Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil, E-mail: andrea.cattaneo@oamp.fr, E-mail: salucci@sissa.it, E-mail: papastergis@astro.cornell.edu
2014-03-10
The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fullymore » account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.« less
What powers Hyperluminous infrared galaxies at z˜1-2?
NASA Astrophysics Data System (ADS)
Symeonidis, M.; Page, M. J.
2018-06-01
We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR, 8-1000μm > 1013 L⊙) at z˜1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 1013 L⊙ but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at L_IR>10^{13.5} L_{⊙} AGN can account for the entire infrared emission. We conclude that the bright end of the 1 < z < 2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
Luminosity function of faint galaxies with ultraviolet continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanyan, D.A.
1985-05-01
The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less
An order statistics approach to the halo model for galaxies
NASA Astrophysics Data System (ADS)
Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.
2017-04-01
We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.
Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey
NASA Astrophysics Data System (ADS)
Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.
2007-12-01
The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.
The galaxy luminosity function around groups
NASA Astrophysics Data System (ADS)
González, R. E.; Padilla, N. D.; Galaz, G.; Infante, L.
2005-11-01
We present a study on the variations of the luminosity function of galaxies around clusters in a numerical simulation with semi-analytic galaxies, attempting to detect these variations in the 2dF Galaxy Redshift Survey. We subdivide the simulation box into equal-density regions around clusters, which we assume can be achieved by selecting objects at a given normalized distance (r/rrms, where rrms is an estimate of the halo radius) from the group centre. The semi-analytic model predicts important variations in the luminosity function out to r/rrms~= 5. In brief, variations in the mass function of haloes around clusters (large dark matter haloes with M > 1012h-1Msolar) lead to cluster central regions that present a high abundance of bright galaxies (high M* values) as well as low-luminosity galaxies (high α) at r/rrms~= 3 there is a lack of bright galaxies, which shows the depletion of galaxies in the regions surrounding clusters (minimum in M* and α), and a tendency to constant luminosity function parameters at larger cluster-centric distances. We take into account the observational biases present in the real data by reproducing the peculiar velocity effect on the redshifts of galaxies in the simulation box, and also by producing mock catalogues. We find that excluding from the analysis galaxies which in projection are close to the centres of the groups provides results that are qualitatively consistent with the full simulation box results. When we apply this method to mock catalogues of the 2dF Galaxy Redshift Survey (2dFGRS) and the 2PIGG catalogue of groups, we find that the variations in the luminosity function are almost completely erased by the Finger of God effect; only a lack of bright galaxies at r/rrms~= 3 can be marginally detected in the mock catalogues. The results from the real 2dFGRS data show a clearer detection of a dip in M* and α for r/rrms= 3, consistent with the semi-analytic predictions.
NASA Astrophysics Data System (ADS)
Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2016-10-01
In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.
The fraction of AGNs in major merger galaxies and its luminosity dependence
NASA Astrophysics Data System (ADS)
Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.
2018-05-01
We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.
A redshift survey of IRAS galaxies
NASA Astrophysics Data System (ADS)
Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.
1987-05-01
Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L-2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.
The Luminosity Function of QSO Host Galaxies
NASA Technical Reports Server (NTRS)
Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.
Primeval galaxies and cold dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph; Szalay, Alexander S.
1987-01-01
In the context of the cold dark matter theory for the large-scale matter distribution, the onset of galaxy formation is a gradual process, with star formation being initiated at z = about 10 and reaching a peak for luminous galaxies at z = about 1. The mass function of galaxy cores matches the observed quasar luminosity function at z = 2-3. Primeval galaxies are envisaged as a collection of many interacting and merging clumps, attaining a peak luminosity that is an order of magnitude below that achieved in models in which galaxy formation is initiated abruptly. Hence, ongoing searches for primeval galaxies would not necessarily have been successful unless they are designed to find moderately low-luminosity, low-surface-brigtness extended objects at low redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. Y.; Jing, Y. P.; Li, Cheng
2012-11-20
We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05,more » independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.« less
Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.
Schaefer
2000-04-10
The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozzi, D.; et al.
We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made ofmore » $$\\sim 4\\times 10^{6}$$ galaxies at $$0« less
NASA Astrophysics Data System (ADS)
Kawamata, Ryota; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Oguri, Masamune; Ouchi, Masami; Tanigawa, Shingo
2018-03-01
We construct z ∼ 6–7, 8, and 9 faint Lyman break galaxy samples (334, 61, and 37 galaxies, respectively) with accurate size measurements with the software glafic from the complete Hubble Frontier Fields (HFF) cluster and parallel fields data. These are the largest samples hitherto and reach down to the faint ends of recently obtained deep luminosity functions. At faint magnitudes, however, these samples are highly incomplete for galaxies with large sizes, implying that derivation of the luminosity function sensitively depends on the intrinsic size–luminosity relation. We thus conduct simultaneous maximum-likelihood estimation of luminosity function and size–luminosity relation parameters from the observed distribution of galaxies on the size–luminosity plane with the help of a completeness map as a function of size and luminosity. At z ∼ 6–7, we find that the intrinsic size–luminosity relation expressed as r e ∝ L β has a notably steeper slope of β ={0.46}-0.09+0.08 than those at lower redshifts, which in turn implies that the luminosity function has a relatively shallow faint-end slope of α =-{1.86}-0.18+0.17. This steep β can be reproduced by a simple analytical model in which smaller galaxies have lower specific angular momenta. The β and α values for the z ∼ 8 and 9 samples are consistent with those for z ∼ 6–7 but with larger errors. For all three samples, there is a large, positive covariance between β and α, implying that the simultaneous determination of these two parameters is important. We also provide new strong lens mass models of Abell S1063 and Abell 370, as well as updated mass models of Abell 2744 and MACS J0416.1‑2403.
THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Yan, Lin; Capak, Peter
We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, basedmore » on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.« less
Very low luminosity active galaxies and the X-ray background
NASA Technical Reports Server (NTRS)
Elvis, M.; Soltan, A.; Keel, W. C.
1984-01-01
The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.
A cross-correlation-based estimate of the galaxy luminosity function
NASA Astrophysics Data System (ADS)
van Daalen, Marcel P.; White, Martin
2018-06-01
We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.
The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs
NASA Astrophysics Data System (ADS)
Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.
2008-01-01
Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.
Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-05-01
We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi
2014-04-01
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.
Cosmic reionization on computers: The faint end of the galaxy luminosity function
Gnedin, Nickolay Y.
2016-07-01
Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less
Cosmic reionization on computers: The faint end of the galaxy luminosity function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less
The Evolution of Globular Cluster Systems In Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Grillmair, Carl
1999-07-01
We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.
Modeling the Redshift Evolution of the Normal Galaxy X-Ray Luminosity Function
NASA Technical Reports Server (NTRS)
Tremmel, M.; Fragos, T.; Lehmer, B. D.; Tzanavaris, P.; Belczynski, K.; Kalogera, V.; Basu-Zych, A. R.; Farr, W. M.; Hornschemeier, A.; Jenkins, L.;
2013-01-01
Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high-redshift galaxies allow us to probe the formation and evolution of XRBs on very long timescales (approximately 10 Gyr). In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to approximately 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low common envelope efficiencies, a 50% twins mass ratio distribution, a steeper initial mass function exponent, and high stellar wind mass-loss rates best match observational results from Tzanavaris & Georgantopoulos, though they significantly underproduce bright early-type and very bright (L(sub x) greater than 10(exp 41)) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, active galactic nucleus contamination, and a lack of dynamically formed low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10(exp 40) and 10(exp 41) erg s(exp -1).
A study of the luminosity function for field galaxies. [non-rich-cluster galaxies
NASA Technical Reports Server (NTRS)
Felten, J. E.
1977-01-01
Nine determinations of the luminosity function (LF) for field galaxies are analyzed and compared. Corrections for differences in Hubble constants, magnitude systems, galactic absorption functions, and definitions of the LF are necessary prior to comparison. Errors in previous comparisons are pointed out. After these corrections, eight of the nine determinations are in fairly good agreement. The discrepancy in the ninth appears to be mainly an incompleteness effect. The LF data suggest that there is little if any distinction between field galaxies and those in small groups.
NASA Astrophysics Data System (ADS)
Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.
2018-05-01
The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.
NASA Technical Reports Server (NTRS)
Finkelstein, Steven L.; Ryan, Russell E., Jr.; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel; Ferguson, Henry C.; Salmon, Brett; Giavalisco, Mauro; Koekomoer, Anton M.;
2014-01-01
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z = 4 to 8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1- 2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 ×10(exp 6) Mpc(exp 3) over this epoch, allowing us to perform a robust search for bright (M(sub UV) less than -21) and faint (M(sub UV) = -18) galaxies. We select galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5 less than z less than 8.5, with more than 1000 galaxies at z of approximately 6 - 8. We measure both a stepwise luminosity function for galaxies in our redshift samples, as well as a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z of greater than or equal to 6. Our bestfit value of the characteristic magnitude M* is consistent with -21 at z of greater than or equal to 5, different than that inferred based on previous trends at lower redshift. At z = 8, a single power-law provides an equally good fit to the UV luminosity function, while at z = 6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift, though a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by integrating our observed luminosity functions to M(sub UV) = -17, correcting for dust attenuation, and find that the SFR density declines proportionally to (1 + z)((exp -4.3)(+/-)(0.5)) at z greater than 4, consistent with observations at z greater than or equal to 9. Our observed luminosity functions are consistent with a reionization history that starts at redshift of approximately greater than 10, completes at z greater than 6, and reaches a midpoint (x(sub HII) = 0.5) at 6.7 less than z less than 9.4. Finally, using a constant cumulative number density selection and an empirically derived rising star-formation history, our observations predict that the abundance of bright z = 9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z similar to 10 galaxies.
THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath
2015-02-01
We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K} < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K} < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alavi, Anahita; Siana, Brian; Freeman, William R.
We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in themore » range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust extinction correction of 4.2 over all luminosities and a Kroupa initial mass function) of 0.148{sub −0.020}{sup +0.023} M {sub ☉} yr{sup –1} Mpc{sup –3}, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.« less
The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster
NASA Technical Reports Server (NTRS)
Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.
2008-01-01
We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.
NASA Astrophysics Data System (ADS)
Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.
2016-04-01
We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.
The duration of reionization constrains the ionizing sources
NASA Astrophysics Data System (ADS)
Sharma, Mahavir; Theuns, Tom; Frenk, Carlos
2018-06-01
We investigate how the nature of the galaxies that reionized the Universe affects the duration of reionization. We contrast two sets of models: one in which galaxies on the faint side of the luminosity function dominate the ionizing emissivity, and a second in which the galaxies on the bright side of the luminosity function dominate. The faint end of the luminosity function evolves slowly, therefore the transition from mostly neutral to mostly ionized state takes a much longer time in the first set of models compared to the second. Existing observational constraints on the duration of this transition are relatively weak, but taken at face value prefer the model in which galaxies on the bright side play a major role. Measurements of the kinetic Sunyaev-Zeldovich effect in the cosmic microwave background from the epoch of reionization also point in the same direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, A.; Siana, B.; Masters, D.
Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sunmore » }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
NASA Astrophysics Data System (ADS)
Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.
2018-03-01
The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.
Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function
NASA Astrophysics Data System (ADS)
Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.
2011-05-01
We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Bland-Hawthorn, J.; Brough, S.; Sharp, R.; Loveday, J.; Taylor, E.; Jones, D. H.; Lara-López, M. A.; Bauer, A. E.; Colless, M.; Owers, M.; Baldry, I. K.; López-Sánchez, A. R.; Foster, C.; Bamford, S.; Brown, M. J. I.; Driver, S. P.; Drinkwater, M. J.; Liske, J.; Meyer, M.; Norberg, P.; Robotham, A. S. G.; Ching, J. H. Y.; Cluver, M. E.; Croom, S.; Kelvin, L.; Prescott, M.; Steele, O.; Thomas, D.; Wang, L.
2013-08-01
Measurements of the low-z Hα luminosity function, Φ, have a large dispersion in the local number density of sources (˜0.5-1 Mpc-3 dex-1), and correspondingly in the star formation rate density (SFRD). The possible causes for these discrepancies include limited volume sampling, biases arising from survey sample selection, different methods of correcting for dust obscuration and active galactic nucleus contamination. The Galaxy And Mass Assembly (GAMA) survey and Sloan Digital Sky Survey (SDSS) provide deep spectroscopic observations over a wide sky area enabling detection of a large sample of star-forming galaxies spanning 0.001 < SFRHα (M⊙ yr- 1) < 100 with which to robustly measure the evolution of the SFRD in the low-z Universe. The large number of high-SFR galaxies present in our sample allow an improved measurement of the bright end of the luminosity function, indicating that the decrease in Φ at bright luminosities is best described by a Saunders functional form rather than the traditional Schechter function. This result is consistent with other published luminosity functions in the far-infrared and radio. For GAMA and SDSS, we find the r-band apparent magnitude limit, combined with the subsequent requirement for Hα detection leads to an incompleteness due to missing bright Hα sources with faint r-band magnitudes.
PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1
NASA Astrophysics Data System (ADS)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.
Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies
NASA Technical Reports Server (NTRS)
Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.;
2015-01-01
Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).
Evolution of the Blue and Far-Infrared Galaxy Luminosity Functions
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Chokshi, Arati
1993-01-01
The space density of blue-selected galaxies at moderate redshifts is determined here directly by deriving the luminosity function. Evidence is found for density evolution for moderate luminosity galaxies at a rate of (1+z) exp delta, with a best fit of delta + 4 +/- 2, between the current epoch and Z greater than about 0.1. At M(b) less than -22 evidence is found for about 0.5-1.5 mag of luminosity evolution in addition to the density evolution, corresponding to an evolutionary rate of about (1+z) exp gamma, with gamma = 0.5-2.5, but a redshift of about 0.4. Assuming a steeper faint end slope of alpha = -1.3 similar to that observed in the Virgo cluster, could explain the data with a luminosity evolution rate of gamma = 1-2, without need for any density evolution. Acceptable fits are found by comparing composite density and luminosity evolution models to faint IRAS 60 micron source counts, implying that the blue and far-IR evolutionary rates may be similar.
The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs
NASA Astrophysics Data System (ADS)
Geha, Marla; Wechsler, Risa H.; Mao, Yao-Yuan; Tollerud, Erik J.; Weiner, Benjamin; Bernstein, Rebecca; Hoyle, Ben; Marchi, Sebastian; Marshall, Phil J.; Muñoz, Ricardo; Lu, Yu
2017-09-01
We present the survey strategy and early results of the “Satellites Around Galactic Analogs” (SAGA) Survey. The SAGA Survey’s goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ({M}r< -12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to {r}o< 20.75 using low-redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way’s satellite galaxies.
Planetary nebulae as standard candles. IV - A test in the Leo I group
NASA Technical Reports Server (NTRS)
Ciardullo, Robin; Jacoby, George H.; Ford, Holland C.
1989-01-01
In this paper, PN are used to determine accurate distances to three galaxies in the Leo I group - The E0 giant elliptical NGC 3379, its optical companion, the SB0 spiral NGC 3384, and the smaller E6 elliptical NGC 3377. In all three galaxies, the luminosity-specific PN number densities are roughly the same, and the derived stellar death rates are in remarkable agreement with the predictions of stellar evolution theory. It is shown that the shape of the forbidden O III 5007 A PN luminosity function is the same in each galaxy and indistinguishable from that observed in M31 and M81. It is concluded that the PN luminosity function is an excellent standard candle for early-type galaxies.
X-Ray Luminosity Functions of Normal Galaxies in the Great Observatories Origins Deep Survey
NASA Astrophysics Data System (ADS)
Ptak, Andrew; Mobasher, Bahram; Hornschemeier, Ann; Bauer, Franz; Norman, Colin
2007-10-01
We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGNs from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. A key advantage of the MCMC approach is that it explicitly takes into account upper limits and allows errors on ``derived'' quantities, such as luminosity densities, to be computed directly (i.e., without potentially questionable assumptions concerning the propagation of errors). The slopes of the early-type galaxy XLFs tend to be slightly flatter than the late-type galaxy XLFs, although the effect is significant at only the 90% and 97% levels for z~0.25 and 0.75. The XLFs differ between z<0.5 and z>0.5 at >99% significance levels for early-type, late-type, and all (early- and late-type) galaxies. We also fit Schechter and lognormal models to the XLFs, fitting the low- and high-redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of lognormal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint- and bright-end slopes (similar to ``fixing'' these parameters at the FIR values, except here the FIR uncertainty is included). The best-fit values of the change in logL* with redshift were ΔlogL*=0.23+/-0.16 dex (for early-type galaxies) and 0.34+/-0.12 dex (for late-type galaxies), corresponding to (1+z)1.6 and (1+z)2.3. These results were insensitive to whether the Schechter or lognormal function was adopted.
NASA Astrophysics Data System (ADS)
Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.
2016-02-01
We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
VizieR Online Data Catalog: Luminosity and redshift of galaxies from WISE/SDSS (Toba+, 2014)
NASA Astrophysics Data System (ADS)
Toba, Y.; Oyabu, S.; Matsuhara, H.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Ohyama, Y.; Takita, S.; Yamauchi, C.; Yano, K.
2017-07-01
We selected 12 and 22 um flux-limited galaxies based on the WISE (Cat. II/311) and SDSS (Cat. II/294) catalogs, and these galaxies were then classified into five types according to their optical spectroscopic information in the SDSS catalog. For spectroscopically classified galaxies, we constructed the luminosity functions using the 1/Vmax method, considering the detection limit of the WISE and SDSS catalogs. (1 data file).
NASA Technical Reports Server (NTRS)
Weedman, Daniel W.
1987-01-01
The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.
The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey
NASA Technical Reports Server (NTRS)
Burg, R.; Giacconi, R.; Forman, W.; Jones, C.
1994-01-01
We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.
The role of host galaxy for the environmental dependence of active nuclei in local galaxies
NASA Astrophysics Data System (ADS)
Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.
2017-04-01
We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.
Photometry of resolved galaxies. V - NGC 6822
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Anderson, N.
1986-01-01
Three-color CCD frames of the local group irregular galaxy NGC 6822 have been reduced to GRI photometry for 3475 stars using RICHFLD point-spread function fitting techniques. The data are compared with earlier work on this galaxy, particularly with Kayser (1966) on a star-by-star basis. Color-magnitude diagrams are constructed from the data and compared with both theoretical stellar model tracks and the expected foreground star contamination. A luminosity function for the blue stars is derived; comparison of this luminosity function with those of 10 other irregular galaxies indicates that NGC 6822 has a typical young star population. The stellar birthrate and initial mass function are estimated for this galaxy. The slope at the bright end of the mass function looks similar to recent results for the Galaxy, the Magellanic Clouds, and the irregular galaxy Sextans A. NGC 6822 appears to be presently forming stars at a slower rate for its mass than Sextans A or the Magellanic Clouds.
Hubble Space Telescope Imaging of Brightest Cluster Galaxies
NASA Astrophysics Data System (ADS)
Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.
2003-02-01
We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the formation of massive black hole binaries during merger events. More generally, the prevalence of large cores in the great majority of BCGs, which are likely to have experienced several generations of galaxy merging, underscores the role of a mechanism that creates and preserves cores in such merging events. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 8683.
A minimalist feedback-regulated model for galaxy formation during the epoch of reionization
NASA Astrophysics Data System (ADS)
Furlanetto, Steven R.; Mirocha, Jordan; Mebane, Richard H.; Sun, Guochao
2017-12-01
Near-infrared surveys have now determined the luminosity functions of galaxies at 6 ≲ z ≲ 8 to impressive precision and identified a number of candidates at even earlier times. Here, we develop a simple analytic model to describe these populations that allows physically motivated extrapolation to earlier times and fainter luminosities. We assume that galaxies grow through accretion on to dark matter haloes, which we model by matching haloes at fixed number density across redshift, and that stellar feedback limits the star formation rate. We allow for a variety of feedback mechanisms, including regulation through supernova energy and momentum from radiation pressure. We show that reasonable choices for the feedback parameters can fit the available galaxy data, which in turn substantially limits the range of plausible extrapolations of the luminosity function to earlier times and fainter luminosities: for example, the global star formation rate declines rapidly (by a factor of ∼20 from z = 6 to 15 in our fiducial model), but the bright galaxies accessible to observations decline even faster (by a factor ≳ 400 over the same range). Our framework helps us develop intuition for the range of expectations permitted by simple models of high-z galaxies that build on our understanding of 'normal' galaxy evolution. We also provide predictions for galaxy measurements by future facilities, including James Webb Space Telescope and Wide-Field Infrared Survey Telescope.
NASA Astrophysics Data System (ADS)
Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-09-01
We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.
A finer view of the conditional galaxy luminosity function and magnitude-gap statistics
NASA Astrophysics Data System (ADS)
Trevisan, M.; Mamon, G. A.
2017-10-01
The gap between first- and second-ranked galaxy magnitudes in groups is often considered a tracer of their merger histories, which in turn may affect galaxy properties, and also serves to test galaxy luminosity functions (LFs). We remeasure the conditional luminosity function (CLF) of the Main Galaxy Sample of the SDSS in an appropriately cleaned subsample of groups from the Yang catalogue. We find that, at low group masses, our best-fitting CLF has steeper satellite high ends, yet higher ratios of characteristic satellite to central luminosities in comparison with the CLF of Yang et al. The observed fractions of groups with large and small magnitude gaps as well as the Tremaine & Richstone statistics are not compatible with either a single Schechter LF or with a Schechter-like satellite plus lognormal central LF. These gap statistics, which naturally depend on the size of the subsamples, and also on the maximum projected radius, Rmax, for defining the second brightest galaxy, can only be reproduced with two-component CLFs if we allow small gap groups to preferentially have two central galaxies, as expected when groups merge. Finally, we find that the trend of higher gap for higher group velocity dispersion, σv, at a given richness, discovered by Hearin et al., is strongly reduced when we consider σv in bins of richness, and virtually disappears when we use group mass instead of σv. This limits the applicability of gaps in refining cosmographic studies based on cluster counts.
The luminosity function of the CfA Redshift Survey
NASA Technical Reports Server (NTRS)
Marzke, R. O.; Huchra, J. P.; Geller, M. J.
1994-01-01
We use the CfA Reshift Survey of galaxies with m(sub z) less than or equal to 15.5 to calculate the galaxy luminosity function over the range -13 less than or equal to M(sub z) less than or equal to -22. The sample includes 9063 galaxies distributed over 2.1 sr. For galaxies with velocities cz greater or equal to 2500 km per sec, where the effects of peculiar velocities are small, the luminosity function is well represented by a Schechter function with parameters phi(sub star) = 0.04 +/- 0.01 per cu Mpc, M(sub star) = -18.8 +/- 0.3, and alpha = -1.0 +/- 0.2. When we include all galaxies with cz greater or equal to 500 km per sec, the number of galaxies in the range -16 less than or equal to M(sub z) less than or equal to -13 exceeds the extrapolation of the Schechter function by a factor of 3.1 +/- 0.5. This faint-end excess is not caused by the local peculiar velocity field but may be partially explained by small scale errors in the Zwicky magnitudes. Even with a scale error as large as 0.2 mag per mag, which is unlikely, the excess is still a factor of 1.8 +/- 0.3. If real, this excess affects the interpretation of deep counts of field galaxies.
The luminosity function for different morphological types in the CfA Redshift Survey
NASA Technical Reports Server (NTRS)
Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.
1994-01-01
We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.
NASA Astrophysics Data System (ADS)
Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.
2011-11-01
It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s-1 calculated at a radius of ~10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ~50 km s-1 to ~500 km s-1, with a bend below ~80 km s-1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM "Bolshoi" simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from Mr = -14 to Mr = -22. We also compare our predictions for the "cold" baryon mass (i.e., stars and cold gas) of galaxies as a function of circular velocity with the available observations, again finding a very good agreement. The predicted circular velocity function (VF) is also in agreement with the galaxy VF from 80 to 400 km s-1, using the HIPASS survey for late-type galaxies and Sloan Digital Sky Survey (SDSS) for early-type galaxies. However, in accord with other recent results, we find that the DM halos with V circ < 80 km s-1 are much more abundant than observed galaxies with the same V circ. Finally, we find that the two-point correlation function of bright galaxies in our model matches very well the results from the final data release of the SDSS, especially when a small amount of scatter is included in the HAM prescription.
Galactic cannibalism. III. The morphological evolution of galaxies and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausman, M.A.; Ostriker, J.P.
1978-09-01
We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less
On the unity of activity in galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowan-Robinson, M.
1977-05-01
A scheme is presented which unites quasars, radio galaxies, N galaxies, and Seyfert galaxies into a single picture of activity in galaxies. Probability functions are given for optical and radio cores, and extended radio sources (in the case of ellipticals), for both spirals and ellipticals. Activity occurs in galaxies of all luminosities, but the strength of it is made proportional to galaxy luminosity. It is assumed that there is dust surrounding the optical cores, to explain the strong infrared emission in Seyferts.Quasars may, in this picture, occur in both spirals and ellipticals, and in fact most optically selected QSOs aremore » predicted to be in spirals.« less
NASA Astrophysics Data System (ADS)
Smith, Graham P.; Khosroshahi, Habib G.; Dariush, A.; Sanderson, A. J. R.; Ponman, T. J.; Stott, J. P.; Haines, C. P.; Egami, E.; Stark, D. P.
2010-11-01
We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (~1015Msolar) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ~ -(0.13 +/- 0.02)Δm12. The fraction of clusters with `large' luminosity gaps is p(Δm12 >= 1) = 0.37 +/- 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with `extreme' luminosity gaps, Δm12 >= 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. `BCG dominance' is therefore a phase that a cluster may evolve through and is not an evolutionary `cul-de-sac'. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.
THE EVOLUTION OF POST-STARBURST GALAXIES FROM z ∼ 1 TO THE PRESENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley
Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z ∼ 0.05 and z ∼ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS mainmore » galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M ∼ −23.5 at z ∼ 0.8 to M ∼ −20.3 at z ∼ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (∼1%) of all star formation quenching in the redshift range z = 0.2–0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.« less
The number counts and infrared backgrounds from infrared-bright galaxies
NASA Technical Reports Server (NTRS)
Hacking, P. B.; Soifer, B. T.
1991-01-01
Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.
Quasar evolution and the growth of black holes
NASA Technical Reports Server (NTRS)
Small, Todd A.; Blandford, Roger D.
1992-01-01
A 'minimalist' model of AGN evolution is analyzed that links the measured luminosity function to an elementary description of black hole accretion. The observed luminosity function of bright AGN is extrapolated and simple prescriptions for the growth and luminosity of black holes are introduced to infer quasar birth rates, mean fueling rates, and relict black hole distribution functions. It is deduced that the mean accretion rate scales as (M exp -1./5)(t exp -6.7) and that, for the most conservative model used, the number of relict black holes per decade declines only as M exp -0.4 for black hole masses between 3 x 10 exp 7 and 3 x 10 exp 9 solar masses. If all sufficiently massive galaxies pass through a quasar phase with asymptotic black hole mass a monotonic function of the galaxy mass, then it is possible to compare the space density of galaxies with estimated central masses to that of distant quasars.
The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.
2017-01-01
The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.
The Bivariate Luminosity--HI Mass Distribution Function of Galaxies based on the NIBLES Survey
NASA Astrophysics Data System (ADS)
Butcher, Zhon; Schneider, Stephen E.; van Driel, Wim; Lehnert, Matt
2016-01-01
We use 21cm HI line observations for 2610 galaxies from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) to derive a bivariate luminosity--HI mass distribution function. Our HI survey was selected to randomly probe the local (900 < cz < 12,000 km/s) galaxy population in each 0.5 mag wide bin for the absolute z-band magnitude range of -13.5 < Mz < -24 without regard to morphology or color. This targeted survey allowed more on-source integration time for weak and non-detected sources, enabling us to probe lower HI mass fractions and apply lower upper limits for non-detections than would be possible with the larger blind HI surveys. Additionally, we obtained a factor of four higher sensitivity follow-up observations at Arecibo of 90 galaxies from our non-detected and marginally detected categories to quantify the underlying HI distribution of sources not detected at Nançay. Using the optical luminosity function and our higher sensitivity follow up observations as priors, we use a 2D stepwise maximum likelihood technique to derive the two dimensional volume density distribution of luminosity and HI mass in each SDSS band.
Far-infrared emission and star formation in spiral galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Bandiera, R.
1989-01-01
The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.
THE NATURE AND NURTURE OF BARS AND DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez-Abreu, J.; Aguerri, J. A. L.; Zarattini, S.
The effects that interactions produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To this aim we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Comamore » Cluster is statistically significant, with Virgo being an intermediate case. The fraction of barred galaxies shows a maximum of about 50% at M{sub r} {approx_equal} - 20.5 in clusters, whereas the peak is shifted to M{sub r} {approx_equal} - 19 in the field. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies, the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges probed by the galaxy samples studied so far.« less
NASA Astrophysics Data System (ADS)
Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES
2013-01-01
We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.
Does the galaxy-halo connection vary with environment?
NASA Astrophysics Data System (ADS)
Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.
2018-05-01
(Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.
Local Group ultra-faint dwarf galaxies in the reionization era
NASA Astrophysics Data System (ADS)
Weisz, Daniel R.; Boylan-Kolchin, Michael
2017-07-01
Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (I) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (II) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (III) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (IV) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.
The 2.4 μm Galaxy Luminosity Function As Measured Using WISE. I. Measurement Techniques
NASA Astrophysics Data System (ADS)
Lake, S. E.; Wright, E. L.; Tsai, C.-W.; Lam, A.
2017-04-01
The astronomy community has at its disposal a large back catalog of public spectroscopic galaxy redshift surveys that can be used for the measurement of luminosity functions (LFs). Utilizing the back catalog with new photometric surveys to maximum efficiency requires modeling the color selection bias imposed on the selection of target galaxies by flux limits at multiple wavelengths. The likelihood derived herein can address, in principle, all possible color selection biases through the use of a generalization of the LF, {{Φ }}(L), over the space of all spectra: the spectro-luminosity functional, {{\\Psi }}[{L}ν ]. It is, therefore, the first estimator capable of simultaneously analyzing multiple redshift surveys in a consistent way. We also propose a new way of parametrizing the evolution of the classic Schechter function parameters, L ⋆ and ϕ ⋆, that improves both the physical realism and statistical performance of the model. The techniques derived in this paper are used in a companion paper by Lake et al. to measure the LF of galaxies at the rest-frame wavelength of 2.4 μ {{m}} using the Widefield Infrared Survey Explorer (WISE).
The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.
2017-03-01
We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.
Dwarf Hosts of Low-z Supernovae
NASA Astrophysics Data System (ADS)
Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis
2018-01-01
Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.
NASA Astrophysics Data System (ADS)
Bottrell, Connor; Torrey, Paul; Simard, Luc; Ellison, Sara L.
2017-05-01
The interpretive power of the newest generation of large-volume hydrodynamical simulations of galaxy formation rests upon their ability to reproduce the observed properties of galaxies. In this second paper in a series, we employ bulge+disc decompositions of realistic dust-free galaxy images from the Illustris simulation in a consistent comparison with galaxies from the Sloan Digital Sky Survey (SDSS). Examining the size-luminosity relations of each sample, we find that galaxies in Illustris are roughly twice as large and 0.7 mag brighter on average than galaxies in the SDSS. The trend of increasing slope and decreasing normalization of size-luminosity as a function of bulge fraction is qualitatively similar to observations. However, the size-luminosity relations of Illustris galaxies are quantitatively distinguished by higher normalizations and smaller slopes than for real galaxies. We show that this result is linked to a significant deficit of bulge-dominated galaxies in Illustris relative to the SDSS at stellar masses log M_{\\star }/M_{⊙}≲ 11. We investigate this deficit by comparing bulge fraction estimates derived from photometry and internal kinematics. We show that photometric bulge fractions are systematically lower than the kinematic fractions at low masses, but with increasingly good agreement as the stellar mass increases.
The faint-end of galaxy luminosity functions at the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.
2018-05-01
During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.
Padé Approximant and Minimax Rational Approximation in Standard Cosmology
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2016-02-01
The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.
A very deep IRAS survey. III - VLA observations
NASA Astrophysics Data System (ADS)
Hacking, Perry; Condon, J. J.; Houck, J. R.; Beichman, C. A.
1989-04-01
The 60-micron fluxes and positions of sources (primarily starburst galaxies) found in a deep IRAS survey by Hacking and Houck (1987) are compared with 1.49 HGz maps made by the Very Large Array. The radio results are consistent with radio measurements of brighter IRAS galaxies and provide evidence that infrared cirrus does not contaminate the 60-micron sample. The flux-independent ratio of infrared to radio flux densities implies that the 1.4 GHz luminosity function for spiral galaxies is evolving at less than (1 + z) to the power of 4 relative to the 60-micron luminosity function.
Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1
NASA Astrophysics Data System (ADS)
Zhang, Keming; Schiminovich, David
2018-01-01
We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 < z < 1 based on GALEX photometry, with redshift measurements from four spectroscopic and photometric-redshift catalogs: NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.
Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe
NASA Astrophysics Data System (ADS)
Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.
2017-11-01
We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.
Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.
2015-02-01
We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.
The infrared luminosity function of AKARI 90 μm galaxies in the local Universe
NASA Astrophysics Data System (ADS)
Kilerci Eser, Ece; Goto, Tomotsugu
2018-03-01
Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff
2016-12-01
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).
A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1
NASA Astrophysics Data System (ADS)
Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto
2018-01-01
We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z < 1.5 based on narrowband imaging. The first Public Data Release provides us with data from two narrowband filters, specifically NB816 and NB921 over 5.7 deg2 and 16.2 deg2 respectively. The 5 σ limiting magnitudes are 25.2 mag (UltraDeep layer, 1.4 deg2) and 24.8 mag (Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.
GeV Observations of star-forming galaxies with the Fermi large area telescope
Ackermann, M.; Ajello, M.; Allafort, A.; ...
2012-08-07
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
GeV Observations of star-forming galaxies with the Fermi large area telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
Photometric properties of galaxies in the SDSS
NASA Astrophysics Data System (ADS)
Hogg, D. W.; Blanton, M.; SDSS Collaboration
2001-12-01
We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.
We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in amore » manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.« less
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.
2016-06-01
We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).
The mysterious age invariance of the planetary nebula luminosity function bright cut-off
NASA Astrophysics Data System (ADS)
Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.
2018-05-01
Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.
Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A
NASA Astrophysics Data System (ADS)
Crnojevic, Denija
2014-10-01
We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.
Lost but not forgotten: intracluster light in galaxy groups and clusters
NASA Astrophysics Data System (ADS)
DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.
2018-03-01
With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r < 100 kpc could originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r < 100 kpc is consistent with originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.
Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.; Prandoni, I.; Lapi, A.
We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less
Evidence for biasing in the CfA survey
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.
NASA Astrophysics Data System (ADS)
Sandage, Allan
1999-12-01
Relative, reduced to absolute, magnitude distributions are obtained for Sb, Sbc, and Sc galaxies in the flux-limited Revised Shapley-Ames Catalog (RSA2) for each van den Bergh luminosity class (L), within each Hubble type (T). The method to isolate bias-free subsets of the total sample is via Spaenhauer diagrams, as in previous papers of this series. The distance-limited type and class-specific luminosity functions are normalized to numbers of galaxies per unit volume (105 Mpc3), rather than being left as relative functions, as in Paper V. The functions are calculated using kinematic absolute magnitudes, based on an arbitrary trial value of H0=50. Gaussian fits to the individual normalized functions are listed for each T and L subclass. As in Paper V, the data can be freed from the T and L dependencies by applying a correction of 0.23T+0.5L to the individual absolute magnitudes. Here, T=3 for Sb, 4 for Sbc, and 5 for Sc galaxies, and the L values range from 1 to 6 as the luminosity class changes from I to III-IV. The total luminosity function, obtained by combining the volume-normalized Sb, Sbc, and Sc individual luminosity functions, each corrected for the T and L dependencies, has an rms dispersion of 0.67 mag, similar to much of the Tully-Fisher parameter space. Absolute calibration of the trial kinematic absolute magnitudes is made using 27 galaxies with known T and L that also have Cepheid distances. This permits the systematic correction to the H0=50 kinematic absolute magnitudes of 0.22+/-0.12 mag, givingH0=55+/-3(internal) km s-1 Mpc-1 . The Cepheid distances are based on the Madore/Freedman Cepheid period-luminosity (PL) zero point that requires (m-M)0=18.50 for the LMC. Using the modern LMC modulus of (m-M)0=18.58 requires a 4% decrease in H0, giving a final value of H0=53+/-7 (external) by this method. These values of H0, based here on the method of luminosity functions, are in good agreement with (1) H0=55+/-5 by Theureau and coworkers from their bias-corrected Tully-Fisher method of ``normalized distances'' for field galaxies; (2) H0=56+/-4 from the method through the Virgo Cluster, as corrected to the global kinematic frame (Tammann and coworkers); and (3) H0=58+/-5 from Cepheid-calibrated Type Ia supernovae (Saha and coworkers). Our value here also disagrees with the final value from the NASA ``Key Project'' group value of H0=70+/-7. Analysis of the total flux-limited sample of Sb, Sbc, and Sc galaxies in the RSA2 by the present method, but uncorrected for selection bias, would give an incorrect value of H0=71 using the same Cepheid calibration. The effect of the bias is pernicious at the 30% level; either it must be corrected by the methods in the papers of this series, or the data must be restricted to the distance-limited subset of any sample, as is done here.
GeV Observations of star-forming glaxies with the FERMI Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We findmore » further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values lesssim 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
A normal abundance of faint satellites in the fossil group NGC 6482
NASA Astrophysics Data System (ADS)
Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.
2013-11-01
A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76
The evolution of the intergalactic medium and the origin of the galaxy luminosity function
NASA Technical Reports Server (NTRS)
Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary
1993-01-01
The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.
THE GALAXY LUMINOSITY FUNCTIONS DOWN TO M{sub R} = -10 IN THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanoi, Hitomi; Komiyama, Yutaka; Yagi, Masafumi
2012-08-15
We derived the luminosity function (LF) of dwarf galaxies in the Coma Cluster down to M{sub R} = -10 at three fields located at the center, intermediate, and outskirt of the cluster. The LF (-19 < M{sub R} < -10) shows no significant differences among the three fields. It shows a clear dip at M{sub R} {approx} -13 and is composed of two distinct components of different slopes; the bright component with -19 < M{sub R} < -13 has a flatter slope than the faint component with -13 < M{sub R} < -10 which has a steep slope. The brightmore » component (-19 < M{sub R} < -13) consists mostly of red extended galaxies including few blue galaxies whose colors are typical of late-type galaxies. On the other hand, the faint component (-13 < M{sub R} < -10) consists largely of point-spread-function-like compact galaxies. We found that both these compact galaxies and some extended galaxies are present in the center while only compact galaxies are seen in the outskirt. In the faint component, the fraction of blue galaxies is larger in the outskirt than in the center. We suggest that the dwarf galaxies in the Coma Cluster, which make up the two components in the LF, are heterogeneous with some different origins.« less
Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wentao; Yang, Xiaohu; Zhang, Jun
We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less
Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts
NASA Astrophysics Data System (ADS)
Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team
2017-06-01
We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.
Local Luminosity Function at 15 micro m and Galaxy Evolution Seen by ISOCAM 15 micro m Surveys
NASA Technical Reports Server (NTRS)
Xu, C.
2000-01-01
A local luminosity function at 15 micro m is derived using the bivariate (15 micro m vs. 60 micro m luminosities) method, based on the newly published ISOCAM LW3-band (15 micro m) survey of the very deep IRAS 60 micro m sample in the north ecliptic pole region (NEPR).
Wavelength Dependent Luminosity Functions for Super Star Clusters
NASA Astrophysics Data System (ADS)
Garmany, Catharine
1997-07-01
Starburst galaxies, considered to exhibit enhanced star formation on a galaxy-wide scale, have now been found with HST to contain very intense knots of star formation, referred to as ``super star clusters'', or SSCs. A steepening of the luminosity function with increasing wavelength for young burst populations, such as SSCs, has recently been predicted by Hogg & Phinney {1997}. This prediction, not previously addressed in the literature, is straightforward to test with multi- wavelength photometry. Using the colors of the SSCs in a galaxy in combination with the difference in slopes of the luminosity functions derived from different wavelength bands and applying population synthesis models, we can also constrain the high mass stellar initial mass function {IMF}. Recent work has suggested that the slope of the IMF is roughly constant in a variety of local environments, from galactic OB associations to the closest analog of a super star cluster, R136 in the LMC. This investigation will allow us to compare the IMFs in the extreme environments of SSCs in starburst galaxies to IMFs found locally in the Galaxy, LMC, and SMC. Archival imaging data in both the UV and optical bands is available for about 10 young starburst systems. These data will allow us to test the predictions of Hogg & Phinney, as well as constrain the IMF for environments not found in the nearby universe.
NASA Astrophysics Data System (ADS)
Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.
1996-11-01
We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ <~ 27 mag. We discuss effects from the cosmological surface brightness (SB) dimming and from the redshifted UV morphology on the classifications, and we correct for the latter. We present classifications in UBVI from (a) four independent human classifiers; (b) ANNs trained on V606 and I814 images; and (c) an ANN trained on images in the rest-frame UBV according to the expected redshift distribution as a function of BJ. For each of the three methods, we find that the fraction of galaxy types does not depend significantly on wavelength, and that they produce consistent counts as a function of type. The median scale length at BJ ~= 27 mag is rhl ~= 0."25--0."3 (1--2 kpc at z ~ 1--2). Early- and late-type galaxies are fairly well separated in BVI color-magnitude diagrams for B <~ 27 mag, with E/S0 galaxies being the reddest and Sd/Irr+M galaxies generally blue. We present the B-band galaxy counts for five WFPC2 fields as a function of morphological type for BJ <~ 27 mag. E/S0 galaxies are only marginally above the no-evolution predictions, and Sabc galaxies are at most 0.5 dex above the nonevolving models for BJ >~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.
A Synthesis Of Cosmic X-ray And Infrared Background
NASA Astrophysics Data System (ADS)
Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.
2012-01-01
We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.
A wide-field survey of satellite galaxies around the spiral galaxy M106
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.
2011-04-01
We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.
A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)
NASA Technical Reports Server (NTRS)
Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.
2007-01-01
We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.
NASA Astrophysics Data System (ADS)
Bowers, Ariel; Whitmore, B. C.; Chandar, R.; Larsen, S. S.
2014-01-01
Luminosity functions have been determined for star cluster populations in 20 nearby (4 - 30 Mpc), star-forming galaxies based on ACS source lists generated by the Hubble Legacy Archive (http://hla.stsci.edu). These cluster catalogs provide one of the largest sets of uniform, automatically-generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster luminosity function can be approximated by a power-law, dN/dL ∝ Lα, with an average value for α of -2.37 and rms scatter = 0.18. A comparison of fitting results based on methods which use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum-likelihood) method to give slightly more negative values of α for galaxies with steper luminosity functions. Our uniform database results in a small scatter (0.5 magnitude) in the correlation between the magnitude of the brightest cluster (Mbrightest) and Log of the number of clusters brighter than MI = -9 (Log N). We also examine the magnitude of the brightest cluster vs. Log SFR for a sample including LIRGS and ULIRGS.
The Statistical Properties of Galaxies Containing Ultraluminous X-Ray Objects
NASA Astrophysics Data System (ADS)
Ptak, A.; Colbert, E.
2004-05-01
We present a statistical analysis of the properties of galaxies containing ultraluminous X-ray objects (ULXs). Our primary goal is to establish the fraction of galaxies containing a ULX as a function of ULX luminosity. Our sample is based on ROSAT HRI observations of galaxies. We find that ~12% of galaxies contain at least one ULX with LX>1039 ergs s-1, and ~1% of galaxies contain at least one ULX with LX>1040 ergs s-1. These ULX frequencies are lower limits, since ROSAT HRI observations would miss absorbed ULXs (i.e., with NH>~1021cm-2) and those within ~10" of the nucleus (due to the positional error circle of the ROSAT HRI). The Hubble type distribution of galaxies with a ULX differs significantly from the distribution of types for nearby Third Reference Catalog galaxies but does not differ significantly from the galaxy type distribution of galaxies observed by the HRI in general. We find no increase in the mean far-infrared (FIR) luminosity or FIR/K-band luminosity ratio for galaxies with a ULX relative to galaxies observed by the HRI in general; however, this result is also most likely biased by the soft bandpass of the HRI and the relatively low number of high star formation rate galaxies observed by the HRI with enough sensitivity to detect a ULX.
Constraining SN feedback: a tug of war between reionization and the Milky Way satellites
NASA Astrophysics Data System (ADS)
Hou, Jun; Frenk, Carlos. S.; Lacey, Cedric G.; Bose, Sownak
2016-12-01
Theoretical models of galaxy formation based on the cold dark matter cosmogony typically require strong feedback from supernova (SN) explosions in order to reproduce the Milky Way satellite galaxy luminosity function and the faint end of the field galaxy luminosity function. However, too strong a SN feedback also leads to the universe reionizing too late, and the metallicities of Milky Way satellites being too low. The combination of these four observations therefore places tight constraints on SN feedback. We investigate these constraints using the semi-analytical galaxy formation model GALFORM. We find that these observations favour a SN feedback model in which the feedback strength evolves with redshift. We find that, for our best-fitting model, half of the ionizing photons are emitted by galaxies with rest-frame far-UV absolute magnitudes MAB(1500Å) < -17.5, which implies that already observed galaxy populations contribute about half of the photons responsible for reionization. The z = 0 descendants of these galaxies are mainly galaxies with stellar mass M* > 1010 M⊙ and preferentially inhabit haloes with mass Mhalo > 1013 M⊙.
Galaxy luminosity function: evolution at high redshift
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Guennou, L.; Adami, C.
2014-12-01
There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4
Clustering of very luminous infrared galaxies and their environment
NASA Technical Reports Server (NTRS)
Gao, YU
1993-01-01
The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.
NASA Astrophysics Data System (ADS)
Lake, Sean Earl
2017-05-01
The measurement of the the Extragalactic Background Light (EBL) has seen some controversy in recent works, with direct and indirect measures conflicting. Specifi- cally, upper limits based on analyzing the plausible opacity obscuring TeV spectra of blazars suggests that the density of radiation with wavelengths near 3.4 mum is onethirdtoonehalfasintenseasdirectmeasuresofthesame(forexample: Aharonian et al., 2006; Levenson et al., 2007; Matsumoto et al., 2005). The dominant contributor of the EBL at 3.4mum is expected to be ordinary starlight from relatively local, z < 1, galaxies, so an estimate of the amount of light emitted by galaxies based on the galaxy Luminosity Function (LF) should provide a useful lower limit to the EBL. While analyses of this sort have been done by others (Dominguez et al., 2011; Helgason et al., 2012), the full sky coverage of the AllWISE database has made it possible for us to improve the measurement of both the LF at 2.4 mum and the EBL using the large public spectroscopic redshift surveys. In order to do so, we had to develop a mathematical model for the measurement of a generalization of the LF, which is the density of galaxies per unit comoving volume per unit luminosity, to the Spectro-Luminosity Functional (SLF), which replaces the density per unit single luminosity, dL, with the density per luminosi- ii ties at all frequencies, DL nu. Our best combined analysis of the data yields present day Shechter Function LF parameters of: L⋆ = 6.4+/-[0.1 stat, 0.3sys]x1010 L2.4mum [solar mass](M⋆ = -21.67+/-[0.02 stat, 0.05sys] AB mag), φ⋆ = 5.8+/-[0.3stat, 0.3sys]x10 -3 Mpc-3, and alpha = -1.050 +/- [0.004stat, 0.03sys]; this implies a present day density of galaxies of 0.08 Mpc-3 brighter that 106 L2.4mum [solar mass] (10-3 Mpc-3 brighter than L⋆) and a luminosity density equivalent to 3.8 x 108 L2.4mum [solar mass] Mpc-3. The net EBL at 3.4mum that our synthesis model produces from galaxies closer than z = 5 is Inu = 9.0 +/- 0.5 kJy sr-1 (nuInu = 8.0 +/- 0.4 nW m-2 sr -1), largely in agreement with similar LF based estimates of the EBL.
The X-Ray Background and the AGN Luminosity Function
NASA Astrophysics Data System (ADS)
Hasinger, G.
The deepest X-ray surveys performed with ROSAT were able to resolve as much as 70-80% of the 1-2 keV X-ray background into resolved sources. Optical follow-up observations were able to identify the majority of faint X-ray sources as active galactic nuclei (AGN) out to redshifts of 4.5 as well as a sizeable fraction as groups of galaxies out to redshifts of 0.7. A new population of X-ray luminous, optically innocent narrow emission line galaxies (NELGs) at the faintest X-ray fluxes is still a matter of debate, most likely many of them are also connected to AGN. First deep surveys with the Japanese ASCA satellite give us a glimpse of the harder X-ray background where the bulk of the energy density resides. Future X-ray observatories (XMM and AXAF) will be able to resolve the harder X-ray background. For the first time we are now in a position to study the cosmological evolution of the X-ray luminosity function of AGN, groups of galaxies and galaxies and simultaneously constrain their total luminosity output over cosmic time.
Star Formation Rate Distribution in the Galaxy NGC 1232
NASA Astrophysics Data System (ADS)
Araújo de Souza, Alexandre; Martins, Lucimara P.; Rodríguez-Ardila, Alberto; Fraga, Luciano
2018-06-01
NGC 1232 is a face-on spiral galaxy and a great laboratory for the study of star formation due to its proximity. We obtained high spatial resolution Hα images of this galaxy, with adaptive optics, using the SAM instrument at the SOAR telescope, and used these images to study its H II regions. These observations allowed us to produce the most complete H II region catalog for it to date, with a total of 976 sources. This doubles the number of H II regions previously found for this object. We used these data to construct the H II luminosity function, and obtained a power-law index lower than the typical values found for Sc galaxies. This shallower slope is related to the presence of a significant number of high-luminosity H II regions (log L > 39 dex). We also constructed the size distribution function, verifying that, as for most galaxies, NGC 1232 follows an exponential law. We also used the Hα luminosity to calculate the star formation rate. An extremely interesting fact about this galaxy is that X-ray diffuse observations suggest that NGC 1232 recently suffered a collision with a dwarf galaxy. We found an absence of star formation around the region where the X-ray emission is more intense, which we interpret as a star formation quenching due to the collision. Along with that, we found an excess of star-forming regions in the northeast part of the galaxy, where the X-ray emission is less intense.
A catalogue of faint local radio AGN and the properties of their host galaxies
NASA Astrophysics Data System (ADS)
Lofthouse, E. K.; Kaviraj, S.; Smith, D. JB; Hardcastle, M. J.
2018-05-01
We present a catalogue of local (z < 0.1) galaxies that contain faint AGN. We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star-formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the FIRST survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz-1), and host ˜13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN which may contaminate the radio-derived SFRs.
New Evidence for a Large Local Void From the UKIDSS LAS + SDSS
NASA Astrophysics Data System (ADS)
Keenan, Ryan; Barger, A. J.
2013-01-01
Recent cosmological modeling efforts have shown that a local under-density on scales of a few hundred Mpc (out to z ~ 0.1) could produce the apparent acceleration of the expansion of the universe observed via type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by ~25 - 50% compared with regions a few hundred Mpc distant (e.g. Keenan et al., 2010). An accurate characterization of any such under-density will be important for studies seeking to understand the nature of dark energy. If the space density of galaxies is rising as a function of redshift, then the luminosity density, as measured via the NIR galaxy luminosity function (LF), should be rising as well. In Keenan et al. (2012), we presented a study of the NIR LF at z ~ 0.2 and found that the product φ*L* (the peak of the luminosity density distribution) at z ~ 0.2 is roughly ~ 30% higher than that measured at z ~ 0.05. Here we present the results from a study of the NIR LF derived from galaxies selected from the UKIRT Infrared Deep Sky Large Area Survey (UKIDSS LAS) combined with spectroscopy from the Sloan Digital Sky Survey (SDSS). We confirm the apparent rise in luminosity density found in Keenan et al. (2012) from z = 0.05 to z = 0.1 and provide the first self-consistent measurements of the NIR luminosity density out to z ~ 0.15.
A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.
2017-06-01
The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel
2016-12-10
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z ∼ 0, with more CO-luminous galaxies present at z ∼ 2. The observed galaxies at z ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z ∼ 2 to z ∼ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z ∼ 2).« less
Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements
NASA Astrophysics Data System (ADS)
Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.
2008-11-01
We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.
NASA Astrophysics Data System (ADS)
Bouwens, Rychard; Trenti, Michele; Calvi, Valentina; Bernard, Stephanie; Labbe, Ivo; Oesch, Pascal; Coe, Dan; Holwerda, Benne; Bradley, Larry; Mason, Charlotte; Schmidt, Kasper; Illingworth, Garth
2015-10-01
Hubble's WFC3 has been a game changer for studying early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources up to z~10, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Despite these efforts, the size of the highest redshift galaxy samples (z >9 and especially z > 10) is still very small, particularly at high luminosities (L > L*). To deliver transformational results, much larger numbers of bright z > 9 galaxies are needed both to map out the bright end of the luminosity/mass function and for spectroscopic follow-up (with JWST and otherwise). One especially efficient way of expanding current samples is (1) to leverage the huge amounts of pure-parallel data available with HST to identify large numbers of candidate z ~ 9 - 11 galaxies and (2) to follow up each candidate with shallow Spitzer/IRAC observations to distinguish the bona- fide z ~ 9 - 11 galaxies from z ~ 2 old, dusty galaxies. For this program we are requesting shallow Spitzer/IRAC follow-up of 20 candidate z ~ 9 - 11 galaxies we have identified from 130 WFC3/IR pointings obtained from more than 4 separate HST programs with no existing IRAC coverage. Based on our previous CANDELS/GOODS searches, we expect to confirm 5 to 10 sources as L > L* galaxies at z >= 9. Our results will be used to constrain the bright end of the LF at z >= 9, to provide targets for Keck spectroscopy to constrain the ionization state of the z > 8 universe, and to furnish JWST with bright targets for spectroscopic follow-up studies.
Accounting for the dispersion in the x ray properties of early-type galaxies
NASA Technical Reports Server (NTRS)
White, Raymond E., III; Sarazin, Craig L.
1990-01-01
The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances between the x ray sample members and bright galaxies from the Revised Shapley - Ames catalog. Collectively, galaxies with low x ray luminosities (for a given L sub B) tend to be in denser environments than galaxies with higher x ray luminosities.
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Silk, J.
1983-01-01
Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.
Investigating the Luminous Environment of SDSS Data Release 4 Mg II Absorption Line Systems
NASA Astrophysics Data System (ADS)
Caler, Michelle A.; Ravi, Sheth K.
2018-01-01
We investigate the luminous environment within a few hundred kiloparsecs of 3760 Mg II absorption line systems. These systems lie along 3760 lines of sight to Sloan Digital Sky Survey (SDSS) Data Release 4 QSOs, have redshifts that range between 0.37 ≤ z ≤ 0.82, and have rest equivalent widths greater than 0.18 Å. We use the SDSS Catalog Archive Server to identify galaxies projected near 3 arcminutes of the absorbing QSO’s position, and a background subtraction technique to estimate the absolute magnitude distribution and luminosity function of galaxies physically associated with these Mg II absorption line systems. The Mg II absorption system sample is split into two parts, with the split occurring at rest equivalent width 0.8 Å, and the resulting absolute magnitude distributions and luminosity functions compared on scales ranging from 50 h-1 kpc to 880 h-1 kpc. We find that, on scales of 100 h-1 kpc and smaller, the two distributions differ: the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width ≥ 0.8 Å (2750 lines of sight) seems to be approximated by that of elliptical-Sa type galaxies, whereas the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width < 0.8 Å (1010 lines of sight) seems to be approximated by that of Sa-Sbc type galaxies. However, on larger scales greater than 200 h-1 kpc, both distributions are broadly consistent with that of elliptical-Sa type galaxies. We note that, in a broader context, these results represent an estimate of the bright end of the galaxy luminosity function at a median redshift of z ˜ 0.65.
The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1
NASA Astrophysics Data System (ADS)
Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.
2014-06-01
We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.
NASA Astrophysics Data System (ADS)
Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita
2018-06-01
We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.
NASA Astrophysics Data System (ADS)
Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita
2018-04-01
We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.
Modeling the evolution of infrared galaxies: a parametric backward evolution model
NASA Astrophysics Data System (ADS)
Béthermin, M.; Dole, H.; Lagache, G.; Le Borgne, D.; Penin, A.
2011-05-01
Aims: We attempt to model the infrared galaxy evolution in as simple a way as possible and reproduce statistical properties such as the number counts between 15 μm and 1.1 mm, the luminosity functions, and the redshift distributions. We then use the fitted model to interpret observations from Spitzer, AKARI, BLAST, LABOCA, AzTEC, SPT, and Herschel, and make predictions for Planck and future experiments such as CCAT or SPICA. Methods: This model uses an evolution in density and luminosity of the luminosity function parametrized by broken power-laws with two breaks at redshift ~0.9 and 2, and contains the two populations of the Lagache model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. This effect is significant in the sub-mm and mm range near 50 mJy. It has 13 free parameters and eight additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel, and AzTEC measurements with a Monte Carlo Markov chain. Results: The model adjusted to deep counts at key wavelengths reproduces the counts from mid-infrared to millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to both the cosmic infrared background (CIB) and the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the discovery by the South Pole Telescope (SPT) of a very bright population lying at high redshift. We predict the contribution of the lensed sources to the Planck number counts, the confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons caused by the CIB. Material of the model (software, tables and predictions) is available online.
The Herschel ATLAS: Evolution of the 250 Micrometer Luminosity Function Out to z = 0.5
NASA Technical Reports Server (NTRS)
Dye, S.; Dunne, L.; Eales, S.; Smith, D. J. B.; Amblard, A.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A. W.;
2010-01-01
We have determined the luminosity function of 250 micrometer-selected galaxies detected in the approximately equal to 14 deg(sup 2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 micrometer luminosity density out to z = 0.2 where it is 3.6(sup +1.4) (sub -0.9) times higher than the local value.
The Coma Cluster Luminosity Function from Ultraviolet to Near-Infrared
NASA Astrophysics Data System (ADS)
Andreon, S.; Cuillandre, J.-C.; Pello, R.
The Coma cluster luminosity function (LF) from ultraviolet (2000 AA ) to the near-infrared (H band) is summarized. In the UV the LF is very steep, much steeper than in the optical. The steep Coma UV LF implies that faint and bright galaxies give similar contributions to the total UV flux and to the total metal production rate. The ComaUV LF is dominated in number and luminosity by blue galaxies, which are often faint in the optical. Therefore the Coma UV LF is dominated by star forming galaxies, not by massive and large galaxies. The optical Coma LF is relatively steep (alpha=-1.4) over the 11 magnitudes sampled, but its slope and shape depend on considered filter and magnitude. We found a clear steeping of the FL going from B to R bands, indicative of the presence of a large number of red dwarfs, as faint as three bright globular clusters. Furthermore, using Hubble Space Telescope images, we discover that blends of globular clusters, not resolved in individual components due to seeing, look like dwarf galaxies when observed from the ground and are numerous and bright. The existence of these fake extended sources increases the steepness of the LF at faint magnitudes, if not deal on. This concern affects previous deep probing of the luminosity function, but not the present work. The near-infrared LF wa s computed on a near-infrared selected sample of galaxies which photometry is complete down to the typical dwarf (M* +5) luminosity. The Coma LF can be described by a Schechter function with intermediate slope (alpha sim-1.3), plus a dip at MH~-22 mag. The shape of the Coma LF in H band is quite similar to th e one found in the B band. The similarity of the LF in the optical and H bands implies that in the central region of Coma there is no new population of galaxies which is too faint to be observed in the optical band (because dust enshrouded, for instance), down to the magnitudes of dwarfs. The exponential cut of the LF at the bright end is in good agreement with the one derived from shallower near-infrared samples o f galaxies, both in clusters and in the field. The faint end of the LF, reaching MH~-19 mag (roughly MB~ -15), is steep, but less than previously suggested from shallower near-infrared observations of an adjacent region in the Coma cluster.
ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu
2016-12-10
We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less
Resolved stars in nearby galaxies: Ground-based photometry of M81
NASA Technical Reports Server (NTRS)
Madore, Barry F.; Freedman, Wendy L.; Lee, Myung G.
1993-01-01
Using the Canada-France-Hawaii Telescope (CFHT) we have obtained three closely spaced epochs of calibrated Blue Violet Red Infrared (BVRI) CCD imaging of two fields in M81, each known to contain a thirty-day Cepheid. Calibrated BVRI photometry of the brightest stars in these fields is presented. The slope of the luminosity function from the brightest 3-4 mag of the main-sequence blue plume is consistent with similar determinations of the apparent luminosity function in other resolved galaxies, thereby removing the one potential deviation from universality noted by Freedman in a photographic study of luminosity functions in nearby resolved galaxies. Under the assumption that the two Cepheids are representative, a reddening-law fit to the multiwavelength BVRI period-luminosity moduli give a true distance modulus of (m-M)sub 0 = 27.79 mag for M81, corresponding to a linear distance of 3.6 Mpc. An error analysis shows that the derived true distance modulus has a random error of +/- 0.28 mag (due to the photometric uncertainties in the BVRI data), with a systematic uncertainty of +/- 0.10 mag (accounting for the combined effects of unknown phasing of the data points, and the unknown positioning of these particular stars within the Cepheid instabiliy strip).
High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Pattarakijwanich, Petchara
Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity in the same object. Given that AGN feedback is thought to be a likely mechanism responsible for quenching star-formation, post-starburst quasars provide ideal laboratory for studying this link. We explored various ways to identify post-starburst quasars, and construct our sample with more than 600 objects at high-redshift. This is the largest sample of post-starburst quasars available in the literature, and will be useful for AGN feedback studies. Finally, we studied the clustering properties of post-starburst galaxies through cross-correlation with CMASS galaxies. The real-space cross correlation function is a power-law with correlation length r0 ˜ 9.2 Mpc, and power-law index gamma ˜ 1.8. We also measure the linear bias of post-starburst galaxies to be bPSG ˜ 1.74 at redshift z = 0.62, corresponding to a dark matter halo mass of Mhalo ˜ 1.5 x 1013 M [special characters removed]. We found no evidence for redshift evolution in clustering properties for post-starburst galaxies.
A limit to the X-ray luminosity of nearby normal galaxies
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Marshall, F. E.; Boldt, E. A.
1979-01-01
Emission is studied at luminosities lower than those for which individual discrete sources can be studied. It is shown that normal galaxies do not appear to provide the numerous low luminosity X-ray sources which could make up the 2-60 keV diffuse background. Indeed, upper limits suggest luminosities comparable with, or a little less than, that of the galaxy. This is consistent with the fact that the average optical luminosity of the sample galaxies within approximately 20 Mpc is slightly lower than that of the galaxy. An upper limit of approximately 1% of the diffuse background from such sources is derived.
A Study of the Dependence of the Properties of Galaxy Clusters on Cluster Morphology.
NASA Astrophysics Data System (ADS)
Lugger, Phyllis Minnie
1982-03-01
A quantitative study of the properties of clusters of galaxies as a function of cluster morphology has been carried out using photographic plates obtained with the Palomar 48 inch Schmidt telescope. Surface brightness profiles of 35 first ranked cluster galaxies and luminosity functions of nine clusters are presented and analyzed. The dispersion in the metric magnitudes of first ranked galaxies is quite small ((TURN) 0.4 mag) which is consistent with the results of Kristian, Sandage and Westphal as well as Hoessel, Gunn and Thuan. For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is (TURN) 0.5 mag brighter than for the non-cD galaxies. The dispersion in the metric magnitudes for the 10 cD galaxies studied is found to be much smaller ((sigma) (TURN) 0.1 mag) than the dispersion in the metric magnitudes of the non-cD first ranked galaxies ((sigma) (TURN) 0.4 mag). The de Vaucouleurs effective radius - magnitude relation determined in the present study for first ranked galaxies (log r(,e) = -0.2 M + const.) is consistent with the extrapolations to brighter magnitudes of the range of relations found by Strom and Strom. The average residuals from the mean radius-magnitude relation for the cD and non-cD galaxy samples were not found to differ at a significant level. Luminosity functions for the region within 0.5 Mpc of the cluster center for three of the clusters studied (A1656, A2147, and A2199) show a deficit of bright galaxies when compared to a concentric annular region with bounds of 0.5 and 1.0 Mpc. Characteristic magnitudes for the nine clusters (determined from square regions 4.6 Mpc on a side) show no significant correlation with cluster morphology, central density, or total magnitude of the first ranked galaxy. The mean values of the Schechter function parameters M('*) and (alpha) are in very good agreement with the previous determinations by Schechter and by Dressler. The differential luminosity functions for A569 and A1656 do not rise monotonically to fainter magnitudes but instead show dips. These data are used to test predictions of several recent theories of the dynamical evolution of clusters of galaxies.
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.
2017-11-01
We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.
The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.
Kauffmann, Guinevere; Heckman, Timothy M
2005-03-15
We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical and X-ray surveys is driven by a decrease in the characteristic mass scale of actively accreting black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predictmore » the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.« less
ELUCID. V. Lighting Dark Matter Halos with Galaxies
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Zhang, Youcai; Wang, Huiyuan; Liu, Chengze; Lu, Tianhuan; Li, Shijie; Shi, Feng; Jing, Y. P.; Mo, H. J.; van den Bosch, Frank C.; Kang, Xi; Cui, Weiguang; Guo, Hong; Li, Guoliang; Lim, S. H.; Lu, Yi; Luo, Wentao; Wei, Chengliang; Yang, Lei
2018-06-01
In a recent study, using the distribution of galaxies in the north galactic pole of the SDSS DR7 region enclosed in a 500 {h}-1 {Mpc} box, we carried out our ELUCID simulation (ELUCID III). Here, we light the dark matter halos and subhalos in the reconstructed region in the simulation with galaxies in the SDSS observations using a novel neighborhood abundance matching method. Before we make use of the galaxy–subhalo connections established in the ELUCID simulation to evaluate galaxy formation models, we set out to explore the reliability of such a link. For this purpose, we focus on the following few aspects of galaxies: (1) the central–subhalo luminosity and mass relations, (2) the satellite fraction of galaxies, (3) the conditional luminosity function (CLF) and conditional stellar mass function (CSMF) of galaxies, and (4) the cross-correlation functions between galaxies and dark matter particles, most of which are measured separately for all, red, and blue galaxy populations. We find that our neighborhood abundance matching method accurately reproduces the central–subhalo relations, satellite fraction, and the CLFs, CSMFs, and biases of galaxies. These features ensure that galaxy–subhalo connections thus established will be very useful in constraining galaxy formation processes. We provide some suggestions for the three levels of using the galaxy–subhalo pairs for galaxy formation constraints. The galaxy–subhalo links and the subhalo merger trees in the SDSS DR7 region extracted from our ELUCID simulation are available upon request.
X-ray Point Source Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.
2001-12-01
In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.
Obscured Active Galactic Nuclei in Luminous Infrared Galaxies
NASA Astrophysics Data System (ADS)
Shier, L. M.; Rieke, M. J.; Rieke, G. H.
1996-10-01
We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.
LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0
NASA Astrophysics Data System (ADS)
Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.
2018-04-01
This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.
THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.
2012-04-10
We investigate the radial distribution of galaxies within their host dark matter halos as measured in the Sloan Digital Sky Survey by modeling their small-scale clustering. Specifically, we model the Jiang et al. measurements of the galaxy two-point correlation function down to very small projected separations (10 h{sup -1} kpc {<=} r {<=} 400 h{sup -1} kpc), in a wide range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation distribution framework with free parameters that specify both the number and spatial distribution of galaxies within their host dark matter halos. Wemore » assume one galaxy resides in the halo center and additional galaxies are considered satellites that follow a radial density profile similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the concentration and inner slope are allowed to vary. We find that in low luminosity samples (M{sub r} < -19.5 and lower), satellite galaxies have radial profiles that are consistent with NFW. M{sub r} < -20 and brighter satellite galaxies have radial profiles with significantly steeper inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to -2.1, as opposed to -1 for NFW). We define a useful metric of concentration, M{sub 1/10}, which is the fraction of satellite galaxies (or mass) that are enclosed within one-tenth of the virial radius of a halo. We find that M{sub 1/10} for low-luminosity satellite galaxies agrees with NFW, whereas for luminous galaxies it is 2.5-4 times higher, demonstrating that these galaxies are substantially more centrally concentrated within their dark matter halos than the dark matter itself. Our results therefore suggest that the processes that govern the spatial distribution of galaxies, once they have merged into larger halos, must be luminosity dependent, such that luminous galaxies become poor tracers of the underlying dark matter.« less
How Complete is Mid-Infrared Selection of Active Galactic Nuclei?
NASA Astrophysics Data System (ADS)
Grae Short, Miona; Diamond-Stanic, Aleks
2015-01-01
Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.
The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8
NASA Astrophysics Data System (ADS)
Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven
2018-01-01
Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.
Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions
NASA Astrophysics Data System (ADS)
Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.
2018-06-01
We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.
Associating Fast Radio Bursts with Their Host Galaxies
NASA Astrophysics Data System (ADS)
Eftekhari, T.; Berger, E.
2017-11-01
The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.
Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T
2017-07-10
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.
QSO Narrow [OIII] Line Width and Host Galaxy Luminosity
NASA Astrophysics Data System (ADS)
Bonning, E. W.; Shields, G. A.; Salviander, S.
2004-05-01
Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.
A Database of Young Star Clusters for Five Hundred Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
2009-07-01
We propose to use the source lists developed as part of the Hubble Legacy Archive {HLA: Data Release 1 - February 8, 2008} to obtain a large {N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W}, uniform {ACS + WFPC2 + NICMOS: DAOphot used for object detection} database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1} To what degree is the cluster luminosity {and mass} function of star clusters universal ? 2} What fraction of super star clusters are "missing" in optical studies {i.e., are hidden by dust}? This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years by co-I Larsen and PI Whitmore, and will be used to test the Whitmore, Chandar, Fall {2007} framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Song; Qiu, Yanli; Liu, Jifeng
Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm withmore » good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.« less
Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.
2009-08-01
We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.
H II regions in the dwarf galaxy UGC-A 86
NASA Technical Reports Server (NTRS)
Miller, Bryan W.; Hodge, Paul
1993-01-01
The uncertain nature of the dwarf irregular galaxy UGC-A 86 (VIIZw009) makes it a very interesting object for studying star formation at the low end of the galaxy luminosity function. Saha and Hoessel (1991) find that this object is composed of two main parts, one of which appears more resolved than the other. The more resolved component has an excess of blue stars, suggesting that it is currently undergoing star formation. Thus, they argue that UGC-A 86 could be either a superposition of unrelated galaxies, two interacting galaxies, or a single galaxy. However, surface photometry performed by Richter et al. (1991) indicates that it is a single galaxy with an exponential luminosity profile. Richter et al. also find UGC-A 86 to be extremely dusty and to be associated with the infrared source IRAS 3550+6657. The uncertainty is compounded by the large ambiguity in the distance, though a heliocentric H1 velocity of 80 plus or minus 7 km s(sup -1) suggests that it is either a member of the Local Group or perhaps the IC 342 group. A distance of 1.5 Mpc and a reddening of E(B - V) = 0.65 is adopted. UGC-A 86 in H-alpha was observed in order to measure its current star formation rate. This is part of a larger project to study the star formation rates and histories of a complete sample of dwarf galaxies in the Local Group and other nearby groups. The H region luminosity function and size distribution for UGC-A 86 are presented and compared with previous observations of similar dwarf galaxies.
NASA Astrophysics Data System (ADS)
Bonato, Matteo; Negrello, Mattia; Mancuso, Claudia; De Zotti, Gianfranco; Ciliegi, Paolo; Cai, Zhen-Yi; Lapi, Andrea; Massardi, Marcella; Bonaldi, Anna; Sajina, Anna; Smolčić, Vernesa; Schinnerer, Eva
2017-08-01
The assessment of the relationship between radio continuum luminosity and star formation rate (SFR) is of crucial importance to make reliable predictions for the forthcoming ultra-deep radio surveys and to allow a full exploitation of their results to measure the cosmic star formation history. We have addressed this issue by matching recent accurate determinations of the SFR function up to high redshifts with literature estimates of the 1.4 GHz luminosity functions of star-forming galaxies (SFGs). This was done considering two options, proposed in the literature, for the relationship between the synchrotron emission (Lsynch), that dominates at 1.4 GHz, and the SFR: a linear relation with a decline of the Lsynch/SFR ratio at low luminosities or a mildly non-linear relation at all luminosities. In both cases, we get good agreement with the observed radio luminosity functions but, in the non-linear case, the deviation from linearity must be small. The luminosity function data are consistent with a moderate increase of the Lsynch/SFR ratio with increasing redshift, indicated by other data sets, although a constant ratio cannot be ruled out. A stronger indication of such increase is provided by recent deep 1.4-GHz counts, down to μJy levels. This is in contradiction with models predicting a decrease of that ratio due to inverse Compton cooling of relativistic electrons at high redshifts. Synchrotron losses appear to dominate up to z ≃ 5. We have also updated the Massardi et al. evolutionary model for radio loud AGNs.
The Luminosity Function of OB Associations in the Galaxy
NASA Astrophysics Data System (ADS)
McKee, Christopher F.; Williams, Jonathan P.
1997-02-01
OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice as many ionizing photons as the radio H II regions themselves. Allowing for the ionizing radiation that is absorbed by dust (about 25% of the total), we find that the maximum ionizing photon luminosity of a Galactic OB association is Su ~= 4.9 × 1051 photons s-1, corresponding to an Hα luminosity of about 5 × 1039 ergs s-1. The total ionizing luminosity of this distribution of OB associations can account for the thermal radio emission and the N II far-infrared emission of the Galaxy. The number of massive stars in the associations is consistent with estimates of the rate of massive star supernovae in the Galaxy. Associations produce several generations of stars over their lifetimes, and the largest associations are predicted to produce about 7000 supernova progenitors. Fitting the surface density of associations to an exponential of the form d\\Nscra(\\Nscr*)/dA~ exp (-R/HR) with a scale length HR = 3.5 kpc gives a number of OB associations in the solar neighborhood that is consistent with observation. The H II envelopes contribute to pulsar dispersion measures and can account for the increased dispersion measure observed in the inner Galaxy.
Supermassive black holes and their feedback effects in the IllustrisTNG simulation
NASA Astrophysics Data System (ADS)
Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars
2018-06-01
We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 108.5 M⊙, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass - stellar bulge mass relation in good agreement with observations, whereas the simulation tends to over-predict the high-redshift quasar luminosity function.
H II Regions in the Disks of Spiral Galaxies
NASA Astrophysics Data System (ADS)
Rozas, M.
1997-06-01
The objective of the research presented in the thesis is to use photometrically calibrated high quality images in \\ha\\ of the disks of spiral galaxies to study their global star forming properties. In the first part of the study we catalog and study statistically the \\hii\\ regions in a set of spirals, imaged in \\ha\\ . The observed parameters of each region are its fluxes and diameters, from which we can also derive the mean surface brightness and its internal radial gradient (the latter for the largest most luminous regions). Plotting the luminosity function (LF) for a given galaxy (the number of regions versus \\ha\\ flux) we find a characteristic discontinuity: a peak accompanied by a change in gradient of the function, at a luminosity of 10$^{38.6}$ erg s$^{-1}$ per region. We attribute this to the change from ionization-bounded \\hii\\ regions, at luminosities below the transition, to density-bounded regions above the transition, and explain with a quantitative model based on this assumption why the transition takes place at a well-defined luminosity, and one which varies very little from galaxy to galaxy. In the six galaxies observed and analyzed in this way, the variance is 0.07 mag., making the transition a good prima facie candidate to be a powerful standard candle for accurate extragalactic distance measurements. Confirmation of the nature of the transition is provided by measurements of the internal brightness gradients, which show a jump from a constant value (predicted for ionization bounded regions) below the transition to a larger and increasing value above the transition. The theoretical model which can account for the transition was used to show how the gradients of the LF in the ionization bounded and the density bounded regimes can be used to derive the mass function of the ionizing stars in regions close to the transition luminosity, yielding a mean value for the slope of the MF in the galaxies observed of -2.4; the brightest stars in these regions are characteristically early O-types. Further evidence that the most luminous regions are density-bounded is provided by measuring the internal velocity dispersions of \\hii\\ regions across a galaxy, using the TAURUS Fabry-Perot spectral line imager. A plot of velocity dispersion v. luminosity in \\ha\\ is a scatter diagram in the log-log plane with a linear upper envelope having a slope of +2.6, on which lies the brightest regions: those above the transition. We explain these findings by assuming that a typical region does not show gas in virial equilibrium, since sporadic stellar events: winds and explosions, provide a non-negligible fraction of the \\ha\\ luminosity. However the locus of the upper envelope should correspond to a virial relation; the more massive regions show more rapid damping of impulsive energy input. The slope of the envelope is that predicted for regions whose mass rather than total luminosity is being sampled, i.e. density-bounded regions. The thesis is completed with a different application of our \\ha\\ observations: a technique to test the relation between the presence or absence of twofold symmetries in the star formation patterns of grand design spirals, and the strength of any bar which is present. We find that a strong bar inhibits the second degree of symmetry, implying more mixing in the disk. Finally we apply a dynamical model, using numerical simulations, to the spiral galaxy NGC 157, in order to determine its principal resonance. (SECTION: Dissertation Summaries)
NASA Astrophysics Data System (ADS)
Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.
2006-06-01
Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07
NASA Astrophysics Data System (ADS)
Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.
2012-04-01
We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.
The Reliability of [c II] as a Star Formation Rate Indicator
NASA Astrophysics Data System (ADS)
De Looze, Ilse; Baes, Maarten; Fritz, Jacopo; Bendo, George J.; Cortese, Luca
2011-08-01
We present a calibration of the star formation rate (SFR) as a function of the [C II] 157.74 μ m luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μ m, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultra luminous galaxies (L TIR ≥ 1012 L⊙) should be handled with caution, since these objects show a non-linearity in the L [C II]-to-L FIR ratio as a function of L FIR (and thus, their star formation activity). Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.
Implications of the Observed Ultraluminous X-Ray Source Luminosity Function
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko
2012-01-01
We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.
Simulating the assembly of galaxies at redshifts z = 6-12
NASA Astrophysics Data System (ADS)
Dayal, Pratika; Dunlop, James S.; Maio, Umberto; Ciardi, Benedetta
2013-09-01
We use state-of-the-art simulations to explore the physical evolution of galaxies in the first billion years of cosmic time. First, we demonstrate that our model reproduces the basic statistical properties of the observed Lyman-break galaxy (LBG) population at z = 6-8, including the evolving ultraviolet (UV) luminosity function (LF), the stellar mass density (SMD) and the average specific star-formation rates (sSFRs) of LBGs with MUV < -18 (AB mag). Encouraged by this success we present predictions for the behaviour of fainter LBGs extending down to MUV ≃ -15 (as will be probed with the James Webb Space Telescope) and have interrogated our simulations to try to gain insight into the physical drivers of the observed population evolution. We find that mass growth due to star formation in the mass-dominant progenitor builds up about 90 per cent of the total z ˜ 6 LBG stellar mass, dominating over the mass contributed by merging throughout this era. Our simulation suggests that the apparent `luminosity evolution' depends on the luminosity range probed: the steady brightening of the bright end of the LF is driven primarily by genuine physical luminosity evolution and arises due to a fairly steady increase in the UV luminosity (and hence star-formation rates) in the most massive LBGs; for example the progenitors of the z ≃ 6 galaxies with MUV < -18.5 comprised ≃90 per cent of the galaxies with MUV < -18 at z ≃ 7 and ≃75 per cent at z ≃ 8. However, at fainter luminosities the situation is more complex, due in part to the more stochastic star-formation histories of lower mass objects; the progenitors of a significant fraction of z ≃ 6 LBGs with MUV > -18 were in fact brighter at z ≃ 7 (and even at z ≃ 8) despite obviously being less massive at earlier times. At this end, the evolution of the UV LF involves a mix of positive and negative luminosity evolution (as low-mass galaxies temporarily brighten and then fade) coupled with both positive and negative density evolution (as new low-mass galaxies form, and other low-mass galaxies are consumed by merging). We also predict that the average sSFR of LBGs should rise from sSFR ≃ 4.5 Gyr- 1 at z ≃ 6 to sSFR ≃ 11 Gyr- 1 by z ≃ 9.
The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z 3
NASA Astrophysics Data System (ADS)
Durkalec, A.; Le Fèvre, O.; Pollo, A.; Zamorani, G.; Lemaux, B. C.; Garilli, B.; Bardelli, S.; Hathi, N.; Koekemoer, A.; Pforr, J.; Zucca, E.
2018-04-01
We present a study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2 < z < 3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS), covering a total area of 0.92 deg2. We measured the two-point real-space correlation function wp(rp) for four volume-limited subsamples selected by stellar mass and four volume-limited subsamples selected by MUV absolute magnitude. We find that the scale-dependent clustering amplitude r0 significantly increases with increasing luminosity and stellar mass. For the least luminous galaxies (MUV < -19.0), we measured a correlation length r0 = 2.87 ± 0.22 h-1 Mpc and slope γ = 1.59 ± 0.07, while for the most luminous (MUV < -20.2) r0 = 5.35 ± 0.50 h-1 Mpc and γ = 1.92 ± 0.25. These measurements correspond to a strong relative bias between these two subsamples of Δb/b* = 0.43. Fitting a five-parameter halo occupation distribution (HOD) model, we find that the most luminous (MUV < -20.2) and massive (M⋆ > 1010 h-1 M⊙) galaxies occupy the most massive dark matter haloes with ⟨Mh⟩ = 1012.30 h-1 M⊙. Similar to the trends observed at lower redshift, the minimum halo mass Mmin depends on the luminosity and stellar mass of galaxies and grows from Mmin = 109.73 h-1 M⊙ to Mmin = 1011.58 h-1 M⊙ from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z 3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1 ≈ 4Mmin over all luminosity ranges, which is significantly lower than observed at z 0; this indicates that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large-scale galaxy bias, which we model as bg,HOD (>L) = 1.92 + 25.36(L/L*)7.01. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR). We observe a significant model-observation discrepancy for low-mass galaxies, suggesting a higher than expected star formation efficiency of these galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791.
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa
2018-07-01
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.
The remarkable infrared galaxy Arp 220 = IC 4553
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Helou, G.; Lonsdale, C. J.; Hacking, P.; Rice, W.; Houck, J. R.; Low, F. J.; Rowan-Robinson, M.
1984-01-01
IRAS observations of the peculiar galaxy Arp 220 = IC 4553 show that it is extremely luminous in the far-infrared, with a total luminosity of 2 x 10 to the 12th solar luminosities. The infrared-to-blue luminosity ratio of this galaxy is about 80, which is the largest value of the ratio for galaxies in the UGC catalog, and places it in the range of the 'unidentified' infrared sources recently reported by Houck et al. in the IRAS all-sky survey. Other observations of Arp 220, combined with the luminosity in the infrared, allow either a Seyfert-like or starburst origin for this luminosity.
NASA Technical Reports Server (NTRS)
Goldader, Jeffrey D.; Joseph, R. D.; Doyon, Rene; Sanders, D. B.
1995-01-01
We present high-quality spectra covering the K window at a resolving power of 340 for a sample of 13 ultraluminous (L(sub IR) approximately greater than 10(exp 12) solar luminosity) infrared-selected galaxies, and line fluxes for a comparison sample of 24 lower luminosity galaxies. The 2 micrometers spectra of 10 of the ultraluminous galaxies are characterized by emission and absorption features commonly associated with stars and star formation; two others have the red power-law spectra and Br gamma line widths of Seyfert 1 galaxies; the final galaxy has strong emission from hot dust. We have found no broad-line active nuclei not already known from optical observations, despite the fact that the extinction at 2 micrometers is 1/10 that at optical wavelengths; any putative Seyfert 1 nuclei must be deeply buried. Powerful continua and emission lines from H2 and Br gamma are detected in all the ultraluminous galaxies. Comparing the H2 1-0 S(1), Br gamma, and 2 micrometers and far-infrared luminosities to those of the lower luminosity galaxies yields several major results. First, the dereddened Br gamma emission, relative to the far-infrared luminosity is significantly depressed in the ultraluminous sample, when compared to the lower luminosity galaxies. Five of the ultraluminous galaxies have L(sub Br gamma)L(sub IR) ratios lower than for any of the comparison objects. Second, the H2 1-0 S(1) luminosity is also responsible, directly or indirectly, for producing the excited H2, and that the H2 apparently comes from optically thin regions in both classes of objects. Third, eight of the 13 ultraluminous systems have lower 2 micrometers/far-infrared luminosity ratios than any of the lower luminosity galaxies, and five of these are the galaxies also deficient in Br gamma. These three findings may be understood if the the H2, Br gamma, and 2 mircometers continua in the ultraluminous galaxies arise from spatially distinct regions, with the continuum and Br gamma largely coming from volumes optically thick even at 2 micrometers, and obscured in such a fashion that the extinctions measured using optical spectroscopy do not properly measure the true optical depths. If this is the case, then even near-infrared spectroscopy may be unable to exclude the presence of undetected powerful active galactive nuclei in the ultraluminous galaxies.
VLA observations of a complete sample of extragalactic X-ray sources. II
NASA Technical Reports Server (NTRS)
Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.
1983-01-01
A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.
Black Hole and Galaxy Coevolution from Continuity Equation and Abundance Matching
NASA Astrophysics Data System (ADS)
Aversa, R.; Lapi, A.; de Zotti, G.; Shankar, F.; Danese, L.
2015-09-01
We investigate the coevolution of galaxies and hosted supermassive black holes (BHs) throughout the history of the universe by a statistical approach based on the continuity equation and the abundance matching technique. Specifically, we present analytical solutions of the continuity equation without source terms to reconstruct the supermassive BH mass function from the active galactic nucleus (AGN) luminosity functions. Such an approach includes physically motivated AGN light curves tested on independent data sets, which describe the evolution of the Eddington ratio and radiative efficiency from slim- to thin-disk conditions. We nicely reproduce the local estimates of the BH mass function, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies with given stellar mass hosting an AGN with given Eddington ratio. We exploit the same approach to reconstruct the observed stellar mass function at different redshift from the ultraviolet and far-IR luminosity functions associated with star formation in galaxies. These results imply that the build-up of stars and BHs in galaxies occurs via in situ processes, with dry mergers playing a marginal role at least for stellar masses ≲ 3× {10}11 {M}⊙ and BH masses ≲ {10}9 {M}⊙ , where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique to link the stellar and BH content of galaxies to the gravitationally dominant dark matter (DM) component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. In addition, they may be operationally implemented in numerical simulations to populate DM halos or to gauge subgrid physics. Moreover, they may be exploited to investigate the galaxy/AGN clustering as a function of redshift, mass, and/or luminosity. In fact, the clustering properties of BHs and galaxies are found to be in full agreement with current observations, thus further validating our results from the continuity equation. Finally, our analysis highlights that (i) the fraction of AGNs observed in the slim-disk regime, where most of the BH mass is accreted, increases with redshift; and (ii) already at z≳ 6 a substantial amount of dust must have formed over timescales ≲ {10}8 yr in strongly star-forming galaxies, making these sources well within the reach of ALMA surveys in (sub)millimeter bands.
A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.
2017-10-20
We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less
EVOLUTION OF GALAXY GROUPS IN THE ILLUSTRIS SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raouf, Mojtaba; Khosroshahi, Habib G.; Dariush, A., E-mail: m.raouf@ipm.ir
We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model inmore » recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.« less
The [CII] 158 μm line emission in high-redshift galaxies
NASA Astrophysics Data System (ADS)
Lagache, G.; Cousin, M.; Chatzikos, M.
2018-02-01
Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of L[ CII] probed by the model (1 × 107-2 × 109 L⊙ at z = 6) with a slope α = -1. The slope is not evolving from z = 4 to z = 8 but the number density of [CII]-emitters decreases by a factor of 20×. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions. The FITS files of the data used in this paper (e.g., M⋆, SFR, ISRF, Zg, L[CII], LIR) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A130
A Search for Low-Luminosity BL Lacertae Objects
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Stocke, John T.; Perlman, Eric S.
1999-05-01
Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or
Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation
Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; ...
2015-09-18
We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 10 43.0 erg s –1 while the low redshifts (z ≤ 0.3) showmore » an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 10 41.6 erg s –1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1) –1 at z ≤ 2 while the faint end evolves as ~3(z + 1) –1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less
Linking Dense Gas from the Milky Way to External Galaxies
NASA Astrophysics Data System (ADS)
Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.
2016-06-01
In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.
NASA Astrophysics Data System (ADS)
Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu
2013-04-01
We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.
NASA Astrophysics Data System (ADS)
Buat, V.; Takeuchi, T. T.; Iglesias-Páramo, J.; Xu, C. K.; Burgarella, D.; Boselli, A.; Barlow, T.; Bianchi, L.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Lee, Y.-W.; Madore, B. F.; Martin, D. C.; Milliard, B.; Morissey, P.; Neff, S.; Rich, M.; Schiminovich, D.; Seibert, M.; Small, T.; Szalay, A. S.; Welsh, B.; Wyder, T.; Yi, S. K.
2007-12-01
We select far-infrared (FIR: 60 μm) and far-ultraviolet (FUV: 530 Å) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection, and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities, but some differences are found for high (>5×1010 Lsolar) luminosities. The shallowness of the IRAS survey prevents us from securing a comparison at low luminosities (<2×109 Lsolar). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5×1010 Lsolar. Brighter galaxies are found to have a different behavior according to their selection: the LTIR/LFUV ratio of the FUV-selected galaxies brighter than 5×1010 Lsolar reaches a plateau, whereas LTIR/LFUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The mean values of the SSFR are found to be larger than those measured for optical and NIR-selected samples over the whole mass range for the FIR selection, and for masses larger than 1010 Msolar for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z~0.7.
NASA Astrophysics Data System (ADS)
Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team
2014-12-01
We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.
Warm Dark Matter and Cosmic Reionization
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
2018-01-10
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less
Warm Dark Matter and Cosmic Reionization
NASA Astrophysics Data System (ADS)
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
2018-01-01
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.
Warm Dark Matter and Cosmic Reionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga
In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less
NASA Astrophysics Data System (ADS)
Totani, T.; Takeuchi, T. T.
2001-12-01
A new model of infrared galaxy counts and the cosmic background radiation (CBR) is developed by extending a model for optical/near-infrared galaxies. Important new characteristics of this model are that mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that the big grain dust temperature T dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T dust and total infrared luminosity L IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L IR-T dust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μ m) and CBR by this model. We found considerably different results from most of previous works based on the empirical L IR-T dust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40--80K). This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2--3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE\\ detections of FIR CBR. The authors thank the financial support by the Japan Society for Promotion of Science.
Can Low-Luminosity Galaxies Reionize the Universe?
NASA Astrophysics Data System (ADS)
Ferguson, Harry
2017-08-01
The prevailing wisdom is that low-luminosity galaxies are responsible for cosmic reionization. If this is true, then low-luminosity galaxies at high redshift have to be different from most of the low-luminosity galaxies studied to date at low redshift, which absorb too much of their ionizing radiation. While it is possible that high-z dwarf galaxies have the same metallicity at fixed mass and star-formation rate as low-redshift galaxies, they are different in one key respect. At fixed dark-halo mass, they are probably much denser (having collapsed earlier). This could lead to higher star-formation surface densities more capable of creating cavities in the ISM. But the denser halos of surrounding gas could be harder to clear. There is a critical need for further observations to validate and test physical models for the trends of escaping ionizing continuum with redshift, luminosity, and surface density. JWST will not be able to measure ionizing radiation during the epoch of reionization because the IGM absorbs most of the photons. To prepare for JWST, we need to use the ultraviolet capabilities of HST to measure diverse samples of galaxies at z<3, where we can see the photons and quantify the trends with other galaxy properties. As a complement to other studies, we propose to constrain the Lyman-continuum emission from 8 relatively low-luminosity strongly-lensed galaxies at 1
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika
Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less
NASA Astrophysics Data System (ADS)
Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki
2018-02-01
We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.
Evolution of the luminosity function of extragalactic objects
NASA Technical Reports Server (NTRS)
Petrosian, V.
1985-01-01
A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).
NASA Astrophysics Data System (ADS)
Totani, Tomonori; Takeuchi, Tsutomu T.
2002-05-01
We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE detections of FIR CBR. The intergalactic optical depth of TeV gamma rays based on our model is also presented.
NASA Technical Reports Server (NTRS)
Jones, Therese M.; Kriek, Mariska; vanDokkum, Peter G.; Brammer, Gabriel; Franx, Marijn; Greene, Jenny E.; Labbe, Ivo; Whitaker, Katherine E.
2014-01-01
We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.
X-ray-selected galaxy groups in Boötes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine
2014-10-10
We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and performmore » a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify ∼1800 groups (L{sub X} = 10{sup 41}-10{sup 43} erg s{sup –1}) within a distance of 200 Mpc. Since groups lie in large-scale filaments, this group sample will map the large-scale structure of the local universe.« less
Cosmological evolution of supermassive black holes in the centres of galaxies
NASA Astrophysics Data System (ADS)
Kapinska, Anna D.
2012-06-01
Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large scale structure. Their jets inject a significant amount of energy into the surrounding medium, hence they can provide useful information in the study of the density and evolution of the intergalactic and intracluster medium. The jet activity is also believed to regulate the growth of massive galaxies via the AGN feedback. In this thesis I explore the intrinsic and extrinsic physical properties of the population of Fanaroff-Riley II (FR II) objects, i.e. their kinetic luminosities, lifetimes, and central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux limited radio catalogues of 3CRR and BRL. I construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, I compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The Monte Carlo method presented here allows one to: (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented, and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, I allow the source physical properties to co-evolve with redshift, and I find that all the investigated parameters most likely undergo cosmological evolution; however these parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. Furthermore, since it has been suggested that low luminosity FR IIs may be distinct from their powerful equivalents, I attempt to investigate fundamental properties of a sample of low redshift, low radio luminosity density radio galaxies. Based on SDSS-FIRST-NVSS radio sample I construct a low frequency (325 MHz) sample of radio galaxies and attempt to explore the fundamental properties of these low luminosity radio sources. The results are discussed through comparison with the results from the powerful radio sources of the 3CRR and BRL samples. Finally, I investigate the total power injected by populations of these powerful radio sources at various cosmological epochs and discuss the significance of the impact of these sources on the evolving Universe. Remarkably, sets of two degenerate fundamental parameters, the kinetic luminosity and maximum lifetimes of radio sources, despite the degeneracy provide particularly robust estimates of the total power produced by FR IIs during their lifetimes. This can be also used for robust estimations of the quenching of the cooling flows in cluster of galaxies.
Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS
NASA Astrophysics Data System (ADS)
Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A.; Basu-Zych, A. R.
2013-09-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of the oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or that XRB modeling requires calibration on larger observational samples. Given these limitations, we find that the best models are consistent with a product of common envelope ejection efficiency and central donor concentration ~= 0.1, and a 50% uniform-50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor, and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the LX -star formation rate and LX -stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution of both XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.
Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.
2003-03-01
We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.
Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.
2013-01-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.
NASA Astrophysics Data System (ADS)
Krywult, J.; Tasca, L. A. M.; Pollo, A.; Vergani, D.; Bolzonella, M.; Davidzon, I.; Iovino, A.; Gargiulo, A.; Haines, C. P.; Scodeggio, M.; Guzzo, L.; Zamorani, G.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Tojeiro, R.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.; Takeuchi, T. T.
2017-02-01
Context. The study of the separation of galaxy types into different classes that share the same characteristics, and of the evolution of the specific parameters used in the classification are fundamental for understanding galaxy evolution. Aims: We explore the evolution of the statistical distribution of galaxy morphological properties and colours combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Methods: Galaxy structural parameters were combined with absolute magnitudes, colours and redshifts in order to trace evolution in a multi-parameter space. Using a new method we analysed the combination of colours and structural parameters of early- and late-type galaxies in luminosity-redshift space. Results: We find that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sérsic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift (0.5 < z < 1) and luminosity (-1.5 < B-B∗ < 1.0) ranges. The combination of the rest-frame colour and Sérsic index as a function of redshift and luminosity allows us to present the structure of both galaxy types and their evolution. We find that early-type galaxies display only a slow change in their concentrations after z = 1. Their high concentrations were already established at z 1 and depend much more strongly on their luminosity than redshift. In contrast, late-type galaxies clearly become more concentrated with cosmic time with only little evolution in colour, which remains dependent mainly on their luminosity. Conclusions: The combination of rest-frame colours and Sérsic index as a function of redshift and luminosity leads to a precise statistical description of the structure of galaxies and their evolution. Additionally, the proposed method provides a robust way to split galaxies into early and late types. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/A table of the fitted parameters is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A120
CO luminosity function from Herschel-selected galaxies and the contribution of AGN
NASA Astrophysics Data System (ADS)
Vallini, L.; Gruppioni, C.; Pozzi, F.; Vignali, C.; Zamorani, G.
2016-02-01
We derive the carbon monoxide (CO) luminosity function (LF) for different rotational transitions [I.e. (1-0), (3-2), (5-4)] starting from the Herschel LF by Gruppioni et al. and using appropriate LCO-LIR conversions for different galaxy classes. Our predicted LFs fit the data so far available at z ≈ 0 and 2. We compare our results with those obtained by semi-analytical models (SAMs): while we find a good agreement over the whole range of luminosities at z ≈ 0, at z ≈ 1 and z ≈ 2, the tension between our LFs and SAMs in the faint and bright ends increases. We finally discuss the contribution of luminous active galactic nucleus (LX > 1044 erg s- 1) to the bright end of the CO LF concluding that they are too rare to reproduce the actual CO LF at z ≈ 2.
PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Y. Q.; Xia, X. Y.; Hao, C. N.
We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSSmore » Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.« less
Connecting CO intensity mapping to molecular gas and star formation in the epoch of galaxy assembly
Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika; ...
2016-01-29
Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less
Modelling galaxy clustering: halo occupation distribution versus subhalo matching.
Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo
2016-07-01
We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.
The Intrinsic Properties of SDSS Galaxies: Taking off the Rose Tinted Glasses
NASA Astrophysics Data System (ADS)
Maller, Ariyed; Berlind, A.; Blanton, M.; Hogg, D.
2006-12-01
It is well known that most galaxies contain dust. Dust reddens galaxies and does so as an increasing function of the galaxies observed inclination. Therefore when one looks at the properties of observed galaxies, such as the luminosity function, the correlation function or the color magnitude-diagram, one gets a distorted view of the properties of galaxies. This effect can be corrected for in a large galaxy sample such as the Sloan Digital Sky Survey. The procedure is to identify inclination dependence in an observed galaxy property, color being the most obvious choice, and then to solve for the function of inclination that will remove this observed dependence. In this way we can determine the intrinsic properties of galaxies, properties that are independent of their inclination. The distribution of these intrinsic properties give us an undistorted view into the nature of galaxies and are thus more useful for determining evolutionary effects and comparing to theoretical models.
NASA Astrophysics Data System (ADS)
Shipley, Heath; Papovich, Casey
2015-08-01
We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.
Weak-Lensing Determination of the Mass in Galaxy Halos
NASA Astrophysics Data System (ADS)
Smith, D. R.; Bernstein, G. M.; Fischer, P.; Jarvis, M.
2001-04-01
We detect the weak gravitational lensing distortion of 450,000 background galaxies (20
NASA Astrophysics Data System (ADS)
Kapińska, A. D.; Uttley, P.; Kaiser, C. R.
2012-08-01
Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large-scale structure. We explore the intrinsic and extrinsic properties of the population of Fanaroff-Riley type II (FR II) objects, i.e. their kinetic luminosities, lifetimes and the central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux-limited radio catalogues of the Third Cambridge Revised Revised Catalogue (3CRR) and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The new Monte Carlo method we present here allows us to (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, as has not been done before, we allow the source physical properties (kinetic luminosities, lifetimes and central densities) to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1 + z)3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FR IIs with those determined from radiative luminosities of active galactic nuclei of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FR IIs at low redshifts, or a transition to a kinetically dominated, radiatively inefficient FR II population.
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.
1987-01-01
Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.
Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs
NASA Technical Reports Server (NTRS)
Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy
2016-01-01
We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF.
The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge
NASA Astrophysics Data System (ADS)
Houdashelt, Mark Lee
1995-01-01
Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge; this effect is not understood but may be caused by some deficiency in the modelling; and (2) differences in the slopes of the TiO-color trends in E/S0 galaxies and in the Galactic bulge may indicate that the (Ti/Fe) ratio is changing differently in these two instances.
New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, A.; Allen, S.W.; Ebeling, H.
We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less
NASA Astrophysics Data System (ADS)
Jones, Mackenzie L.; Hickox, Ryan C.; Mutch, Simon J.; Croton, Darren J.; Ptak, Andrew F.; DiPompeo, Michael A.
2017-07-01
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.
NASA Astrophysics Data System (ADS)
Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Lee, Chien-Hsiu; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Izumi, Takuma; Kawaguchi, Toshihiro; Kikuta, Satoshi; Kohno, Kotaro; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Schulze, Andreas; Shirakata, Hikari; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Toba, Yoshiki; Utsumi, Yousuke; Wang, Shiang-Yu
2018-01-01
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z ≤ 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper of this series, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, two [O III] emitters at z ˜ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ˜ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (>1043 erg s-1) and narrow (< 500 km s-1) Lyα lines, and also a possible mini broad-absorption-line system of N V λ1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosities (M1450 ˜ -24 to -22 mag) compared to other galaxies found at similar redshifts. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ˜ 6, are ongoing.
Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs
NASA Astrophysics Data System (ADS)
Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.
2018-01-01
In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.
Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory
NASA Astrophysics Data System (ADS)
Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin; Howell, D. Andrew; Vasylyev, Sergiy; Poznanski, Dovi; Zaltzman, Michael; Maoz, Dan; Singer, Leo; Valenti, Stefano; Kasen, Daniel; Barnes, Jennifer; Piran, Tsvi; Fong, Wen-fai
2017-10-01
We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ˜300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).
Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin
We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ∼300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely tomore » detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).« less
NASA Technical Reports Server (NTRS)
Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.;
2012-01-01
We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.
NASA Technical Reports Server (NTRS)
Dressler, Alan; Henry, Alaina L.; Martin, Crystal L.; Sawicki, Marcin; McCarthy, Patrick; Villaneuva, Edward
2014-01-01
We report the first direct and robust measurement of the faint-end slope of the Ly-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan- Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems are fainter than F = 2.0×10(exp-17) ergs s(exp-1) cm(exp-2), making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of alpha = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground) within the flux interval F = 2-20 × 10(exp-18) ergs s(exp-1) cm(exp-2) constrains the faint end slope of the luminosity function to -1.95 greater than alpha greater than -2.35 (1 delta). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z = 5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. We suggest that this bodes well for a comparable contribution by similar, low-mass star forming galaxies at higher-redshift - within the reionization epoch at z greater than approximately 7, only 250 Myr earlier - and that such systems provide a substantial, if not dominant, contribution to the late-stage reionization of the IGM.
The reliability of [C II] as an indicator of the star formation rate
NASA Astrophysics Data System (ADS)
De Looze, Ilse; Baes, Maarten; Bendo, George J.; Cortese, Luca; Fritz, Jacopo
2011-10-01
The [C II] 157.74 μm line is an important coolant for the neutral interstellar gas. Since [C II] is the brightest spectral line for most galaxies, it is a potentially powerful tracer of star formation activity. In this paper, we present a calibration of the star formation rate (SFR) as a function of the [C II] luminosity for a sample of 24 star-forming galaxies in the nearby Universe. This sample includes objects classified as H II regions or low-ionization nuclear emission-line regions, but omits all Seyfert galaxies with a significant contribution from the active galactic nucleus to the mid-infrared photometry. In order to calibrate the SFR against the line luminosity, we rely on both Galaxy Evolution Explorer far-ultraviolet data, which is an ideal tracer of the unobscured star formation, and MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. In the case of normal star-forming galaxies, the [C II] luminosity correlates well with the SFR. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultraluminous galaxies should be handled with caution, since these objects show a non-linearity in the ?-to-LFIR ratio as a function of LFIR (and thus, their star formation activity). We provide two possible explanations for the origin of the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. A first interpretation could be that the [C II] emission from photodissociation regions (PDRs) arises from the immediate surroundings of star-forming regions. Since PDRs are neutral regions of warm dense gas at the boundaries between H II regions and molecular clouds and they provide the bulk of [C II] emission in most galaxies, we believe that a more or less constant contribution from these outer layers of photon-dominated molecular clumps to the [C II] emission provides a straightforward explanation for this close link between the [C II] luminosity and SFR. Alternatively, we consider the possibility that the [C II] emission is associated with the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Quan; Libeskind, N. I.; Tempel, E., E-mail: qguo@aip.de
We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both themore » filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Guo, Quan; Tempel, E.; Libeskind, N. I.
2015-02-01
We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ~2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.
Gamma-Ray Bursts and Cosmology
NASA Technical Reports Server (NTRS)
Norris, Jay P.
2003-01-01
The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.
NASA Technical Reports Server (NTRS)
Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo
1995-01-01
We have conducted bivariate and multivariate statistical analysis of data measuring the luminosity and interstellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992). We find a strong nonlinear correlation between L(sub B) and L(sub X), with a power-law slope of 1.8 +/- 0.1, steepening to 2.0 +/- if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies with log L(sub X) less than or equal to 40.5, we instead find a slope of 1.0 +/- 0.2 (with or without the Local Group dwarfs). Although E and S0 galaxies have consistent slopes for their L(sub B)-L(sub X) relationships, the mean values of the distribution functions of both L(sub X) and L(sub X)/L(sub B) for the S0 galaxies are lower than those for the E galaxies at the 2.8 sigma and 3.5 sigma levels, respectively. We find clear evidence for a correlation between L(sub X) and the X-ray color C(sub 21), defined by Kim, Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below 1 keV in the sense that low-L(sub X) systems have relatively large contributions from a soft component compared with high-L(sub X) systems. We find evidence from our analysis of the 12 micron IRAS data for our sample that our S0 sample has excess 12 micron emission compared with the E sample, scaled by their optical luminosities. This may be due to emission from dust heated in star-forming regions in S0 disks. This interpretation is reinforced by the existence of a strong L(sub 12)-L(sub 100) correlation for our S0 sample that is not found for the E galaxies, and by an analysis of optical-IR colors. We find steep slopes for power-law relationships between radio luminosity and optical, X-ray, and far-IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as previously argued by, e.g., Walsh et al. (1989). We also find that, for a given L(sub 100), galaxies with larger L(sub X)/L(sub B) tend to be stronger nonthermal radio sources, as originally suggested by Kim & Fabbiano (1990). We note that, while L(sub B) is most strongly correlated with L(sub 6), the total radio luminosity, both L(sub X) and L(sub X)/L(sub B) are more strongly correlated with L(sub 6 CO), the core radio luminosity. These points support the argument (proposed by Fabbiano, Gioia, & Trinchieri 1989) that radio cores in early-type galaxies are fueled by the hot ISM.
NASA Astrophysics Data System (ADS)
Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/
Probing stellar mass build-up in galaxies at z=4-7 with CANDELS and S-CANDELS
NASA Astrophysics Data System (ADS)
Song, Mimi; Finkelstein, Steven L.; Ashby, Matthew; Merlin, Emiliano
2015-01-01
Over the last few years the advent of the Hubble Space Telescope (HST) Wide Field Camera 3 has enabled us to build statistically significant samples of galaxies out to z=8. We have subsequently witnessed remarkable progress in our understanding of galaxy evolution in the early universe. However, our understanding of the galaxy stellar mass growth in this era has been limited due to the lack of rest-frame optical data at a comparable depth as the HST data. Here we present results on the galaxy stellar mass function at z=4-7 from a sample of ~7500 galaxies over an area of ~280 square arcmin in the CANDELS GOODS-South and North fields, as well as the Hubble Ultra Deep Field. Utilizing deep IRAC data from the S-CANDELS and IUDF10 programs to robustly constrain the stellar masses of galaxies in our sample, we measure the stellar-mass to rest-frame ultraviolet (UV) luminosity trends in each of our redshift bins. We convolve these trends with recent measurements of the rest-frame ultraviolet luminosity function to derive the stellar mass functions. Contrary to initial studies at these redshifts, we find steeper low-mass-end slopes (-1.6 at z=4, and -2.0 at z=7), similar to recent simulations. Our results provide the most accurate estimates to date of the cosmic stellar mass density over the first two billion years after the Big Bang.
CO excitation in four IR luminous galaxies
NASA Technical Reports Server (NTRS)
Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis
1990-01-01
The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.
The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah
2004-01-01
One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index
Very Luminous X-ray Point Sources in Starburst Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.
Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.
NASA Technical Reports Server (NTRS)
Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas;
2014-01-01
On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.
Starbursts in blue compact dwarf galaxies
NASA Technical Reports Server (NTRS)
Thuan, Trinh Xuan
1987-01-01
All the arguments for a bursting mode of star formation in blue compact dwarf galaxies (BCD) are summarized. It is shown that spectral synthesis of far-ultraviolet spectra of BCDs constitutes a powerful way to study the star formation history in these galaxies. BCD luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, aiding in the counting and dating of the bursts.
The galaxy NGC 1566 - Distribution and kinematics of the ionized gas
NASA Astrophysics Data System (ADS)
Comte, G.; Duquennoy, A.
1982-10-01
H-alpha narrowband observations are the basis of a study of ionized hydrogen in the large spiral galaxy NGC 1566 which has yielded a catalog of 418 H II regions covering the main body of the galaxy, supplemented by 59 positions and estimated H-alpha luminosities for regions located in the pseudo-outer ring where no H-alpha plate is available. A discussion of luminosity function, diameter distribution and spiral structure notes evidence for a double two-armed spiral pattern. The plane of the galaxy appears warped, and the efficiency of the two different spiral patterns in star formation is different. A preliminary radial velocity field is determined from three interferograms in H-alpha light, and is found to be acceptably fitted by a simple bulge-plus-disk dynamical model in which the apparent disk mass-to-light ratio sharply increases from center to edge.
The Very Local Universe in X-Rays
NASA Technical Reports Server (NTRS)
Ptak, A.
2011-01-01
There are many open questions in X-ray observations of the Galactic neighborhood and nearby galaxies, such as the properties of the hot ISM and accreting sources, the X-ray/star-formation rate correlation and how the X-ray luminosity function of starburst galaxies. We discuss how these would be addressed by very wide-area (> 100 sq. deg.) X-ray surveys and upcoming X-ray missions. In particular planned NuStar observations of the Galaxy and nearby galaxies will be highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atek, Hakim; Kneib, Jean-Paul; Richard, Johan
2015-02-10
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we weremore » able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.« less
An Archival Search For Young Globular Clusters in Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1995-07-01
One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.
A deep view on the Virgo cluster core
NASA Astrophysics Data System (ADS)
Lieder, S.; Lisker, T.; Hilker, M.; Misgeld, I.; Durrell, P.
2012-02-01
Studies of dwarf spheroidal (dSph) galaxies with statistically significant sample sizes are still rare beyond the Local Group, since these low surface brightness objects can only be identified with deep imaging data. In galaxy clusters, where they constitute the dominant population in terms of number, they represent the faint end slope of the galaxy luminosity function and provide important insight on the interplay between galaxy mass and environment. In this study we investigate the optical photometric properties of early-type galaxies (dwarf ellipticals (dEs) and dSphs) in the Virgo cluster core region, by analysing their location on the colour magnitude relation (CMR) and the structural scaling relations down to faint magnitudes, and by constructing the luminosity function to compare it with theoretical expectations. Our work is based on deep CFHT V- and I-band data covering several square degrees of the Virgo cluster core that were obtained in 1999 using the CFH12K instrument. We visually select potential cluster members based on morphology and angular size, excluding spiral galaxies. A photometric analysis has been carried out for 295 galaxies, using surface brightness profile shape and colour as further criteria to identify probable background contaminants. 216 galaxies are considered to be certain or probable Virgo cluster members. Our study reveals 77 galaxies not catalogued in the VCC (with 13 of them already found in previous studies) that are very likely Virgo cluster members because they follow the Virgo CMR and exhibit low Sérsic indices. Those galaxies reach MV = -8.7 mag. The CMR shows a clear change in slope from dEs to dSphs, while the scatter of the CMR in the dSph regime does not increase significantly. Our sample might, however, be somewhat biased towards redder colours. The scaling relations given by the dEs appear to be continued by the dSphs indicating a similar origin. The observed change in the CMR slope may mark the point at which gas loss prevented significant metal enrichment. The almost constant scatter around the CMR possibly indicates a short formation period, resulting in similar stellar populations. The luminosity function shows a Schechter function's faint end slope of α = -1.50 ± 0.17, implying a lack of galaxies related to the expected number of low-mass dark matter haloes from theoretical models. Our findings could be explained by suppressed star formation in low-mass dark matter halos or by tidal disruption of dwarfs in the dense core region of the cluster. Tables 3 and 4 are available in electronic form at http://www.aanda.org
Luminosity segregation in galaxy clusters as an indication of dynamical evolution
NASA Technical Reports Server (NTRS)
Baier, F. W.; Schmidt, K.-H.
1993-01-01
Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.
NASA Technical Reports Server (NTRS)
Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.;
2013-01-01
We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.
HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
NASA Astrophysics Data System (ADS)
Gao, Yu; Solomon, Philip M.
2004-05-01
We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.
The Tully-Fisher relation of the IRAS minisurvey galaxies
NASA Technical Reports Server (NTRS)
Van Driel, W.; Van Den Broek, A. C.; Baan, W. A.
1995-01-01
We investigated the possible influence on the Tully-Fisher relation of active massive star formation in IRAS galaxies, in order to estimate the contribution of star formation to their near-infrared luminosity. We observed 60 galaxies from the infrared complete so-called IRAS Minisurvey sample in the 21 cm H1 line at Arecibo, determined the near-infrared (H-band) Tully-Fisher relation for the 36 objects in the sample we judged to be usable for this purpose, and compared this relation with that of optically selected normal galaxies. The results show no significant enhancement of the near-infrared luminosities of the IRAS Minisurvey galaxies compared to those of the optically selected normal glaxies. From these results we inferred that in the minisurvey galaxies the average contribution of the active massive star formation to the total near-infrared luminosity is less and that exponential decay times for the starbursts occurring in the Minisurvey galaxies are of the order of 10 Myr. The Tully-Fisher relation shows one exceptional galaxy (IRAS 03565+2139) with an about 25 times higher luminosity than average for its rotational velocity.
Luminosity function and cosmological evolution of X-ray selected quasars
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.
1983-01-01
The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.
Ground-based Submm/mm Follow-up Observations For Wise Selected Hyper-luminous Galaxies
NASA Astrophysics Data System (ADS)
Wu, Jingwen; Tsai, C.; Benford, D.; Bridge, C.; Eisenhardt, P.; Blain, A.; Sayers, J.; Petty, S.; WISE Team
2012-01-01
One of the major objectives of NASA's Wide-field Infrared Survey Explorer (WISE) mission is to search for the most luminous galaxies in the universe. The most productive method so far to select hyper luminous galaxies from WISE is to select targets that undetectable by WISE at 3.4 and 4.6 microns, while clearly detected at 12 and 22 microns, the so called W12 dropout galaxies. We have used the Caltech Submillimeter Observatory to follow-up these high-z (z=1.6-4.6) galaxies with SHARC-II at 350 to 850 microns, and BOLOCAM at 1.1 mm. Based on Spitzer 3.3 and 4.7 microns follow-ups, WISE W3, W4, and CSO observations, we constructed the SEDs and estimate the infrared luminosity and dust temperature for these W12 dropout galaxies. The inferred infrared luminosities are at least 10^13 to 10^14 solar luminosities, making them one of the most luminous population. The typical SEDs of these galaxies are flat from mid-IR to submillimeter, peaking at shorter wavelengths than other infrared luminous galaxies, indicating hotter dust temperature than known populations. Their SEDs can not be well fitted with existing templates, suggesting they may be a distinct new population. They may be extreme cases of Dust-Obsecured Galaxies (DOGs) with very high luminosities and dust temperature, and tracing a short transiting phase with booming luminosity at the peak epoch of AGN/starburst galaxy evolution.
Emission Line Properties of Seyfert Galaxies in the 12 μm Sample
NASA Astrophysics Data System (ADS)
Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian
2017-09-01
We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable measures of the total non-stellar luminosity, estimated from our extensive multi-wavelength database. The hard X-ray or near-ultraviolet continuum luminosity can be crudely predicted from either the [O III]λ5007 Å luminosity or the combinations of [O III]+Hβ or [N II]+Hα lines, with a scatter of +/- 4 times for Sy 1s and +/- 10 times for Sy 2s. Although these uncertainties are large, the latter two hybrid (NLR+BLR) indicators have the advantage of predicting the same HX luminosity independent of Seyfert type.
NASA Astrophysics Data System (ADS)
Matsuoka, Yoshiki; SHELLQs Collaboration
2017-01-01
Quasars at high redshift are an important and unique probe of the distant Universe, for understanding the origin and progress of cosmic reionization, the early growth of supermassive black holes, and the evolution of quasar host galaxies and their dark matter halos, among other topics. We are currently carrying out a new spectroscopic survey, called SHELLQs (Subaru High-z Exploration of Low-Luminosity Quasars), to search for low-luminosity quasars at z > 6. By exploiting the exquisite imaging data produced by the Subaru Hyper Suprime-Cam (HSC) survey, we aim to probe quasar luminosities down to M1450 ~ -22 mag, i.e., below the classical threshold between quasars and Seyfert galaxies. Candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm. A large spectroscopic observing program is underway, using Subaru/FOCAS, GTC/OSIRIS, and Gemini/GMOS; in particular, SHELLQs has been approved as a Subaru intensive program to use 20 nights in the coming four semesters. As of August 2016, we have discovered ~40 quasars and bright galaxies at z ~ 6 and beyond, from the first 100 deg2 of the HSC survey (Matsuoka et al. 2016, ApJ, 828, 26). Surprisingly, we are starting to see the steep rise of the luminosity function of high-z galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~ 24 mag. Multi-wavelength follow-up studies of the discovered objects as well as further survey observations are ongoing.
NASA Astrophysics Data System (ADS)
Secker, Jeffrey Alan
1995-01-01
We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1.41, consistent with known faint-end slopes for the Virgo and Fornax clusters. The early-type dwarf-to-giant ratio for the Coma cluster core is consistent with that of the Virgo cluster, and thus with the rich Coma cluster being formed as the merger of multiple less-rich galaxy clusters.
AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi
2014-10-20
We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction ofmore » buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.« less
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.
2017-07-01
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.
NASA Astrophysics Data System (ADS)
Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-12-01
We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.
The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars
NASA Astrophysics Data System (ADS)
Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.
2017-08-01
Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 based on SDSS, 2MASS, WISE and Herschel/SPIRE data. Through an accurate SED-fitting procedure, we separate the different emission components by deriving physical parameters of both the nuclear component (I.e. bolometric and monochromatic luminosities) and the host galaxy (I.e. star formation rate, mass, and temperature of the cold dust). We also use a radiative transfer code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be crucial to measure the molecular gas content in these systems, probe the effect between quasar-driven outflows and on-going star formation, and reveal merger signatures in their host galaxies.
Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal
NASA Astrophysics Data System (ADS)
Croston, J. H.; Ineson, J.; Hardcastle, M. J.
2018-05-01
Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.
The Survival of the Core Fundamental Plane against Galactic Mergers
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Richstone, Douglas
1999-05-01
The basic dimensional properties of the centers of elliptical galaxies, such as length scale, luminosity, and velocity dispersion, lie on a fundamental plane similar to that of elliptical galaxies as a whole. The orientation of this plane, and the distribution of core parameters within it, point to a strong correlation of core density with either core or total luminosity, and indicate that low-luminosity ellipticals are much denser than high-luminosity galaxies (Hubble Space Telescope data suggest that this relationship may be as steep as ρc~L-2). In addition, low-luminosity ellipticals have a much smaller length scale than their high-luminosity counterparts. Since we think that small galaxies are occasionally accreted by big ones, the high density of these galaxies and their likely durability against the time-varying tidal field of the bigger ones suggests that they will survive substantially intact in the cores of larger galaxies and would be easily visible. Their presence would destroy the observed correlation. Motivated by this apparent inconsistency between an observed fact and a simple physical argument, we have developed an effective simulation method and applied it to the problem of the accretion of very dense secondary companions by tenuous primaries. We have studied the accretion of objects of varying luminosity ratios, with sizes and densities drawn from the fundamental plane under the assumption that the mass distribution in the central parts of the galaxies follows the light. The results indicate that in mergers with mass ratios greater than 10, chosen with an appropriate central density dependence on luminosity, the smaller object is only stripped down to the highest density encountered in the primary during the accretion process. Thus, the form of the core fundamental plane suggests that the mass distribution in galaxy centers is different from the light distribution, or that an understanding of secondary survival requires more than the dynamics of visible stars.
Formation and evolution of dwarf elliptical galaxies. I. Structural and kinematical properties
NASA Astrophysics Data System (ADS)
de Rijcke, S.; Michielsen, D.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.
2005-08-01
This paper is the first in a series in which we present the results of an ESO Large Program on the kinematics and internal dynamics of dwarf elliptical galaxies (dEs). We obtained deep major and minor axis spectra of 15 dEs and broad-band imaging of 22 dEs. Here, we investigate the relations between the parameters that quantify the structure (B-band luminosity L_B, half-light radius R_e, and mean surface brightness within the half-light radius Ie = LB / 2 π R_e^2) and internal dynamics (velocity dispersion σ) of dEs. We confront predictions of the currently popular theories for dE formation and evolution with the observed position of dEs in log LB vs. log σ, log LB vs. log R_e, log LB vs. log I_e, and log Re vs. log Ie diagrams and in the (log σ,log R_e,log I_e) parameter space in which bright and intermediate-luminosity elliptical galaxies and bulges of spirals define a Fundamental Plane (FP). In order to achieve statistical significance and to cover a parameter interval that is large enough for reliable inferences to be made, we merge the data set presented in this paper with two other recently published, equally large data sets. We show that the dE sequences in the various univariate diagrams are disjunct from those traced by bright and intermediate-luminosity elliptical galaxies and bulges of spirals. It appears that semi-analytical models (SAMs) that incorporate quiescent star formation with an essentially z-independent star-formation efficiency, combined with post-merger starbursts and the dynamical response after supernova-driven gas-loss, are able to reproduce the position of the dEs in the various univariate diagrams. SAMs with star-formation efficiencies that rise as a function of redshift are excluded since they leave the observed sequences traced by dEs virtually unpopulated. dEs tend to lie above the FP and the FP residual declines as a function of luminosity. Again, models that take into account the response after supernova-driven mass-loss correctly predict the position of dEs in the (log σ,log R_e,log I_e) parameter space as well as the trend of the FP residual as a function of luminosity. While these findings are clearly a success for the hierarchical-merging picture of galaxy formation, they do not necessarily invalidate the alternative “harassment” scenario, which posits that dEs stem from perturbed and stripped late-type disk galaxies that entered clusters and groups of galaxies about 5 Gyr ago.
The AGN Luminosity Fraction in Galaxy Mergers
NASA Astrophysics Data System (ADS)
Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan
2017-01-01
Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Morphology and luminosity segregation of galaxies in nearby loose groups
NASA Astrophysics Data System (ADS)
Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.
2003-08-01
We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.
NASA Astrophysics Data System (ADS)
Stark, Daniel P.; Ellis, Richard S.; Bunker, Andrew; Bundy, Kevin; Targett, Tom; Benson, Andrew; Lacy, Mark
2009-06-01
We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z sime 4 and z sime 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ≈ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z gsim 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z sime 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 lsim z lsim 6. Given this rapid increase of UV luminous massive galaxies, we explore the possibility that a significant fraction of massive (1011 M sun) z sime 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 lsim z lsim 6 down to z sime 2, we find that z gsim 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z sime 2.
On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3
NASA Technical Reports Server (NTRS)
LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan
2013-01-01
Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Mackenzie L.; Hickox, Ryan C.; DiPompeo, Michael A.
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to starmore » formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.« less
Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3*
NASA Technical Reports Server (NTRS)
Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Francoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne;
2017-01-01
We observed the [C II] line in 15 lensed galaxies at redshifts 1 less than z less than 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3sigma or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 10(exp 7) solar luminosity to 3.7 × 10(exp 9) solar luminosity (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.
NASA Technical Reports Server (NTRS)
Gruppioni, Carlotta; Pozzi, F.; Rodighiero, G.; Delvecchio, I.; Berta, S.; Pozzetti, L.; Zamorani, G.; Andreani, P.; Cimatti, A.; Ilbert, O.;
2013-01-01
We exploit the deep and extended far-IR data sets (at 70, 100 and 160 µm) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 µm, to derive the evolution of the rest-frame 35-, 60-, 90- and total infrared (IR) luminosity functions (LFs) up to z 4.We detect very strong luminosity evolution for the total IR LF (LIR ? (1 + z)(sup 3.55 +/- 0.10) up to z 2, and ? (1 + z)(sup 1.62 +/- 0.51) at 2 less than z less than approximately 4) combined with a density evolution (? (1 + z)(sup -0.57 +/- 0.22) up to z 1 and ? (1 + z)(sup -3.92 +/- 0.34) at 1 less than z less than approximately 4). In agreement with previous findings, the IR luminosity density (?IR) increases steeply to z 1, then flattens between z 1 and z 3 to decrease at z greater than approximately 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to ?IR. Galaxies occupying the well-established SFR-stellar mass main sequence (MS) are found to dominate both the total IR LF and ?IR at all redshifts, with the contribution from off-MS sources (=0.6 dex above MS) being nearly constant (20 per cent of the total ?IR) and showing no significant signs of increase with increasing z over the whole 0.8 < z <2.2 range. Sources with mass in the range 10 = log(M/solar mass) = 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (greater than approximately 2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-09-01
We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.
2009-08-10
We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less
The Abundance of Low-Luminosity Lyα Emitters at High Redshift
NASA Astrophysics Data System (ADS)
Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad
2004-05-01
We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5
Novae in External Galaxies: M51, M87, and M101
NASA Astrophysics Data System (ADS)
Shafter, A. W.; Ciardullo, R.; Pritchet, C. J.
2000-02-01
As part of a program to determine the stellar population of novae, we have conducted a multiepoch Hα survey of the galaxies M51, M87, and M101. A total of nine and 12 novae were detected in the spiral galaxies M51 and M101, respectively, during four epochs of observation, and two epochs of observation yielded a total of nine novae in the giant elliptical galaxy M87. After correcting for the effective survey time and for the fraction of luminosity sampled, we find global nova rates of 18+/-7, 91+/-34, and 12+/-4 novae per year for M51, M87, and M101, respectively. After normalizing to the total K-band luminosity of each galaxy, we estimate luminosity-specific nova rates for M51, M87, and M101 of 1.09+/-0.47, 2.30+/-0.99, and 0.97+/-0.38 novae per year per 1010 solar luminosities in K. When we compare these data with measured values for the luminosity-specific nova rates of other galaxies, we find no compelling evidence for a significant variation with Hubble type. Possible ramifications of this result are discussed within the context of current theoretical models for nova production in galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonato, Matteo; Sajina, Anna; McKinney, Jed
The James Webb Space Telescope ’s Medium Resolution Spectrometer (MRS), will offer nearly two orders of magnitude improvement in sensitivity and >3× improvement in spectral resolution over our previous space-based mid-IR spectrometer, the Spitzer IRS. In this paper, we make predictions for spectroscopic pointed observations and serendipitous detections with the MRS. Specifically, pointed observations of Herschel sources require only a few minutes on source integration for detections of several star-forming and active galactic nucleus lines, out to z = 3 and beyond. But the same data will also include tens of serendipitous 0 ≲ z ≲ 4 galaxies per fieldmore » with infrared luminosities ranging ∼10{sup 6}–10{sup 13} L {sub ☉}. In particular, for the first time and for free we will be able to explore the L {sub IR} < 10{sup 9} L {sub ☉} regime out to z ∼ 3. We estimate that with ∼ 100 such fields, statistics of these detections will be sufficient to constrain the evolution of the low- L end of the infrared luminosity function, and hence the star formation rate function. The above conclusions hold for a wide range in the potential low- L end of the IR luminosity function, and account for the PAH deficit in low- L , low-metallicity galaxies.« less
Masses, luminosities and dynamics of galactic molecular clouds
NASA Technical Reports Server (NTRS)
Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.
1987-01-01
Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.
Radio properties of type 1.8 and 1.9 Seyfert galaxies
NASA Technical Reports Server (NTRS)
Ulvestad, James S.
1986-01-01
A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle.
Does the IMF vary with galaxy mass? The X-ray binary population of a key galaxy, NGC7457
NASA Astrophysics Data System (ADS)
Peacock, Mark
2014-09-01
We propose a 100ksec observation of NGC7457. The primary goal of this observation is to test for variations in the initial mass function (IMF). Many recent studies have proposed that the IMF varies systematically as a function of early-type galaxy mass. This has potentially dramatic consequences and must to be confirmed. The number of LMXBs in a galaxy (per stellar luminosity) can be used to provide an independent test of this hypothesis (see Peacock et al. 2014). Unfortunately, only galaxies with intermediate to high masses currently have the data needed to perform this test. The proposed observation of the elliptical galaxy NGC7457 will detect an order of magnitude more LMXBs in a low mass galaxy - hence providing the crucial constraint needed to significantly test for a variable IMF.
The X-ray emitting gas in poor clusters with central dominant galaxies
NASA Technical Reports Server (NTRS)
Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.
1983-01-01
The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.
Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.
2016-01-01
We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.
Multi-wavelength seds of Herschel-selected galaxies in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.
2013-12-01
We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties ofmore » our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from AGN heating.« less
Simulations of dust in interacting galaxies
NASA Astrophysics Data System (ADS)
Jonsson, Patrik
This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.
Far-infrared properties of cluster galaxies
NASA Technical Reports Server (NTRS)
Bicay, M. D.; Giovanelli, R.
1987-01-01
Far-infrared properties are derived for a sample of over 200 galaxies in seven clusters: A262, Cancer, A1367, A1656 (Coma), A2147, A2151 (Hercules), and Pegasus. The IR-selected sample consists almost entirely of IR normal galaxies, with Log of L(FIR) = 9.79 solar luminosities, Log of L(FIR)/L(B) = 0,79, and Log of S(100 microns)/S(60 microns) = 0.42. None of the sample galaxies has Log of L(FIR) greater than 11.0 solar luminosities, and only one has a FIR-to-blue luminosity ratio greater than 10. No significant differences are found in the FIR properties of HI-deficient and HI-normal cluster galaxies.
Studies of the evolution of the x ray emission of clusters of galaxies
NASA Technical Reports Server (NTRS)
Henry, J. Patrick
1990-01-01
The x ray luminosity function of clusters of galaxies was determined at different cosmic epoches using data from the Einstein Observatory Extended Medium Survey. The sample consisted of 67 x ray selected clusters that were grouped into three redshift shells. Evolution was detected in the x ray properties of clusters. The present volume density of high luminosity clusters was found to be greater than it was in the past. This result is the first convincing evidence for evolution in the x ray properties of clusters. Investigations into the constraints provided by these data on various Cold Dark Matter models are underway.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars
2011-12-01
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.
NASA Astrophysics Data System (ADS)
Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.
2017-07-01
The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.
ROSAT observations of Coma Cluster galaxies
NASA Technical Reports Server (NTRS)
Dow, K. L.; White, S. D. M.
1995-01-01
The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.
Radio Identification of Millimeter-Bright Galaxies Detected in the AzTEC/ASTE Blank Field Survey
NASA Astrophysics Data System (ADS)
Hatsukade, Bunyo; Kohno, Kotaro; White, Glenn; Matsuura, Shuji; Hanami, Hitoshi; Shirahata, Mai; Nakanishi, Kouichiro; Hughes, David; Tamura, Yoichi; Iono, Daisuke; Wilson, Grant; Yun, Min
2008-10-01
We propose a deep 1.4-GHz imaging of millimeter-bright sources in the AzTEC/ASTE 1.1-mm blank field survey of AKARI Deep Field-South. The AzTEC/ASTE uncovered 37 sources, which are possibly at z > 2. We have obtained multi-wavelength data in this field, but the large beam size of AzTEC/ASTE (30 arcsec) prevents us from identifying counterparts. The aim of this proposal is to identify radio counterparts with higher-angular resolution. This enables us (i) To identifying optical/IR counterparts. It enables optical spectroscopy to determine precise redshifts, allowing us to derive SFRs, luminosity functions, clustering properties, mass of dark matter halos, etc. (ii) To constrain luminosity evolutions of SMGs by comparing of 1.4-GHz number counts (and luminosity functions) with luminosity evolution models. (iii) To estimate photometric redshifts from 1.4-GHz and 1.1-mm data using the radio-FIR flux correlation. In case of non-detection, we can put deep lower limits (3 sigma limit of z > 3). These information lead to the study of evolutionary history of SMGs, their relationship with other galaxy populations, contribution to the cosmic star formation history and the infrared background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie, E-mail: drw@ucsc.edu
We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, aremore » well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.« less
NASA Astrophysics Data System (ADS)
Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.
2018-05-01
We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.
Spitzer Observations of GRB Hosts: A Legacy Approach
NASA Astrophysics Data System (ADS)
Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew
2012-09-01
The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).
A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy
NASA Astrophysics Data System (ADS)
Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven
2017-08-01
X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.
Spin properties of supermassive black holes with powerful outflows
NASA Astrophysics Data System (ADS)
Daly, Ruth. A.
2016-05-01
Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.
Young star clusters in the interacting galaxies of Hickson Compact Group 90
NASA Astrophysics Data System (ADS)
Miah, J. A.; Sharples, R. M.; Cho, J.
2015-03-01
Deep images of Hickson Compact Group 90 (HCG 90) have been obtained using the Advanced Camera for Surveys on the Hubble Space Telescope. We report results for star clusters observed in the interacting pair of galaxies NGC 7174 and NGC 7176. We present magnitude and colour distributions for the observed cluster population and find that the majority of objects show colours similar to intermediate/old age (>1 Gyr) globular clusters. However, a significant population of blue star clusters are also observed which may have formed from the tidal interaction currently occurring between the two galaxies. We find luminosity function turnover magnitudes of m^{TO}g = 25.1 ± 0.1 and m^{TO}z = 24.3 ± 0.1 for the g and z bands, respectively, implying distances of Dg = 28.8 ± 2.6 Mpc and Dz = 34.7 ± 3.1 Mpc to these galaxies, using the globular cluster luminosity function method. Lastly, we determine a total cluster population of approximately NGC ≃ 212 ± 10 over all magnitudes and a low specific frequency of SN ˜ 0.6 ± 0.1 for this pair of interacting elliptical and spiral galaxies. The small globular cluster population is likely due to tidal interactions taking place between the two galaxies which may have stripped many progenitor clusters away and formed the diffuse light observed at the core of HCG 90.
NASA Astrophysics Data System (ADS)
Trentham, Neil; Tully, R. Brent; Verheijen, Marc A. W.
2001-07-01
Results are presented of a deep optical survey of the Ursa Major cluster, a spiral-rich cluster of galaxies at a distance of 18.6Mpc which contains about 30 per cent of the light but only 5 per cent of the mass of the nearby Virgo cluster. Fields around known cluster members and a pattern of blind fields along the major and minor axes of the cluster were studied with mosaic CCD cameras on the Canada-France-Hawaii Telescope. The dynamical crossing time for the Ursa Major cluster is only slightly less than a Hubble time. Most galaxies in the local Universe exist in similar moderate-density environments. The Ursa Major cluster is therefore a good place to study the statistical properties of dwarf galaxies, since this structure is at an evolutionary stage representative of typical environments, yet has enough galaxies that reasonable counting statistics can be accumulated. The main observational results of our survey are as follows. (i) The galaxy luminosity function is flat, with a logarithmic slope α=-1.1 for -17
X-ray Emission from Early Universe Analog Galaxies
NASA Astrophysics Data System (ADS)
Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua
2016-01-01
Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected value from near-solar metallicity galaxies.By incorporating our results into simulations used to predict the redshifted 21cm signal from the early Universe, unique and observable predictions could be made for future 21cm observations.
Galaxy pairs in the Sloan Digital Sky Survey - VII. The merger-luminous infrared galaxy connection
NASA Astrophysics Data System (ADS)
Ellison, Sara L.; Mendel, J. Trevor; Scudder, Jillian M.; Patton, David R.; Palmer, Michael J. D.
2013-04-01
We use a sample of 9397 low-redshift (z ≤ 0.1) galaxies with a close companion to investigate the connection between mergers and luminous infrared (IR) galaxies (LIRGs). The pairs are selected from the Sloan Digital Sky Survey (SDSS) and have projected separations rp ≤ 80 h{^{- 1}_{70}} kpc, relative velocities ΔV ≤ 300 km s-1 and stellar mass ratios within a factor of 1:10. A control sample consisting of four galaxies per pair galaxy is constructed by simultaneously matching in stellar mass, redshift and environment to galaxies with no close companion. The IR luminosities (LIR) of galaxies in the pair and control samples are determined from the SDSS - Infrared Astronomical Satellite (IRAS) matched catalogue of Hwang et al. Over the redshift range of our pairs sample, the IRAS matches are complete to LIRG luminosities (LIR ≥ 1011 L⊙), allowing us to investigate the connection between mergers and luminous IR galaxies. We find a trend for increasing LIRG fraction towards smaller pair separations, peaking at a factor of ˜5-10 above the median control fraction at the smallest separations (rp < 20 h{^{- 1}_{70}} kpc), but remaining elevated by a factor ˜2-3 even out to 80 h{^{- 1}_{70}} kpc (the widest separations in our sample). LIRG pairs predominantly have high star formation rates (SFRs), high extinction and are found in relatively low-density environments, relative to the full pairs sample. We also find that LIRGs are most likely to be found in high-mass galaxies which have an approximately equal-mass companion. We confirm the results of previous studies that both the active galactic nucleus (AGN) fraction and merger fraction increase strongly as a function of IR luminosity. About 7 per cent of LIRGs are associated with major mergers, as defined within the criteria and mass completion of our sample. Finally, we quantify an SFR offset (ΔSFR) as the enhancement (or decrement) relative to star-forming galaxies of the same mass and redshift. We demonstrate that there is a clear connection between the ΔSFR and the classification of a galaxy as a LIRG that is mass dependent. Most of the LIRGs in our merger sample are relatively high-mass galaxies (log (M⋆/M⊙) > 10.5), likely because the SFR enhancement required to produce LIRG luminosities is more modest than at low masses. The ΔSFR offers a redshift-independent metric for the identification of the galaxies with the most enhanced star-forming rates that does not rely on fixed LIR boundaries.
A Faint Flux-limited Lyα Emitter Sample at z ˜ 0.3
NASA Astrophysics Data System (ADS)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.; Cowie, Lennox L.; Rosenwasser, Benjamin
2017-10-01
We present a flux-limited sample of z ˜ 0.3 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX z ˜ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Lyα emission line directly from our sample. We examine the evolution of these quantities from z ˜ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Lyα luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Lyα luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the Hα luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Lyα escape fraction. Finally, we show that the observed Lyα luminosity density from AGNs is comparable to the observed Lyα luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Lyα luminosity density persists out to z ˜ 2.2. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
A Database of Young Star Clusters for Five Hundred Galaxies
NASA Astrophysics Data System (ADS)
Evans, Jessica; Whitmore, B. C.; Lindsay, K.; Chandar, R.; Larsen, S.
2009-01-01
The study of young massive stellar clusters has faced a series of observational challenges, such as the use of inconsistent data sets and low number statistics. To rectify these shortcomings, this project will use the source lists developed as part of the Hubble Legacy Archive to obtain a large, uniform database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1) To what degree is the cluster luminosity (and mass) function of star clusters universal? 2) What fraction of super star clusters are "missing" in optical studies (i.e., are hidden by dust)? The archive's recent data release (Data Release 2 - September, 2008) will help us achieve the large sample necessary (N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W). The uniform data set will comprise of ACS, WFPC2, and NICMOS data, with DAOphot used for object detection. This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years, and will be used to test the Whitmore, Chandar, Fall (2007) framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's. The poster will describe our preliminary investigation for the first 30 galaxies in the sample.
NASA Astrophysics Data System (ADS)
Khaire, Vikram; Srianand, Raghunathan
2016-01-01
In the standard picture, the only sources of cosmic UV background are the quasars and the star forming galaxies. The hydrogen ionizing emissivity from galaxies depends on a parameter known as escape fraction (fesc). It is the ratio of the escaping hydrogen ionizing photons from galaxies to the total produced by their stellar population. Using available multi-wavelength and multi-epoch galaxy luminosity function measurements, we update the galaxy emissivity by estimating a self-consistent combination of the star formation rate density and dust attenuation. Using the recent quasar luminosity function measurements, we present an updated hydrogen ionizing emissivity from quasars which shows a factor of ~2 increase as compared to the previous estimates at z<2. We use these in a cosmological radiative transfer code developed by us to generate the UV background and show that the recently inferred high values of hydrogen photoionization rates at low redshifts can be easily obtained with reasonable values of fesc. This resolves the problem of 'photon underproduction crisis' and shows that there is no need to invoke non-standard sources of the UV background such as decaying dark matter particles. We will present the implications of this updated quasar and galaxy emissivity on the values of fesc at high redshifts and on the cosmic reionization. We will also present the effect of the updated UV background on the inferred properties of the intergalactic medium, especially on the Lyman alpha forest and the metal line absorption systems.
On the faint-end of the high-z galaxy luminosity function
NASA Astrophysics Data System (ADS)
Yue, Bin; Ferrara, Andrea; Xu, Yidong
2016-12-01
Recent measurements of the luminosity function (LF) of galaxies in the Epoch of Reionization (EoR, z ≳ 6) indicate a very steep increase of the number density of low-mass galaxies populating the LF faint-end. However, as star formation in low-mass haloes can be easily depressed or even quenched by ionizing radiation, a turnover is expected at some faint UV magnitudes. Using a physically motivated analytical model, we quantify reionization feedback effects on the LF faint-end shape. We find that if reionization feedback is neglected, the power-law Schechter parametrization characterizing the LF faint-end remains valid up to absolute UV magnitude ˜-9. If instead radiative feedback is strong enough that quenches star formation in haloes with circular velocity smaller than 50 km s-1, the LF starts to drop at absolute UV magnitude ˜-15, I.e. slightly below the detection limits of current (unlensed) surveys at z ˜ 5. The LFs may rise again at higher absolute UV magnitude, where, as a result of interplay between reionization process and galaxy formation, most of the galaxy light is from relic stars formed before the EoR. We suggest that the galaxy number counts data, particularly in lensed fields, can put strong constraints on reionization feedback. In models with stronger reionization feedback, stars in galaxies with absolute UV magnitude higher than ˜-13 and smaller than ˜-8 are typically older. Hence, the stellar age-UV magnitude relation can be used as an alternative feedback probe.
X-ray binary formation in low-metallicity blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Prestwich, A.
2014-07-01
X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.
Alignment of galaxies relative to their local environment in SDSS-DR8
NASA Astrophysics Data System (ADS)
Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.
2017-03-01
Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.
THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT z > 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Bau-Ching; Wang, Wei-Hao; Lin, Lihwai
2012-04-10
The primary goal of the Taiwan ECDFS Near-Infrared Survey (TENIS) is to find well-screened galaxy candidates at z > 7 (z' dropout) in the Extended Chandra Deep Field-South (ECDFS). To this end, TENIS provides relatively deep J and K{sub s} data ({approx}25.3 ABmag, 5{sigma}) for an area of 0.5 Multiplication-Sign 0.5 deg. Leveraged with existing data at mid-infrared to optical wavelengths, this allows us to screen for the most luminous high-z objects, which are rare and thus require a survey over a large field to be found. We introduce new color selection criteria to select a z > 7 samplemore » with minimal contaminations from low-z galaxies and Galactic cool stars; to reduce confusion in the relatively low angular resolution Infrared Array Camera (IRAC) images, we introduce a novel deconvolution method to measure the IRAC fluxes of individual sources. Illustrating perhaps the effectiveness at which we screen out interlopers, we find only one z > 7 candidate, TENIS-ZD1. The candidate has a weighted z{sub phot} of 7.8, and its colors and luminosity indicate a young (45M years old) starburst galaxy with a stellar mass of 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }. The result matches with the observational luminosity function analysis and the semianalytic simulation result based on the Millennium Simulations, which may over predict the volume density for high-z massive galaxies. The existence of TENIS-ZD1, if confirmed spectroscopically to be at z > 7, therefore poses a challenge to current theoretical models for how so much mass can accumulate in a galaxy at such a high redshift.« less
First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321
NASA Technical Reports Server (NTRS)
Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.
1994-01-01
As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.
The environment of young massive clusters
NASA Astrophysics Data System (ADS)
Vanzi, L.; Sauvage, M.
2006-06-01
We observed a sample of Blue Dwarf Galaxies in the Ks (2.2 μm) and Lα (3.7 μm) IR bands at the ESO VLT with ISAAC. The purpose of the observations was to study the population of young massive clusters and the conditions under which they are formed. The sample galaxies included: Tol 1924-416, Tol 35, Pox 36, UM 462, He 2-10, II Zw 40, Tol 3, NGC 1705, NGC 5408, IC 4662, NGC 5253. They were selected to have evidence for star formation and firm detection by IRAS. All galaxies observed turned to be very rich of young massive clusters in Ks. Only few clusters, about 8%, showed counterparts in Lα. Most L' sources can be associated to radio thermal sources, with the only exception of the NGC 1705's one. For two galaxies, NGC 5408 and IC 4662, we derived the cluster luminosity functions finding them consistent with a power law of index about -2. We compared the numbers and luminosities of the clusters with the star formation rate of the host galaxy and could not find any evidence of a relation.
Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South
NASA Technical Reports Server (NTRS)
Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.;
2012-01-01
The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.
NASA Technical Reports Server (NTRS)
Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.
1985-01-01
X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.
Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran
2014-03-01
We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.
OH megamasers in high-luminosity IRAS galaxies
NASA Technical Reports Server (NTRS)
Mirabel, I. F.; Sanders, D. B.
1987-01-01
OH megamaser emission and H I and CO profiles from the distant infrared galaxies IRAS 10173 + 0828, III Zw 035, and Zw 475.056 are reported. The OH isotropic luminosities at 1667 MHz are 463, 534, and 6.6 solar luminosities, respectively. Far-infrared pumping efficiencies of the OH greater than 1 percent are found in IRAS 10173 + 0828 and III Zw 035. These two galaxies show anomalously large 1667/1665 MHz emission line ratios. OH megamasers reside in the nuclei of superluminous far-infrared galaxies that have a high content of molecular gas, high efficiency of star formation, and in some instances, a striking deficiency of atomic hydrogen.
Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu
2015-10-01
We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.
X-ray Point Source Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.
2002-01-01
The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.
Challenges in Finding AGNs in the Low Luminosity Regime
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara
2016-08-01
Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.
Differential evolution of the UV luminosity function of Lyman break galaxies from z ~ 5 to 3
NASA Astrophysics Data System (ADS)
Iwata, I.; Ohta, K.; Tamura, N.; Akiyama, M.; Aoki, K.; Ando, M.; Kiuchi, G.; Sawicki, M.
2007-04-01
We report the ultraviolet luminosity function (UVLF) of Lyman break galaxies at z ~ 5 derived from a deep and wide survey using the prime focus camera of the 8.2 m Subaru telescope (Suprime-Cam). Target fields consist of two blank regions of the sky, namely, the region including the Hubble Deep Field-North and the J0053+1234 region, and the total effective surveyed area is 1290 arcmin2. Applications of carefully determined colour selection criteria in V - Ic and Ic - z' yield a detection of 853 z ~ 5 candidates with z'AB < 26.5 mag. The UVLF at z ~ 5 based on this sample shows no significant change in the number density of bright (L >~ L*z=3) LBGs from that at z ~ 3, while there is a significant decline in the LF's faint end with increasing look-back time. This result means that the evolution of the number densities is differential with UV luminosity: the number density of UV luminous objects remains almost constant from z ~ 5 to 3 (the cosmic age is about 1.2 to 2.1 Gyr) while the number density of fainter objects gradually increases with cosmic time. This trend becomes apparent thanks to the small uncertainties in number densities both in the bright and faint parts of LFs at different epochs that are made possible by the deep and wide surveys we use. We discuss the origins of this differential evolution of the UVLF along the cosmic time and suggest that our observational findings are consistent with the biased galaxy evolution scenario: a galaxy population hosted by massive dark haloes starts active star formation preferentially at early cosmic time, while less massive galaxies increase their number density later. We also calculated the UV luminosity density by integrating the UVLF and at z ~ 5 found it to be 38.8+6.7-4.1 per cent of that at z ~ 3 for the luminosity range L > 0.1L*z=3. By combining our results with those from the literature, we find that the cosmic UV luminosity density marks its peak at and then slowly declines towards higher redshift. Based on data collected at Subaru Telescope and partly obtained from the SMOKA science archive at Astronomical Data Analysis Center, which are operated by the National Astronomical Observatory of Japan. E-mail: iwata@oao.nao.ac.jp (II)
VizieR Online Data Catalog: RX J105453.3+552102 cluster SDSS photometry (Aguerri+, 2011)
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Girardi, M.; Boschin, W.; Barrena, R.; Mendez-Abreu, J.; Sanchez-Janssen, R.; Borgani, S.; Castro-Rodriguez, N.; Corsini, E. M.; Del Burgo, C.; D'Onghia, E.; Iglesias-Paramo, J.; Napolitano, N.; Vilchez, J. M.
2011-08-01
Optical imaging of RX J105453.3+552102 was carried out at the 2.5m NOT telescope in March 2008. Optical deep images were used for studying the properties of the brightest group galaxy and for computing the photometric luminosity function of the group. We have also performed a detail dynamical analysis of the system based on redshift data for 116 galaxies. Combining galaxy velocities and positions we selected 78 group members. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toba, Y.; Matsuhara, H.; Oyabu, S.
2014-06-10
In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Followingmore » that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.« less
Determining Black Hole Mass of AGN using FWHM of H-beta Emission Line and Luminosity Relations
NASA Astrophysics Data System (ADS)
Cameron, Thomas Jacob; Burris, Debra L.
2017-01-01
At the center of some active galaxies are super-massive black holes and for some time the accepted method of measuring the mass of such galaxies has been the method used by Vestergaard and Peterson, among others. By using the luminosity function which is related to H-β emission spectra from these black holes, both for cosmic redshift and for Fe-II emissions using IRAF. From there, H-β can accurately measure the full width half max of the H-beta line in these spectrum as well as the luminosity and these paired with the O-III lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values obtained from the Mass-Pitch Angle relation being proposed by Kennefick et al. (2016 in preparation)
The Luminosity Function of the Host Galaxies of QSOs and BL Lac Objects
NASA Astrophysics Data System (ADS)
Carangelo, Nicoletta; Falomo, Renato; Treves, Aldo
A clear insight of the galaxies hosting active galactic nuclei is of fundamental importance for understanding the processes of galaxies and nuclei formation and their cosmic evolution. A good characterization of the host galaxies properties requires images of excellent quality in order to disentangle the light of the galaxy from that of the bright nucleus. To this aim HST has provided a major improvement of data on QSOs (Disney et al. 1995; Bahcall et al. 1996,1997; Boyce et al. 1998; McLure et al. 1999; Hamilton et al. 2000; Kukula et al. 2001) and BL Lacs (Scarpa et al. 2000, Urry et al. 2000).
NASA Astrophysics Data System (ADS)
Ono, Yoshiaki; Ouchi, Masami; Harikane, Yuichi; Toshikawa, Jun; Rauch, Michael; Yuma, Suraphong; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Oguri, Masamune; Willott, Chris; Akhlaghi, Mohammad; Akiyama, Masayuki; Coupon, Jean; Kashikawa, Nobunari; Komiyama, Yutaka; Konno, Akira; Lin, Lihwai; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nakajima, Kimihiko; Silverman, John; Tanaka, Masayuki; Taniguchi, Yoshiaki; Wang, Shiang-Yu
2018-01-01
We study the UV luminosity functions (LFs) at z ˜ 4, 5, 6, and 7 based on the deep large-area optical images taken by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). On the 100 deg2 sky of the HSC SSP data available to date, we take enormous samples consisting of a total of 579565 dropout candidates at z ˜ 4-7 by the standard color selection technique, 358 out of which are spectroscopically confirmed by our follow-up spectroscopy and other studies. We obtain UV LFs at z ˜ 4-7 that span a very wide UV luminosity range of ˜0.002-100 L_UV^\\ast (-26 < MUV < -14 mag) by combining LFs from our program and the ultra-deep Hubble Space Telescope legacy surveys. We derive three parameters of the best-fit Schechter function, ϕ*, M_UV^{ \\ast}, and α, of the UV LFs in the magnitude range where the active galactic nucleus (AGN) contribution is negligible, and find that α and ϕ* decrease from z ˜ 4 to 7 with no significant evolution of M_UV^{ \\ast}. Because our HSC SSP data bridge the LFs of galaxies and AGNs with great statistical accuracy, we carefully investigate the bright end of the galaxy UV LFs that are estimated by the subtraction of the AGN contribution either aided by spectroscopy or the best-fit AGN UV LFs. We find that the bright end of the galaxy UV LFs cannot be explained by the Schechter function fits at >2 σ significance, and require either double power-law functions or modified Schechter functions that consider a magnification bias due to gravitational lensing.
The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity
NASA Technical Reports Server (NTRS)
Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu
1994-01-01
We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.
NASA Astrophysics Data System (ADS)
Trenti, Michele
2017-08-01
Hubble's WFC3 has been a game changer for the study of early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources to redshift z 11, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Unexpectedly but excitingly, the recent spectroscopic confirmations of L>L* galaxies at z>8.5 demonstrate that objects brighter than our own Galaxy are already present 500 Myr after the Big Bang, creating a challenge to current theoretical/numerical models that struggle to explain how galaxies can grow so luminous so quickly. Yet, the existing HST observations do not cover sufficient area, nor sample a large enough diversity of environments to provide an unbiased sample of sources, especially at z 9-11 where only a handful of bright candidates are known. To double this currently insufficient sample size, to constrain effectively the bright-end of the galaxy luminosity function at z 9-10, and to provide targets for follow-up imaging and spectroscopy with JWST, we propose a large-area pure-parallel survey that will discover the Brightest of Reionizing Galaxies (BoRG[4JWST]). We will observe 580 arcmin^2 over 125 sightlines in five WFC3 bands (0.35 to 1.7 micron) using high-quality pure-parallel opportunities available in the cycle (3 orbits or longer). These public observations will identify more than 80 intrinsically bright galaxies at z 8-11, investigate the connection between halo mass, star formation and feedback in progenitors of groups and clusters, and build HST lasting legacy of large-area, near-IR imaging.
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
Near-infrared imaging of CfA Seyfert galaxies
NASA Astrophysics Data System (ADS)
McLeod, K. K.; Rieke, G. H.
1995-03-01
We present near-IR images of 43 Seyfert galaxies from the CfA Seyfert sample. The near-IR luminosity is a good tracer of luminous mass in these galaxies. Most of the Seyfert nuclei are found in hosts of mass similar to that of L* galaxies and ranging in type from S0 to Sc. In addition, there is a population of low-mass host galaxies with very low luminosity Seyfert nuclei. We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large-scale distribution of luminous mass in the galaxy. The Seyfert hosts are compared with a sample of 50 low-redshift quasar host galaxies we have also imaged. The radio-quiet quasars and the Seyfert nuclei lie in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. The low-luminosity quasars and the Seyfert nuclei both tend to lie in host galaxies seen preferentially face-on, which suggests that there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ratio approximately 1) and must cover a significant fraction of the narrow-line region (r greater than 100 pc).
Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0
NASA Astrophysics Data System (ADS)
Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.
1999-02-01
We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.
Multiwavelength Study of Active Galaxies
NASA Astrophysics Data System (ADS)
Singh, Veeresh
2010-08-01
Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the framework of the unification scheme. In other words, it is ensured that the two subtypes being compared are not selected from entirely different parts of the evolution function (redshift, luminosity, bulge magnitude, stellar luminosity of the host galaxy and Hubble type of the host galaxy). To study the X-ray spectral properties of two Seyfert subtypes I use the XMM-Newton pn data. The 0.5 - 10 keV X-ray spectra of Seyfert galaxies are generally best fitted with a model consists of: an absorbed power law with exponential cut-off which contains cold absorption from the Galactic hydrogen column density together with absorption from neutral gas at the redshift of the source; a narrow Gaussian line fitted to the Fe K_alpha line at 6.4 keV; a soft excess component characterized by either a steep power law and/or a thermal plasma model with temperature kT and in some cases, reflection component characterized by the reflection from an isotropically illuminated cold slab, (model `pexrav' in XSPEC) is required. Partial covering of the primary AGN power law component is also required for the best fit in some sources. There are several type 2 sources in our sample in which the hard (2.0 - 10.0 keV) part of the X-ray spectrum is best fitted with a reflection component alone (`pexrav' model). The statistical comparisons of the X-ray spectral properties show that in compared to Seyfert type 1s, the type 2s exhibit lower X-ray luminosities in soft (0.5 - 2.0 keV) and hard (2.0 - 10.0) X-ray bands, higher X-ray absorbing column densities, higher equivalent widths of Fe K line, and lower flux ratios of hard X-ray (2.0 - 10.0 keV) to [OIII]. In both the Seyfert subtypes, the X-ray luminosity is moderately correlated with the pc-scale, kpc-scale radio luminosities and [OIII] line luminosity, in a similar fashion. A large fraction ~ 60 - 70% of type 2 Seyferts of our sample are likely to be Compton-thick and as a case study of a Compton-thick AGN, we studied the broad-band 0.5 - 50 keV X-ray spectral properties of NGC 5135 using Suzaku (XIS and HID) data to unveil the nature and geometry of obscuring torus. To test the predictions of the Seyfert unification scheme in the radio regime, I studied the radio properties of Seyfert galaxies using Giant Meterwave Radio Telescope (GMRT) observations carried out at 240 MHz/610 MHz, and NRAO VLA Sky Survey observations at 1.4 GHz and VLA 5 GHz observations from the literature. The four point (240 MHz, 610 MHz, 1.4 GHz, 5.0 GHz) integrated radio spectra of the two Seyfert subtypes are similar and fairly steep (i.e., spectral index ~ -0.7). Radio luminosity distributions at 240 MHz, 610 MHz, 1.4 GHz and 5.0 GHz are also similar for the Seyfert type 1s and type 2s. The study on radio - IR luminosity correlations shows that for both the Seyfert subtypes, the total 610 MHz and 240 MHz radio luminosities are moderately correlated with near-IR, mid-IR luminosities while the correlation becomes poorer with far-IR luminosities. Furthermore, the 12 micron, 25 micron, 60 micron and 100 micron IR luminosity distributions are also statistically simil! ar for the Seyfert type 1s and type 2s. I conclude that the statistical comparisons of the X-ray, radio and IR properties of the two Seyfert subtypes of our sample are consistent with the obscuration and orientation based unification scheme.
The NGC 7742 star cluster luminosity function: a population analysis revisited
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Ma, Chao
2018-02-01
We re-examine the properties of the star cluster population in the circumnuclear starburst ring in the face-on spiral galaxy NGC 7742, whose young cluster mass function has been reported to exhibit significant deviations from the canonical power law. We base our reassessment on the clusters’ luminosities (an observational quantity) rather than their masses (a derived quantity), and confirm conclusively that the galaxy’s starburst-ring clusters—and particularly the youngest subsample, {log}(t {{{yr}}}-1)≤ 7.2—show evidence of a turnover in the cluster luminosity function well above the 90% completeness limit adopted to ensure the reliability of our results. This confirmation emphasizes the unique conundrum posed by this unusual cluster population.
Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536
NASA Technical Reports Server (NTRS)
McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael
2012-01-01
The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536
Galaxias enanas: las voces de la mayoría
NASA Astrophysics Data System (ADS)
Cellone, S. A.
More than twenty years after photographic surveys of nearby clusters of galaxies revealed that low-luminosity, or ``dwarf'', galaxies (M_B ≳ -18 mag) are the numerically dominant population, research on these objects has been boosted by new instrumental and theoretical developments. Among several breakthroughs that have re-shaped our knowledge abut dwarf galaxies, we should point out: the detection of underlying spiral structure, disks/bars in dwarf ``elliptical'' galaxies; the possible evolutionary relation between (some?) dwarf ellipticals and spiral galaxies; the discoveries of ultra-compact and ultra-faint dwarfs; the universality of the color-luminosity relation extending along ˜ 10 mag. A brief review on these subjects is presented, with emphasis on early-type dwarfs and their possible evolutionary relations with other galaxy types. I will particularly address the controversy about which are the objects that extend the E sequence down to the lowest luminosities (if such objects really exist). FULL TEXT IN SPANISH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei
The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlatedmore » with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.« less
NASA Astrophysics Data System (ADS)
Heinis, S.; Buat, V.; Béthermin, M.; Bock, J.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; Ilbert, O.; Magdis, G.; Marsden, G.; Oliver, S. J.; Rigopoulou, D.; Roehlly, Y.; Schulz, B.; Symeonidis, M.; Viero, M.; Xu, C. K.; Zemcov, M.
2014-01-01
We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ˜ 4, ˜ 3 and ˜1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ˜ 4, ˜3 and ˜1.5. The SFR-stellar mass relations are well described by power laws (SFR∝ M_*^{0.7}), with the amplitudes being similar at z ˜ 4 and ˜3, and decreasing by a factor of 4 at z ˜ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ˜ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108
Amuse-Virgo: Downsizing In Black Hole Accretion
NASA Astrophysics Data System (ADS)
Gallo, Elena
2010-03-01
An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.
High mass star formation in the galaxy
NASA Technical Reports Server (NTRS)
Scoville, N. Z.; Good, J. C.
1987-01-01
The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.
Statistical Issues in Galaxy Cluster Cosmology
NASA Technical Reports Server (NTRS)
Mantz, Adam
2013-01-01
The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, William G.; Brighenti, Fabrizio; Temi, Pasquale
The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branchmore » stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.« less
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Tempel, E.; Benítez, N.; Molino, A.; Viironen, K.; Díaz-García, L. A.; Fernández-Soto, A.; Santos, W. A.; Varela, J.; Cenarro, A. J.; Moles, M.; Arnalte-Mur, P.; Ascaso, B.; Montero-Dorta, A. D.; Pović, M.; Martínez, V. J.; Nieves-Seoane, L.; Stefanon, M.; Hurtado-Gil, Ll.; Márquez, I.; Perea, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Husillos, C.; Infante, L.; Masegosa, J.; del Olmo, A.; Prada, F.; Quintana, J. M.
2017-03-01
Aims: Our goal is to study the evolution of the B-band luminosity function (LF) since z 1 using ALHAMBRA data. Methods: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. Results: We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2 ≤ z< 1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of MB* ∝ Qz is QSF = -1.03 ± 0.08 and QQ = -0.80 ± 0.08, and of log 10φ∗ ∝ Pz is PSF = -0.01 ± 0.03 and PQ = -0.41 ± 0.05. The measured faint-end slopes are αSF = -1.29 ± 0.02 and αQ = -0.53 ± 0.04. We find a significant population of faint quiescent galaxies with MB ≳ -18, modelled by a second Schechter function with slope β = -1.31 ± 0.11. Conclusions: We present a robust methodology to compute LFs using multi-filter photometric data. The application to ALHAMBRA shows a factor 2.55 ± 0.14 decrease in the luminosity density jB of star-forming galaxies, and a factor 1.25 ± 0.16 increase in the jB of quiescent ones since z = 1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jB increases from 3% at z = 1 to 6% at z = 0. The developed methodology will be applied to future multi-filter surveys such as J-PAS. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto (CAHA), jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC)
Type II supernovae in low luminosity host galaxies
NASA Astrophysics Data System (ADS)
Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.
2018-06-01
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
NASA Technical Reports Server (NTRS)
Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.
1991-01-01
Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.
The Origin of Powerful Radio Sources
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-05-01
Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.
NASA Astrophysics Data System (ADS)
Riguccini, L.; Le Floc'h, E.; Ilbert, O.; Aussel, H.; Salvato, M.; Capak, P.; McCracken, H.; Kartaltepe, J.; Sanders, D.; Scoville, N.
2011-10-01
Context. A substantial amount of the stellar mass growth across cosmic time occurred within dust-enshrouded environments. So far, identification of complete samples of distant star-forming galaxies from the short wavelength range has been strongly biased by the effect of dust extinction. Nevertheless, the exact amount of star-forming activity that took place in high-redshift dusty galaxies but that has currently been missed by optical surveys has barely been explored. Aims: Our goal is to determine the number of luminous star-forming galaxies at 1.5 ≲ z ≲ 3 that are potentially missed by the traditional color selection techniques because of dust extinction. We also aim at quantifying the contribution of these sources to the IR luminosity and cosmic star formation density at high redshift. Methods: We based our work on a sample of 24 μm sources brighter than 80 μJy and taken from the Spitzer survey of the COSMOS field. Almost all of these sources have accurate photometric redshifts. We applied to this mid-IR selected sample the BzK and BM/BX criteria, as well as the selections of the IRAC peakers and the Optically-Faint IR-bright (OFIR) galaxies. We analyzed the fraction of sources identified with these techniques. We also computed 8 μm rest-frame luminosity from the 24 μm fluxes of our sources, and considering the relationships between L8 μm and LPaα and between L8 μm and LIR, we derived ρIR and then ρSFR for our MIPS sources. Results: The BzK criterion offers an almost complete (~90%) identification of the 24 μm sources at 1.4 < z < 2.5. In contrast, the BM/BX criterion misses 50% of the MIPS sources. We attribute this bias to the effect of extinction, which reddens the typical colors of galaxies. The contribution of these two selections to the IR luminosity density produced by all the sources brighter than 80 μJy are on the same order. Moreover the criterion based on the presence of a stellar bump in their spectra (IRAC peakers) misses up to 40% of the IR luminosity density, while only 25% of the IR luminosity density at z ~ 2 is produced by OFIR galaxies characterized by extreme mid-IR to optical flux ratios. Conclusions: Color selections of distant star-forming galaxies must be used with care given the substantial bias they can suffer. In particular, the effect of dust extinction strongly affects the completeness of identifications at the bright end of the bolometric luminosity function, which implies large and uncertain extrapolations to account for the contribution of dusty galaxies missed by these selections. In the context of forthcoming facilities that will operate at long wavelengths (e.g., JWST, ALMA, SAFARI, EVLA, SKA), this emphasizes the importance of minimizing the extinction biases when probing the activity of star formation in the early Universe.
NASA Astrophysics Data System (ADS)
Yung, L. Y. Aaron; Somerville, Rachel S.
2017-06-01
The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.
Quasar Spectral Energy Distributions As A Function Of Physical Property
NASA Astrophysics Data System (ADS)
Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
X-rays across the galaxy population - I. Tracing the main sequence of star formation
NASA Astrophysics Data System (ADS)
Aird, J.; Coil, A. L.; Georgakakis, A.
2017-03-01
We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.
Models for infrared emission from IRAS galaxies
NASA Technical Reports Server (NTRS)
Rowan-Robinson, M.
1987-01-01
Models for the infrared emission from Infrared Astronomy Satellite (IRAS) galaxies by Rowan-Robinson and Crawford, by deJong and Brink, and by Helou, are reviewed. Rowan-Robinson and Crawford model the 12 to 100 micron radiation from IRAS galaxies in terms of 3 components: a normal disk component, due to interstellar cirrus; a starburst component, modeled as hot stars in an optically thick dust cloud; and a Seyfert component, modeled as a power-law continuum immersed in an n(r) variation r sup -1 dust cloud associated with the narrow-line region of the Seyfert nucleus. The correlations between the luminosities in the different components, the blue luminosity, and the X-ray luminosity of the galaxies are consistent with the model. Spectra from 0.1 to 1000 microns are predicted and compared with available observations. The de Jong and Brink, and Helou, model IRAS non-Seyfert galaxies in terms of a cool (cirrus) component and a warm (starburst) component. The de Jong and Brink estimate the face-on internal extinction in the galaxies and find that it is higher in galaxies with more luminous starbursts. In Helou's model the spectrum of the warm component varies strongly with the luminosity in that component. The three models are briefly compared.
CO observations of nearby galaxies and the efficiency of star formation
NASA Technical Reports Server (NTRS)
Young, Judith S.
1987-01-01
The CO distributions and total molecular content of 160 galaxies were observed using the 14 meter millimeter telescope of the FCRAO. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, while for the Sb and Sa galaxies the Co distributions often exhibit central CO holes up to 5 kpc across. None of the Sc galaxies have CO distributions which resemble the Milky Way. A general correlation was found between total CO and IR luminosities in galaxies. The scatter in this relation is highly correlated with dust temperature. No strong correlation of IR luminosities was found with HI masses, and it was thereby concluded that the infrared emission is more directly tied to the molecular content of galaxies. It is suggested that galaxies which have high Star Formation Effiencies (SFEs) produce more stars per unit molecular mass, thereby increasing the average temperature of the dust in the star forming regions. Irregular galaxies and galaxies previously identified as mergers have the highest observed star formation efficiencies. For the mergers, evidence was found that the IR/CO luminosity ratio increases with the merger age estimated by Joseph and Wright (1985).
LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryukova, E.; Megeath, S. T.; Allen, T. S.
2012-08-15
We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.« less
X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region
NASA Technical Reports Server (NTRS)
Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)
2002-01-01
We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.
LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle
Leo P is a low-luminosity dwarf galaxy discovered through the blind H i Arecibo Legacy Fast ALFA survey. The H i and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging with the Hubble Space Telescope to two magnitudes below the red clump in order to study the evolution of Leo P. We refine the distance measurement to Leo P to be 1.62 ± 0.15 Mpc, based on the luminosity of the horizontal branch stars and 10more » newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ∼0.4 Mpc from Sextans B, the nearest galaxy in the NGC 3109 association of dwarf galaxies of which Leo P is clearly a member. The star responsible for ionizing the H ii region is most likely an O7V or O8V spectral type, with a stellar mass ≳25 M{sub ⊙}. The presence of this star provides observational evidence that massive stars at the upper end of the initial mass function are capable of being formed at star formation rates as low as ∼10{sup −5} M{sub ⊙} yr{sup −1}. The best-fitting star formation history (SFH) derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its SFH is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that the local environment dominates the quenching of the Milky Way satellites.« less
Metallicity of Young and Old Stars in Irregular Galaxies
NASA Astrophysics Data System (ADS)
Tikhonov, N. A.
2018-01-01
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.
OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273
NASA Technical Reports Server (NTRS)
Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.
1997-01-01
The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.
Unveiling the nature of bright z ≃ 7 galaxies with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McLeod, D. J.
2017-04-01
We present new Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) imaging of 25 extremely luminous (-23.2 ≤ MUV ≲ -21.2) Lyman-break galaxies (LBGs) at z ≃ 7. The sample was initially selected from 1.65 deg2 of ground-based imaging in the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman α emitters, 'Himiko' and 'CR7'. A deconfusion analysis of the deep Spitzer photometry available suggests that these galaxies exhibit strong rest-frame optical nebular emission lines (EW0(Hβ + [O III]) > 600 Å). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (fmulti > 0.4) in bright z ≃ 7 galaxies, and ubiquitous at the very bright end (MUV < -22.5). The galaxies have half-light radii in the range r1/2 ˜ 0.5-3 kpc. The size measurements provide the first determination of the size-luminosity relation at z ≃ 7 that extends to MUV ˜ -23. We find the relation to be steep with r1/2 ∝ L1/2. Excluding clumpy, multicomponent galaxies however, we find a shallower relation that implies an increased star formation rate surface density in bright LBGs. Using the new, independent, HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ≃ 7 favours a power-law decline at the bright end, compared to an exponential Schechter function drop-off. Finally, these results have important implications for the Euclid mission, which we predict will detect >1000 similarly bright galaxies at z ≃ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Christopher C.; Keres, Dusan; Jonsson, Patrik
2011-12-20
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less
Simulations of deep galaxy fields. 1: Monte Carlo simulations of optical and near-infrared counts
NASA Technical Reports Server (NTRS)
Chokshi, Arati; Lonsdale, Carol J.; Mazzei, Paola; De Zotti, Gianfranco
1994-01-01
Monte Carlo simulations of three-dimensional galaxy distributions are performed, following the 1988 prescription of Chokshi & Wright, to study the photometric properties of evolving galaxy populations in the optical and near-infrared bands to high redshifts. In this paper, the first of a series, we present our baseline model in which galaxy numbers are conserved, and in which no explicit 'starburst' population is included. We use the model in an attempt to simultaneously fit published blue and near-infrared photometric and spectroscopic observations of deep fields. We find that our baseline models, with a formation redshift, z(sub f), of 1000, and H(sub 0) = 50, are able to reproduce the blue counts to b(sub j) = 22, independent of the value of Omega(sub 0), and also to provide a satisfactory fit to the observed blue-band redshift distributions, but for no value of Omega(sub 0) do we achieve an acceptable fit to the fainter blue counts. In the K band, we fit the number counts to the limit of the present-day surveys only for an Omega(sub 0) = 0 cosmology. We investigate the effect on the model fits of varying the cosmological parameters H(sub 0), the formation red-shift z(sub f), and the local luminosity function. Changing H(sub 0) does not improve the fits to the observations. However, reducing the epoch of a galaxy formation used in our simulations has a substantial effect. In particular, a model with z(sub f) approximately equal to 5 in a low Omega(sub 0) universe improves the fit to the faintest photometric blue data without any need to invoke a new population of galaxies, substantial merging, or a significant starburst galaxy population. For an Omega(sub 0) = 1 universe, however, reducing z(sub f) is less successful at fitting the blue-band counts and has little effect at all at K. Varying the parameters of the local luminosity function can also have a significant effect. In particular the steep low end slope of the local luminosity function of Franceschini et al. allows an acceptable fit to the b(sub j) less than or equal to 25 counts for Omega(sub 0) = 1, but is incompatible with Omega(sub 0) = 0.
The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited
NASA Astrophysics Data System (ADS)
Platais, Imants
2017-08-01
The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.
Linear clusters of galaxies - A194
NASA Technical Reports Server (NTRS)
Chapman, G. N. F.; Geller, M. J.; Huchra, J. P.
1988-01-01
New measurements for 160 redshifts and previous measurements for 108 other redshifts are presented for galaxies within 5 deg of A194. The galaxy distribution in A194 is shown to be inconsistent with a spherically symmetric King model. A mass-to-light ratio is derived using the virial theorem which is lower than the mean for the groups in the CfA redshift survey (Huchra and Geller, 1982; Geller, 1984). A nonparametric test for galaxy-cluster alignment and a Chi-squared test are used to search for alignment of galaxy major axes with the axis of A194. Evidence for neither luminosity segregation nor significant differences in the velocity or surface distributions of galaxies as a function of morphological type is found.
NASA Technical Reports Server (NTRS)
Binggeli, B.; Tammann, G. A.; Sandage, A.
1985-01-01
The present catalog of 2096 galaxies within an area of about 140 sq deg approximately centered on the Virgo cluster should be an essentially complete listing of all certain and possible cluster members, independent of morphological type. Cluster membership is essentially decided by galaxy morphology; for giants and the rare class of high surface brightness dwarfs, membership rests on velocity data. While 1277 of the catalog entries are considered members of the Virgo cluster, 574 are possible members and 245 appear to be background Zwicky galaxies. Major-to-minor axis ratios are given for all galaxies brighter than B(T) = 18, as well as for many fainter ones.
DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.
2012-02-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nikhel; Saro, A.; Mohr, J. J.
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Deep UV Luminosity Functions at the Infall Region of the Coma Cluster
NASA Technical Reports Server (NTRS)
Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.
2011-01-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.
Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...
2017-01-15
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
A CCD Study of the Environment of Seyfert Galaxies. II. Testing the Interaction Hypothesis
NASA Astrophysics Data System (ADS)
De Robertis, M. M.; Yee, H. K. C.; Hayhoe, K.
1998-03-01
An analysis of the environment of a sample of 33 CfA Seyfert galaxies and a control sample of 45 nonactive galaxies matched in luminosity, redshift, and morphology to the Seyfert galaxies as reported in Paper I is presented. The covariance function amplitudes of the Seyfert and control samples are not statistically significantly different from one another and from the general field. Moreover, the companion frequency of the Seyfert galaxies, the probability of finding a companion galaxy brighter than -17.5 in R within 50 kpc (0.30 +/- 0.11), is not statistically significantly different from that for the nonactive control sample (0.23 +/- 0.09). The mean environment of Seyfert 1 galaxies is found to be different from that of Seyfert 2 galaxies at greater than the 95% confidence level, in the sense that the latter have a larger covariance amplitude. Such evidence is problematic for the Unified Model, which attributes spectroscopic differences between the classes to purely geometric effects on the order of parsec scales. It cannot, however, account for differences on the order of 100 kpc scales. It is argued that triggering of activity in galactic nuclei may involve a variety of mechanisms and may depend on the luminosity of the class. That is, while there is excellent evidence that QSOs, radio galaxies, and BL Lac objects inhabit environments significantly richer than the field, the same does not seem to be true for Seyfert galaxies and perhaps for LINERs. Finally, because a significant fraction of Seyfert host galaxies show little or no evidence for a recent merger, it is suggested that ``minor mergers,'' mergers that involve a gas-rich disk galaxy and a bound companion or satellite galaxy, may play a significant role in triggering activity in Seyfert galaxies.
The Relation between Luminous AGNs and Star Formation in Their Host Galaxies
NASA Astrophysics Data System (ADS)
Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.
2015-08-01
We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z Almost-Equal-To 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z Almost-Equal-To 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin{sup 2} to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts.more » We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z Almost-Equal-To 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z Almost-Equal-To 8. Their derived stellar masses are on the order of a few Multiplication-Sign 10{sup 9} M{sub Sun }, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z Almost-Equal-To 8. The high number density of very luminous and very massive galaxies at z Almost-Equal-To 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.« less
Comparisons of the Standard Galaxy Model with observations in two fields
NASA Technical Reports Server (NTRS)
Bahcall, J. N.; Ratnatunga, K. U.
1985-01-01
The Bahcall-Soneira (1984) model for the distribution of stars in the Galaxy is compared with the observations reported by Gilmore, Reid, and Hewett (1984) in two directions in the sky, the pole and the Morton-Tritton (1982) region. It is shown that the Galaxy model is in good agreement with the observations everywhere it has been tested with modern data, including the magnitude range, V = 17-18, and provided that the globular cluster feature is included in the luminosity function of the field Population II stars.
Galaxies and gas in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Katz, Neal; Hernquist, Lars; Weinberg, David H.
1992-01-01
We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.
THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laag, Edward; Croft, Steve; Canalizo, Gabriela
2010-12-15
This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
RX J1548.9+0851, a fossil cluster?
NASA Astrophysics Data System (ADS)
Eigenthaler, P.; Zeilinger, W. W.
2012-04-01
Context. Fossil galaxy groups are spatially extended X-ray sources with X-ray luminosities above L{X, bol ≥ 1042 h50-2} erg s-1 and a central elliptical galaxy dominating the optical, the second-brightest galaxy being at least 2 mag fainter in the R band. Whether these systems are a distinct class of objects resulting from exceptional formation and evolution histories is still unclear, mainly due to the small number of objects studied so far, mostly lacking spectroscopy of group members for group membership confirmation and a detailed kinematical analysis. Aims: To complement the scarce sample of spectroscopically studied fossils down to their faint galaxy populations, the fossil candidate RX J1548.9+0851 (z = 0.072) is studied in this work. Our results are compared with existing data from fossils in the literature. Methods: We use ESO VLT VIMOS multi-object spectroscopy to determine redshifts of the faint galaxy population and study the luminosity-weighted dynamics and luminosity function of the system. The full-spectrum fitting package ULySS is used to determine ages and metallicities of group members. VIMOS imaging data are used to study the morphology of the central elliptical. Results: We identify 40 group members spectroscopically within the central 300 kpc of the system and find 31 additional redshifts from the literature, resulting in a total number of 54 spectroscopically confirmed group members within 1 Mpc. RX J1548.9+0851 is made up of two bright ellipticals in the central region with a magnitude gap of Δm1,2 = 1.34 in the SDSS r' band leaving the definition of RX J1548.9+0851 being a fossil to the assumption of the virial radius. We find a luminosity-weighted velocity dispersion of 568 km s-1 and a mass of 2.5 × 1014 M⊙ for the system confirming previous studies that revealed fossils to be massive. An average mass-to-light ratio of M/L 400 M⊙/L⊙ is derived from the SDSS g', r', and i' bands. The central elliptical is well-fitted by a pure deVaucouleurs r1/4 law without a cD envelope. Symmetric shells are revealed along the major axis of the galaxy indicating a recent minor merger. RX J1548.9+0851 shows a steep, increasing luminosity function with a faint-end slope of α = -1.4 ± 0.1. Satellite galaxies show a clear spatial segregation with respect to their stellar populations - objects with old stars are confined to an elongated, central distribution aligned with the major axis of the central elliptical. Conclusions: Although RX J1548.9+0851 shows similar properties compared to other fossils studied recently, it might not be a fossil at all, being dominated by 2 bright central ellipticals. Comparing RX J1548.9+0851 with scaling relations from ordinary poor groups and clusters confirm the idea that fossils might simply be normal clusters with the richness and optical luminosity of poor groups.
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
NASA Astrophysics Data System (ADS)
Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael
2016-12-01
We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.
NASA Astrophysics Data System (ADS)
Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.
2015-04-01
We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.
NASA Astrophysics Data System (ADS)
Arnaboldi, Magda
2015-08-01
Planetary nebulae have been used sucessfully to trace the kinematics of stars and the spatial distribution of the parent stellar populations in regions where the continuum of the integrated light is only 1% of the night sky. The observed wavelength of the PN strong emission in the [OIII] line at 5007 A measures the line-of-sight velocity of that single star and can be used to derive the two-dimensional velocity fields in these extreme outer regions of galaxies and their angular momentum content out to 10 effective radii. The specific frequency or the PN luminosity number and the morphology of the PN luminosity function are probes of the properties of the parent stellar population, like the star formation history and metallicity. I will present the latest results from the survey of PN population in external galaxies and in the Virgo cluster, and the implications on the coexistence of galaxy halos and intracluster light, and the constraints of their stellar motions and physical parameters.
Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.
2008-01-01
We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.
NASA Astrophysics Data System (ADS)
Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice
2016-03-01
We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.
Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function
NASA Technical Reports Server (NTRS)
Wood, M. A.
1992-01-01
The white dwarf disk luminosity function is explored using observational results of Liebert et al. (1988, 1989) as a template for comparison, and the cooling curves of Wood (1990, 1991) as the input basis functions for the integration. The star formation rate over the history of the Galaxy is found to be constant to within an order of magnitude, and the disk age lies in the range 6-13.5 Gyr, where roughly 40 percent of the uncertainty is due to the observational uncertainties. Using the best current estimates as inputs to the integration, the disk ages range from 7.5 to 11 Gyr, i.e., they are substantially younger than most estimates for the halo globular clusters but in reasonable agreement with those for the disk globular clusters and open clusters. The ages of these differing populations, taken together, are consistent with the pressure-supported collapse models of early spiral Galactic evolution.
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2018-04-01
I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.
Leo P: A very low-mass, extremely metal-poor, star-forming galaxy
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B.; Leo P Team
2017-01-01
Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.
NASA Astrophysics Data System (ADS)
Balmaverde, B.; Capetti, A.
2006-02-01
This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole mass of M_BH = 108 M⊙ is apparently associated with the radio-loud nuclei in both CoreG and LLRG, but this effect must be tested on a sample of less luminous galaxies, likely to host smaller black holes. In the unifying model for BL Lacs and radio-galaxies, CoreG likely represent the counterparts of the large population of low luminosity BL Lac now emerging from the surveys at low radio flux limits. This suggests the presence of relativistic jets also in these quasi-quiescent early-type "core" galaxies.
Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman
2015-01-01
The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.
NASA Astrophysics Data System (ADS)
Carrasco, D.; Trenti, M.; Mutch, S.; Oesch, P. A.
2018-06-01
The luminosity function is a fundamental observable for characterising how galaxies form and evolve throughout the cosmic history. One key ingredient to derive this measurement from the number counts in a survey is the characterisation of the completeness and redshift selection functions for the observations. In this paper, we present GLACiAR, an open python tool available on GitHub to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman-break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift, and spectral energy distribution properties, adds them to input images, and measures the recovery rate. To illustrate this new software tool, we apply it to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z 10 galaxies) in the Hubble Space Telescope Brightest of Reionizing Galaxies Survey. Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for the artificial sources can impact completeness estimates.
Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06
NASA Astrophysics Data System (ADS)
Baldry, I. K.; Driver, S. P.; Loveday, J.; Taylor, E. N.; Kelvin, L. S.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Brough, S.; Hopkins, A. M.; Bamford, S. P.; Peacock, J. A.; Bland-Hawthorn, J.; Conselice, C. J.; Croom, S. M.; Jones, D. H.; Parkinson, H. R.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Tuffs, R. J.
2012-03-01
We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a density-corrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0= 70 km s-1 Mpc-1, the GSMF is well described between 108 and 1011.5 M⊙ using a double Schechter function with ?, ?, α1=-0.35, ? and α2=-1.47. This result is more robust to uncertainties in the flow-model corrected redshifts than from the shallower Sloan Digital Sky Survey main sample (r < 17.8 mag). The upturn in the GSMF is also seen directly in the i-band and K-band galaxy luminosity functions. Accurately measuring the GSMF below 108 M⊙ is possible within the GAMA survey volume but as expected requires deeper imaging data to address the contribution from low surface-brightness galaxies.
Upper limits on the mass and luminosity of Population III-dominated galaxies
NASA Astrophysics Data System (ADS)
Yajima, Hidenobu; Khochfar, Sadegh
2017-05-01
We here derive upper limits on the mass and luminosity of Population III (POPIII) dominated proto-galaxies based on the collapse of primordial gas under the effect of angular momentum loss via Lyα radiation drag and the gas accretion on to a galactic centre. Our model predicts that POPIII-dominated galaxies at z ˜ 7 are hosted by haloes with Mh ˜ 1.5 × 108-1.1 × 109 M⊙, that they have Lyα luminosities of LLyα ˜ 3.0 × 1042-2.1 × 1043 erg s- 1, stellar mass of Mstar ˜ 0.8 × 105-2.5 × 106 M⊙ and outflowing gas with velocities Vout ˜ 40 km s- 1 due to Lyα radiation pressure. We show that the POPIII galaxy candidate CR7 violates the derived limits on stellar mass and Lyα luminosity and thus is unlikely to be a POPIII galaxy. POPIII-dominated galaxies at z ˜ 7 have He II line emission that is ˜1-3 orders of magnitude lower than that of Lyα, they have high Lyα equivalent width of ≳ 300 Å and should be found close to bright star-forming galaxies. The He II 1640 Å line is in comfortable reach of next generation telescopes, like the James Webb Space Telescope (JWST) or Thirty Meter Telescope (TMT).
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Ya; Wang, Junxian; Rhoads, James; Infante, Leopoldo; Malhotra, Sangeeta; Hu, Weida; Walker, Alistair R.; Jiang, Linhua; Jiang, Chunyan; Hibon, Pascale; Gonzalez, Alicia; Kong, Xu; Zheng, XianZhong; Galaz, Gaspar; Barrientos, L. Felipe
2017-06-01
We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ˜ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg2 COSMOS field. We have identified 23 Lyα Emitter candidates at z = 6.9 in the central 2-deg2 region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF) can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L Lyα ˜ 1043.4±0.2 erg s-1). The number density at L Lyα ˜ 1043.4±0.2 erg s-1 is little changed from z = 6.6, while at fainter L Lyα it is substantially reduced. Overall, we see a fourfold reduction in Lyα luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ˜3 suppression of Lyα by radiative transfer through the z ˜ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x H I ˜ 0.4-0.6 (assuming Lyα velocity offsets of 100-200 km s-1). The changing shape of the Lyα LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ˜ 7.
The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Stanek, Rebecca; Evrard, A.; Boehringer, H.; Schuecker, P.; Nord, B.
2006-12-01
My thesis is centered on investigating scaling relations of galaxy clusters. Focusing on the relationship between soft X-ray luminosity and mass (L-M) for low-redshift clusters of galaxies, I have determined the mean parameters to 5%, and calculated a formal measure of the scatter in the L-M relation. I model the L-M relation with a conditional probability function including a mean power-law scaling relation, L Mpρsc(z), and log-normal scatter in mass at fixed luminosity, σlnM. Convolving with the halo mass function, I compute expected counts in redshift and flux that, after appropriate survey effects are included, are compared to REFLEX survey data. Combining the likelihood analysis with the measured variance in L-T relation from HIFLUGCS, I obtain fit parameters p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution (s = 7/6) in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. I find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. I accommodate the new WMAP constraints with a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25. I will also present work in progress from galaxy cluster population statistics in the Millennium Simulation with Gas (MSG), specifically focusing on the scatter and covariance between cluster properties at a fixed epoch.
NASA Astrophysics Data System (ADS)
Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.
2011-04-01
Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields. Appendices are only available in electronic form at http://www.aanda.orgFull Tables B1-B4 are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A35
Internal kinematics of disk galaxies in the local universe
NASA Astrophysics Data System (ADS)
Catinella, Barbara
2005-11-01
This dissertation makes use of a homogeneous sample of several thousand normal, non-interacting, spiral galaxies, for which I-band photometry and optical and/ or radio spectroscopy are available, to investigate the average kinematic properties of disk systems at low redshifts ( z [Special characters omitted.] 0.1). New long-slit Ha rotation curves (RCs) for 402 galaxies, which were incorporated into the larger sample, are presented in this work. The main goals of this thesis are: (a) The definition of a set of average, or template , RCs in bins covering a wide range of galaxy luminosity. The template relations represent an accurate description of the average circular velocity field of local spiral galaxies, and are intended to be a standard reference for more distant samples and to constrain theoretical models of galactic disks. (b) The characterization of the systematics associated with different velocity width measurement techniques, and the derivation of a robust measure of rotational velocity to be used for applications of the Tully-Fisher (TF) distance method. A direct cross-calibration of the optical and radio widths has been obtained. (c) The assessment of the impact of the limitations on optical line widths extracted from fixed apertures, such as those being collected for ~10 6 galaxies by the on-going Sloan Digital Sky Survey (SDSS). Since the SDSS fiber technique generally does not sample the full extent of a galaxy RC, the observed line widths yield rotational width measurements that depend on the redshifts of the objects, on the physical sizes of their line-emitting regions, and on the intrinsic shapes of their RCs. Numerical simulations of these biases have been carried out for galaxies with realistic circular velocity fields (described by the template RCs) in the redshift range covered by the SDSS spectroscopic sample. Statistical corrections to be applied to the aperture line widths as a function of galaxy redshift and luminosity have been derived, and their impact on the TF relation examined. The use of the SDSS line widths, corrected for aperture effects, has the potential to solve the debated issue of luminosity evolution of galaxies at intermediate redshifts.
Understanding the Formation and Evolution of Galaxies in the Cosmic Dawn
NASA Astrophysics Data System (ADS)
Finkelstein, Steven
2015-08-01
The past decade has resulted in a dramatic proliferation of our knowledge of galaxy formation and evolution at redshifts greater than six, less than one billion years after the Big Bang. In this review talk, I will discuss the progress made via a combination of deep space and wide ground-based imaging surveys, as well as spectroscopic followup. The combination of the Hubble Space Telescope CANDELS, HUDF and HFF surveys has resulted in the discovery of more than 1000 galaxies at z > 6. By studying the rest-frame ultraviolet (UV) luminosity functions of these galaxies, we have found that the slope of the faint-end steepens with increasing redshift, to a value of -2 by z=7. Assuming that this steep slopes extends well beyond our detection limit, galaxies can produce enough ionizing photons to complete reionization by z=6. However, there are hints, both theoretical and observational, that the slope may flatten out, creating a problem for the reionization budget. At the bright end, surprises were also in store, as rather than the expected luminosity evolution, the characteristic UV luminosity L* is strangely constant from z=4-8, with some evidence from ground-based surveys that the fall off at brighter magnitudes is less severe than exponential. Although the dust (and presumably metal) content of faint galaxies has been found to decrease from z=4 to 7, the attenuation in the brightest galaxies is roughly constant across this redshift range, thus decreasing dust is likely not the culprit for the non-evolving L*. Rather, it appears as if the physics of star-formation is changing, with a likely combination of factors increasing the efficiency with which distant galaxies convert their gas into stars. Finally, while the spectroscopic followup of these galaxies has been difficult, via deep near-infrared exposures we now have 2-3 robust Lyman-alpha redshifts at z > 7.5. More troubling is the growing list of non-detections. While samples are still small, this may indicate a rapidly increasing neutral fraction, although the changing star-formation processes in these galaxies also likely play a role.
Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3
NASA Astrophysics Data System (ADS)
Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Françoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey
2017-01-01
We observed the [C II] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 107 L⊙ to 3.7 × 109 L⊙ (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan
We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to themore » total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.« less
The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5
NASA Astrophysics Data System (ADS)
Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.
2007-02-01
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.
Coevolution of Supermassive Black Holes and Galaxies across cosmic times
NASA Astrophysics Data System (ADS)
Aversa, Rossella
2015-10-01
Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a first step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1.5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0.5 - 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L/LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of ∼3 e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described above, we further investigate the coevolution of galaxies and hosted SMBHs throughout the history of the Universe by applying a statistical, model-independent approach, based on the continuity equation and the abundance matching technique. We present analytical solutions of the continuity equation without source term, to reconstruct the SMBH mass function (BHMF) at different redshifts iii from the AGN luminosity function. Such an approach includes the physically-motivated AGN lightcurves we have tested and discussed, which describe the evolution of both the Eddington ratio and the radiative efficiency from slim- to thin-disc conditions. We nicely reproduce the local estimates of the BHMF, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies hosting an AGN with given Eddington ratio. We employ the same approach to reconstruct the observed stellar mass function (SMF) at different redshifts, starting from the ultraviolet (UV) and FIR luminosity functions associated to star formation in galaxies. Our results imply that the buildup of stars and BHs in galaxies occurs via in-situ processes, with dry mergers playing a marginal role, at least for stellar masses . 3×10^11 M⊙ and BH masses . 10^9 M⊙, where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique, to link the stellar and BH content of galaxies to the gravitationally dominant DM component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. They may also be operationally implemented in numerical simulations to populate DM halos, or to gauge subgrid physics. Moreover, they can be exploited to investigate the galaxy/AGN clustering as a function of redshift, stellar/BH mass, and/or luminosity. The clustering properties of BHs and galaxies are found to be in full agreement with current observations, so further validating our results from the continuity equation. Finally, our analysis highlights that: (i) the fraction of AGNs observed in the slim-disc regime, where anyway most of the BH mass is accreted, increases with redshift; (ii) already at z & 6, a substantial amount of dust must have formed, over timescales . 10^8 yr, in strongly starforming galaxies, making these sources well within the reach of ALMA surveys in (sub-)millimeter bands.
LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies
NASA Astrophysics Data System (ADS)
Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.
2018-02-01
In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.
NASA Astrophysics Data System (ADS)
Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin
2016-08-01
The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudnick, Gregory H.; Tran, Kim-Vy; Papovich, Casey
2012-08-10
We study the red sequence in a cluster of galaxies at z = 1.62 and follow its evolution over the intervening 9.5 Gyr to the present day. Using deep YJK{sub s} imaging with the HAWK-I instrument on the Very Large Telescope, we identify a tight red sequence and construct its rest-frame i-band luminosity function (LF). There is a marked deficit of faint red galaxies in the cluster that causes a turnover in the LF. We compare the red-sequence LF to that for clusters at z < 0.8, correcting the luminosities for passive evolution. The shape of the cluster red-sequence LFmore » does not evolve between z = 1.62 and z = 0.6 but at z < 0.6 the faint population builds up significantly. Meanwhile, between z = 1.62 and 0.6 the inferred total light on the red sequence grows by a factor of {approx}2 and the bright end of the LF becomes more populated. We construct a simple model for red-sequence evolution that grows the red sequence in total luminosity and matches the constant LF shape at z > 0.6. In this model the cluster accretes blue galaxies from the field whose star formation is quenched and who are subsequently allowed to merge. We find that three to four mergers among cluster galaxies during the 4 Gyr between z = 1.62 and z = 0.6 match the observed LF evolution between the two redshifts. The inferred merger rate is consistent with other studies of this cluster. Our result supports the picture that galaxy merging during the major growth phase of massive clusters is an important process in shaping the red-sequence population at all luminosities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki
2015-01-20
We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functionsmore » with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.« less
Examining an AGN Luminosity – SFR relation
NASA Astrophysics Data System (ADS)
Stemo, Aaron; Comerford, Julia M.; Barrows, Robert Scott
2018-06-01
The relation between the star formation rate (SFR) of a galaxy and the accretion rate of its supermassive black hole is not well understood. Some observations show that active galactic nuclei (AGN) activity and SFR are correlated while other observations show no relation between the two. In this work we present a large, uniformly-selected catalog of HST galaxies that host AGN. Using available multiwavelength photometric data, we are able to determine AGN bolometric luminosity, host galaxy SFR, host galaxy stellar mass, and redshift for our sample. Using this catalog, we are able to compare AGN bolometric luminosity and SFR, while controlling for redshift and stellar mass. These comparisons will be used to make a statistically significant statement on the correlation between AGN activity and a host galaxy’s SFR.
NASA Technical Reports Server (NTRS)
Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.
2000-01-01
In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to ionize the diffuse medium, but to cause a typical spiral to emit significant ionizing flux into the intergalactic medium. The low scatter observed in Lstr, less than 0.1 mag rms in the still quite small sample measured to date, is an invitation to widen the data base, and to calibrate against primary standards, with the aim of obtaining a precise, approx. 10(exp 5) solar luminosity widely distributed standard candle.
Star and Dust Formation Activities in AzTEC-3, a Starburst Galaxy at z = 5.3
NASA Astrophysics Data System (ADS)
Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Capak, Peter L.; Kovacs, Attila; Benford, Dominic J.; Fixsen, Dale; Karim, Alexander; Leclercq, Samuel; Maher, Stephen F.; Moseley, Samuel H.; Schinnerer, Eva; Sharp, Elmer H.
2011-09-01
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PÉGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with an SFR of ~500 M sun yr-1. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.
2011-09-01
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to producemore » the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.« less
NASA Astrophysics Data System (ADS)
Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime
2017-11-01
The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.
NASA Astrophysics Data System (ADS)
Williams, Christina C.; Curtis-Lake, Emma; Hainline, Kevin N.; Chevallard, Jacopo; Robertson, Brant E.; Charlot, Stephane; Endsley, Ryan; Stark, Daniel P.; Willmer, Christopher N. A.; Alberts, Stacey; Amorin, Ricardo; Arribas, Santiago; Baum, Stefi; Bunker, Andrew; Carniani, Stefano; Crandall, Sara; Egami, Eiichi; Eisenstein, Daniel J.; Ferruit, Pierre; Husemann, Bernd; Maseda, Michael V.; Maiolino, Roberto; Rawle, Timothy D.; Rieke, Marcia; Smit, Renske; Tacchella, Sandro; Willott, Chris J.
2018-06-01
We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2< z< 15) and stellar masses [{log}(M/{M}ȯ )≥slant 6]. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z ≳ 6, and 10s at z ≳ 10 at {m}{AB}≲ 30 (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z ≳ 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.
NASA Astrophysics Data System (ADS)
Atek, Hakim; Richard, Johan; Kneib, Jean-Paul; Jauzac, Mathilde; Schaerer, Daniel; Clement, Benjamin; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald
2015-02-01
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ~ 7 and eight candidates at z ~ 8 in a total survey area of 0.96 arcmin2 in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ~ 7 UV LF down to an absolute magnitude of M UV ~ -15.5. We find a characteristic magnitude of M\\star UV = -20.90+0.90-0.73 mag and a faint-end slope α =-2.01+0.20-0.28, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L sstarf. Although prone to large uncertainties, our results at z ~ 8 also seem to confirm a steep faint-end slope below 0.1 L sstarf. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13495, 11386, 13389, and 11689. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The Hubble Frontier Fields data were obtained from the Mikulski Archive for Space Telescopes (MAST).
NASA Astrophysics Data System (ADS)
Wijesinghe, D. B.; Hopkins, A. M.; Sharp, R.; Gunawardhana, M.; Brough, S.; Sadler, E. M.; Driver, S.; Baldry, I.; Bamford, S.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J.; Popescu, C. C.; Tuffs, R. J.; Bland-Hawthorn, J.; Cameron, E.; Croom, S.; Frenk, C.; Hill, D.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; Madore, B.; Nichol, B.; Parkinson, H.; Pimbblet, K. A.; Prescott, M.; Robotham, A. S. G.; Seibert, M.; Simmat, E.; Sutherland, W.; Taylor, E.; Thomas, D.
2011-02-01
We present self-consistent star formation rates derived through pan-spectral analysis of galaxies drawn from the Galaxy and Mass Assembly (GAMA) survey. We determine the most appropriate form of dust obscuration correction via application of a range of extinction laws drawn from the literature as applied to Hα, [O II] and UV luminosities. These corrections are applied to a sample of 31 508 galaxies from the GAMA survey at z < 0.35. We consider several different obscuration curves, including those of Milky Way, Calzetti and Fischera & Dopita curves and their effects on the observed luminosities. At the core of this technique is the observed Balmer decrement, and we provide a prescription to apply optimal obscuration corrections using the Balmer decrement. We carry out an analysis of the star formation history (SFH) using stellar population synthesis tools to investigate the evolutionary history of our sample of galaxies as well as to understand the effects of variation in the initial mass function (IMF) and the effects this has on the evolutionary history of galaxies. We find that the Fischera & Dopita obscuration curve with an Rv value of 4.5 gives the best agreement between the different SFR indicators. The 2200 Å feature needed to be removed from this curve to obtain complete consistency between all SFR indicators suggesting that this feature may not be common in the average integrated attenuation of galaxy emission. We also find that the UV dust obscuration is strongly dependent on the SFR.
Infrared galaxies in the IRAS minisurvey
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Rowan-Robinson, M.; Clegg, P. E.; Emerson, J. P.; Houck, J. R.; De Jong, T.; Aumann, H. H.; Beichman, C. A.; Boggess, N.
1984-01-01
A total of 86 galaxies have been detected at 60 microns in the high galactic latitude portion of the IRAS minisurvey. The surface density of detected galaxies with flux densities greater than 0.5 Jy is 0.25 sq deg. Virtually all the galaxies detected are spiral galaxies and have an infrared to blue luminosity ratio ranging from 50 to 0.5. For the infrared-selected sample, no obvious correlation exists between infrared excess and color temperature. The infrared flux from 10 to 100 microns contributes approximately 5 percent of the blue luminosity for galaxies in the magnitude range 14 less than m(pg) less than 18 mag. The fraction of interacting galaxies is between one-eighth and one-fourth of the sample.
NASA Astrophysics Data System (ADS)
Gu, Meng; Ho, Luis C.; Peng, Chien Y.; Huang, Song
2013-08-01
Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (MI ≈ -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ~90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
The role of submillimetre galaxies in galaxy evolution
NASA Astrophysics Data System (ADS)
Pope, Erin Alexandra
2007-08-01
This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent estimate of the redshift, s(D z /(1 + z )) = 0.07. The median redshift of the secure submm counterparts is 2.0. Using X-ray and mid-IR imaging data, only 5% of the secure counterparts show strong evidence for an active galactic nucleus (AGN) dominating the IR luminosity. This thesis also presents deep Spitzer mid-IR spectroscopy of 13 of these SMGs in order to determine the contribution from AGN and starburst emission to the IR luminosity. I find strong polycyclic aromatic hydrocarbon (PAH) emission features in all of the targets, while only 2/13 SMGs have a significant mid-IR rising power-law component which would indicate an AGN. In the high signal-to- noise ratio composite spectrum of the SMGs I find that the AGN component contributes at most 30% of the mid-IR luminosity, implying that the total LIR in SMGs is dominated by star formation and not AGN emission. I also find that the SMGs lie on the relation between the luminosity of the main PAH features and L IR established for local starburst galaxies, confirming that the PAH luminosity can be used as a proxy for the star formation rate. Interestingly, local ULIRGs, which are often thought to be the low redshift analogues of SMGs, lie off these relations, as they appear deficient in PAH luminosity for a given L IR . In terms of an evolutionary scenario for IR luminous galaxies, SMGs are consistent with being an earlier phase in the massive merger (compared with other local or high redshift ULIRGs) in which the AGN has not yet become strong enough to heat the dust and dilute the PAH emission. I further investigate the overlap between high redshift infrared and submm populations using a statistical stacking analysis to measure the contribution of near- and mid-IR galaxy populations to the 850 mm submm background. For the first time, it is found that the 850 mm background can be completely resolved into individual galaxies and the bulk of these galaxies lie at z [Special characters omitted.] 3. Additionally I present a detailed study of the most distant SMG discovered to date, which I call GN20. This unusually bright source led to the discovery of a high redshift galaxy cluster, which is likely to be lensing the SMG. I discuss the potential for using bright SMGs in future submm surveys to identify high redshift clusters. Finally, for this complete sample of SMGs, I present the cumulative flux distribution at X-ray, optical, IR and radio wavelengths and I determine the depths at which one can expect to detect the majority of submm galaxies in future mm/submm surveys, such as with SCUBA-2, the successor to SCUBA.
Reionization in sterile neutrino cosmologies
NASA Astrophysics Data System (ADS)
Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.
2016-12-01
We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.
Near-infrared properties of quasar and Seyfert host galaxies
NASA Astrophysics Data System (ADS)
McLeod, Kim Katris
1994-01-01
We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale distribution of luminous mass in the galaxy. We also present an infrared image of the jet of SC 273 and compare it to optical and radio images from the literature.
Near-Infrared Properties of Quasar and Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
McLeod, Kim Katris
1995-01-01
We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale distribution of luminous mass in the galaxy. We also present an infrared image of the jet of 3C 273 and compare it to visible and radio images from the literature. (SECTION: Dissertation Summaries)
Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)
NASA Astrophysics Data System (ADS)
Fuse, Christopher R.; Malespina, Alysa
2017-01-01
Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.
Exploring the Faint End of the Luminosity-Metallicity Relation with Hα Dots
NASA Astrophysics Data System (ADS)
Hirschauer, Alec S.; Salzer, John J.
2015-01-01
The well-known correlation between a galaxy's luminosity and its gas-phase oxygen abundance (the luminosity-metallicity (L-Z) relation) offers clues toward our understanding of chemical enrichment histories and evolution. Bright galaxies are comparatively better studied than faint ones, leaving a relative dearth of observational data points to constrain the L-Z relation in the low-luminosity regime. We present high S/N nebular spectroscopy of low-luminosity star-forming galaxies observed with the KPNO 4m using the new KOSMOS spectrograph to derive direct-method metallicities. Our targets are strong point-like emission-line sources discovered serendipitously in continuum-subtracted narrowband images from the ALFALFA Hα survey. Follow-up spectroscopy of these "Hα dots" shows that these objects represent some of the lowest luminosity star-forming systems in the local Universe. Our KOSMOS spectra cover the full optical region and include detection of [O III] λ4363 in roughly a dozen objects. This paper presents some of the first scientific results obtained using this new spectrograph, and demonstrates its capabilities and effectiveness in deriving direct-method metallicities of faint objects.
High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82
NASA Astrophysics Data System (ADS)
Nikoloudakis, N.
2012-01-01
We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.
NASA Astrophysics Data System (ADS)
Devour, Brian M.; Bell, Eric F.
2016-06-01
We study the relative dust attenuation-inclination relation in 78 721 nearby galaxies using the axis ratio dependence of optical-near-IR colour, as measured by the Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared Survey Explorer. In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star-forming main sequence varies from ˜0.55 mag up to ˜1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at M3.4 μm ≈ -21.5, corresponding to M* ≈ 3 × 1010 M⊙. This behaviour stands seemingly in contrast to some older studies; we show that older works failed to reliably probe to higher luminosities, and were insensitive to the decrease in attenuation with increasing luminosity for the brightest star-forming discs. Back-of-the-envelope scaling relations predict the strong variation of dust optical depth with specific star formation rate and stellar mass. More in-depth comparisons using the scaling relations to model the relative attenuation require the inclusion of star-dust geometry to reproduce the details of these variations (especially at high luminosities), highlighting the importance of these geometrical effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Sidney, E-mail: sidney.vandenbergh@nrc.gc.ca
Lenticular galaxies with M{sub B} < -21.5 are almost exclusively unbarred, whereas both barred and unbarred objects occur at fainter luminosity levels. This effect is observed both for objects classified in blue light, and for those that were classified in the infrared. This result suggests that the most luminous (massive) S0 galaxies find it difficult to form bars. As a result, the mean luminosity of unbarred lenticular galaxies in both B and IR light is observed to be {approx}0.4 mag brighter than that of barred lenticulars. A small contribution to the observed luminosity difference that is found between SA0 andmore » SB0 galaxies may also be due to the fact that there is an asymmetry between the effects of small classification errors on SA0 and SB0 galaxies. An elliptical (E) galaxy might be misclassified as a lenticular (S0) or an S0 as an E. However, an E will never be misclassified as an SB0, nor will an SB0 ever be called an E. This asymmetry is important because E galaxies are typically twice as luminous as S0 galaxies. The present results suggest that the evolution of luminous lenticular galaxies may be closely linked to that of elliptical galaxies, whereas fainter lenticulars might be more closely associated with ram-pressure stripped spiral galaxies. Finally, it is pointed out that fine details of the galaxy formation process might account for some of the differences between the classifications of the same galaxy by individual competent morphologists.« less
Dwarf Galaxies in the Chandra COSMOS Legacy Survey
NASA Astrophysics Data System (ADS)
Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille
2018-01-01
The existence of intermediate mass black holes (100 < MBH < 106 Msun) has been invoked to explain the finding of extremely massive black holes at z>7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 <= M* <= 3x109 Msun) at z <=2.4, selected from the Chandra COSMOS-Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.
Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime
We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between the two most luminous members, and the offset between the position of the BGG and the luminosity centroid of the group. We find that the radio luminosity of the largest galaxy in the group strongly depends on its environment, such that the BGGs in dynamically young (evolving) groups are anmore » order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model that allows us to explore the various causes of these findings. We find that the fraction of radio-loud BGGs in the observed dynamically young groups is ∼2 times that of the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super massive black hole accretion rate.« less
NASA Astrophysics Data System (ADS)
Zackrisson, Erik; Calissendorff, Per; Asadi, Saghar; Nyholm, Anders
2015-09-01
If advanced extraterrestrial civilizations choose to construct vast numbers of Dyson spheres to harvest radiation energy, this could affect the characteristics of their host galaxies. Potential signatures of such astroengineering projects include reduced optical luminosity, boosted infrared luminosity, and morphological anomalies. Here, we apply a technique pioneered by Annis to search for Kardashev type III civilizations in disk galaxies, based on the predicted offset of these galaxies from the optical Tully-Fisher (TF) relation. By analyzing a sample of 1359 disk galaxies, we are able to set a conservative upper limit of ≲ 3% on the fraction of local disks subject to Dysonian astroengineering on galaxy-wide scales. However, the available data suggests that a small subset of disk galaxies actually may be underluminous with respect to the TF relation in the way expected for Kardashev type III objects. Based on the optical morphologies and infrared-to-optical luminosity ratios of such galaxies in our sample, we conclude that none of them stand out as strong Kardashev type III candidates and that their inferred properties likely have mundane explanations. This allows us to set a tentative upper limit at ≲ 0.3% on the fraction of Karashev type III disk galaxies in the local universe.
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
NASA Technical Reports Server (NTRS)
Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.;
2014-01-01
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
Accretion Disk and Dust Emission in Low-Luminosity AGN
NASA Astrophysics Data System (ADS)
Biddle, Lauren I.; Mason, Rachel; Alonso-Herrero, Almudena; Colina, Luis; Diaz, Ruben; Flohic, Helene; Gonzalez-Martin, Omaira; Ho, Luis C.; Lira, Paulina; Martins, Lucimara; McDermid, Richard; Perlman, Eric S.; Ramos Almeida, Christina; Riffel, Rogerio; Ardila, Alberto; Ruschel Dutra, Daniel; Schiavon, Ricardo; Thanjavur, Karun; Winge, Claudia
2015-01-01
Observations obtained in the near-infrared (near-IR; 0.8 - 2.5 μm) can assist our understanding of the physical and evolutionary processes of galaxies. Using a set of near-IR spectra of nearby galaxies obtained with the cross-dispersed mode of GNIRS on the Gemini North telescope, we investigate how the accretion disk and hot dust emission depend on the luminosity of the active nucleus. We recover faint AGN emission from the starlight-dominated nuclear regions of the galaxies, and measure properties such as the spectral shape and luminosity of the accretion disk and dust. The aim of this work is to establish whether the standard thin accretion disk may be truncated in low-accretion-rate AGN, as well as evaluate whether the torus of the AGN unified model still exists at low luminosities.
VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Ptak, A. F.
2002-11-01
ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).
Constraining the CO intensity mapping power spectrum at intermediate redshifts
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa
2018-04-01
We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.
NASA Astrophysics Data System (ADS)
Parejko, John Kenneth
The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.
Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew
2018-06-01
We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E.
The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, themore » recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.« less
Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters
NASA Astrophysics Data System (ADS)
Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James
2010-07-01
We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.
NASA Astrophysics Data System (ADS)
Conor, McPartland; Ebeling, Harald; Roediger, Elke
2015-08-01
We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our conclusions and allow a quantitative comparison with predictions of theoretical and numerical models of ram-pressure stripping.
NASA Astrophysics Data System (ADS)
Papovich, Casey
Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and they re-emit a large fraction of the ionization radiation from ongoing star formation. Preliminary work using archival spectra from Spitzer show that the PAH luminosity scales linearly with the SFR with smaller scatter than "gold standard" SFR tracers, such as the (dust corrected) hydrogen emission. The PAH emission becomes important because they are destroyed by the hard UV radiation in the vicinity of accreting supermassive blackholes. Therefore, this makes the PAH emission extremely powerful: it has the unique ability to measure SFRs in galaxies with active supermassive black holes, where every other SFR indicator is contaminated by emission from the supermassive black hole. This objectives for this proposal are to (1) provide a robust recalibration of the SFR from the mid-IR PAH emission features using a large sample of star-forming galaxies in the Spitzer archive; (2) demonstrate the utility of the PAHs to derive valid SFRs from JWST observations, using archival Spitzer spectroscopy for distant galaxies strongly lensed gravitationally; finally, using a large sample of galaxies with Spitzer spectroscopy spanning a large range of total luminosity and AGN activity (from pure starbursts to quasars) to (3) measure the distribution function of the luminosity of star-formation, AGN, and test how these vary with total luminosity and redshift. Theoretical models make strong predictions for this distribution function. Comparing the data to these predictions allows us to test these models directly.
GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.
2014-01-10
We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so wemore » tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M{sub V}∼−9.85{sub −0.33}{sup +0.40}, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.« less
NASA Astrophysics Data System (ADS)
Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick
1998-08-01
A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.
The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN
NASA Astrophysics Data System (ADS)
Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.
2018-05-01
We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation.
The CALYMHA survey: Lyα luminosity function and global escape fraction of Lyα photons at z = 2.23
NASA Astrophysics Data System (ADS)
Sobral, David; Matthee, Jorryt; Best, Philip; Stroe, Andra; Röttgering, Huub; Oteo, Iván; Smail, Ian; Morabito, Leah; Paulino-Afonso, Ana
2017-04-01
We present the CAlibrating LYMan-α with Hα (CALYMHA) pilot survey and new results on Lyman α (Lyα) selected galaxies at z ˜ 2. We use a custom-built Lyα narrow-band filter at the Isaac Newton Telescope, designed to provide a matched volume coverage to the z = 2.23 Hα HiZELS survey. Here, we present the first results for the COSMOS and UDS fields. Our survey currently reaches a 3σ line flux limit of ˜4 × 10-17 erg s-1 cm-2, and a Lyα luminosity limit of ˜1042.3 erg s-1. We find 188 Lyα emitters over 7.3 × 105 Mpc3, but also find significant numbers of other line-emitting sources corresponding to He II, C III] and C IV emission lines. These sources are important contaminants, and we carefully remove them, unlike most previous studies. We find that the Lyα luminosity function at z = 2.23 is very well described by a Schechter function up to LLy α ≈ 1043 erg s-1 with L^{ast }=10^{42.59^{+0.16}_{-0.08}} erg s-1, φ ^{ast }=10^{-3.09^{+0.14}_{-0.34}} Mpc-3 and α = -1.75 ± 0.25. Above LLy α ≈ 1043 erg s-1, the Lyα luminosity function becomes power-law like, driven by X-ray AGN. We find that Lyα-selected emitters have a high escape fraction of 37 ± 7 per cent, anticorrelated with Lyα luminosity and correlated with Lyα equivalent width. Lyα emitters have ubiquitous large (≈40 kpc) Lyα haloes, ˜2 times larger than their Hα extents. By directly comparing our Lyα and Hα luminosity functions, we find that the global/overall escape fraction of Lyα photons (within a 13 kpc radius) from the full population of star-forming galaxies is 5.1 ± 0.2 per cent at the peak of the star formation history. An extra 3.3 ± 0.3 per cent of Lyα photons likely still escape, but at larger radii.
Hayashida, Masaaki; Stawarz, Łukasz; Cheung, Chi C.; ...
2013-12-03
We report the discovery of γ-ray emission from the Circinus galaxy using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Circinus is a nearby (~4 Mpc) starburst with a heavily obscured Seyfert-type active nucleus, bipolar radio lobes perpendicular to the spiral disk, and kpc-scale jet-like structures. Our analysis of 0.1-100 GeV events collected during 4 yr of LAT observations reveals a significant (≃ 7.3σ) excess above the background. We find no indications of variability or spatial extension beyond the LAT point-spread function. A power-law model used to describe the 0.1-100 GeV γ-ray spectrum yields a fluxmore » of (18.8 ± 5.8) × 10 –9 photon cm –2 s –1 and photon index 2.19 ± 0.12, corresponding to an isotropic γ-ray luminosity of 3 × 10 40 erg s –1. This observed γ-ray luminosity exceeds the luminosity expected from cosmic-ray interactions in the interstellar medium and inverse Compton radiation from the radio lobes. Furthermore, the origin of the GeV excess requires further investigation.« less
Photometry of resolved galaxies. IV - Holmberg I and Holmberg II
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Danielson, G. E.
1984-01-01
Colors and magnitudes are presented for 279 resolved stars in the Holmberg I dwarf galaxy and 468 resolved stars in Holmberg II. Both systems are Magellanic type dwarf members of the M81-NGC 2403 Group, which lies at approximately 3 Mpc from the Local Group. The photometry was done in the GRI passbands using CCD detectors. Color-magnitude diagrams and luminosity functions are constructed; these are compared with results for several Local Group galaxies and with theoretical work. Holmberg I is found to have a low present star formation rate, while Holmberg II is very active at present.
FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu, E-mail: vhartwick@wisc.edu
2012-08-15
We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleusmore » (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.« less
Interpreting the Clustering of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng
2010-01-01
We analyze the angular clustering of z ~ 2.3 distant red galaxies (DRGs) measured by Quardi et al. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(θ) at θ = 10'', nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star-forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z ~ 0 estimates. Down to the completeness limit of the Quadri et al. sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.
Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity
NASA Astrophysics Data System (ADS)
Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.
2008-10-01
We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.
The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies
NASA Technical Reports Server (NTRS)
Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.
1994-01-01
We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.
AN OPTICAL AND X-RAY STUDY OF THE FOSSIL GROUP RX J1340.6+4018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes de Oliveira, Claudia L.; Cypriano, Eduardo S.; Sodre, Laerte
2009-08-15
Fossil groups are systems with one single central elliptical galaxy and an unusual lack of luminous galaxies in the inner regions. The standard explanation for the formation of these systems suggests that the lack of bright galaxies is due to galactic cannibalism. In this study, we show the results of an optical and X-ray analysis of RX J1340.6+4018, the prototype fossil group. The data indicate that RX J1340.6+4018 is similar to clusters in almost every sense (dynamical mass, X-ray luminosity, M/L, and luminosity function) except for the lack of L* galaxies. There are claims in the literature that fossil systemsmore » have a lack of small mass halos, compared to predictions based on the lambda cold dark matter scenario. The observational data gathered on this and other fossil groups so far offer no support for this idea. Analysis of the SN Ia/SN II ejecta ratio in the inner and outer regions shows a marginally significant central dominance of SN Ia material. This suggests that either the merger which originated in the central galaxy was dry or the group has been formed at early epochs, although better data are needed to confirm this result.« less
A supermassive black hole in an ultra-compact dwarf galaxy.
Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L
2014-09-18
Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew
2016-03-01
We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides, but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggest that internal processes are the main drivers of galaxy structure at low masses, with external mechanisms playing a secondary role.
The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars
2012-05-11
Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator Laboratory, Stanford University...and that they represent only ∼0.1% of the parent population. Key words: cosmology : observations – diffuse radiation – galaxies: active – galaxies: jets...is determined and discussed in Section 6. Throughout this paper, we assume a standard concordance cosmology (H0 = 71 km s−1 Mpc−1 and ΩM = 1−ΩΛ = 0.27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.
2014-02-01
The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceedsmore » that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.« less
Starbursts in interacting galaxies: Observations and models
NASA Technical Reports Server (NTRS)
Bernloehr, Konrad
1990-01-01
Starbursts have been a puzzling field of research for more than a decade. It is evident that they played a significant role in the evolution of many galaxies but still quite little is known about the starburst mechanisms. A way towards a better interpretation of the available data is the comparison with evolution models of starburst. The modelling of starbursts and the fitting of such model starbursts to observed data is discussed. The models were applied to a subset of starburst and post-starburst galaxies in a sample of 30 interacting systems. These galaxies are not ultraluminous far infrared (FIR) galaxies but rather ordinary starburst galaxies with FIR luminosities of a few 10(exp 10) to a few 10(exp 11) solar luminosities.
NASA Astrophysics Data System (ADS)
Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.
2018-06-01
We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.
Clustering in the SDSS Redshift Survey
NASA Astrophysics Data System (ADS)
Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration
2002-05-01
We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.
Using Strong Gravitational Lensing to Identify Fossil Group Progenitors
NASA Astrophysics Data System (ADS)
Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.
2018-04-01
Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z < 0.2, which leads to the question, what were these systems’ progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy that, when concluded, will meet the fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.
2011-08-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.
CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey
NASA Astrophysics Data System (ADS)
Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.
2014-09-01
We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max Planck Institute for Astronomy and the Instituto de Astrofísica de Andalucía (CSIC). Publically released data products from CALIFA are made available on the webpage http://www.caha.es/CALIFA
The KONA Survey: A Near-IR Perspective of the Circumnuclear Environment of local Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Hicks, Erin K. S.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold
2018-06-01
With the Keck OSIRIS Nearby AGN, KONA, survey we simultaneously probe the stellar, molecular gas, and ionized gas kinematics within the central 400 pc of a sample of 40 local representative AGN. KONA's spatially resolved spectra enable an unprecedented study of the feeding and feedback processes in bona- fide AGN. We present a study the nuclear K-band properties of these local Seyferts, as well as the integrated molecular hydrogen and stellar distribution and kinematic at radii varying from 25 to 200 pc. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities over 3 orders of magnitude in both K-band and X-ray luminosities, implying that the majority of the emission is non-stellar. No correlation is found between the 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicates the presence of nuclear star formation and attenuating material (gas and dust), which is found to be compact in some galaxies and in others extended. A comparison of the circumnuclear stellar and molecular hydrogen properties (flux distribution, surface brightness, and velocity dispersion) in Seyfert 1 and 2 sources will also be presented.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
2015-08-01
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan
2004-06-01
In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained independently from other observations.
NASA Astrophysics Data System (ADS)
Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer
2010-03-01
We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.
The Origin of Dwarf Ellipticals in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.
2008-02-01
We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.
Variations in Canonical Star-Forming Laws at Low Metallicity
NASA Astrophysics Data System (ADS)
Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul
2018-01-01
Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] < 8.2, I focus on two of these relations: the far-infrared/radio relation and the H-alpha/ultraviolet relation. The sample is chosen to have pre-existing far-IR and UV observations, and to span the full spread of the galaxy mass-metallicity relationship at low luminosity, so that luminosity and metallicity may be examined separately. Radio continuum observations of low metallicity dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.
Plain fundamentals of Fundamental Planes: analytics and algorithms
NASA Astrophysics Data System (ADS)
Sheth, Ravi K.; Bernardi, Mariangela
2012-05-01
Estimates of the coefficients a and b of the Fundamental Plane relation R∝σa Ib depend on whether one minimizes the scatter in the R direction, or orthogonal to the plane. We provide explicit expressions for a and b (and confidence limits) in terms of the covariances between log R, log σ and log I. Our expressions quantify the origin of the difference between the direct, inverse and orthogonal fit coefficients. They also show how to account for correlated errors, how to quantify the difference between the plane in a magnitude-limited survey and one which is volume limited, how to determine whether a scaling relation will be biased when using an apparent magnitude-limited survey, how to remove this bias and why some forms of the z≈ 0 plane appear to be less affected by selection effects, but that this does not imply that they will remain unaffected at high redshift. Finally, they show why, to a good approximation, the three vectors associated with the plane, one orthogonal to and the other two in it, can all be written as simple combinations of a and b. Essentially, this is a consequence of the fact that the distribution of surface brightness is much broader than that of velocity dispersions, and velocity dispersion and surface brightness are only weakly correlated. Why this should be so for galaxies is a fundamental open question about the physics of early-type galaxy formation. We argue that if luminosity evolution is differential, and sizes and velocity dispersions do not evolve, then this is just an accident: velocity dispersion and surface brightness must have been correlated in the past. On the other hand, if the (lack of) correlation is similar to that at the present time, then differential luminosity evolution must have been accompanied by structural evolution. A model in which the luminosities of low-luminosity galaxies evolve more rapidly than do those of higher luminosity galaxies is able to produce the observed decrease in a (by a factor of 2 at z˜ 1) while having b decrease by only about 20 per cent. In such a model, the dynamical mass-to-light ratio is a steeper function of mass at higher z. Our analysis is more generally applicable to any other correlations between three variables: e.g. the colour-magnitude-σ relation, the luminosity and velocity dispersion of a galaxy and the mass of its black hole or the relation between the X-ray luminosity, Sunyaev-Zeldovich decrement and optical richness of a cluster. Furthermore, for completeness, we show how our analysis generalizes further to correlations between more than three variables.
Galactic star formation rates gauged by stellar end-products
NASA Astrophysics Data System (ADS)
Persic, M.; Rephaeli, Y.
2007-02-01
Young galactic X-ray point sources (XPs) closely trace the ongoing star formation in galaxies. From measured XP number counts we extract the collective 2-10 keV luminosity of young XPs, L_x^yXP, which we use to gauge the current star formation rate (SFR) in galaxies. We find that, for a sample of local star-forming galaxies (i.e., normal spirals and mild starbursts), L_x^yXP correlates linearly with the SFR over three decades in luminosity. A separate, high-SFR sample of starburst ULIRGs can be used to check the calibration of the relation. Using their (presumably SF-related) total 2-10 keV luminosities we find that these sources satisfy the SFR-L_x^yXP relation, as defined by the weaker sample, and extend it to span ˜5 decades in luminosity. The SFR-L_x^yXP relation is also likely to hold for distant (z ˜ 1) Hubble Deep Field North galaxies, especially so if these high-SFR objects are similar to the (more nearby) ULIRGs. It is argued that the SFR-L_x^yXP relation provides the most adequate X-ray estimator of instantaneous SFR by the phenomena characterizing massive stars from their birth (FIR emission from placental dust clouds) through their death as compact remnants (emitting X-rays by accreting from a close donor). For local, low/intermediate-SFR galaxies, the simultaneous existence of a correlation of the instantaneous SFR with the total 2-10 keV luminosity, L_x, which traces the SFR integrated over the last ˜109 yr, suggests that during such epoch the SF in these galaxies has been proceeding at a relatively constant rate.
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel
2017-05-01
Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.
Active galactic nuclei and galaxy interactions
NASA Astrophysics Data System (ADS)
Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina
2007-03-01
We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.
Global properties of infrared bright galaxies
NASA Technical Reports Server (NTRS)
Young, Judith S.; Xie, Shuding; Kenney, Jeffrey D. P.; Rice, Walter L.
1989-01-01
Infrared flux densities of 182 galaxies, including 50 galaxies in the Virgo cluster, were analyzed using IRAS data for 12, 25, 60, and 100 microns, and the results were compared with data listed in the Point Source Catalog (PSC, 1985). In addition, IR luminosities, L(IRs), colors, and warm dust masses were derived for these galaxies and were compared with the interstellar gas masses and optical luminosities of the galaxies. It was found that, for galaxies whose optical diameter measures between 5 and 8 arcmin, the PSC flux densities are underestimated by a factor of 2 at 60 microns, and by a factor of 1.5 at 100 microns. It was also found that, for 49 galaxies, the mass of warm dust correlated well with the H2 mass, and that L(IR) correlated with L(H-alpha), demonstrating that the L(IR) measures the rate of star formation in these galaxies.
A reevaluation of the infrared-radio correlation for spiral galaxies
NASA Technical Reports Server (NTRS)
Devereux, Nicholas A.; Eales, Stephen A.
1989-01-01
The infrared radio correlation has been reexamined for a sample of 237 optically bright spiral galaxies which range from 10 to the 8th to 10 to the 11th solar luminosities in far-infrared luminosity. The slope of the correlation is not unity. A simple model in which dust heating by both star formation and the interstellar radiation field contribute to the far-infrared luminosity can account for the nonunity slope. The model differs from previous two component models, however, in that the relative contribution of the two components is independent of far-infrared color temperature, but is dependent on the far-infrared luminosity.
Variation of z-height of the molecular clouds on the Galactic Plane
NASA Astrophysics Data System (ADS)
Lee, Y.; Stark, A. A.
2002-12-01
Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.
Radio and infrared emission from Markarian starburst galaxies
NASA Technical Reports Server (NTRS)
Stine, Peter C.
1992-01-01
Radio and infrared emission were compared for a sample of 58 Markarian starburst galaxies, chosen to cover a wide range of 60-micron luminosity density. New radio observations were from the VLA at 6 and 20 cm in the B and A configurations. IRAS data were reanalyzed for 25 of the starbursts that were previously undetected at either 25 or 100 microns. The correlation between the global radio and IR emission for the starbursts in the sample is strongest at 25 and 60 microns, wavelengths in which the warm dust dominates. The radio spectral index steepens away from the center. This indicates that nonthermal emission leaks out of the starburst region. The change in the spectral index implies that while nonthermal sources dominate in the entire region, the bulk of the interior emission at 6 cm is thermal. The radio spectral index does not appear to vary as a function of the infrared luminosity or the infrared colors, which indicates that the slope of the initial mass function does not appear to be a function of either the mass or temperature of the starburst.
NASA Astrophysics Data System (ADS)
Dole, H.
2000-10-01
This thesis deals with the analysis of the FIRBACK deep survey performed in the far infrared at 170 microns with the Infrared Space Observatory, whose aim is the study of the galaxies contributing to the Cosmic Infrared Background, and with the modellisation of galaxy evolution in the mid-infrared to submillimeter range. The FIRBACK survey covers 3.89 square degrees in 3 high galactic latitude and low foreground emission fields (2 of which are in the northern sky). I first present the techniques of reduction, processing and calibration of the ISOPHOT cosmological data. I show that there is a good agreement between PHOT and DIRBE on extended emission, thanks to the derivation of the PHOT footprint. Final maps are created, and the survey is confusion limited at (sigma = 45 mJy). I present then the techniques of source extraction and the simulations for photometry needed to build the final catalog of 106 sources between 180 mJy (4 sigma) and 2.4 Jy. The complementary catalog is made of 90 sources between 135 and 180 mJy. Galaxy counts show a large excess with respect to local counts or models (with and without evolution), only compatible with strong evolution scenarios. The Cosmic Infrared Background (CIB) is resolved at 4% at 170 microns. The identifications of the sources at other wavelengths suggest that most of the sources are local, but a non negligible part lies above redshift 1. I have developped a phenomenological model of galaxy evolution in order to constrain galaxy evolution in the infrared and to have a better understanding of what the FIRBACK sources are. Using the local Luminosity Function (LF), and template spectra of starburst galaxies, it is possible to constrain the evolution of the LF using all the available data: deep source counts at 15, 170 and 850 microns and the CIB spectrum. I show that galaxy evolution is dominated by a high infrared luminosity population, peaking at 2.0 1011 solar luminosities. Redshift distributions are in agreement with available observations. Predictions are possible with our model for the forthcoming space missions such as SIRTF, Planck and FIRST.
NGST: Exploring the Fossil Record of Galaxy Formation
NASA Technical Reports Server (NTRS)
Rich, R. Michael
1998-01-01
During this grant period the investigator has accomplished the following: developed and researched the science case for high resolution optical imaging with NGST (Next Generation Space Telescope); presented to the ASWG (Ad-Hoc Science Working Group) on the use of NGST to image and measure the proper motions of white dwarf stars that could account for the MACHO events toward the LMC (Large Magellanic Cloud); wrote proposals for the Design Reference Mission. Three proposals have been written on the following topics: Measuring the faint end of the white dwarf luminosity function to get an independent measure of the age of the oldest stars, measurement of the stellar luminosity function over the full range of age, abundance, and population type, and deep imaging of Local Group halos to measure the relative ages of the oldest stars in the Milky Way and other galaxies; he has introduced simulations of crowded field stellar photometry on a hypothetical population in the M31 halo. Using a physically correct luminosity function and a surface brightness of 24.5 mag/sq. arcsec, NGST imaging in 10 hours easily measures the turnoff and reaches 3 mags down the main sequence in the halo of M31; and has delivered talks at the NGST workshop in Liege, and at the meeting in Paris entitled "Connecting the Distant Universe with the Local Fossil Record".
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
Discovery of Diffuse Dwarf Galaxy Candidates around M101
NASA Astrophysics Data System (ADS)
Bennet, P.; Sand, D. J.; Crnojević, D.; Spekkens, K.; Zaritsky, D.; Karunakaran, A.
2017-11-01
We have conducted a search of a 9 deg2 region of the Canada-France-Hawaii-Telescope Legacy Survey around the Milky Way analog M101 (D ˜ 7 Mpc), in order to look for previously unknown low-surface-brightness galaxies. This search has uncovered 38 new low-surface-brightness dwarf candidates, and confirmed 11 previously reported galaxies, all with central surface brightness μ(g, 0) > 23 mag arcsec-2, potentially extending the satellite luminosity function for the M101 group by ˜1.2 mag. The search was conducted using an algorithm that nearly automates the detection of diffuse dwarf galaxies. The candidates’ small sizes and low surface brightnesses mean that the faintest of these objects would likely be missed by traditional visual or computer detection techniques. The dwarf galaxy candidates span a range of -7.1 ≥ M g ≥ -10.2 and half-light radii of 118-540 pc at the distance of M101, and they are well fit by simple Sérsic surface brightness profiles. These properties are consistent with dwarfs in the Local Group, and to match the Local Group luminosity function, ˜10-20 of these candidates should be satellites of M101. Association with a massive host is supported by the lack of detected star formation and the overdensity of candidates around M101 compared to the field. The spatial distribution of the dwarf candidates is highly asymmetric, and concentrated to the northeast of M101, therefore distance measurements will be required to determine if these are genuine members of the M101 group.
AGN Clustering in the BAT Sample
NASA Astrophysics Data System (ADS)
Powell, Meredith; Cappelluti, Nico; Urry, Meg; Koss, Michael; BASS Team
2018-01-01
We characterize the environments of local growing supermassive black holes by measuring the clustering of AGN in the Swift-BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01
NASA Astrophysics Data System (ADS)
Villforth, Carolin; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.
2017-06-01
Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ˜ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.
NASA Astrophysics Data System (ADS)
Villforth, C.; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.
2017-04-01
Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ˜ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
VizieR Online Data Catalog: Chandra ACIS survey in nearby galaxies. II (Wang+, 2016)
NASA Astrophysics Data System (ADS)
Wang, S.; Qiu, Y.; Liu, J.; Bregman, J. N.
2018-03-01
Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α{\\sim}1.50{\\pm}0.07) to elliptical ({\\sim}1.21{\\pm}0.02), to spirals ({\\sim}0.80{\\pm}0.02), to peculiars ({\\sim}0.55{\\pm}0.30), and to irregulars ({\\sim}0.26{\\pm}0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D25 and 2D25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24{\\pm}0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4x1040erg/s, and this break may suggest a mild boundary between the stellar black hole population possibly including 30M{\\sun} black holes with super-Eddington radiation and intermediate mass black holes. (1 data file).
NASA Astrophysics Data System (ADS)
Malkan, Matthew A.; Cohen, Daniel P.; Maruyama, Miyoko; Kashikawa, Nobunari; Ly, Chun; Ishikawa, Shogo; Shimasaku, Kazuhiro; Hayashi, Masao; Motohara, Kentaro
2017-11-01
We combined deep U-band and optical/near-infrared imaging, in order to select Lyman Break Galaxies (LBGs) at z˜ 3 using U - V and V-{R}c colors in the Subaru Deep Field. The resulting sample of 5161 LBGs gives a UV luminosity function (LF) down to {M}{UV}=-18, with a steep faint-end slope of α =-1.78+/- 0.05. We analyze UV-to-NIR energy distributions (SEDs) from optical photometry and photometry on IR median-stacked images. In the stacks, we find a systematic background depression centered on the LBGs. This results from the difficulty of finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies, so we corrected for this deficit. Best-fit stellar population models for the LBG SEDs indicate stellar masses and star formation rates of {{log}}10({M}* /{M}⊙ )≃ 10 and ≃ 50 M ⊙ yr-1 at < {i}{AB}{\\prime }> =24, down to {{log}}10({M}* /{M}⊙ )≃ 8 and ≃ 3 {M}⊙ yr-1 at < {i}{AB}{\\prime }> =27. The faint LBGs show a ˜1 mag excess over the stellar continuum in K-band. We interpret this excess flux as redshifted [O III]λ λ {4959,5007} lines. The observed excesses imply equivalent widths that increase with decreasing mass, reaching {{EW}}0([{{O}} {{iii}}]4959,5007+{{H}}β )≳ 1500 Å (rest-frame). Such strong [O III] emission is seen only in a miniscule fraction of local emission-line galaxies, but is probably universal in the faint galaxies that reionized the universe. Our halo occupation distribution analysis of the angular correlation function gives a halo mass of {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.29+/- 0.12 for the full sample of LBGs, and {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.49+/- 0.1 for the brightest half of the sample.
The ROSAT Brightest Cluster Sample - III. Optical spectra of the central cluster galaxies
NASA Astrophysics Data System (ADS)
Crawford, C. S.; Allen, S. W.; Ebeling, H.; Edge, A. C.; Fabian, A. C.
1999-07-01
We present new spectra of dominant galaxies in X-ray-selected clusters of galaxies, which combine with our previously published spectra to form a sample of 256 dominant galaxies in 215 clusters. 177 of the clusters are members of the ROSAT Brightest Cluster Sample (BCS; Ebeling et al.), and 17 have no previous measured redshift. This is the first paper in a series correlating the properties of brightest cluster galaxies and their host clusters in the radio, optical and X-ray wavebands. 27 per cent of the central dominant galaxies have emission-line spectra, all but five with line intensity ratios typical of cooling flow nebulae. A further 6 per cent show only [N ii]lambdalambda6548,6584 with Hα in absorption. We find no evidence for an increase in the frequency of line emission with X-ray luminosity. Purely X-ray-selected clusters at low redshift have a higher probability of containing line emission. The projected separation between the optical position of the dominant galaxy and its host cluster X-ray centroid is less for the line-emitting galaxies than for those without line emission, consistent with a closer association of the central galaxy and the gravitational centre in cooling flow clusters. The more Hα-luminous galaxies have larger emission-line regions and show a higher ratio of Balmer to forbidden line emission, although there is a continuous trend of ionization behaviour across four decades in Hα luminosity. Galaxies with the more luminous line emission [L(Hα)> 10^41ergs^-1] show a significantly bluer continuum, whereas lower luminosity and [N ii]-only line emitters have continua that differ little from those of non-line-emitting dominant galaxies. Values of the Balmer decrement in the more luminous systems commonly imply intrinsic reddening of E(B-V)~0.3 and, when this is corrected for, the excess blue light can be characterized by a population of massive young stars. Several of the galaxies require a large population of O stars, which also provide sufficient photoionization to produce the observed Hα luminosity. The large number of lower mass stars relative to the O-star population suggests that this anomalous population is caused by a series of starbursts in the central galaxy. The lower Hα-luminosity systems show a higher ionization state and few massive stars, requiring instead the introduction of a harder source of photoionization, such as turbulent mixing layers, or low-level nuclear activity. The line emission from the systems showing only [N ii] is very similar to low-level LINER activity commonly found in many normal elliptical galaxies.
Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys
Lin, Henry W.; McDonald, Michael; Benson, Bradford; ...
2015-03-18
Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the Southmore » Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees« less
NASA Astrophysics Data System (ADS)
Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan
2017-12-01
We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.
The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3
NASA Astrophysics Data System (ADS)
Costa-Duarte, M. V.; Viola, M.; Molino, A.; Kuijken, K.; , L. Sodré, Jr.; Bilicki, M.; Brouwer, M. M.; Buddelmeijer, H.; Grado, A.; de Jong, J. T. A.; Napolitano, N.; Puddu, E.; Radovich, M.; Vakili, M.
2018-04-01
We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions (PDFs) of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centers when compared to blue galaxy ones. In addition, distinct group center definitions are used to show that our results are insensitive to center definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Yoshiki; Kashikawa, Nobunari; Imanishi, Masatoshi
We report the discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. This is the initial result from the Subaru High- z Exploration of Low-Luminosity Quasars project, which exploits the exquisite multiband imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg{sup 2} of the survey footprint. The success rate of our photometric selectionmore » is quite high, approaching 100% at the brighter magnitudes (z {sub AB} < 23.5 mag). Our selection also recovered all the known high- z quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-break galaxies. The remaining three objects have weak continua and very strong and narrow Ly α lines, which may be excited by ultraviolet light from both young stars and quasars. These results indicate that we are starting to see the steep rise of the luminosity function of z ≥ 6 galaxies, compared with that of quasars, at magnitudes fainter than M {sub 1450} ∼ −22 mag or z {sub AB} ∼ 24 mag. Follow-up studies of the discovered objects as well as further survey observations are ongoing.« less
NASA Astrophysics Data System (ADS)
Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Niida, Mana; Toba, Yoshiki; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Kawaguchi, Toshihiro; Kikuta, Satoshi; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Nishizawa, Atsushi J.; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Utsumi, Yousuke
2016-09-01
We report the discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. This is the initial result from the Subaru High-z Exploration of Low-Luminosity Quasars project, which exploits the exquisite multiband imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg2 of the survey footprint. The success rate of our photometric selection is quite high, approaching 100% at the brighter magnitudes (z AB < 23.5 mag). Our selection also recovered all the known high-z quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-break galaxies. The remaining three objects have weak continua and very strong and narrow Lyα lines, which may be excited by ultraviolet light from both young stars and quasars. These results indicate that we are starting to see the steep rise of the luminosity function of z ≥ 6 galaxies, compared with that of quasars, at magnitudes fainter than M 1450 ˜ -22 mag or z AB ˜ 24 mag. Follow-up studies of the discovered objects as well as further survey observations are ongoing.
Morphological and Star Formation Evolution to z = 1
NASA Astrophysics Data System (ADS)
Hammer, F.
The decrease, since z = 1, of the rest-frame UV luminosity density is related to global changes in morphology, color and emission lines properties of galaxies. This is apparently followed by a similar decrease of the rest-frame IR luminosity density. I discuss the relative contribution from the different galaxy morphological types to the observed evolution. The main contributors are compact galaxies observed in large number at optical wavelengths, and the sparse population of extincted & powerful starbursts observed by ISO. This latter population is made of large and massive galaxies mostly found in interacting systems, some of which could be leading to the formation of massive ellipticals at z < 1.
THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinis, S.; Gezari, S.; Kumar, S.
2016-07-20
We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less
Hα Imaging of Nearby Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.
2016-05-01
We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10-15 erg cm-2 s-1 arcsec-2, and corrected these images for [N II] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100-1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H II region emission. Only the most luminous AGNs (log(L Hα /erg s-1) > 41.5) would still be identified as such at z ˜ 0.3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovill, Mia S.; Ricotti, Massimo, E-mail: msbovill@astro.umd.edu
We use a new set of cold dark matter simulations of the local universe to investigate the distribution of fossils of primordial dwarf galaxies within and around the Milky Way. Throughout, we build upon previous results showing agreement between the observed stellar properties of a subset of the ultra-faint dwarfs and our simulated fossils. Here, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity functions consistent with observations. In our model, we predict {approx}300 luminous satellites orbiting the Milky Way, 50%-70% of which are well-preserved fossils. Within the Milky Way virial radius, the majority ofmore » these fossils have luminosities L{sub V} < 10{sup 6} L{sub sun}. Despite our multidimensional agreement with observations at low masses and luminosities, the primordial model produces an overabundance of bright dwarf satellites (L{sub V} > 10{sup 4} L{sub sun}) with respect to observations where observations are nearly complete. The 'bright satellite problem' is most evident in the outer parts of the Milky Way. We estimate that, although relatively bright, the primordial stellar populations are very diffuse, producing a population with surface brightnesses below surveys' detection limits, and are easily stripped by tidal forces. Although we cannot yet present unmistakable evidence for the existence of the fossils of first galaxies in the Local Group, the results of our studies suggest observational strategies that may demonstrate their existence: (1) the detection of 'ghost halos' of primordial stars around isolated dwarfs would prove that stars formed in minihalos (M < 10{sup 8} M{sub sun}) before reionization and strongly suggest that at least a fraction of the ultra-faint dwarfs are fossils of the first galaxies; and (2) the existence of a yet unknown population of {approx}150 Milky Way ultra-faints with half-light radii r{sub hl} {approx} 100-1000 pc and luminosities L{sub V} < 10{sup 4} L{sub sun}, detectable by future deep surveys. These undetected dwarfs would have the mass-to-light ratios, stellar velocity dispersions, and metallicities predicted in this work.« less
Post-AGB Stars in Nearby Galaxies as Calibrators for HST
NASA Technical Reports Server (NTRS)
Bond, Howard E.
2003-01-01
This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as elliptical galaxies, as well as distances to spirals using PAGB stars in their halos. Moreover, the method is entirely independent of Cepheids. and thus provides a direct test of the Cepheid distance scale. The program will also provide information on the evolutionary lifetimes of PAGB stars.
Hard X-Ray View of HCG 16 (Arp 318)
NASA Astrophysics Data System (ADS)
Oda, Saeko; Ueda, Yoshihiro; Tanimoto, Atsushi; Ricci, Claudio
2018-03-01
We report the hard X-ray (3–50 keV) view of the compact group HCG 16 (Arp 318) observed with the Nuclear Spectroscopic Telescope Array (NuSTAR). NGC 838 and NGC 839 are undetected at energies above 8 keV, showing no evidence of heavily obscured active galactic nuclei (AGNs). This confirms that these are starburst-dominant galaxies as previously suggested. We perform a comprehensive broadband (0.3–50 keV) X-ray spectral analysis of the interacting galaxies NGC 833 and NGC 835, using data of NuSTAR, Chandra, and XMM-Newton observed on multiple epochs from 2000 to 2015. NuSTAR detects the transmitted continua of low-luminosity active galactic nuclei (LLAGNs) in NGC 833 and NGC 835 with line-of-sight column densities of ≈3 × 1023 cm‑2 and intrinsic 2–10 keV luminosities of ≈3 × 1041 erg s‑1. The iron-Kα to hard X-ray luminosity ratios of NGC 833 and NGC 835 suggest that their tori are moderately developed, which may have been triggered by the galaxy interactions. We find that NGC 835 underwent long-term variability in both intrinsic luminosity (by a factor of 5) and absorption (by ΔN H ≈ 2 × 1023 cm‑2). We discuss the relation between the X-ray and total infrared luminosities in local LLAGNs hosted by spiral galaxies. The large diversity in their ratios is consistent with the general idea that the mass accretion process in the nucleus and the star-forming activity in the disk are not strongly coupled, regardless of the galaxy environment.
NASA Astrophysics Data System (ADS)
Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team
2018-01-01
‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11
Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr
2017-04-20
We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagrammore » dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.« less
A new method for finding and characterizing galaxy groups via low-frequency radio surveys
NASA Astrophysics Data System (ADS)
Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.
2017-09-01
We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ˜2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.
NASA Astrophysics Data System (ADS)
Wang, L.; Norberg, P.; Gunawardhana, M. L. P.; Heinis, S.; Baldry, I. K.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Cooray, A.; da Cunha, E.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Grootes, M. W.; Holwerda, B. W.; Hopkins, A. M.; Ibar, E.; Ivison, R.; Lacey, C.; Lara-Lopez, M. A.; Loveday, J.; Maddox, S. J.; Michałowski, M. J.; Oteo, I.; Owers, M. S.; Popescu, C. C.; Smith, D. J. B.; Taylor, E. N.; Tuffs, R. J.; van der Werf, P.
2016-09-01
We compare common star formation rate (SFR) indicators in the local Universe in the Galaxy and Mass Assembly (GAMA) equatorial fields (˜160 deg2), using ultraviolet (UV) photometry from GALEX, far-infrared and sub-millimetre (sub-mm) photometry from Herschel Astrophysical Terahertz Large Area Survey, and Hα spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift
Galaxy luminosity profiles of SARS clusters
NASA Astrophysics Data System (ADS)
Coenda, V.; Donzelli, C.; Muriel, H.; Quintana, H.; Infante, L.
We have analyzed CCD images in the R filter of 14 Abell clusters of the SARS survey, with cz<40000 km/s. We have obtained the luminosity profiles of 507 galaxies and we have studied several relations between the photometric and structural parameters. In the present contributed paper we analyze the following relations: the Kormendy relation and the correlations among the Sérsic parameters.
SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark
2010-07-01
We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clustersmore » (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.« less
HerMES: The Far-infrared Emission from Dust-obscured Galaxies
NASA Astrophysics Data System (ADS)
Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A.; Assef, R. J.; Bock, J.; Casey, C. M.; Conley, A.; Farrah, D.; Ibar, E.; Kartaltepe, J.; Magdis, G.; Marchetti, L.; Oliver, S. J.; Pérez-Fournon, I.; Riechers, D.; Rigopoulou, D.; Roseboom, I. G.; Schulz, B.; Scott, Douglas; Symeonidis, M.; Vaccari, M.; Viero, M.; Zemcov, M.
2013-09-01
Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ~ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have langzrang = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r + - [24] >= 7.5 (AB mag) and S 24 >= 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (>=3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012 L ⊙ and (0.77 ± 0.08) × 1012 L ⊙, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 >= 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 >= 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ~ 2.
METALLICITY EVOLUTION OF THE SIX MOST LUMINOUS M31 DWARF SATELLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Nhung; Geha, Marla; Tollerud, Erik J.
We present global metallicity properties, metallicity distribution functions (MDFs), and radial metallicity profiles for the six most luminous M31 dwarf galaxy satellites: M32, NGC 205, NGC 185, NGC 147, Andromeda VII, and Andromeda II. The results presented are the first spectroscopic MDFs for dwarf systems surrounding a host galaxy other than the Milky Way (MW). Our sample consists of individual metallicity measurements for 1243 red giant branch member stars spread across these six systems. We determine metallicities based on the strength of the Ca II triplet lines using the empirical calibration of Carrera et al., which is calibrated over the metallicity range –4 < [Fe/H] <+0.5. We findmore » that these M31 satellites lie on the same luminosity-metallicity relationship as the MW dwarf satellites. We do not find a trend between the internal metallicity spread and galaxy luminosity, contrary to previous studies. The MDF widths of And II and And VII are similar to the MW dwarf spheroidal (dSph) satellites of comparable luminosity; however, our four brightest M31 dwarf satellites are more luminous than any of the MW dSphs and have broader MDFs. The MDFs of our six M31 dwarf satellites are consistent with the leaky box model of chemical evolution, although our metallicity errors allow a wide range of evolution models. We find a significant radial gradient in metallicity in only two of our six systems, NGC 185 and Andromeda II, and flat radial metallicity gradients in the rest of our sample with no observed correlation between rotational support and radial metallicity gradients. Although the average properties and radial trends of the M31 dwarf galaxies agree with their MW counterparts at similar luminosity, the detailed MDFs are different, particularly at the metal-rich end.« less
X-raying supernova remnants in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Maggi, P.; Hirschi, R.; Haberl, F.; Vasilopoulos, G.; Pietsch, W.; Greiner, J.; Kavanagh, J. P.; Sasaki, M.; Bozzetto, M. L.; Filipovic, M. D.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.
2016-06-01
The Magellanic Clouds (MCs) offer an ideal laboratory for the study of the SNR population in star-forming galaxies, since they are relatively nearby and free of large absorption. Both the LMC and SMC have been targeted by large XMM-Newton surveys, which, combined with archival observations, provide the best dataset to systematically study the X-ray emission of their numerous SNRs (˜ 60 in the LMC, ˜ 20 in the SMC). In this talk, I will highlight the results from this homogeneous analysis, which allows for the first time meaningful comparisons of temperature, chemical composition, and luminosity of SNRs in the MCs. The SNRs can be used as probes of their host galaxies: We measured chemical abundances in the hot phase of the LMC, and constrained the ratio of core-collapse to type Ia SN rates. The X-ray luminosity function of SNRs in the MCs are compared to those in other Local Group galaxies with different metallicities and star formation properties. Finally, we present a new population of evolved type Ia SNRs that was discovered recently in the MCs via their iron-rich X-ray emission.
VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)
NASA Astrophysics Data System (ADS)
Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.
2017-11-01
We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Nagao, Tohru; Wang, Wei-Hao; Matsuhara, Hideo; Akiyama, Masayuki; Goto, Tomotsugu; Koyama, Yusei; Ohyama, Youich; Yamamura, Issei
2017-05-01
We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, {(I-[22])}{AB}> 7.0. Combining an IR-bright DOG sample with the flux at 22 μm > 3.8 mJy discovered by Toba & Nagao with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07< z< 1.0) that were obtained from the literature, we estimated their IR luminosity, star formation rate (SFR), and stellar mass based on the spectral energy distribution fitting. We found that (1) the WISE 22 μm luminosity at the observed frame is a good indicator of IR luminosity for IR-bright DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies.
Interpreting the evolution of galaxy colours from z = 8 to 5
NASA Astrophysics Data System (ADS)
Mancini, Mattia; Schneider, Raffaella; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta
2016-11-01
We attempt to interpret existing data on the evolution of the UV luminosity function and UV colours, β, of galaxies at 5 ≤ z ≤ 8, to improve our understanding of their dust content and interstellar medium properties. To this aim, we post-process the results of a cosmological hydrodynamical simulation with a chemical evolution model, which includes dust formation by supernovae and intermediate-mass stars, dust destruction in supernova shocks, and grain growth by accretion of gas-phase elements in dense gas. We find that observations require a steep, Small Magellanic Cloud-like extinction curve and a clumpy dust distribution, where stellar populations younger than 15 Myr are still embedded in their dusty natal clouds. Investigating the scatter in the colour distribution and stellar mass, we find that the observed trends can be explained by the presence of two populations: younger, less massive galaxies where dust enrichment is mainly due to stellar sources, and massive, more chemically evolved ones, where efficient grain growth provides the dominant contribution to the total dust mass. Computing the IR-excess-UV colour relation, we find that all but the dustiest model galaxies follow a relation shallower than the Meurer et al. one, usually adopted to correct the observed UV luminosities of high-z galaxies for the effects of dust extinction. As a result, their total star formation rates might have been overestimated. Our study illustrates the importance to incorporate a proper treatment of dust in simulations of high-z galaxies, and that massive, dusty, UV-faint galaxies might have already appeared at z ≲ 7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloba, Elisa; Sand, David; Crnojević, Denija
2016-10-10
We use Keck/DEIMOS spectroscopy to measure the first velocity and metallicity of a dwarf spheroidal (dSph) galaxy beyond the Local Group using resolved stars. Our target, d0944+71, is a faint dSph found in the halo of the massive spiral galaxy M81 by Chiboucas et al. We coadd the spectra of 27 individual stars and measure a heliocentric radial velocity of −38 ± 10 km s{sup −1}. This velocity is consistent with d0944+71 being gravitationally bound to M81. We coadd the spectra of the 23 stars that are consistent with being red giant branch stars and measure an overall metallicity ofmore » [Fe/H] = −1.3 ± 0.3 based on the calcium triplet lines. This metallicity is consistent with d0944+71 following the metallicity−luminosity relation for Local Group dSphs. We investigate several potential sources of observational bias but find that our sample of targeted stars is representative of the metallicity distribution function of d0944+71 and any stellar contamination due to seeing effects is negligible. The low ellipticity of the galaxy and its position in the metallicity−luminosity relation suggest that d0944+71 has not been affected by strong tidal stripping.« less
Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Madore, B.; Sakai, S.
1999-01-01
We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zhen-Ya; Jiang, Chunyan; Wang, Junxian
2017-06-20
We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ∼ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg{sup 2} COSMOS field. We have identified 23 Ly α Emitter candidates at z = 6.9 in the central 2-deg{sup 2} region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF)more » can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L {sub Lyα∼} 10{sup 43.4±0.2} erg s{sup −1}). The number density at L {sub Ly} {sub α} ∼ 10{sup 43.4±0.2} erg s{sup −1} is little changed from z = 6.6, while at fainter L {sub Lyα} it is substantially reduced. Overall, we see a fourfold reduction in Ly α luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ∼3 suppression of Ly α by radiative transfer through the z ∼ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x {sub Hi} ∼ 0.4–0.6 (assuming Ly α velocity offsets of 100–200 km s{sup −1}). The changing shape of the Ly α LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ∼ 7.« less
NASA Astrophysics Data System (ADS)
Ballantyne, David R.
2017-01-01
Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z~5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z≈0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z≈0.9 quasars may be commonly hosted by haloes with Mh ~ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Tanvir, N. R.; Hjorth, J.
2016-01-20
We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated withmore » low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.« less
NASA Technical Reports Server (NTRS)
Devereux, Nick A.
1994-01-01
The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.
Tidal interactions and infrared-bright QSOs
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Neff, S. G.
1988-01-01
Deep direct images of five IRAS-selected QSOs with similar IR luminosities and spectral indices have been analyzed. The present objects possess IR luminosities similar to those of the IRAS flux-lined sample of ultraluminous galaxies, but have IR spectral indices similar to those of normal QSOs. Four of the objects are in strong tidal interaction and have blue host galaxies and reddened nuclei. It is suggested that these objects are QSOs and AGN in an intermediate stage of their activity, which lies between that of ultraluminous galaxies and optically selected QSOs.
NASA Astrophysics Data System (ADS)
Qin, Yuxiang; Mutch, Simon J.; Poole, Gregory B.; Liu, Chuanwu; Angel, Paul W.; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-12-01
Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the MERAXES semi-analytic model. The model is calibrated against the observed stellar mass function at z ∼ 0.6-7, the black hole mass function at z ≲ 0.5, the global ionizing emissivity at z ∼ 2-5 and the Thomson scattering optical depth. The model reproduces a Magorrian relation in agreement with observations at z < 0.5 and predicts a decreasing black hole mass towards higher redshifts at fixed total stellar mass. With the implementation of an opening angle of 80 deg for quasar radiation, corresponding to an observable fraction of ∼23.4 per cent due to obscuration by dust, the model is able to reproduce the observed quasar luminosity function at z ∼ 0.6-6. The stellar light from galaxies hosting faint active galactic nucleus (AGN) contributes a significant or dominant fraction of the UV flux. At high redshift, the model is consistent with the bright end quasar luminosity function and suggests that the recent faint z ∼ 4 AGN sample compiled by Giallongo et al. (2015) includes a significant fraction of stellar light. Direct application of this luminosity function to the calculation of AGN ionizing emissivity consequently overestimates the number of ionizing photons produced by quasars by a factor of 3 at z ∼ 6. We conclude that quasars are unlikely to make a significant contribution to reionization.
Detection of H I, OH, CO, and optical imaging of the distant galaxy IRAS 12112 + 0305
NASA Technical Reports Server (NTRS)
Mirabel, I. F.; Kazes, I.; Sanders, D. B.
1988-01-01
The detection of H I absorption and OH and CO emission from the galaxy IRAS 12112 + 0305, which is receding from the sun at about 7 percent of the speed of light is reported. This galaxy, which appears to be an ongoing merger, radiates about 2 x 10 to the 12th solar luminosities in the infrared. The H I, OH, and CO spectra are indicative of large turbulent motions. From the millimeter wave CO observations, a total mass of molecular gas of 4 x 10 to the 10th solar masses is inferred. The OH emission in the 1667 MHz line is the most luminous extragalactic OH maser reported so far, with an isotropic luminosity of 1800 solar luminosities.
Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies
NASA Technical Reports Server (NTRS)
Collison, Alan J.; Watson, William D.
1995-01-01
In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.
NASA Astrophysics Data System (ADS)
Boissier, S.; Buat, V.; Ilbert, O.
2010-11-01
Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.
DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groves, Brent A.; Schinnerer, Eva; Walter, Fabian
2015-01-20
We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we findmore » that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.« less
NASA Astrophysics Data System (ADS)
Kelvin, Lee Steven
This thesis explores the relation between galaxy structure, morphology and stellar mass. In the first part I present single-Sersic two-dimensional model fits to 167,600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey (UKIDSS LAS) imaging data available via the Galaxy and Mass Assembly (GAMA) data base. In order to facilitate this study, we developed Structural Investigation of Galaxies via Model Analysis (SIGMA): an automated wrapper around several contemporary astronomy software packages. We confirm that variations in global structural measurements with wavelength arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxies. In the second part of this thesis we establish a volume-limited sample of 3,845 galaxies in the local Universe and visually classify these galaxies according to their morphological Hubble type. We find that single-Sersic photometry accurately reproduces the morphology luminosity functions predicted in the literature. We employ multi-component Sersic profiling to provide bulge-disk decompositions for this sample, allowing for the luminosity and stellar mass to be divided between the key structural components: spheroids and disks. Grouping the stellar mass in these structures by the evolutionary mechanisms that formed them, we find that hot-mode collapse, merger or otherwise turbulent mechanisms account for ~46% of the total stellar mass budget, cold-mode gas accretion and splashback mechanisms account for ~48% of the total stellar mass budget and secular evolutionary processes for ~6.5% of the total stellar mass budget in the local (z<0.06) Universe.
Unveiling Quasar Fueling through a Public Snapshot Survey of Quasar Host Environments
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Feedback from quasars is thought to play a vital role in galaxy evolution, but the relationship between quasars and the halo gas that fuels star-formation on long timescales is not well constrained. Recent observations of the content of quasar host halos have found unusually high covering fractions of cool gas observed in absorption in background quasar spectra. The cool halo gas is strongly correlated with quasar luminosity and exceeds what is observed around non-AGN galaxies by factor of two. Together, these observations provide compelling evidence for a connection between AGN activity and halo gas on 20-200 kpc scales. The high covering fraction and correlation with quasar luminosity may be the result of debris from the galaxy mergers thought to trigger luminous quasars or the halo gas of satellites in gas-rich groups amenable to quasar feeding. If this is the case, then the cool gas observed in absorption will be correlated with signatures of recent galaxy interactions in the quasar host or satellites close to the background sightline. Here, we propose a snapshot imaging survey of z<1 quasars with available constraints on halo gas content to examine a possible correlation between cool halo gas and galaxy interaction signatures. Galaxy morphologies and faint tidal features at z 1 can only be observed with the high resolution imaging capabilities of HST due to the substantial flux in extended wings of AO point-spread functions. The images will be of significant archival value for studying the galaxy environments of quasars and for constraining gas flow models with multi-sightline halo gas studies of galaxies at lower redshift than the foreground & background quasars.
The origin of the diffuse galactic IR/submm emission: Revisited after IRAS
NASA Technical Reports Server (NTRS)
Cox, P.; Mezger, P. G.
1987-01-01
Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.
NASA Astrophysics Data System (ADS)
Shipley, Heath V.
2016-01-01
For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with those available from Paα. This new SFR indicator will be useful for probing the peak of the SFR density in the universe (1 < z < 3) and for studying the co-evolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.