBB is the cause of the high luminosity of these AGB stars, which puts them above the fundamental PL relation. Further studies of similar stars, selected from their positions in the PL diagram, could provide insight into HBB. A much fainter, presumed O-rich, Mira is similar to those found in Galactic globular clusters. The C Miras are of intermediate age. The O-rich variables are not all recognized as O-rich, or even as AGB stars, on the basis of their J - KS colour. It is important to appreciate this when using near-infrared surveys to classify AGB stars in more distant galaxies.

  3. Nature of the absorbing gas associated with a galaxy group at z˜0.4

    NASA Astrophysics Data System (ADS)

    Péroux, Céline; Rahmani, Hadi; Quiret, Samuel; Pettini, Max; Kulkarni, Varsha; York, Donald G.; Straka, Lorrie; Husemann, Bernd; Milliard, Bruno

    2017-01-01

    We present new Multi Unit Spectroscopic Explorer observations of quasar field Q2131-1207 with a log N(H I} = 19.50 ± 0.15 sub-damped Lyman α at zabs = 0.42980. We detect four galaxies at a redshift consistent with that of the absorber where only one was known before this study. Two of these are star-forming galaxies, while the ones further away from the quasar (>140 kpc) are passive galaxies. We report the metallicities of the H II regions of the closest objects (12 + log(O/H) = 8.98 ± 0.02 and 8.32 ± 0.16) to be higher or equivalent within the errors to the metallicity measured in absorption in the neutral phase of the gas (8.15 ± 0.20). For the closest object, a detailed morphokinematic analysis indicates that it is an inclined large rotating disc with Vmax = 200 ± 3 km s-1. We measure the masses to be Mdyn = 7.4 ± 0.4 × 1010 M⊙ and Mhalo = 2.9 ± 0.2 × 1012 M⊙. Some of the gas seen in absorption is likely to be corotating with the halo of that object, possibly due to a warped disc. The azimuthal angle between the quasar line-of-sight and the projected major axis of the galaxy on the sky is 12° ± 1° which indicates that some other fraction of the absorbing gas might be associated with accreting gas. This is further supported by the galaxy to gas metallicity difference. Based on the same arguments, we exclude outflows as a possibility to explain the gas in absorption. The four galaxies form a large structure (at least 200 kpc wide) consistent with a filament or a galaxy group so that a fraction of the absorption could be related to intragroup gas.

  4. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    SciTech Connect

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Gronwall, C.; Fedotov, K.; Desjardins, T. D.; Gallagher, S. C.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Walker, L. M.; Johnson, K. E.; Tzanavaris, P.

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  5. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; Johnson, K. E.; Tzanavaris, Panayiotis; Gronwall, C.

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  6. Stellar Populations in Compact Galaxy Groups: A Multi-wavelength Study of HCGs 16, 22, and 42, their Star Clusters, and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; Johnson, K. E.; Tzanavaris, P.; Gronwall, C.

    2013-06-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  7. Molecular and atomic gas in the Local Group galaxy M 33

    NASA Astrophysics Data System (ADS)

    Gratier, P.; Braine, J.; Rodriguez-Fernandez, N. J.; Schuster, K. F.; Kramer, C.; Xilouris, E. M.; Tabatabaei, F. S.; Henkel, C.; Corbelli, E.; Israel, F.; van der Werf, P. P.; Calzetti, D.; Garcia-Burillo, S.; Sievers, A.; Combes, F.; Wiklind, T.; Brouillet, N.; Herpin, F.; Bontemps, S.; Aalto, S.; Koribalski, B.; van der Tak, F.; Wiedner, M. C.; Röllig, M.; Mookerjea, B.

    2010-11-01

    We present high-resolution large-scale observations of the molecular and atomic gas in the Local Group galaxy M 33. The observations were carried out using the HEterodyne Receiver Array (HERA) at the 30 m IRAM telescope in the CO(2-1) line, achieving a resolution of 12” × 2.6 km s-1, enabling individual giant molecular clouds (GMCs) to be resolved. The observed region is 650 square arcminutes mainly along the major axis and out to a radius of 8.5 kpc, and covers entirely the 2' × 40' radial strip observed with the HIFI and PACS Spectrometers as part of the HERM33ES Herschel key program. The achieved sensitivity in main-beam temperature is 20-50 mK at 2.6 km s-1 velocity resolution. The CO(2-1) luminosity of the observed region is 1.7±0.1 × 107 K km s-1 pc2 and is estimated to be 2.8±0.3 × 107 K km s-1 pc2 for the entire galaxy, corresponding to H2 masses of 1.9 × 108 Msun and 3.3 × 108 Msun respectively (including He), calculated with N(H2)/ICO(1-0) twice the Galactic value due to the half-solar metallicity of M 33. The H i 21 cm VLA archive observations were reduced, and the mosaic was imaged and cleaned using the multi-scale task in the CASA software package, yielding a series of datacubes with resolutions ranging from 5” to 25”. The H i mass within a radius of 8.5 kpc is estimated to be 1.4 × 109 Msun. The azimuthally averaged CO surface brightness decreases exponentially with a scale length of 1.9±0.1 kpc whereas the atomic gas surface density is constant at ΣH I = 6±2 Msun pc-2 deprojected to face-on. For an N(H2)/ICO(1-0) conversion factor twice that of the Milky Way, the central kiloparsec H2 surface density is ΣH2 = 8.5±0.2 Msun pc-2. The star formation rate per unit molecular gas (SF efficiency, the rate of transformation of molecular gas into stars), as traced by the ratio of CO to Hα and FIR brightness, is constant with radius. The SFE, with a N(H2)/ICO(1-0) factor twice galactic, appears 2-4 times greater than for large spiral

  8. VizieR Online Data Catalog: Compact groups of galaxies from SDSS-DR12 (MLCG) (Sohn+, 2016)

    NASA Astrophysics Data System (ADS)

    Sohn, J.; Geller, M. J.; Hwang, H. S.; Zahid, H. J.; Lee, M. G.

    2016-10-01

    We derive a sample of compact groups from the spectroscopic sample of SDSS DR12 (Alam et al. 2015ApJS..219...12A) galaxies at r<17.77. The DR12 includes redshifts for more than 2.4 million galaxies. To reduce the incompleteness of the SDSS, we supplement the catalog with redshifts from the literature (see Hwang et al. 2010A&A...522A..33H for details). We also add redshifts from recent FAST observations at Fred Lawrence Whipple Observatory (Sohn et al. 2015JKAS...48..381S). (8 data files).

  9. The Evolution of Faint Field Galaxies: Implications from the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Gronwall, C.

    1996-12-01

    The Hubble Deep Field (HDF) is a four square arcminute area of the sky imaged for ten consecutive days with the Hubble Space Telescope. It is the deepest optical imaging survey of field galaxies in existence, reaching ~ 2-3 mag fainter than the deepest ground-based observations. In addition to its unprecedented depth, the spatial resolution of the HDF enables the measurement of structural and morphological parameters for an extremely faint sample of galaxies. We (see Gronwall & Koo 1995) have developed a modeling technique which differs from previous work by adopting the very simple assumption that the local galaxy luminosity function and galaxy mix are not well-defined. Instead, we use a non-negative least squares fitting technique to derive a set of best-fitting local luminosity functions for different galaxy spectral types. By only including traditional luminosity evolution (i.e., the photometric evolution of stars over time given reasonable assumptions of the star formation history of various galaxy types), plus the addition of galaxy reddening, we are able to fit the observed optical and near-IR galaxy counts, B-R colors, and redshifts of faint field galaxies extremely well to B ~ 25. We present the extension of the obove modeling technique to the multicolor photometric information and structural parameters (in particular, angular sizes) provided by the HDF. Our newst models also include additional evolutionary components -- merging and starbursting -- to try to constrain the relative importances of different forms of evolution in faint field galaxies.

  10. Chemical history of isolated dwarf galaxies of the Local Group - I. dSphs: Cetus and Tucana

    NASA Astrophysics Data System (ADS)

    Avila-Vergara, N.; Carigi, L.; Hidalgo, S. L.; Durazo, R.

    2016-04-01

    For the first time, we obtain chemical evolution models (CEMs) for Tucana and Cetus, two isolated dwarf spheroidal galaxies of the Local Group. The CEMs have been built from the star formation histories (SFHs) and the metallicity histories, both obtained independently by the Local Cosmology from Isolated Dwarfs (LCID) project from deep colour-magnitude diagrams. Based on our models, we find that the chemical histories were complex and can be divided into different epochs and scenarios. In particular, during 75 per cent of the SFH, the galaxies behaved as closed boxes and, during the remaining 25 per cent, either received a lot of primordial gas by accretion or they lost metals through metal-rich winds. In order to discriminate between these two scenarios, abundances ratios in old stars are needed. At t ˜ 4.5 Gyr, the galaxies lost most of their gas due to a short-strong, well-mixed wind. We obtain very similar CEMs for both galaxies, although Cetus is twice as massive as Tucana. We conclude that the star formation in both galaxies began with only 1.5 per cent of the baryonic mass fraction predicted by Λ cold dark matter.

  11. Observations of Environmental Quenching in Groups in the 11 GYR Since z = 2.5: Different Quenching For Central and Satellite Galaxies

    NASA Technical Reports Server (NTRS)

    Tal, Tomer; Dekel, Avishai; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica J.; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.; Oesch, Pascal; Muzzin, Adam; Brammer, Gabriel B.; vanDokkum, Peter G.; Franx, Marijn; Illingworth, Garth D.; Leja, Joel; Magee, Daniel

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 less than z less than 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z approximately 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M=6.5x10(exp 10) M/solar mass) to nearby massive ellipticals (M=1.5x10(exp 11) M/solar mass). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M=6.5x10(exp 9) M/solar mass). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10(exp 12) and 10(exp 13) M/solar mass, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  12. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    SciTech Connect

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  13. Can AGN Feedback Break the Self-similarity of Galaxies, Groups, and Clusters?

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.; Ettori, S.

    2014-03-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L x-T x relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R 500, while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L x-T x at T 500 <~ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit.

  14. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    SciTech Connect

    Gaspari, M.; Brighenti, F.; Temi, P.

    2014-03-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L {sub x}-T {sub x} relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R {sub 500}, while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L {sub x}-T {sub x} at T {sub 500} ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit.

  15. Fossil group origins - VI. Global X-ray scaling relations of fossil galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kundert, A.; Gastaldello, F.; D'Onghia, E.; Girardi, M.; Aguerri, J. A. L.; Barrena, R.; Corsini, E. M.; De Grandi, S.; Jiménez-Bailón, E.; Lozada-Muñoz, M.; Méndez-Abreu, J.; Sánchez-Janssen, R.; Wilcots, E.; Zarattini, S.

    2015-11-01

    We present the first pointed X-ray observations of 10 candidate fossil galaxy groups and clusters. With these Suzaku observations, we determine global temperatures and bolometric X-ray luminosities of the intracluster medium (ICM) out to r500 for six systems in our sample. The remaining four systems show signs of significant contamination from non-ICM sources. For the six objects with successfully determined r500 properties, we measure global temperatures in the range 2.8 ≤ TX ≤ 5.3 keV, bolometric X-ray luminosities of 0.8 × 1044 ≤ LX, bol ≤ 7.7 × 1044 erg s-1, and estimate masses, as derived from TX, of M500 ≳ 1014 M⊙. Fossil cluster scaling relations are constructed for a sample that combines our Suzaku observed fossils with fossils in the literature. Using measurements of global X-ray luminosity, temperature, optical luminosity, and velocity dispersion, scaling relations for the fossil sample are then compared with a control sample of non-fossil systems. We find the fits of our fossil cluster scaling relations are consistent with the relations for normal groups and clusters, indicating fossil clusters have global ICM X-ray properties similar to those of comparable mass non-fossil systems.

  16. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications

    SciTech Connect

    Bernardo, Giuseppe Di; Evoli, Carmelo; Gaggero, Daniele; Grasso, Dario; Maccione, Luca E-mail: carmelo.evoli@desy.de E-mail: dario.grasso@pi.infn.it

    2013-03-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only within low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.

  17. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Our Galaxy

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan; Adelman, Saul Joseph

    2015-08-01

    The abundances of the Fe-peak elements (Ti, V, Cr, Mn, Fe, Co, and Ni) are of interest as they are important for assessing opacities for stellar evolution calculations, confirming theoretical calculations of explosive nucleosynthesis, and inferring the past history of supernova activity in a galaxy. FUSE FUV spectra of early B stars in the LMC and SMC and HST/STIS FUV/NUV spectra of nearby B stars in our galaxy are analyzed with the Hubeny/Lanz programs TLUSTY/SYNSPEC to determine abundance for the Fe group elements and produce a map of these abundances in the Magellanic Clouds (MC) and Magellanic Bridge (MB). Except for four weak multiplets of Fe III there are no measurable lines from the Fe group in the optical region. The Fe group species found in the FUV spectra of early B stars are primarily in the second stage of ionization. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. Analysis of the galactic B stars provides a good assessment of the reliability of the atomic parameters that are used for the MC calculations. Twenty-two early B stars in the MC and MB and five in our galaxy were analyzed. In general the Fe group abundances range from solar to slightly below solar in our region of the galaxy. But in the MCs the abundances of V, Cr, and Fe tend to be significantly lower than the mean metal abundances for the galaxy. Maps of the Fe group abundances and their variations in the LMC and SMC, tracers of recent enrichment of the ISM from supernova activity, are shown. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  18. Quenching Depends on Morphologies: Implications from the Ultraviolet-Optical Radial Color Distributions in Green Valley Galaxies

    NASA Astrophysics Data System (ADS)

    Pan, Zhizheng; Li, Jinrong; Lin, Weipeng; Wang, Jing; Kong, Xu

    2014-09-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u - r colors of early-type galaxies (ETGs) are flat out to R 90, while the colors monotonously turn blue when r > 0.5 R 50 for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV - r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R 90. The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ~50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable "blue-cores" and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI.

  19. QUENCHING DEPENDS ON MORPHOLOGIES: IMPLICATIONS FROM THE ULTRAVIOLET-OPTICAL RADIAL COLOR DISTRIBUTIONS IN GREEN VALLEY GALAXIES

    SciTech Connect

    Pan, Zhizheng; Lin, Weipeng; Li, Jinrong; Kong, Xu; Wang, Jing E-mail: linwp@shao.ac.cn

    2014-09-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u – r colors of early-type galaxies (ETGs) are flat out to R {sub 90}, while the colors monotonously turn blue when r > 0.5 R {sub 50} for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV – r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R {sub 90}. The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ∼50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable ''blue-cores'' and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI.

  20. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  1. A Search for Triggered Star Formation in the Compact Group of Galaxies NGC 5851, NGC 5852 and CGCG 077-007

    NASA Astrophysics Data System (ADS)

    Olsen, Charlotte Alexandra; Basu-Zych, Antara; Hornschemeier, Ann E.; NASA / GSFC X-ray Galaxies Group

    2017-01-01

    Galaxy interactions provide ideal conditions for triggering star formation, and impact galaxy evolution and the structure of the universe. The aim of this research is to study the key factors during galaxy interactions that influence star formation events by studying close pairs of galaxies to find the relationship between interaction properties (e.g. relative velocities and distances, mass ratios, orientation, and merger stage) and star formation rate (SFR). We present our analysis on one compact group of star-forming galaxies CGCG 077-007, NGC 5851, and their quiescent companion NGC 5852. Within this group we investigate the conditions where galaxy interactions cause higher SFR or supermassive black hole accretion (i.e. AGN activity), which might rather quench SFR. Areas of increased star formation are classified by the identification of the most UV bright regions within the galaxies. We find these areas by taking the Swift UVOT W2 filter and subtracting from it the Sloan Digital Sky Survey (SDSS) z-band image in order to remove the underlying stellar population. The regions identified by this process allow us to conduct a multi-wavelength study of stellar populations within this compact group. We use Spectral Energy Distribution models to fit ultraviolet to mid-infrared photometry from Swift UVOT, SDSS, 2MASS and WISE and measure global star formation histories for the galaxies and for the identified star forming regions within the galaxies. In the future we will include analysis of Swift XRT data to place constraints on AGN activity, and relate to the star formation history. This group serves as a pilot study and we will apply these methods to a sample of 30 galaxy groups and close pairs in order to investigate the relationship between galaxy interactions, SFR, and AGN activity and gain deeper insight into how mergers drive galaxy evolution.

  2. Development of a hot intergalactic medium in spiral-rich galaxy groups: the example of HCG 16

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Zezas, Andreas; Mamon, Gary; Ponman, Trevor J; Raychaudhury, Somak

    2014-08-01

    Galaxy groups provide the environment in which the majority of galaxies evolve, with low velocity dispersions and small galaxy separations that are conducive to tidal interactions and mergers between group members. X-ray observations reveal the frequent presence of hot gas in groups, with larger quantities linked to early-type galaxies, whereas cold gas is common in spiral-dominated groups. Clarification of the origin and role of the hot medium is central to the understanding of the evolution of the galaxy population and of all phases of the IGM.We here report on the nuclear activity, star formation and the high luminosity X-ray binary populations of the spiral-dominated, likely not yet virialized, group HCG 16, as well as on its intra-group medium, based principally on deep (150 ks) Chandra X-ray observations of the group, as well as new Giant Metrewave Radio Telescope (GMRT) 610 MHz radio data. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify what may be a previously unrecognized nuclear source in NGC 838; all are variable. NGC 838 and NGC 839 are both starburst-dominated systems, with galactic superwinds that show X-ray and radio evidence of IGM interaction, but only weak nuclear activity; NGC 848 is also dominated by emission from its starburst.We confirm the existence of a faint, extended low-temperature (0.3 keV) intra-group medium, a subject of some uncertainty in earlier studies. The diffuse emission is strongest in a ridge linking the four principal galaxies, and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We conclude that starburst winds and shock-heating of stripped HI may play an important role in the early stages of IGM formation, with galactic winds contributing 20-40% of the observed hot gas in the system.

  3. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  4. The XXL Survey. X. K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Ziparo, F.; Smith, G. P.; Mulroy, S. L.; Lieu, M.; Willis, J. P.; Hudelot, P.; McGee, S. L.; Fotopoulou, S.; Lidman, C.; Lavoie, S.; Pierre, M.; Adami, C.; Chiappetti, L.; Clerc, N.; Giles, P.; Maughan, B.; Pacaud, F.; Sadibekova, T.

    2016-06-01

    Galaxy clusters and groups are important cosmological probes and giant cosmic laboratories for studying galaxy evolution. Much effort has been devoted to understanding how and when baryonic matter cools at the centre of potential wells. However, a clear picture of the efficiency with which baryons are converted into stars is still missing. We present the K-band luminosity-halo mass relation, LK,500-M500,WL, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to M500,WL = 3.5 × 1013 M⊙. This allows us to investigate whether the slope of the LK-M relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, M500,WL = 0.35-12.10 × 1014 M⊙, at 0 < z < 0.6. The K-band luminosity scales as log 10(LK,500/ 1012 L⊙) ∝ βlog 10(M500,WL/ 1014 M⊙) with β = 0.85+0.35-0.27 and an intrinsic scatter of σlnLK|M = 0.37+0.19-0.17. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of 1.05+0.16-0.14 and an intrinsic scatter of 0.14+0.09-0.07. The flattening in the LK-M seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted

  5. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches