Sample records for galaxy m51 ngc

  1. Observational and research progress of the M51 galaxy

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Williams, Peter

    2006-12-01

    The M51 system consists of a grand-design spiral galaxy and a relatively large close companion, NGC 5195. Because M51 (=NGC 5194) is nearby and nearly face-on to us, its structure can be observed in great detail and with a minimum of obscuration from dust. As a result, this galaxy has been thoroughly observed at wavelengths from radio to X-ray. Due to the rich archive of observational data, its structure, dynamical process, star formation mechanism and some other important properties have been analyzed by many authors. In the center of M51, there is a Seyfert 2 or LINER type AGN which radius is 100 pc. The mass within 70 pc in the center is (4~7)×106 Msun, this indicates there may be a black hole there. The disk of M51 can be divided into two parts, the inner disk around the nucleus cuts off at 1350 pc, from this radius to 10 kpc is the outer disk. In contrast, the companion, NGC 5195 is small and faint, and heavy dust from the arm of M51 in the foreground obscures its optical radiation. M51 has many interesting properties different from other normal galaxies, such as the wide open spiral arm, the long HI tidal tail and the huge distorted gas ring around the outer disk, these may be related to the interaction effects. Actually, the dynamical modeling history of M51 is long, in the early stage of astronomical numerical simulation, Toomre & Toomre have given a simple simulation of M51 to study its tidal effect. In 1990, the discovery of M51's long HI tidal tail made the astrophysicists shift the preferred collision time of M51 and NGC 5195 to somewhat later times in order to give the tail more time to develop. More recently, Salo and Laurikainen suggested that a multiple-passage model might be more appropriate for the system, such a scenario appears to do a better job of explaining NGC 5194's HI velocity field, but the predicted structure of the HI tidal tail is more complex than its observation. In this paper, the authers review literature of multi

  2. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies basedmore » on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.« less

  3. Starlight morphology of the interacting galaxy NGC 5195

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gehrz, R. D.; Grasdalen, G. L.; Hackwell, John A.; Dietz, R. D.; Friedman, Scott D.

    1990-10-01

    We present near-infrared, red, and optical observations of NGC 5195, the interacting companion of NGC 5194 (M51). Three intrinsic components are suggested by the near-infrared data: a bright nuclear maximum, a low-contrast bar centered symmetrically on the nucleus, and a nearly face-on exponential disk. This organized near-infrared morphology contrasts strongly with the irregular appearance of optical images. Neither dust nor hot stars contribute much to the near-infrared emission, leaving cool stars probably of an evolved population as the main near-infrared sources. Optical (V) and red (R, I) images confirm the near-infrared morphology and imply that obscuration by an irregular distribution of dust causes the great difference between optical and near-infrared morphologies. Dust within a foreground spiral arm of M51 is an important source of obscuration. Dust internal to NGC 5195 gives an observed quantity of reradiation and perhaps contributes significant obscuration within 10" of the galactic nucleus. The nucleus itself lies at or near a local minimum in color produced by small obscuration or possibly hot emission from the galaxy's nuclear emission-line region or X-ray medium. When corrected for all spatial components of extinction, the body of NGC 5195 becomes much bluer and has a mean B - H color common to normal disk galaxies. Observations lead consistently to SB, but no further, as the best description of the NGC 5195 morphology. Images reveal no evidence of spiral arms which alone would imply a lenticular subtype. Yet the bulge-to-disk ratio of NGC 5195, evaluated from near-infrared observations, is far smaller than values inferred for noninteracting lenticular galaxies. Motivated by these difficulties in conventional classification, we proceed to discuss the possibility that certain attributes of NGC 5195, including its bar, are transient manifestations of the interaction with M51. Presented measurements support the galaxy mass ratio and type of NGC 5195

  4. The Super-linear Slope of the Spatially Resolved Star Formation Law in NGC 3521 and NGC 5194 (M51a)

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Koda, Jin; Calzetti, Daniela; Fukuhara, Masayuki; Momose, Rieko

    2011-07-01

    We have conducted interferometric observations with the Combined Array for Research in Millimeter Astronomy (CARMA) and an on-the-fly mapping with the 45 m telescope at Nobeyama Radio Observatory (NRO45) in the CO (J = 1-0) emission line of the nearby spiral galaxy NGC 3521. Using the new combined CARMA + NRO45 data of NGC 3521, together with similar data for NGC 5194 (M51a) and archival SINGS Hα, 24 μm THINGS H I, and Galaxy Evolution Explorer/Far-UV (FUV) data for these two galaxies, we investigate the empirical scaling law that connects the surface density of star formation rate (SFR) and cold gas (known as the Schmidt-Kennicutt law or S-K law) on a spatially resolved basis and find a super-linear slope for the S-K law when carefully subtracting the background emissions in the SFR image. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar and dust background emission to be subtracted carefully (especially in the mid-infrared and to a lesser extent in the FUV). Applying this approach, we perform a pixel-by-pixel analysis on both galaxies and quantitatively show that the controversial result whether the molecular S-K law (expressed as \\Sigma _SFR\\propto \\Sigma _H_2^{\\gamma _H_2}) is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is super-linear (\\gamma _H_2\\gtrsim 1.5) at the highest available resolution (~230 pc) and decreases monotonically for decreasing resolution. We also find in both galaxies that the scatter of the molecular S-K law (\\sigma _H_2) monotonically increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both \\gamma _H_2 and \\sigma _H_2 are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale (δdp), both quantities become highly consistent for the two galaxies, tentatively suggesting that the

  5. The Super-Linear Slope Of The Spatially-resolved Star Formation Law In NGC 3521 And NGC 5194 (m51a)

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Koda, J.; Calzetti, D.; Fukuhara, M.; Momose, R.

    2011-01-01

    We have conducted interferometric observations with CARMA and an OTF mapping with the 45-m telescope at NRO in the CO (1-0) emission line of NGC 3521. Combining these new data, together with similar data for M51a and archival SINGS H-alpha, 24um, THINGS H I and GALEX FUV data for both galaxies, we investigate the empirical scaling law that connects the surface density of star formation rate (SFR) and cold gas (the Schmidt-Kennicutt law) on a spatially-resolved basis, and find a super-linear slope when carefully subtracting the background emissions in the SFR image. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar/dust background emission to be carefully subtracted (especially in mid-IR). An approach to complete this task is presented and applied in our pixel-by-pixel analysis on both galaxies, showing that the controversial results whether the molecular S-K law is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is super-linear (1.5-1.9) at the highest available resolution (230 pc), and decreases monotonically for decreasing resolution; while the scatter (mainly intrinsic) increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both quantities are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale, they become highly consistent between the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the scale being considered, without varying amongst spiral galaxies. We obtaion slope=-1.1[log(scale/kpc)]+1.4 and scatter=-0.2 [scale/kpc]+0.7 through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. However, a larger sample of galaxies with better sensitivity, resolution and broader FoV are required to test these results.

  6. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  7. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  8. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  9. Novae in External Galaxies: M51, M87, and M101

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Ciardullo, R.; Pritchet, C. J.

    2000-02-01

    As part of a program to determine the stellar population of novae, we have conducted a multiepoch Hα survey of the galaxies M51, M87, and M101. A total of nine and 12 novae were detected in the spiral galaxies M51 and M101, respectively, during four epochs of observation, and two epochs of observation yielded a total of nine novae in the giant elliptical galaxy M87. After correcting for the effective survey time and for the fraction of luminosity sampled, we find global nova rates of 18+/-7, 91+/-34, and 12+/-4 novae per year for M51, M87, and M101, respectively. After normalizing to the total K-band luminosity of each galaxy, we estimate luminosity-specific nova rates for M51, M87, and M101 of 1.09+/-0.47, 2.30+/-0.99, and 0.97+/-0.38 novae per year per 1010 solar luminosities in K. When we compare these data with measured values for the luminosity-specific nova rates of other galaxies, we find no compelling evidence for a significant variation with Hubble type. Possible ramifications of this result are discussed within the context of current theoretical models for nova production in galaxies.

  10. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  11. Probing the cold and warm molecular gas in the Whirlpool Galaxy: Herschel SPIRE-FTS observations of the central region of M51 (NGC 5194)

    NASA Astrophysics Data System (ADS)

    Schirm, M. R. P.; Wilson, C. D.; Kamenetzky, J.; Parkin, T. J.; Glenn, J.; Maloney, P.; Rangwala, N.; Spinoglio, L.; Baes, M.; Boselli, A.; Cooray, A.; De Looze, I.; Fernández-Ontiveros, J. A.; Karczewski, O. Ł.; Wu, R.

    2017-10-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central ˜8 kpc (˜150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four 12CO transitions (J = 4-3 to J = 7-6) and the [C I] 3P2-3P1 and 3P1-3P0 transitions. We supplement these observations with ground-based observations of 12CO J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (Tkin ˜ 10-20 K) with a moderate but poorly constrained density (n(H2) ˜ 103-106 cm-3), as well as significant molecular gas in a warmer (Tkin ˜ 300-3000 K), lower density (n(H2) ˜ 101.6-102.5 cm-3) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G0 ˜ 102. The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.

  12. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  13. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less

  14. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  15. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  16. NGC 5195 IN M51: FEEDBACK “BURPS” AFTER A MASSIVE MEAL?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, E. M.; Jones, C.; Machacek, M.

    2016-06-01

    We describe a double-arc-like X-ray structure lying ∼15″–30″ (∼0.8–1.7 kpc) south of the NGC 5195 nucleus, visible in the merged exposures of long Chandra pointings of M51. The curvature and orientation of the arcs argues for a nuclear origin. The arcs are radially separated by ∼15″ (∼1 kpc), but are rotated relative to each other by ∼30°. From an archival image, we find a slender H α -emitting region just outside the outer edge of the outer X-ray arc, suggesting that the X-ray-emitting gas plowed up and displaced the H α -emitting material from the galaxy core. Star formation maymore » have commenced in that arc. H α emission is present at the inner arc, but appears more complex in structure. In contrast to an explosion expected to be azimuthally symmetric, the X-ray arcs suggest a focused outflow. We interpret the arcs as episodic outbursts from the central super-massive black hole (SMBH). We conclude that NGC 5195 represents the nearest galaxy exhibiting on-going, large-scale outflows of gas, in particular, two episodes of a focused outburst of the SMBH. The arcs represent a clear demonstration of feedback.« less

  17. VLBI observations of galactic nuclei at 18 centimeters - NGC 1052, NGC 4278, M82, and M104

    NASA Technical Reports Server (NTRS)

    Shaffer, D. B.; Marscher, A. P.

    1979-01-01

    Compact radio sources about a light year in size have been detected in the nuclei of the galaxies NGC 1052, NGC 3034 (M82), NGC 4278, and NGC 4594 (M104) at a wavelength of 18 cm. The compact nucleus detected in M81 at 6 cm was not seen at 18 cm. The compact source in M82 is unique among extragalactic sources in its size-spectrum relationship. It is either broadened by scattering within M82 or it lies behind, and is absorbed by, an H II region. In these galaxies, the size of the nuclear radio source at 18 cm is larger than it is at higher frequencies. The nucleus of the giant radio galaxy DA 240 was not detected.

  18. The Population of Supernova Remnants in M51

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2017-08-01

    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  19. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    NASA Astrophysics Data System (ADS)

    Duah Asabere, B.; Horellou, C.; Jarrett, T. H.; Winkler, H.

    2016-07-01

    Context. Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. Aims: In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 μm and Spitzer mid-infrared spectra. Methods: By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.̋6 to 5.̋5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 μm images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 μm images to estimate the stellar continuum contribution to the emission in the 12 and 22 μm bands. Results: The two galaxies differ markedly in their mid-IR properties. The 3.4 μm brightness distribution can be well represented by the superposition of two Sérsic models in NGC 1316 and by a Sérsic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 μm luminosity, we infer a star-formation rate of ~0.7 M⊙ yr-1 in NGC 1316 and ~7 M⊙ yr-1 in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 μm PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1'-2' of the galaxies. In NGC 1316, the extra-nuclear emission coincides with two dusty regions NW and SE of the nucleus seen in extinction in optical images and where molecular gas is known to reside

  20. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  1. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  2. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  3. Submillimeter Observations of the Low-Metallicity Galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Kiuchi, Gaku; Ohta, Kouji; Sawicki, Marcin; Allen, Michael

    2004-12-01

    Results of submillimeter (450 and 850 μm) observations of a nearby dwarf irregular galaxy NGC 4214 with SCUBA on JCMT are presented. We aimed at examining the far-infrared-to-submillimeter spectral energy distribution (SED) and properties of dust thermal emission in a low-metallicity environment by choosing NGC 4214, in which the gas metallicity (logO/H+12) is 8.34. We found that the SED is quite similar to those of the IRAS Bright Galaxies Sample (IBGS), which are local bright star-forming galaxies with metallicities comparable to the solar abundance. The dust temperature and emissivity index for NGC 4214 obtained by a fitting to the single temperature graybody model are Td=35+/-0.8 K and β=1.4+/-0.1, respectively, which are typical values for IBGS galaxies. Compiling the previous studies on similar nearby dwarf irregular galaxies, we found that NGC 1569 shows similar results to those of NGC 4214, while NGC 4449 and IC 10 SE show different SEDs and low emissivity indices. There seems to be a variety of SEDs among metal-poor dwarf irregular galaxies. We examined the dependence on the intensity of interstellar radiation field, as well as a two-temperature model, but the origin of the difference is not clear. Some mechanism(s) other than metallicity and the interstellar radiation field must be responsible for controlling dust emission properties.

  4. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, M.; Weisz, D.; Grocholski, A.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age ofmore » NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.« less

  5. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  6. Stars and gas in the very large interacting galaxy NGC 6872

    NASA Astrophysics Data System (ADS)

    Horellou, C.; Koribalski, B.

    2007-03-01

    The dynamical evolution of the large (>100 kpc), barred spiral galaxy NGC 6872 and its small companion IC 4970 in the southern group Pavo is investigated. We present N-body simulations with stars and gas and 21 cm Hi observations carried out with the Australia Telescope Compact Array of the large-scale distribution and kinematics of atomic gas. Hi is detected toward the companion, corresponding to a gas mass of ~ 1.3× 10^9~ M_⊙. NGC 6872 contains ˜ 1.4× 1010~ M_⊙ of Hi gas, distributed in an extended rotating disk. Massive concentrations of gas (˜ 10^9~ M_⊙) are found at the tip of both tidal tails and towards the break seen in the optical northern arm near the companion. We detect no Hi counterpart to the X-ray trail between NGC 6872 and NGC 6876, the dominant elliptical galaxy in the Pavo group located ˜ 8' to the southeast. At the sensitivity and the resolution of the observations, there is no sign in the overall Hi distribution that NGC 6876 has affected the evolution of NGC 6872. There is no evidence of ram pressure stripping either. The X-ray trail could be due to gravitational focusing of the hot gas in the Pavo group behind NGC 6872 as the galaxy moves supersonically through the hot medium. The simulations of a gravitational interaction with a small nearby companion on a low-inclination prograde passage are able to reproduce most of the observed features of NGC 6872, including the general morphology of the galaxy, the inner bar, the extent of the tidal tails and the thinness of the southern tail.

  7. An H I study of the collisional ring galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Elagali, Ahmed; Wong, O. Ivy; Oh, Se-Heon; Staveley-Smith, Lister; Koribalski, Bärbel S.; Bekki, Kenji; Zwaan, Martin

    2018-06-01

    We present new atomic hydrogen (H I) observations of the collisional ring galaxy NGC 922 obtained using the Australia Telescope Compact Array. Our observations reveal for the first time the vast extent of the H I disc of this galaxy. The H I morphology and kinematics of NGC 922 show that this galaxy is not the product of a simple drop-through interaction, but has a more complex interaction history. The integrated H I flux density of NGC 922 from our observations is 24.7 Jy km s-1, which is within the error of the flux value obtained using the 64-m Parkes radio telescope. This flux density translates to a total H I mass of 1.1 × 1010 M⊙ and corresponds to an H I to total mass fraction (M_{H I}}/Mtot) of approximately 0.11. The gaseous structures of NGC 922 are more extended to the north and include an H I tail that has a projected physical length of 8 kpc. Gas warps are also evident in the velocity field of NGC 922 and are more prominent on the approaching and the western side of the disc. In comparison with a large sample of star-forming galaxies in the local Universe, NGC 922 possesses a high gas fraction relative to galaxies with a similar stellar mass of ˜1010.4 M⊙, and exhibits a high specific star formation rate.

  8. Distances to M101, NGC 2403, and NGC 2366 via Long Period Variables

    NASA Astrophysics Data System (ADS)

    Jurcevic, J. S.

    1998-12-01

    A new method of measuring accurately extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and their period of luminosity variation. This period-luminosity (PL) relationship has been calibrated in the broadband optical R and I-bands with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33. To verify the effectiveness of these RSV PL relations, the distances to the galaxies M101, NGC 2403, and NGC 2366 were determined. These galaxies were chosen because they had existing Cepheid based distances to use as a comparison between the two methods. These galaxies also span a range of metallicity to investigate any metallicity effects. Ground-based photometry of the galaxies in the R-band was obtained over four years to discover red variable stars with periods in the range 100--1200 days. The number of RSVs discovered in M101, NGC 2403, and NGC 2366 was 42, 61, and 20, respectively. By assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag, respectively. These distances agree quite well with those found via recent Cepheid based measurements. In particular, the RSV distance modulus to M101 is very close to the HST Key Project Cepheid modulus of 29.34 +/- 0.17 mag (Kelson {et al. } 1996). These results show that RSVs, at optical wavelengths, provide a new method for measuring distances with a precision comparable to that of Cepheids with the advantages of being more luminous and more abundant than Cepheids.

  9. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; hide

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  10. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Amblard, Alexandre; Gitti, Myriam; Brighenti, Fabrizio; Gaspari, Massimo; Mathews, William G.; David, Laurence

    2018-05-01

    We present new ALMA CO(2–1) observations of two well-studied group-centered elliptical galaxies: NGC 4636 and NGC 5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC 5044 group. We find evidence that molecular gas is a common presence in bright group-centered galaxies (BGG). CO line widths are broader than Galactic molecular clouds, and using the reference Milky Way X CO, the total molecular mass ranges from 2.6 × 105 M ⊙ in NGC 4636 to 6.1 × 107 M ⊙ in NGC 5044. Complementary observations using the ALMA Compact Array do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps, suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ({10}3{--}{10}5 {{K}})/hot (≥106) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistent with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.

  11. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  12. Photometry of resolved galaxies. V - NGC 6822

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.; Anderson, N.

    1986-01-01

    Three-color CCD frames of the local group irregular galaxy NGC 6822 have been reduced to GRI photometry for 3475 stars using RICHFLD point-spread function fitting techniques. The data are compared with earlier work on this galaxy, particularly with Kayser (1966) on a star-by-star basis. Color-magnitude diagrams are constructed from the data and compared with both theoretical stellar model tracks and the expected foreground star contamination. A luminosity function for the blue stars is derived; comparison of this luminosity function with those of 10 other irregular galaxies indicates that NGC 6822 has a typical young star population. The stellar birthrate and initial mass function are estimated for this galaxy. The slope at the bright end of the mass function looks similar to recent results for the Galaxy, the Magellanic Clouds, and the irregular galaxy Sextans A. NGC 6822 appears to be presently forming stars at a slower rate for its mass than Sextans A or the Magellanic Clouds.

  13. The polar-ring galaxies NGC 2685 and NGC 3808B (VV 300)

    NASA Technical Reports Server (NTRS)

    Reshetnikov, V. P.; Yakovleva, V. A.

    1990-01-01

    Polar-ring galaxies (PRG) are among the most interesting examples of interaction between galaxies. A PRG is a galaxy with an elongated main body surrounded by a ring (or a disk) of stars, gas, and dust rotating in a near-polar plane (Schweizer, Whitmore, and Rubin, 1983). Accretion of matter by a massive lenticular galaxy from either intergalactic medium or a companion galaxy is usually considered as an explanation of the observed structure of PRG. In the latter case there are two possibilities: capture and merging of a neighbor galaxy, and accretion of mass from a companion galaxy during a close encounter. Two PRG formation scenarios just mentioned are illustrated here by the results of our observations of the peculiar galaxies NGC 2685 and NGC 3808B.

  14. Interferometric CO observations of the ultraluminous IRAS galaxies ARP 220, IC 694/NGC 3690, NGC 6420 and NGC 7469

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Sanders, D. B.; Scoville, N. Z.; Soifer, B. T.

    1987-01-01

    High resolution CO observations of the IRAS galaxies Arp 220, IC 694/NGC 3690, NGC 6240 and NGC 7469 were made with the Millimeter Wave Interferometer of the Owen Valley Radio Observatory. These yield spatial information on scales of 1 to 5 kpc and allow the separation of compact condensations from the more extended emission in the galaxies. In the case of the obviously interacting system IC 694/NGC 3690 the contributions of each component can be discerned. For that galaxy, and also for Arp 220, the unusually high lumonisities may be produced by nonthermal processes rather than by intense bursts of star formation.

  15. Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424

    NASA Astrophysics Data System (ADS)

    Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas

    2017-01-01

    The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.

  16. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  17. Barred Ring Galaxy NGC 1291

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image left and visual image right from NASA Galaxy Evolution Explorer is of the barred ring galaxy NGC 1291. The VIS image is dominated by the inner disk and bar. The UV image is dominated by the low surface brightness outer arms.

  18. Antlia B: A Faint Dwarf Galaxy Member of the NGC 3109 Association

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Spekkens, K.; Crnojević, D.; Hargis, J. R.; Willman, B.; Strader, J.; Grillmair, C. J.

    2015-10-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of ˜72 kpc from NGC 3109 ({M}V ˜ -15 {mag}), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is D = 1.29 ± 0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal-poor red giant branch (≳ 10 {{Gyr}}, [Fe/H] ˜ -2), and a younger blue population with an age of ˜200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has H i gas at a velocity of {v}{helio,{{H}} {{I}}} = 376 km s-1, confirming the association with NGC 3109 (vhelio = 403 km s-1). The H i gas mass (MH i = 2.8 ± 0.2 × 105 {M}⊙ ), stellar luminosity (MV = -9.7 ± 0.6 mag) and half light radius (rh = 273 ± 29 pc) are all consistent with the properties of dwarf irregular and dwarf spheroidal galaxies in the Local Volume, and is most similar to the Leo P dwarf galaxy. The discovery of Antlia B is the initial result from a Dark Energy Camera survey for halo substructure and faint dwarf companions to NGC 3109 with the goal of comparing observed substructure with expectations from the Λ+Cold Dark Matter model in the sub-Milky Way regime.

  19. NGC 5523: An isolated product of soft galaxy mergers?

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  20. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  1. Undergraduate ALFALFA Team: Star Formation in the NGC 5846 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Viani, Lucas; Koopmann, R. A.; Darling, H.; ALFALFA Team

    2013-01-01

    We examine gas and star formation properties of galaxies in the NGC 5846 group. Narrowband Halpha and broadband R images for a sample of galaxies were obtained at the KPNO WIYN 0.9m with MOSAIC and the SMARTS 0.9m telescope at CTIO. Neutral hydrogen data from the Arecibo Legacy Fast ALFA (ALFALFA) survey trace the cold neutral gas content. The amounts and extents of star formation in a subsample of galaxies are compared as a function of cold gas content and position in the group. The typical star formation rates and extents of NGC 5846 galaxies are less than those of isolated galaxies and similar to those of galaxies located in the Virgo Cluster and other group environments. This work is part of the Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project, a collaborative undertaking of faculty and undergraduates at 11 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey.

  2. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  3. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  4. AN INVESTIGATION OF THE DUST CONTENT IN THE GALAXY PAIR NGC 1512/1510 FROM NEAR-INFRARED TO MILLIMETER WAVELENGTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guilin; Calzetti, Daniela; Yun, Min S.

    2010-03-15

    We combine new ASTE/AzTEC 1.1 mm maps of the galaxy pair NGC 1512/1510 with archival Spitzer IRAC and MIPS images covering the wavelength range 3.6-160 {mu}m from the SINGS project. The availability of the 1.1 mm map enables us to measure the long-wavelength tail of the dust emission in each galaxy, and in sub-galactic regions in NGC 1512, and to derive accurate dust masses. The two galaxies form a pair consisting of a large, high-metallicity spiral (NGC 1512) and a low-metallicity, blue compact dwarf (NGC 1510), which we use to compare similarities and contrast differences. Using the models of Drainemore » and Li, the derived total dust masses are (2.4 {+-} 0.6) x 10{sup 7} M {sub sun} and (1.7 {+-} 3.6) x 10{sup 5} M {sub sun} for NGC 1512 and NGC 1510, respectively. The derived ratio of dust mass to H I gas mass for the galaxy pair, M{sub d}/M{sub H{sub 1}}{approx}0.0034, is much lower (by at least a factor of 3) than expected, as previously found by Draine et al. In contrast, regions within NGC 1512, specifically the central region and the arms, do not show such unusually low M{sub d}/M{sub H{sub 1}} ratios; furthermore, the dust-to-gas ratio is within expectations for NGC 1510. These results suggest that a fraction of the H I included in the determination of the M{sub d}/M{sub H{sub 1}} ratio of the NGC 1512/NGC 1510 pair is not associated with the star-forming disks/regions of either galaxy. Using the dust masses derived from the models of Draine and Li as references, we perform simple two-temperature modified blackbody fits to the far-infrared/millimeter data of the two galaxies and the sub-regions of NGC 1512, in order to derive and compare the dust masses associated with warm and cool dust temperature components. As generally expected, the warm dust temperature of the low-metallicity, low-mass NGC 1510 (T{sub w} {approx} 36 K) is substantially higher than the corresponding warm temperature of the high-metallicity spiral NGC 1512 (T{sub w} {approx} 24 K

  5. Galaxy evolution in groups. NGC 3447/NGC 3447A: the odd couple in LGG 225

    NASA Astrophysics Data System (ADS)

    Mazzei, P.; Marino, A.; Rampazzo, R.; Plana, H.; Rosado, M.; Arias, L.

    2018-02-01

    Context. Local Group (LG) analogs (LGAs) are galaxy associations dominated by a few bright spirals reminiscent of the LG. The NGC 3447/NGC 3447A system is a member of the LGG 225 group, a nearby LGA. This system is considered a physical pair composed of an intermediate-luminosity late-type spiral, NGC 3447 itself, and an irregular companion, NGC 3447A, linked by a faint, short filament of matter. A ring-like structure in the NGC 3447 outskirts has been emphasised by Galaxy Evolution Explorer (GALEX) observations. Aims: This work aims to contribute to the study of galaxy evolution in low-density environments, a favourable habitat to highly effective encounters, shedding light on the evolution of the NGC 3447/NGC 3447A system. Methods: We performed a multi-λ analysis of the surface photometry of this system to derive its spectral energy distribution and structural properties using ultraviolet (UV), Swift UVOT, and optical Sloan Digital Sky Survey (SDSS) images complemented with available far-IR observations. We also characterised the velocity field of the pair using two-dimensional Hα kinematical observations of the system obtained with PUMA Fabry-Perot interferometer at the 2.1 m telescope of San Pedro Mártir (Mexico). All these data are used to constrain smooth particle hydrodynamic simulations with chemo-photometric implementation to shed light on the evolution of this system. Results: The luminosity profiles, from UV to optical wavelengths, are all consistent with the presence of a disc extending and including NGC 3447A. The overall velocity field does not emphasise any significant rotation pattern, rather a small velocity gradient between NGC 3447 and NGC 3447A. Our simulation, detached from a large grid explored to best-fit the global properties of the system, suggests that this arises from an encounter between two halos of equal mass. Conclusions: NGC 3447 and NGC 3447A belong to the same halo, NGC 3447A being a substructure of the same disk including NGC

  6. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  7. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  8. H I in Arp 72 and similarities with M51-type systems

    NASA Astrophysics Data System (ADS)

    Sengupta, Chandreyee; Saikia, D. J.; Dwarakanath, K. S.

    2012-02-01

    We present neutral hydrogen (H I) observations with the Giant Metrewave Radio Telescope (GMRT) of the interacting galaxies NGC 5996 and 5994, which make up the Arp 72 system. Arp 72 is an M51-type system and shows a complex distribution of H I tails and a bridge due to tidal interactions. H I column densities ranging from 0.8-1.8 × 1020 atoms cm-2 in the eastern tidal tail to 1.7-2 × 1021 atoms cm-2 in the bridge connecting the two galaxies are seen to be associated with star-forming regions. We discuss the morphological and kinematic similarities of Arp 72 with M51, the archetypal example of the M51-type systems, and Arp 86, another M51-type system studied with the GMRT, and suggest that a multiple passage model of Salo & Laurikainen may be preferred over the classical single passage model of Toomre & Toomre to reproduce the H I features in Arp 72 as well as in other M-51 systems depicting similar optical and H I features.

  9. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile

  10. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  11. ROTATIONAL DYNAMICS AND STAR FORMATION IN THE NEARBY DWARF GALAXY NGC 5238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, John M.; McNichols, Andrew T.; Teich, Yaron G., E-mail: jcannon@macalester.edu, E-mail: amcnicho@nrao.edu, E-mail: yateich@gmail.com

    2016-12-01

    We present new H i spectral-line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array. Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H α and ultraviolet (UV) continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H i images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. Themore » H i disk is asymmetric in the outer regions, and the areas of high H i mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H i column density exceeds 10{sup 21} cm{sup −2} in much of the disk. We quantify the degree of co-spatiality of dense H i gas and sites of ongoing star formation as traced by far-UV and H α emission. The neutral gas kinematics are complex; using a spatially resolved position–velocity analysis, we infer a rotational velocity of 31 ± 5 km s{sup −1}. We place NGC 5238 on the baryonic Tully–Fisher relation and contextualize the system among other low-mass galaxies.« less

  12. Large velocity dispersion of molecular gas in bars of strongly barred galaxies NGC 1300 and NGC 5383

    NASA Astrophysics Data System (ADS)

    Maeda, Fumiya; Ohta, Kouji; Fujimoto, Yusuke; Habe, Asao; Baba, Junichi

    2018-06-01

    We carried out ^{12}CO(J = 1-0) observations toward bar and arm regions of the strongly barred galaxies NGC 1300 and NGC 5383 with the Nobeyama 45 m radio telescope (beam size of 1-2 kpc in the galaxies). The aim of the observations is to qualitatively examine a new scenario for the suppression of star formation in bars based on recent high-resolution numerical simulations: higher speed collisions between molecular clouds in the bar region compared with the arm region suppress the massive star formation. CO emissions were detected from all the regions, indicating the presence of molecular gases in the strong bars without associating clear H II regions. In both galaxies, the velocity width of the CO line profile tends to be larger in the bar region than in the arm region, which is qualitatively consistent with the new scenario.

  13. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen

    2017-02-01

    We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{I}\\prime ) versus ({I}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.

  14. A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances

    NASA Astrophysics Data System (ADS)

    Nakajima, Taku; Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric

    2018-01-01

    It is important to investigate the relationships between the power sources and the chemical compositions of galaxies in order to understand the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards active galactic nucleus (AGN) host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45 m telescope in the 3 mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ˜15″-19″, which is able to separate spatially the nuclear molecular emission from that of the starburst ring (d ˜ 30″) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends in the abundances of molecules surrounding the AGN on a 1-kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high-energy radiation or less sublimation of a precursor of CH3CCH from grains.

  15. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  16. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag.more » We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.« less

  17. Large Face on Spiral Galaxy NGC 3344

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the large face on spiral galaxy NGC 3344. The inner spiral arms are wrapped so tightly that they are difficult to distinguish. http://photojournal.jpl.nasa.gov/catalog/PIA07904

  18. Survey of Milliarcsec Structure in Eight Seyfert Galaxies: Results on NGC 1068 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Wilson, A. S.; Norris, R. P.

    We are surveying eight nearby Seyfert galaxies (four Sy1s and four Sy2s) that have compact radio cores, using the VLBA. We are interested in parsec-scale morphology and low-frequency absorption effects, and so are observing four frequencies (1.6, 4.8, 8.4 and 15 GHz) to get spectral-index diagnostics. In this paper, we present results on two galaxies, NGC 1068 and NGC 4151. NGC 4151 shows a curved radio jet on the sub-parsec scale, with the smallest scale structure misaligned by $55^\\circ$ from the jet on scales of parsecs to hundreds of parsecs. NGC 1068 contains several components in the inner tens of parsecs, with those components showing a variety of absorption and resolution effects.

  19. Diffuse hot gas in the NGC 4261 group of galaxies

    NASA Technical Reports Server (NTRS)

    Davis, David S.; Mushotzky, Richard F.; Mulchaey, John S.; Worrall, D. M.; Birkinshaw, M.; Burstein, David

    1995-01-01

    We have found diffuse X-ray gas in the group of galaxies containing the elliptical galaxy NGC 4261. This galaxy along with its associated companions are behind the Virgo cluster in the W-cloud. A recent analysis of the velocity structure in the Virgo region indicates that the W-cloud has approximately 30 members, most of which are low luminosity dwarfs. The hot X-ray emitting gas is centered about halfway between NGC 4261 and NGC 4264 and extends out to a radius of approximately 40 min(620 kpc). The spectral data for the diffuse component are well fitted with a Raymond-Smith plasma model with a temperature of 0.85(sup +0.21)(sub -0.16) keV and abundance less than 0.08 times the solar value. Under the assumption that the diffuse gas is in hydrostatic equilibrium the total mass within 40 min is 1.9 x 10(exp 13) solar mass. We estimate that the total baryonic mass of the hot gas and the galaxies is 20%-34% of the total mass in the central 40 min radius of this group. This group of galaxies contains NGC 4273 which exhibits a 'bow shock' morphology similar to that of NGC 2276. This is thought to occur when the ram pressure from the intragroup gas significantly perturbs the interstellar medium in a late-type galaxy. We show that this is unlikely in this group.

  20. Diffuse hot gas in the NGC 4261 group of galaxies

    NASA Astrophysics Data System (ADS)

    Davis, David S.; Mushotzky, Richard F.; Mulchaey, John S.; Worrall, D. M.; Birkinshaw, M.; Burstein, David

    1995-05-01

    We have found diffuse X-ray gas in the group of galaxies containing the elliptical galaxy NGC 4261. This galaxy along with its associated companions are behind the Virgo cluster in the W-cloud. A recent analysis of the velocity structure in the Virgo region indicates that the W-cloud has approximately 30 members, most of which are low luminosity dwarfs. The hot X-ray emitting gas is centered about halfway between NGC 4261 and NGC 4264 and extends out to a radius of approximately 40 min(620 kpc). The spectral data for the diffuse component are well fitted with a Raymond-Smith plasma model with a temperature of 0.85+0.21-0.16 keV and abundance less than 0.08 times the solar value. Under the assumption that the diffuse gas is in hydrostatic equilibrium the total mass within 40 min is 1.9 x 1013 solar mass. We estimate that the total baryonic mass of the hot gas and the galaxies is 20%-34% of the total mass in the central 40 min radius of this group. This group of galaxies contains NGC 4273 which exhibits a 'bow shock' morphology similar to that of NGC 2276. This is thought to occur when the ram pressure from the intragroup gas significantly perturbs the interstellar medium in a late-type galaxy. We show that this is unlikely in this group.

  1. Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256

    NASA Astrophysics Data System (ADS)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-07-01

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = -2.23 ± 0.07, and dN/dMM β with β = -1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN/dτ ∝ τ γ , with γ ≈ -0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ˜80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high ΣSFR form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1-3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  2. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  3. The vertical disk structure of the edge-on spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthorn, Jonathan; Cecil, G.; Tully, R. B.

    1993-01-01

    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study.

  4. STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-07-20

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dMM{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The agemore » distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.« less

  5. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    NASA Astrophysics Data System (ADS)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  6. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  7. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146

    NASA Astrophysics Data System (ADS)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2018-04-01

    The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4‑1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature <86 K. We identify two new water masers in IC 342, and one new water maser in each of NGC 6946 and NGC 2146. The two galaxies NGC 253 and NGC 2146, with the most vigorous star formation, host H2O kilomasers. Lastly, we detect the first 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.

  8. Two regimes of galaxy dynamics: mass models of NGC 5055 and DDO 154

    NASA Astrophysics Data System (ADS)

    Jovanović, Milena

    2017-08-01

    We derive detailed dynamical models for two galaxies, the massive spiral galaxy NGC 5055 and the dwarf irregular DDO 154. We used Navarro, Frenk & White (NFW) and isothermal halo models for the dark matter (DM) distribution, along with the most recent and reliable radio observations of H I to determine the rotation curves of these galaxies. Contributions from the neutral gas and the luminous matter were accounted for. For NGC 5055, the latest stellar population synthesis (SPS) models, combining metallicity and age as indicators of the stellar mass-to-light ratio (M/L) were used to better constrain both the DM model and the contribution to the total mass from all components. The isothermal dark halo model successfully fitted both observed rotation curves with realistic values for stellar M/L, while the NFW model needed further constraints for M/L to fit the rotation curve of DDO 154. In the case of NGC 5055, we found the best-fitting M/L in the 3.6 μm band (M/L3.6) for stellar disc to be 0.57 ± 0.04 for isothermal, and 0.50 ± 0.05 for NFW DM model. The most probable value for M/L3.6 from SPS models is 0.46, which is in agreement within uncertainties with our best-fitting NFW model. In the case of DDO 154, we obtained the stellar disc M/L3.6 of 0.25 ± 0.20 for the isothermal DM model. The stellar disc M/L3.6 for the NFW model was fixed to 0.26, as best reasonable value. For NGC 5055, we derived radial profiles of stellar M/L for our best estimate for a particular DM model.

  9. Morphological evidence for a past minor merger in the Seyfert galaxy NGC 1068†

    NASA Astrophysics Data System (ADS)

    Tanaka, Ichi; Yagi, Masafumi; Taniguchi, Yoshiaki

    2017-12-01

    Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 1068. Since these UDOs are located within the projected distance of 45 kpc from the center of NGC 1068, they appear to be associated with NGC 1068. Hereafter, we call them UDO-SW, UDO-NE, and UDO-SE where UDO = Ultra Diffuse Object, SW = southwest, NE = northwest, and SE = southeast; note that UDO-SE was already found in the SDSS Stripe 82 data. Among them, UDO-NE and UDO-SW appear to be a part of a loop or stream structure around the main body of NGC 1068, providing evidence for the physical connection to NGC 1068. We consider that UDO-SE may be a tidal dwarf galaxy. We also find another UDO-like object that is two magnitudes fainter and smaller by a factor of 3 to 5 than those of the three UDOs. This object may belong to a class of low surface brightness galaxy. Since this object is located along the line connecting UDO-NE and UDO-SW, it is suggested that this object is related to the past interaction event that formed the loop by UDO-NE and UDO-SW, thus implying the physical connection to NGC 1068. Another newly discovered feature is an asymmetric outer one-arm structure emanating from the western edge of the outermost disk of NGC 1068 together with a ripple-like structure at the opposite side. These structures are expected to arise in a late phase of a minor merger, according to published numerical simulations of minor mergers. All these lines of evidence show that NGC 1068 experienced a minor merger several billion years ago. We then discuss the minor-merger driven triggering of nuclear activity in the case of NGC 1068.

  10. Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565

    NASA Technical Reports Server (NTRS)

    Sukumar, S.; Allen, R. J.

    1991-01-01

    Results are presented, at a resolution of 20 arcsec, of observations of the distribution of radio continuum intensity and linear polarization with the VLA in two nearby edge-on spiral galaxies, NGC 891 and NGC 4565, at 6 and 20 cm, respectively. A unified model is presented to account for the main features of the radio polarization in these two galaxies. The model geometry is determined from recent observations of face-on galaxies where the polarized emission is found to be strongest in the dark inter-arm and outer parts of the disks. A substantial Z-thickness is ascribed to this polarized emission. It is shown that the exceptionally strong wavelength dependence of this type of Faraday depolarization can result in edge-on galaxies becoming rapidly 'Faraday thick' at decimeter wavelengths, thereby obliterating the polarization from regions on the dark side of the disk. The degree of polarization observed in both galaxies increases strongly with increasing Z-distance from the plane.

  11. First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.

    1994-01-01

    As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.

  12. Search For Star Cluster Age Gradients Across Spiral Arms of Three LEGUS Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Shabani, F.; Grebel, E. K.; Pasquali, A.; D'Onghia, E.; Gallagher, J. S.; Adamo, A.; Messa, M.; Elmegreen, B. G.; Dobbs, C.; Gouliermis, D. A.; Calzetti, D.; Grasha, K.; Elmegreen, D. M.; Cignoni, M.; Dale, D. A.; Aloisi, A.; Smith, L. J.; Tosi, M.; Thilker, D. A.; Lee, J. C.; Sabbi, E.; Kim, H.; Pellerin, A.

    2018-05-01

    One of the main theories for explaining the formation of spiral arms in galaxies is the stationary density wave theory. This theory predicts the existence of an age gradient across the arms. We use the stellar cluster catalogues of the galaxies NGC 1566, M51a, and NGC 628 from the Legacy Extragalactic UV Survey (LEGUS) program. In order to test for the possible existence of an age sequence across the spiral arms, we quantified the azimuthal offset between star clusters of different ages in our target galaxies. We found that NGC 1566, a grand-design spiral galaxy with bisymmetric arms and a strong bar, shows a significant age gradient across the spiral arms that appears to be consistent with the prediction of the stationary density wave theory. In contrast, M51a with its two well-defined spiral arms and a weaker bar does not show an age gradient across the arms. In addition, a comparison with non-LEGUS star cluster catalogues for M51a yields similar results. We believe that the spiral structure of M51a is not the result of a stationary density wave with a fixed pattern speed. Instead, tidal interactions could be the dominant mechanism for the formation of spiral arms. We also found no offset in the azimuthal distribution of star clusters with different ages across the weak spiral arms of NGC 628.

  13. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  14. NuSTAR View of Galaxy NGC 1068

    NASA Image and Video Library

    2015-12-17

    Galaxy NGC 1068 is shown in visible light and X-rays in this composite image. High-energy X-rays (magenta) captured by NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, are overlaid on visible-light images from both NASA's Hubble Space Telescope and the Sloan Digital Sky Survey. The X-ray light is coming from an active supermassive black hole, also known as a quasar, in the center of the galaxy. This supermassive black hole has been extensively studied due to its relatively close proximity to our galaxy. NGC 1068 is about 47 million light-years away in the constellation Cetus. The supermassive black hole is also one of the most obscured known, blanketed by thick clouds of gas and dust. NuSTAR's high-energy X-ray view is the first to penetrate the walls of this black hole's hidden lair. http://photojournal.jpl.nasa.gov/catalog/PIA20057

  15. Hubble Sees NGC 3447: 2 Galaxies in a Cosmic Dance Defy Conventions

    NASA Image and Video Library

    2017-12-08

    Two galaxies in a cosmic dance defy conventions. 60 million light-years away in the constellation of Leo, the more diffuse and patchy blue glow covering the right side of the frame is known as NGC 3447B, while the smaller clump to the upper left is NGC 3447A. Known together as NGC 3447, we’re unsure what each looked like before they began to tear one another apart. So close that they are strongly influenced and distorted by the gravitational forces between them, the galaxies to twist themselves into the unusual and unique shapes seen here. NGC 3447A appears to display the remnants of a central bar structure and some disrupted spiral arms, both properties characteristic of certain spiral galaxies. Some identify NGC 3447B as a former spiral galaxy, while others categorize it as being an irregular galaxy. Credit: NASA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Observation of the Starburst Galaxy NGC 253 with the OSSE Instrument

    DTIC Science & Technology

    1993-01-01

    produced by a very recent Type Ia or Ib supernova outburst in NGC 253. INTRODUCTION NGC 253 is the third brightest infrared galaxy with a luminosity of ~ 4...1010 L.O1 in the far infrared band. This nearby (~ 3 Mpc) spiral Sc galaxy is undergoing extensive star formation within its central few kilo...100 MeV Ginga extrapolation Ginga data OSSE result Model WW2 Day 20 Model WR6C Day 120 Fig. 1 – The derived photon fluxes for NGC 253. The Ginga X-ray

  17. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  18. Galaxy NGC 1512

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.

    The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars.

    The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc .

    The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy.

    With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international

  19. Star Formation Rate Distribution in the Galaxy NGC 1232

    NASA Astrophysics Data System (ADS)

    Araújo de Souza, Alexandre; Martins, Lucimara P.; Rodríguez-Ardila, Alberto; Fraga, Luciano

    2018-06-01

    NGC 1232 is a face-on spiral galaxy and a great laboratory for the study of star formation due to its proximity. We obtained high spatial resolution Hα images of this galaxy, with adaptive optics, using the SAM instrument at the SOAR telescope, and used these images to study its H II regions. These observations allowed us to produce the most complete H II region catalog for it to date, with a total of 976 sources. This doubles the number of H II regions previously found for this object. We used these data to construct the H II luminosity function, and obtained a power-law index lower than the typical values found for Sc galaxies. This shallower slope is related to the presence of a significant number of high-luminosity H II regions (log L > 39 dex). We also constructed the size distribution function, verifying that, as for most galaxies, NGC 1232 follows an exponential law. We also used the Hα luminosity to calculate the star formation rate. An extremely interesting fact about this galaxy is that X-ray diffuse observations suggest that NGC 1232 recently suffered a collision with a dwarf galaxy. We found an absence of star formation around the region where the X-ray emission is more intense, which we interpret as a star formation quenching due to the collision. Along with that, we found an excess of star-forming regions in the northeast part of the galaxy, where the X-ray emission is less intense.

  20. Current star formation in S0 galaxies: NGC 4710

    NASA Technical Reports Server (NTRS)

    Wrobel, J. M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.

  1. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 galaxies. Aims: NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods: In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  2. DETECTION OF A HOT GASEOUS HALO AROUND THE GIANT SPIRAL GALAXY NGC 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael E.; Bregman, Joel N., E-mail: michevan@umich.edu, E-mail: jbregman@umich.edu

    2011-08-10

    Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We used the ACIS-I instrument on board Chandra to search for diffuse X-ray emission around an ideal candidate galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully subtracting background and point-source emission, and found diffuse emission that appears to extend to 40-50 kpc. We fit {beta}-models to the emission and estimate a hot halo massmore » within 50 kpc of 5 x 10{sup 9} M{sub sun}. When this profile is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1-3 x 10{sup 11} M{sub sun}. These mass estimates assume a gas metallicity of Z = 0.5 Z{sub sun}. This galaxy's hot halo is a large reservoir of gas, but falls significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75% of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 M{sub sun} yr{sup -1}, more than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of this halo for galaxy formation models.« less

  3. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.

    2012-07-10

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9{sup +3.8}{sub -2.3}% and 1.9% {+-} 0.6%, respectively, which significantly exceed the typical observed ratio of {approx}0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are Almost-Equal-To 5.1{sigma} and Almost-Equal-To 3.4{sigma} outliers from the M{sub .}-M{sub bulge} scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-raymore » observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which {approx}> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.« less

  4. The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.

    2013-08-01

    We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as

  5. Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.

    2016-03-01

    Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  6. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  7. The star formation history of low-mass disk galaxies: A case study of NGC 300

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang; Wang, Lang; Cheng, Liantao

    2016-01-01

    Context. Since NGC 300 is a bulgeless, isolated low-mass galaxy and it has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test the simple galactic chemical evolution model. Aims: Our main aim is to investigate the main properties of the star formation history (SFH) of NGC 300 and compare its SFH with that of M 33 to explore the common properties and differences between these two nearby low-mass systems. Methods: We construct a simple chemical evolution model for NGC 300, assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process. The model allows us to build a bridge between the SFH and observed data of NGC 300, in particular, the present-day radial profiles and global observed properties (e.g., cold gas mass, star formation rate, and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical χ2 methodology to find out the best combination of free parameters a, b, and bout. Results: Our results show that by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values. The model not only reproduces well the radial profiles, but also the global observational data for the NGC 300 disk. Our results suggest that NGC 300 may experience a rapid growth of its disk. Through comparing the best-fitting, model-predicted SFH of NGC 300 with that of M 33, we find that the mean stellar age of NGC 300 is older than that of M 33 and there is a recent lack of primordial gas infall onto the disk of NGC 300. Our results also imply that the local environment may play a key role in the secular evolution of galaxy disks.

  8. The NGC 1023 galaxy group: An anti-hubble flow?

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    2010-10-01

    We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner, virialized, quasi-stationary component together with an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are immersed. Self-gravity dominates in the inner component of the Local Group, while the anti-gravity created by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. NGC 1023 as a whole is apparently in an ongoing state of formation and virialization. We expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4-3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.

  9. Spitzer Photometry of Approximately 1 Million Stars in M31 and 15 Other Galaxies

    NASA Technical Reports Server (NTRS)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6-8 micrometer and Multiband Imaging Photometer 24 micrometer point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances approximately 3.5-14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain approximately 1 million sources including approximately 859,000 in M31 and approximately 116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of pointspread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6-24 micrometer) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope.

  10. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  11. Wide Field Views of M31's dE Satellites: NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Noël, N. E. D.; Ferguson, A. M. N.; Irwin, M. J.

    2010-06-01

    Panoramic imaging studies of the M31 halo are revealing a wealth of previously-unknown faint tidal debris [e.g. 1] suggesting that it presents a hostile environment for dwarf galaxies to live in. NGC 185(MV = -15.6) and NGC 147(MV = -15.1) are dwarf elliptical (dE) satellites of M31 which currently reside in the remote outer halo (RM31~160 kpc). Given their similarity to more distant, unresolved, dEs, NGC 147 and NGC 185 are ideal workplaces to carry out detailed studies in dEs. While NGC 147 and 185 have been studied extensively in the past, almost all previous studies have been of small field-of-view. Our ongoing wide-field analysis will allow a thorough examination of the global content and structure of these systems and enable us to assess the extent to which they have previously interacted with M31 as well as each other. We present first results from our ongoing analysis of wide-field near-IR and optical imagery of these systems which we are using to derive the first truly global views of their overall structures and stellar contents. In particular, UKIRT/WFCAM JHK data are used to identify and analyse luminous asymptotic giant branch (AGB) stars in NGC 147 and NGC 185 and separate out C-rich and O-rich populations while INT/WFC Vi data are used to analyse the red giant branch (RGB) populations.

  12. The Evolution of Dwarf-Irregular Galaxy NGC 1569: A Kinematic Study of the Stars and Gas

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.

    2011-12-01

    The evolution and formation of dwarf galaxies has great importance to our knowledge of cosmological history from the Big Bang through the present day structure we observe in our local universe. Dwarf galaxies are believed to be the "building blocks" of larger galaxies, which implies that interactions and mergers of these small systems must have occurred frequently in the early universe. There is a population of starburst dwarf irregular (dIm) galaxies that seem to have characteristics indicative of interactions or mergers. One of these dIm galaxies is the nearby post-starburst NGC 1569. This dissertation project explores the stellar and gas kinematics of NGC 1569 as well as examines a deep neutral Hydrogen (HI) map made using the Robert C. Byrd Green Bank Telescope (GBT). From these observations, this dissertation analyzes the evolution of NGC 1569 by understanding the three-dimensional shape of this dIm system for the first time. The structure of dIm galaxies is an important fundamental, physical property necessary to understand the evolution and formation of these common systems. However, the intrinsic shape of dIm galaxies remains controversial. Projected minor-to-major axis ratios provide insufficient data to determine the shapes of dIm galaxies. Fortunately, there is another method by which accurate structures can be measured. The stellar velocity dispersion, coupled with the maximum rotational velocity derived from HI observations, gives a measure of how kinematically hot a system is, and, therefore, indicates its structure. In this dissertation, we present the stellar kinematics, including the stellar velocity dispersion, of NGC 1569 obtained using the Kitt Peak National Observatory (KPNO) Mayall 4-m+Echelle spectrograph. These data are combined with an in depth analysis of high resolution HI data and a discussion of the nature of this starburst dwarf system. The dissertation concludes with a deep HI map of NGC 1569 and three of its nearest neighbors in the

  13. UIT: Ultraviolet surface photometry of the spiral galaxy M74 (NGC 628)

    NASA Technical Reports Server (NTRS)

    Cornett, Robert H.; O'Connell, Robert W.; Greason, Michael R.; Offenberg, Joel D.; Angione, Ronald J.; Bohlin, Ralph C.; Cheng, K. P.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1994-01-01

    Ultraviolet photometry, obtained from Ultraviolet Imaging Telescope (UIT) images at 1520 A (far-UV; magnitudes m(152)) and 2490 A (near-UV; magnitudes m(249)), of the spiral galaxy M74 (NGC 628) is compared with H-alpha, R, V, and B surface photometry and with models. M74's surface brightness profiles have a central peak with an exponential falloff; the exponential scale lengths of the profiles increase with decreasing wavelength for the broad-band images. The slope of the continuum-subtracted H-alpha profile is intermediate between those of far-UV and near-UV profiles, consistent with the related origins of H-alpha and UV emission in extreme Population I material. M74's color profiles all become bluer with increasing radius. The (m(152) - m(249)) color as measured by UIT averages near 0.0 (the color of an A0 star) over the central 20 sec radius and decreases from approximately -0.2 to approximately -0.4 from 20 sec to 200 sec. The spiral arms are the dominant component of the surface photometry colors; interarm regions are slightly redder. In the UV, M74's nuclear region resembles its disk/spiral arm material in colors and morphology, unlike galaxies such as M81. No UV 'bulge' is apparent. The m(152) - m(249) colors and models of M74's central region clearly demonstrate that there is no significant population of O or B stars present in the central 10 sec. M74's UV morphology and (m(152) - m(249)) color profiles are similar to those of M33, although M74 is approximately 0.5 mag redder. M81 has a smooth UV bulge which is much redder than the nuclear regions of M74 and M33. M74 is approximately 0.4 mag bluer than M81 in its outer disk, although M81 has bright UV sources only in spiral arms more than 5 kpc from its center. We investigate possible explanations for the color profiles of the galaxies and the differences among the galaxies: abundances; reddening due to internal dust; interplanetary magnetic field (IMF) variations, and the history of formation of the

  14. Cold dust in the giant barred galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Weiß, A.; Combes, F.; Henkel, C.; Menten, K. M.; Beck, R.; Kovács, A.; Güsten, R.

    2013-07-01

    Constraining the physcial properties of dust requires observations at submm wavelengths. This will provide important insight into the gas content of galaxies. We mapped NGC 1365 at 870 μm with LABOCA, the Large APEX Bolometer Camera, allowing us to probe the central mass concentration as well as the rate at which the gas flows to the center. We obtained the dust physical properties both globally and locally for different locations in the galaxy. A 20 K modified black body represents about 98% of the total dust content of the galaxy, the rest can be represented by a warmer dust component of 40 K. The bar exhibits an east-west asymmetry in the dust distribution: The eastern bar is heavier than the western bar by more than a factor of 4. Integrating the dust spectral energy distribution, we derived a total infrared luminosity, LTIR, of 9.8 × 1010 L⊙, leading to a dust-enshrouded star formation rate of SFRTIR ≃ 16.7 M⊙ yr-1 in NGC 1365. We derived the gas mass from the measurements of the dust emission, resulting in a CO-to-H2 conversion factor of XCO ≃ 1.2 × 1020 mol cm-2 (K km s-1)-1 in the central disk, including the bar. Taking into account the metallicity variation, the central gas mass concentration is only ≃20% at R < 40″ (3.6 kpc). On the other hand, the timescale on which the gas flows into the center, ≃300 Myr, is relatively short. This indicates that the current central mass in NGC 1365 is evolving fast because of the strong bar.

  15. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  16. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  17. NGC 4438: Ram pressure sweeping of a tidally disrupted galaxy

    NASA Technical Reports Server (NTRS)

    Hibbard, J. E.; Vangorkom, Jacqueline H.

    1990-01-01

    NGC 4438 is the highly HI deficient peculiar spiral in the center of the Virgo cluster. Observations are given of the neutral hydrogen emission obtained with the Very Large Array (VLA) in the D-array configuration. These observations map out the total HI as determined from single dish measurements, and show the hydrogen to be confined to a region about one third the size of the optical disk and displaced to the side of the galaxy opposite M87. The hydrogen content of the galaxy is over an order of magnitude less than that expected for a galaxy of its type. The data suggest that the HI deficiency is a result of ram pressure stripping of the gas in the outer regions of the galaxy by the hot intracluster medium after being tidally perturbed.

  18. ROSAT observations of the luminous X-ray sources in M51

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Elmegreen, D.; Elmegreen, B.; Forman, W.; Jones, C.; Flanagan, K.

    1995-01-01

    Our analysis of a 24 ks ROSAT Position Sensitive Proprtional Counter (PSPC) image of the interacting galaxies NGC 5194 (M51) and NGC 5195 shows that X-ray emission is distributed across the whole of NGC 5194. In addition to the diffuse emission and a bright nuclear region, eight individual sources were detected with 0.2-2.2 keV luminosities from 5 to 29 x 10(exp 38) ergs/s, more than 10 times higher than typical bright Galactic X-ray sources. The energy distribution of the luminous sources can be characterized by bremsstrahlung spectra with temperatures around 1 keV and low-energy absorption exceeding that expected from our Galaxy. Two sources lie in an inner spiral arm, while five lie along the outer edges of the outer spiral arms. Four sources (R1, R2, R4, R6) lie in or near regions of recent star formation as indicated by H II regions or CO emission from molecular clouds. However, for three of the X-ray sources which fall on the outer edge of the spiral arms (R3, R7, and R8), there is little or no associated CO or H alpha emission. We discuss the origin of the luminous X-ray sources as possibly arising from either massive black holes in binary star systems, supernova remnants, or hot gas associated with star forming regions.

  19. The Nuclear Spectrum of the Radio Galaxy NGC 5128 (Centaurus A)

    NASA Technical Reports Server (NTRS)

    Simpson, C.; Meadows, V.

    1998-01-01

    We present near-infrared spectra of the nucleus of the nearby radio galaxy NGC 5128 (Centaurus A). The observed emission line strengths suggest that NGC 5128 should be classified as a LINER, and appear to be powered by shocks.

  20. AKARI Near-infrared Spectroscopic Observations of Interstellar Ices in the Edge-on Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Yamagishi, Mitsuyoshi; Kaneda, Hidehiro; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki

    2011-04-01

    We present the spatially resolved near-infrared (2.5-5.0 μm) spectra of the edge-on starburst galaxy NGC 253 obtained with the Infrared Camera on board AKARI. Near the center of the galaxy, we clearly detect the absorption features of interstellar ices (H2O: 3.05 μm, CO2: 4.27 μm, and XCN: 4.62 μm) and the emission of polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm and the hydrogen recombination line Brα at 4.05 μm. We find that the distributions of the ices differ from those of the PAH and gas. We calculate the column densities of the ices and derive the abundance ratios of N(CO2)/N(H2O) = 0.17 ± 0.05. They are similar to those obtained around the massive young stellar objects in our Galaxy (0.17 ± 0.03), although a much stronger interstellar radiation field and higher dust temperature are expected near the center of NGC 253.

  1. A Deep Chandra ACIS Survey of M51

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.

    2016-08-01

    We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.

  2. The void in the Sculptor group spiral galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.

    2014-10-01

    The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.

  3. Chandra and Hubble Composite Image of Spiral Galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  4. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  5. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  6. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (<~ 1.5 kpc; D=100 Mpc) and of the weaker ``clumps'' of diffuse emission south and west (>~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  7. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  8. Constraints on the formation history of the elliptical galaxy NGC 3923 from the colors of its globular clusters

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Ashman, Keith M.; Geisler, Doug

    1995-01-01

    We present a study of the colors of globular clusters associated with the elliptical galaxy NGC 3923. Our final sample consists of Wasington system C and T(sub 1) photometry for 143 globular cluster candidates with an expected contamination of no more than 10%. We find that the color distribution of the NGC 3923 globular cluster system (GCS) is broad and appears to have at least two peaks. A mixture modeling analysis of the color distribution indicates that a two-component model is favored over a single-component one at a high level of confidence (greater than 99%). This evidence for more than one population in the GCS of NGC 3923 is similar to that previously noted for the four other elliptical galaxies for which similar data have been published. Furthermore, we find that the NGC 3923 GCS is redder than the GCSs of previously studed elliptical galaxies of similar luminosity. The median metallicity inferred from our (C-(T(sub 1)))(sub 0) colors is (Fe/H)(sub med) = -0.56, with an uncertainty of 0.14 dex arising from all sources of uncertainty in the mean color. This is more metal rich than the median metallicity found for the GCS of M87 using the same method, (Fe/H)(sub med) = -0.94. Since M87 is more luminous than NGC 3923, this result points to significant scatter about any trend of higher GCS metallicity with increasing galaxy luminosity. We also show that there is a color gradient in the NGC 3923 GCS corresponding to about -0.5 dex in Delta(Fe/H)/Delta(log r). We conclude that the shape of the color distribution of individual GCSs and the variation in mean color among the GCSs of ellipticals are difficult to understand if elliptical galaxies are formed in a single protogalactic collapse. Models in which ellipticals and their globular clusters are formed in more than one event, such as a merger scenario, are more successful in accounting for these observations.

  9. A single population of red globular clusters around the massive compact galaxy NGC 1277.

    PubMed

    Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-22

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  10. Does the IMF vary with galaxy mass? The X-ray binary population of a key galaxy, NGC7457

    NASA Astrophysics Data System (ADS)

    Peacock, Mark

    2014-09-01

    We propose a 100ksec observation of NGC7457. The primary goal of this observation is to test for variations in the initial mass function (IMF). Many recent studies have proposed that the IMF varies systematically as a function of early-type galaxy mass. This has potentially dramatic consequences and must to be confirmed. The number of LMXBs in a galaxy (per stellar luminosity) can be used to provide an independent test of this hypothesis (see Peacock et al. 2014). Unfortunately, only galaxies with intermediate to high masses currently have the data needed to perform this test. The proposed observation of the elliptical galaxy NGC7457 will detect an order of magnitude more LMXBs in a low mass galaxy - hence providing the crucial constraint needed to significantly test for a variable IMF.

  11. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  12. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  13. Optical observations of NGC 2915: A nearby blue compact dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Meurer, G. R.; Mackie, G.; Carignan, C.

    1994-01-01

    This paper presents B and R band Charge Coupled Device (CCD) images and medium resolution spectroscopy of NGC 2915, a relatively isolated BCD (blue compact dwarf) galaxy at a distance of approximately 5 Mpc. NGC 2915 contains two stellar populations: a high surface brightness blue core population and a red diffuse population. The core population contains all of the H II, and numerous embedded objects. It is the locus of current high mass star formation. The brightest embedded objects are likely to be young ionizing clusters, while many of the fainter objects are likely to be individual supergiant stars with masses up to approximately 25 solar mass, or blends of a few such stars. Curious aligned structures on the SE side of the galaxy are seen and their nature discussed. The spectrum of the core is dominated by bright narrow emission lines like that of a high excitation and low metallicity (less than half solar) H II region. The continuum is flat, with Balmer and Ca II features seen in absorption. The velocity of the Ca II features suggest contamination by galactic interstellar absorption. There is a significant velocity gradient in the spectra, probably indicative of rotation. Outside of its core, NGC 2915 resembles a dE (dwarf elliptical) galaxy, in that it has an exponential surface brightness profile, is red ((B-R)(sub 0) = 1.65), and has a low extrapolated central surface brightness (B(0)(sub c) = 22.44). NGC 2915's properties are compared with other BCDs, concentrating on two morphologically similar BCDs that are near enough to resolve into stars: NGC 1705 and NGC 5253. It is noted that the presence of winds in BCDs invalidates closed box chemical evolution models and the remaining constraints on star formation duration are relatively weak. Some BCDs, including NGC 2915, may be able to maintain their present star formation rate for Gyr time scales. This suggests that the overall evolution of these BCDs may be much slower than the approximately 10 Myr burst

  14. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidalmore » “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.« less

  15. A single population of red globular clusters around the massive compact galaxy NGC 1277

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  16. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  17. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  18. Efficient star formation in the spiral arms of M51

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.; Young, Judith S.

    1990-01-01

    The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.

  19. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  20. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  1. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

    may be more similar than we think: both may have outer halos made largely via minor mergers and the accumulation of tidal debris.  We construct a main-body+cD-halo decomposition that fits both the brightness and dispersion profiles. To fit σ (r), we need to force the component Sérsic indices to be smaller than a minimum-{χ }2 photometric decomposition would suggest. The main body has {M}V≃ -22.8≃ 30% of the total galaxy light. The cD halo has {M}V≃ -23.7, ˜1/2 mag brighter than the brightest galaxy in the Virgo cluster. A mass model based on published cluster dynamics and X-ray observations fits our observations if the tangential dispersion is larger than the radial dispersion at r≃ 20\\prime\\prime -60\\prime\\prime . The cD halo is as enhanced in α element abundances as the main body of NGC 6166. Quenching of star formation in ≲1 Gyr suggests that the center of Abell 2199 has been special for a long time during which dynamical evolution has liberated a large mass of now-intracluster stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  2. The ionized gas in the CALIFA early-type galaxies. I. Mapping two representative cases: NGC 6762 and NGC 5966

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.

    2012-04-01

    As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission

  3. H I in the Shell Elliptical Galaxy NGC 3656

    NASA Astrophysics Data System (ADS)

    Balcells, Marc; van Gorkom, J. H.; Sancisi, Renzo; del Burgo, Carlos

    2001-10-01

    Very Large Array7 neutral hydrogen observations of the shell elliptical galaxy NGC 3656 reveal an edge-on, warped minor-axis gaseous disk (MHI~2×109 Msolar) extending 7 kpc. H I is also found outside the optical image, on two complexes to the northeast and northwest that seem to trace one or two tidal tails, or possibly an outer broken H I disk or ring. These complexes link with the outer edges of the inner disk and appear displaced with respect to the two optical tails in the galaxy. The disk kinematics is strongly lopsided, suggesting recent or ongoing accretion. Integral-field optical fiber spectroscopy at the region of the bright southern shell of NGC 3656 has provided a determination of the stellar velocities of the shell. The shell, at 9 kpc from the center, has traces of H I with velocities bracketing the stellar velocities, providing evidence for a dynamical association of H I and stars at the shell. Within the errors the stars have systemic velocity, suggesting a possible phase-wrapping origin for the shell. We probed a region of 40'×40' (480 kpc×480 kpc)×1160 km s-1 down to an H I mass sensitivity (6 σ) of 3×107 Msolar and detect five dwarf galaxies with H I masses ranging from 2×108 to 2×109 Msolar, all within 180 kpc of NGC 3656 and all within the velocity range (450 km s-1) of the H I of NGC 3656. The dwarfs had been previously cataloged, but none had a known redshift. For the NGC 3656 group to be bound requires a total mass of (3-7.4)×1012 Msolar, yielding a mass-to-light ratio from 125 to 300. The overall H I picture presented by NGC 3656 supports the hypothesis of a disk-disk merger origin or possibly an ongoing process of multiple mergers with nearby dwarfs. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  4. Distribution and kinematics of H I in the active elliptical galaxy NGC 1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gorkom, J.H.; Knapp, G.R.; Raimond, E.

    The H I distribution in the active elliptical galaxy NGC 1052 has been mapped at a resolution of 1 arcmin with the VLA. The H I structure is about three times the size of the optical galaxy and is roughly perpendicular to its major axis. The H I has a circular velocity of approx.200 km/s, roughly constant with radius; the mass of the galaxy is 1.5 x 10/sup 11/ M/sub sun/ at a radius of 16 kpc (D = 13.4 Mpc), and the mass to blue luminosity ratio at this radius is M/L/sub B/ approx.15 M/sub sun//L/sub sun/. H Imore » absorption is seen against the central radio continuum source, at both the systemic velocity and at redshifted velocities. The gas in NGC 1052, as in other ellipticals, has a rotation axis that is not aligned with the stellar rotation axis (the difference is 63/sup 0/) and a mean specific angular momentum that is considerably larger than that of the stars. The H I distribution is unusually irregular. In the southwest region of the galaxy, the distribution shows what appears to be a tidal tail, suggesting that the H I may have been acquired about 10/sup 9/ years ago. The presence of dust associated with the H I and the distribution and kinematics of the H I are consistent with capture of gas from a gas-rich dwarf or spiral. In the inner regions of the galaxy (r<5 kpc) the H I velocity field shows evidence of noncircular orbits and therefore possibly of a triaxial mass distribution for the galaxy. Alternatively the gas could be falling in toward the center.« less

  5. Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 μM Samples

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.

    2001-06-01

    We report the results of a spectropolarimetric survey of the CfA and 12 μm samples of Seyfert 2 (S2) galaxies. Polarized (hidden) broad-line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12 μm S2 galaxy sample shows a significantly higher incidence of HBLRs (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden active galactic nuclei. Compared to the non-HBLR S2 galaxies, the HBLR S2 galaxies display distinctly higher radio power relative to their far-infrared output and hotter dust temperature as indicated by the f25/f60 color. However, the level of obscuration is indistinguishable between the two types of S2 galaxies. These results strongly support the existence of two intrinsically different populations of S2 galaxies: one harboring an energetic, hidden S1 nucleus with a broad-line region and the other a ``pure'' S2 galaxy, with a weak or absent S1 nucleus and a strong, perhaps dominating starburst component. Thus, the simple purely orientation-based unification model is not applicable to all Seyfert galaxies.

  6. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  7. Enormous disc of cool gas surrounding the nearby powerful radio galaxy NGC612 (PKS0131-36)

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Morganti, R.; Oosterloo, T. A.; Holt, J.; Tadhunter, C. N.; van der Hulst, J. M.; Ojha, R.; Sadler, E. M.

    2008-06-01

    We present the detection of an enormous disc of cool neutral hydrogen (HI) gas surrounding the S0 galaxy NGC612, which hosts one of the nearest powerful radio sources (PKS0131-36). Using the Australia Telescope Compact Array, we detect MHI = 1.8 × 109Msolar of HI emission-line gas that is distributed in a 140-kpc wide disc-like structure along the optical disc and dust lane of NGC612. The bulk of the gas in the disc appears to be settled in regular rotation with a total velocity range of 850kms-1, although asymmetries in this disc indicate that perturbations are being exerted on part of the gas, possibly by a number of nearby companions. The HI disc in NGC612 suggests that the total mass enclosed by the system is Menc ~ 2.9 × 1012 sin-2 iMsolar, implying that this early-type galaxy contains a massive dark matter halo. We also discuss an earlier study by Holt et al. that revealed the presence of a prominent young stellar population at various locations throughout the disc of NGC612, indicating that this is a rare example of an extended radio source that is hosted by a galaxy with a large-scale star-forming disc. In addition, we map a faint HI bridge along a distance of 400kpc in between NGC612 and the gas-rich (MHI = 8.9 × 109Msolar) barred galaxy NGC619, indicating that likely an interaction between both systems occurred. From the unusual amounts of HI gas and young stars in this early-type galaxy, in combination with the detection of a faint optical shell and the system's high infrared luminosity, we argue that either ongoing or past galaxy interactions or a major merger event are a likely mechanism for the triggering of the radio source in NGC612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies and it presents the first example of large-scale HI detected around a powerful Fanaroff-Riley type II (FR-II) radio galaxy. The HI properties of the FR-II radio galaxy NGC612 are very similar to those

  8. Sloshing in its cD halo: MUSE kinematics of the central galaxy NGC 3311 in the Hydra I cluster

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Mendes de Oliveira, C.; Hilker, M.; Richtler, T.

    2018-01-01

    Context. Early-type galaxies (ETGs) show a strong size evolution with redshift. This evolution is explained by fast "in-situ" star formation at high-z followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. Aims: We aim to identify the main structural components of the Hydra I cD galaxy NGC 3311 to investigate the connection between the central galaxy and the surrounding stellar halo. Methods: We produce maps of the line-of-sight velocity distribution (LOSVD) moments from a mosaic of MUSE pointings covering NGC 3311 out to 25 kpc. Combining deep photometric and spectroscopic data, we model the LOSVD maps using a finite mixture distribution, including four non-concentric components that are nearly isothermal spheroids, with different line-of-sight systemic velocities V, velocity dispersions σ, and small (constant) values of the higher order Gauss-Hermite moments h3 and h4. Results: The kinemetry analysis indicates that NGC 3311 is classified as a slow rotator, although the galaxy shows a line-of-sight velocity gradient along the photometric major axis. The comparison of the correlations between h3 and h4 with V/σ with simulated galaxies indicates that NGC 3311 assembled mainly through dry mergers. The σ profile rises to ≃ 400 km s-1 at 20 kpc, a significant fraction (0.55) of the Hydra I cluster velocity dispersion, indicating that stars there were stripped from progenitors orbiting in the cluster core. The finite mixture distribution modeling supports three inner components related to the central galaxy and a fourth component with large effective radius (51 kpc) and velocity dispersion (327 km s-1) consistent with a cD envelope. We find that the cD envelope is offset from the center of NGC 3311 both spatially (8.6 kpc) and in velocity (ΔV = 204 km s-1), but coincides with the cluster core X-ray isophotes and the mean velocity of core galaxies. Also, the envelope contributes to the broad wings of the

  9. The strong UV source in the active E Galaxy NGC 4552

    NASA Technical Reports Server (NTRS)

    Oconnell, R. W.; Thuan, T. X.; Puschell, J. J.

    1986-01-01

    1200-3200 A IUE spectra of the nucleus of NGC 4552 (M89) were obtained in order to investigate the nature of the strong 10 micron source in this Galaxy. There is a strong, extended UV source in NGC 4552 which has a spatial distribution nearly identical with that at optical wavelengths and is undoubedly stellar in origin. Its properties are consistent with the correlation between UV source strength and metallicity pointed out by Faber (1983). There is no evidence for a nonthermal point source in the UV. It appears unlikely that the 10 micron emission is from heated dust grains. Instead, it is believed the 10 micron radiation is nonthermal in origin, implying a remarkably small size of only 0.1 AU for this source.

  10. A PAndAS view of M31 dwarf elliptical satellites: NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; McConnachie, A. W.; Bernard, E. J.; Fardal, M. A.; Ibata, R. A.; Lewis, G. F.; Martin, N. F.; Navarro, J. F.; Noël, N. E. D.; Pasetto, S.

    2014-12-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC 147 and NGC 185. Our wide-field, homogeneous photometry allows us to construct deep colour-magnitude diagrams which reach down to ˜3 mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of μg ˜ 32 mag arcsec-2 and show that they have much larger extents (˜5 kpc radii) than previously recognized. While NGC 185 retains a regular shape in its peripheral regions, NGC 147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sérsic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC 147 has an effective radius almost three times that of NGC 185. In both cases, the effective radii that we calculate are larger by a factor of ˜2 compared to most literature values. We also calculate revised total magnitudes of Mg = -15.36 ± 0.04 for NGC 185 and Mg = -16.36 ± 0.04 for NGC 147. Using photometric metallicities computed for RGB stars, we find NGC 185 to exhibit a metallicity gradient of [Fe/H] ˜ -0.15 dex kpc-1 over the radial range 0.125-0.5 deg. On the other hand, NGC 147 exhibits almost no metallicity gradient, ˜-0.02 dex kpc-1 from 0.2 to 0.6 deg. The differences in the structure and stellar populations in the outskirts of these systems suggest that tidal influences have played an important role in governing the evolution of NGC 147.

  11. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100-300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}⊙ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}⊙ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}⊙ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  12. Rapid x-ray variability from the Seyfert 1 galaxy NGC 4051

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F.E.; Holt, S.S.; Mushotzky, R.F.

    1983-06-15

    Strong variable x-ray emission from the nearby low-luminosity Seyfert 1 galaxy NGC 4051 has been discovered during observations with the imaging proportional counter (IPC) of the Einstein Observatory. During one 2304 s observation, the x-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 s was seen during another 968 s observation. We present evidence that the x-ray spectrum of NGC 4051 is unusually soft compared with Seyfert 1 galaxies or OSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretionmore » models.« less

  13. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    NASA Astrophysics Data System (ADS)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment

  14. A Detailed Study of the Variable Stars in Five Galactic Globular Clusters: IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph

    2015-08-01

    We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass

  15. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  16. Effects of environmental gas compression on the multiphase ISM and star formation . The Virgo spiral galaxies NGC 4501 and NGC 4567/68

    NASA Astrophysics Data System (ADS)

    Nehlig, F.; Vollmer, B.; Braine, J.

    2016-03-01

    The cluster environment can affect galaxy evolution in different ways: via ram pressure stripping or by gravitational perturbations caused by galactic encounters. Both kinds of interactions can lead to the compression of the interstellar medium (ISM) and its associated magnetic fields, causing an increase in the gas surface density and the appearance of asymmetric ridges of polarized radio continuum emission. New IRAM 30m HERA CO(2-1) data of NGC 4501, a Virgo spiral galaxy currently experiencing ram pressure stripping, and NGC 4567/68, an interacting pair of galaxies in the Virgo cluster, are presented. We find an increase in the molecular fraction where the ISM is compressed. The gas is close to self-gravitation in compressed regions. This leads to an increase in gas pressure and a decrease in the ratio between the molecular fraction and total ISM pressure. The overall Kennicutt Schmidt relation based on a pixel-by-pixel analysis at ~1.5 kpc resolution is not significantly modified by compression. However, we detected continuous regions of low molecular star formation efficiencies in the compressed parts of the galactic gas disks. The data suggest that a relation between the molecular star formation efficiency SFEH2 = SFR/M(H2) and gas self-gravitation (Rmol/Ptot and Toomre Q parameter) exists. Both systems show spatial variations in the star formation efficiency with respect to the molecular gas that can be related to environmental compression of the ISM. An analytical model was used to investigate the dependence of SFEH2 on self-gravitation. The model correctly reproduces the correlations between Rmol/Ptot, SFEH2, and Q if different global turbulent velocity dispersions are assumed for the three galaxies. We found that variations in the NH2/ICO conversion factor can mask most of the correlation between SFEH2 and the Toomre Q parameter. Dynamical simulations were used to compare the effects of ram pressure and tidal ISM compression. These models give direct

  17. Velocity dispersions in galaxies: 1: The SO galaxy NGC 7332

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Chevalier, R. A.

    1971-01-01

    A Coude spectrum of the SO galaxy NGC 7332 with 0.9 A resolution from 4186 to 4364 A was obtained with the SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 + or - 20 km/sec with the best fit at G8III. The dispersion appears to be constant within + or - 35 km/sec out to 1.4 kpc (H = 100 km/sec/mpc). After correction for projection, the rotation curve has a slope of 0.16 km/sec/pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 1.4 x 10 to the 11th power solar masses if the mass-to-light ratio is constant throughout the galaxy. The photographic luminosity is 8.3 x 10 to the 9th power solar luminosities so that the M/L ratio is 17.

  18. Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2013-02-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.

  19. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Megan, E-mail: mjohnson@nrao.edu; National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24915

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569.more » A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.« less

  20. Revisiting the Abundance Gradient in the Maser Host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2011-03-01

    New spectroscopic observations of 36 H II regions in NGC 4258 obtained with the Gemini telescope are combined with existing data from the literature to measure the radial oxygen abundance gradient in this galaxy. The [O III]λ4363 auroral line was detected in four of the outermost targets (17-22 kpc from the galaxy center), allowing a determination of the electron temperature Te of the ionized gas. From the use of different calibrations of the R 23 abundance indicator, an oxygen abundance gradient of approximately -0.012 ± 0.002 dex kpc-1 is derived. Such a shallow gradient, combined with the difference in the distance moduli measured from the Cepheid period-luminosity relation by Macri et al. between two distinct fields in NGC 4258, would yield an unrealistically strong effect of metallicity on the Cepheid distances. This strengthens the suggestion that systematic biases might affect the Cepheid distance of the outer field. Evidence for a similar effect in the differential study of M33 by Scowcroft et al. is presented. A revision of the transformation between strong-line and Te -based abundances in Cepheid-host galaxies is discussed. In the Te abundance scale, the oxygen abundance of the inner field of NGC 4258 is found to be comparable with the LMC value. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  1. Galaxy shredding. I - Centaurus A, NGC 5237, and the Fourcade-Figueroa shred

    NASA Astrophysics Data System (ADS)

    Thomson, R. C.

    1992-08-01

    Numerical simulations of galaxy shredding are presented together with a case study of the nearby active galaxy Centaurus A. It is suggested that a shred-forming encounter with a spiral galaxy (about the same size as the Milky Way) took place some 5 x 10 exp 8 yr ago. The captured disk material now forms the conspicuous ring of gas and dust which girdles Centaurus A, and probably provides the fuel that powers the radio emission seen today. The present shredding model provides a consistent picture of many aspects of the Centaurus A system, including: the relative positions and velocities of Centaurus A, NGC 5237, and the Fourcade-Figueroa shred; the orientation and sense of rotation of the dust lane in Centaurus A; the peculiar nature of the interacting dwarf elliptical galaxy NGC 5237; and the orientation and observed nonrotation of the Fourcade-Figueroa shred.

  2. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  3. The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647

    NASA Astrophysics Data System (ADS)

    Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.

    2006-10-01

    We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.

  4. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  5. Clouds in Context: The Cycle of Gas and Stars in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles; Forbrich, Jan

    2015-08-01

    The physical process by which gas is converted into stars takes place on small scales within Giant Molecular Clouds (GMCs), while the formation and evolution of these GMCs is influenced by global, galactic-scale processes. It is thus of key importance to connect GMC (~10 pc) and galaxy (~10 kpc) scales in order to approach a fundamental understanding of the star formation process. With this goal in mind, we have conducted a multiscale, comprehensive, multiwavelength study of the interstellar medium and star formation in the nearby (d~1.9 Mpc) spiral galaxy NGC 300. We have fully mapped the dust content within this star-forming galaxy with the Herschel Space Observatory, combining these observations with archival Spitzer data to construct a high-sensitivity, ~250 pc-scale map of the column density and dust temperature across the entire NGC 300 disk. We find that peaks in the dust temperature generally correspond with active star-forming regions, and use our Herschel data along with pointed CO(2-1) observations from APEX to characterize the ISM in these regions. To derive star formation rates from ultraviolet, visible, and infrared photometry, we have developed a new method that utilizes population synthesis modeling of individual stellar populations and accounts for both the presence of extinction and the short (< 10 Myr) timescales appropriate for cloud-scale star formation. We find that the average molecular gas depletion time at GMC complex scales in NGC 300 is similar to that of Milky Way clouds, but significantly shorter than depletion times measured over kpc-sized regions in nearby galaxies. This difference likely reflects the presence of a diffuse, non-star-forming component of molecular gas between GMCs, as well as the fact that star formation is strongly concentrated in discrete regions within galaxies. I will also present first results from follow-up interferometric observations with the SMA and ALMA that resolve individual GMCs in NGC 300 for the first

  6. SPECTRAL TYPES OF RED SUPERGIANTS IN NGC 6822 AND THE WOLF-LUNDMARK-MELOTTE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Emily M.; Massey, Philip, E-mail: Emily.Levesque@colorado.edu

    We present moderate-resolution spectroscopic observations of red supergiants (RSGs) in the low-metallicity Local Group galaxies NGC 6822 (Z = 0.4 Z{sub Sun} ) and Wolf-Lundmark-Melotte (WLM; Z = 0.1 Z{sub Sun} ). By combining these observations with reduction techniques for multislit data reduction and flux calibration, we are able to analyze spectroscopic data of 16 RSGs in NGC 6822 and spectrophotometric data of 11 RSGs in WLM. Using these observations, we determine spectral types for these massive stars, comparing them to Milky Way and Magellanic Cloud RSGs and thus extending observational evidence of the abundance-dependent shift of RSG spectral typesmore » to lower metallicities. In addition, we have uncovered two RSGs with unusually late spectral types (J000158.14-152332.2 in WLM, with a spectral type of M3 I, and J194453.46-144552.6 in NGC 6822, with a spectral type of M4.5 I) and a third RSG (J194449.96-144333.5 in NGC 6822) whose spectral type has varied from an M2.5 in 1997 to a K5 in 2008. All three of these stars could potentially be members of a recently discovered class of extreme RSG variables.« less

  7. The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-12-01

    We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  8. Velocity field and physical conditions in the active lenticular galaxy NGC 3998

    NASA Technical Reports Server (NTRS)

    Blackman, C. P.; Wilson, A. S.; Ward, M. J.

    1983-01-01

    A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.

  9. The origin of the X-ray, radio and H I structures in the NGC 5903 galaxy group

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Kolokythas, Konstantinos; Kantharia, Nimisha G.; Raychaudhury, Somak; David, Laurence P.; Vrtilek, Jan M.

    2018-02-01

    The NGC 5903 galaxy group is a nearby (∼30 Mpc) system of ∼30 members, dominated by the giant ellipticals NGC 5903 and NGC 5898. The group contains two unusual structures: a ∼110 kpc long H I filament crossing NGC 5903 and a ∼75 kpc wide diffuse, steep-spectrum radio source of unknown origin that overlaps NGC 5903 and appears to be partly enclosed by the H I filament. Using a combination of Chandra, XMM-Newton, Giant Meterwave Radio Telescope (GMRT) and Very Large Array (VLA) observations, we detect a previously unknown ∼0.65 keV intra-group medium filling the volume within 145 kpc of NGC 5903 and find a loop of enhanced X-ray emission extending ∼35 kpc south-west from the galaxy, enclosing the brightest part of the radio source. The northern and eastern parts of this X-ray structure are also strongly correlated with the southern parts of the H I filament. We determine the spectral index of the bright radio emission to be α _{150}^{612} = 1.03 ± 0.08, indicating a radiative age >360 Myr. We discuss the origin of the correlated radio, X-ray and H I structures, either through an interaction-triggered active galactic nucleus (AGN) outburst with enthalpy 1.8 × 1057 erg, or via a high-velocity collision between a galaxy and the H I filament. While neither scenario provides a complete explanation, we find that an AGN outburst is the most likely source of the principal X-ray and radio structures. However, it is clear that galaxy interactions continue to play an important role in the development of this relatively highly evolved galaxy group. We also resolve the question of whether the group member galaxy ESO 514-3 hosts a double-lobed radio source, confirming that the source is a superposed background AGN.

  10. Disturbed Fossil Group Galaxy NGC 1132

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O’Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa; Trinchieri, Ginevra

    2018-02-01

    We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e., a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed and asymmetrical, with a cold front following a possible bow shock. We discuss possible origins of the disturbed hot halo, including sloshing by a nearby object, merger, ram pressure by external hotter gas, and nuclear outburst. We consider that the first two mechanisms are likely explanations for the disturbed hot halo, with a slight preference for a minor merger with a low impact parameter because of the match with simulations and previous optical observations. In this case, NGC 1132 may be a rare example of unusual late mergers seen in recent simulations. Regardless of the origin of the disturbed hot halo, the paradigm of the fossil system needs to be reconsidered.

  11. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  12. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    NASA Technical Reports Server (NTRS)

    Binney, J. J.; Davies, Roger L.; Illingworth, Garth D.

    1990-01-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure.

  13. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  14. Resolved Stellar Streams around NGC 4631 from a Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka

    2017-06-01

    We present the first results of the Subaru/Hyper Suprime-Cam survey of the interacting galaxy system, NGC 4631 and NGC 4656. From the maps of resolved stellar populations, we identify 11 dwarf galaxies (including already-known dwarfs) in the outer region of NGC 4631 and the two tidal stellar streams around NGC 4631, named Stream SE and Stream NW, respectively. This paper describes the fundamental properties of these tidal streams. Based on the tip of the red giant branch method and the Bayesian statistics, we find that Stream SE (7.10 Mpc in expected a posteriori, EAP, with 90% credible intervals of [6.22, 7.29] Mpc) and Stream NW (7.91 Mpc in EAP with 90% credible intervals of [6.44, 7.97] Mpc) are located in front of and behind NGC 4631, respectively. We also calculate the metallicity distribution of stellar streams by comparing the member stars with theoretical isochrones on the color-magnitude diagram. We find that both streams have the same stellar population based on the Bayesian model selection method, suggesting that they originated from a tidal interaction between NGC 4631 and a single dwarf satellite. The expected progenitor has a positively skewed metallicity distribution function with {[M/H]}{EAP}=-0.92, with 90% credible intervals of [-1.46, -0.51]. The stellar mass of the progenitor is estimated as 3.7× {10}8 {M}⊙ , with 90% credible intervals of [5.8× {10}6,8.6× {10}9] {M}⊙ based on the mass-metallicity relation for Local group dwarf galaxies. This is in good agreement with the initial stellar mass of the progenitor that was presumed in the previous N-body simulation.

  15. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  16. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  17. NGC 1291

    NASA Image and Video Library

    2007-11-14

    This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 1291, located about 33 million light-years away in the constellation Eridanus. NGC 1291 is notable for its unusual inner bar and outer ring structure.

  18. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  19. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  20. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NASA Astrophysics Data System (ADS)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-12-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galactocentric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+ 0.1, and underabundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+ 0.1 in the centre to ˜+ 0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended SFH. This would be the case if the galaxy originated from a Large Magellanic Cloud-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  1. The ionization mechanism of NGC 185: how to fake a Seyfert galaxy?

    NASA Astrophysics Data System (ADS)

    Martins, L. P.; Lanfranchi, G.; Gonçalves, D. R.; Magrini, L.; Teodorescu, A. M.; Quireza, C.

    2012-02-01

    NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From mid-1990s onwards it was revealed that dwarf spheroidals often display a varied and in some cases complex star formation history. In an optical survey of bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its emission line ratios. However, although the emission lines in this object formally place it in the category of Seyferts, it is probable that this galaxy does not contain a genuine active nucleus. NGC 185 was not detected in radio surveys either in 6 or 20 cm, or X-ray observations, which means that the Seyfert-like line ratios may be produced by stellar processes. In this work, we try to identify the possible ionization mechanisms for this galaxy. We discussed the possibility of the line emissions being produced by planetary nebulae (PNe), using deep spectroscopy observations obtained with the Gemini Multi-Object Spectrograph - North (GMOS-N), at Gemini. Although the fluxes of the PNe are high enough to explain the integrated spectrum, the line ratios are very far from the values for the Seyfert classification. We then proposed that a mixture of supernova remnants and PNe could be the source of the ionization, and we show that a composition of these two objects do mimic Seyfert-like line ratios. We used chemical evolution models to predict the supernova rates and to support the idea that these supernova remnants should be present in the galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership.

  2. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, G.; Vrtilek, J. M.; David, L.

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, amore » 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.« less

  3. The resolved star formation history of M51a through successive Bayesian marginalization

    NASA Astrophysics Data System (ADS)

    Martínez-García, Eric E.; Bruzual, Gustavo; Magris C., Gladis; González-Lópezlira, Rosa A.

    2018-02-01

    We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey and near-infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near-infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affect the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved SFH of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the big bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t ≈ 11.9 Gyr after the big bang.

  4. The SLUGGS survey: globular cluster kinematics in a `double sigma' galaxy - NGC 4473

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Foster, Caroline; Forbes, Duncan A.; Romanowsky, Aaron J.; Pastorello, Nicola; Brodie, Jean P.; Spitler, Lee R.; Strader, Jay; Usher, Christopher

    2015-09-01

    NGC 4473 is a so-called double sigma (2σ) galaxy, i.e. a galaxy with rare, double peaks in its 2D stellar velocity dispersion. Here, we present the globular cluster (GC) kinematics in NGC 4473 out to ˜10Re (effective radii) using data from combined Hubble Space Telescope/Advanced Camera for Surveys and Subaru/Suprime-Cam imaging and Keck/Deep Imaging Multi-Object Spectrograph. We find that the 2σ nature of NGC 4473 persists up to 3Re, though it becomes misaligned to the photometric major axis. We also observe a significant offset between the stellar and GC rotation amplitudes. This offset can be understood as a co-addition of counter-rotating stars producing little net stellar rotation. We identify a sharp radial transition in the GC kinematics at ˜4Re suggesting a well defined kinematically distinct halo. In the inner region (<4Re), the blue GCs rotate along the photometric major axis, but in an opposite direction to the galaxy stars and red GCs. In the outer region (>4Re), the red GCs rotate in an opposite direction compared to the inner region red GCs, along the photometric major axis, while the blue GCs rotate along an axis intermediate between the major and minor photometric axes. We also find a kinematically distinct population of very red GCs in the inner region with elevated rotation amplitude and velocity dispersion. The multiple kinematic components in NGC 4473 highlight the complex formation and evolutionary history of this 2σ galaxy, as well as a distinct transition between the inner and outer components.

  5. A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744

    NASA Astrophysics Data System (ADS)

    Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.

    2018-03-01

    We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.

  6. NGC 1275: an outlier of the black hole-host scaling relations

    NASA Astrophysics Data System (ADS)

    Sani, Eleonora; Ricci, Federica; La Franca, Fabio; Bianchi, Stefano; Bongiorno, Angela; Brusa, Marcella; Marconi, Alessandro; Onori, Francesca; Shankar, Francesco; Vignali, Cristian

    2018-02-01

    The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the M_{BH}-host scaling relations obtained for quiescent galaxies. Since it harbours an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the M_{BH}-σ_\\star and M_{BH}-L_{bul} planes. Starting from our previous work tep{ricci17b}, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the M_{BH}-σ_\\star plane being 1.2 dex (in black hole mass) displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the M_{BH}-L_{bul,3.6} plane with respect to the scaling relation is as high as observed in the M_{BH}-σ_\\star. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  7. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with I) high spatial resolution HST photometry; II) numbers of W-R stars in nearby galaxies; and III) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  8. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  9. A Hubble Space Telescope planetary camera view of giant H II regions - The Wolf-Rayet content of NGC 595 and NGC 604 in M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1993-01-01

    We present images of NGC 595 and NGC 604, the most massive giant H II regions in M33, obtained with the Planetary Camera aboard the HST in order to study their WR population. Fourteen WR and/or Of candidates are detected in NGC 604, and eleven in NGC 595. All previously claimed 'superluminous' WR stars are found to be tight (diameter less than 3 pc) stellar aggregates containing one (or sometimes more) normal WR star. As suspected from ground-based data, the WR/O number ratio is significantly higher in NGC 595 (about 0.3) than in NGC 604 (about 0.1). The WR stars may be major contributors to the output of mechanical power and energy into the interstellar medium in both clusters. Over the observable initial mass range, the initial mass functions (IMFs) have similar slopes. These IMFs are somewhat flatter than those generally derived for massive stars in the Galaxy or the Magellanic Clouds.

  10. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*

    NASA Astrophysics Data System (ADS)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.

    2018-01-01

    We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.

  11. THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, David V.; Jenkins, Edward B.; Chelouche, Doron

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48–165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly α absorption is detected along all sightlines and Si iii λ 1206 is found along the three sightlines with the smallest ρ ; metalmore » lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher- z studies.« less

  12. Seeing Red in NGC 1978, NGC 55, and NGC 3109

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2018-04-01

    Spectra of the intermediate-age star cluster NGC 1978 and the dwarf irregular galaxies NGC 55 and NGC 3109 are discussed. The spectra were recorded with the Gemini Multi-object Spectrograph on Gemini South and span the 0.7–1.1 μm wavelength interval. Five slit pointings were observed in NGC 1978, and these are used to examine stochastic effects on the integrated red light from an intermediate-age cluster. The removal of either the brightest M giant or the brightest C star from the co-added spectrum has minor effects on the equivalent withs of the Ca triplet. The most robust signature of C stars in the integrated cluster spectrum at these wavelengths is the CN band head near 7900 Å. The equivalent widths of Ca triplet lines in the NGC 1978 spectrum and in the spectra of individual cluster stars are larger than expected for a scaled-solar abundance system. It is suggested that these stars have a lower than expected surface gravity, which might occur if the stars in NGC 1978 have been subject to extra mixing processes, as suggested by Lederer et al. The near-infrared color profile of NGC 1978 is shown to contain a prominent red cusp in the central 10 arcsec, and the suppression of light from this cusp does not affect the depth of the Ca lines in the integrated spectrum. The NGC 55 spectra run parallel to the major axis, and a gradient is found in the strength of the Ca lines, in the sense that the Ca lines weaken with increasing distance from the disk plane. Comparisons with models suggest that the disk light is dominated by stars with ages 1–2 Gyr, in agreement with star-forming histories (SFHs) obtained from the analysis of color–magnitude diagrams (CMDs). The NGC 55 spectra also sample a large star-forming complex. The age of this complex inferred from comparisons with models is broadly consistent with that estimated from a near-infrared CMD of the same region. The CN band head at 7900 Å in this part of NGC 55 is detected, but this is likely a signature of

  13. BIMA CO (1-0) Observations of the Dwarf Elliptical Galaxy NGC 404

    NASA Astrophysics Data System (ADS)

    Taylor, C. L.; Petitpas, G. R.

    2004-12-01

    We present high resolution observations of the CO emission in NGC 404, a nearby dwarf elliptical (dE) galaxy (D = 3.3 Mpc). NGC 404 is only the third dwarf elliptical to have its CO emission mapped by interferometric observations, and is the first outside the Local Group. Our observations show a very concentrated, marginally resolved structure about 9 × 9 arcseconds in diameter. This corresponds to a very small cloud at the center of a much larger distribution of stars. NGC 404 is surrounded by a doughnut shaped distribution of HI gas centered on the stellar component. The CO and HI appear to be kinematically distinct components, suggesting that the HI may be part of the galaxy's original gas distribution, while the CO may be recycled from the products of stellar evolution. C.L.T. has been supported by CSU Sacramento via a Research and Creative Activity Award. G.R.P. has been supported by the Laboratory for Millimeter-Wave Astronomy through NSF grant AST 99-81289

  14. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  15. Distribution and motions of atomic hydrogen in lenticular galaxies. X - The blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Van Woerden, H.; Van Driel, W.; Braun, R.; Rots, A. H.

    1993-01-01

    Results of the mapping of the blue gas-rich S0 galaxy NGC 5102 in the 21-cm H I line with a spatial resolution of 34 x 37 arcsec (delta(alpha) x Delta(delta)) and a velocity resolution of 12 km/s are presented. The H I distribution has a pronounced central depression of 1.9 kpc radius, and most of the H I is concentrated in a 3.6 kpc wide ring with an average radius of 3.7 kpc, assuming a distance of 4 Mpc for NGC 5102. The maximum azimuthally averaged H I surface density in the ring is 1.4 solar mass/sq pc, comparable to that found in other S0 galaxies. The HI velocity field is quite regular, showing no evidence for large-scale deviations from circular rotation, and the H I is found to rotate in the plane of the stellar disk. Both the H I mass/blue luminosity ratio and the radial H I distribution are similar to those in early-type spirals. The H I may be an old disk or it may have been acquired through capture of a gas-rich smaller galaxy. The recent starburst in the nuclear region, which gave the galaxy its blue color, may have been caused by partial radial collapse of the gas disk, or by infall of a gas-rich dwarf galaxy.

  16. UGC 4703 Interacting Pair Near the Isolated Spiral Galaxy NGC 2718: A Milky Way Magellanic Cloud Analog

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Sengupta, C.

    2017-11-01

    We present an analysis of physical and morphological properties of an interacting pair of dwarf galaxies, UGC 4703, located in the vicinity of an isolated Milky Way (MW) type spiral galaxy NGC 2718. Based on the comparison of physical and morphological properties with that of the Large and Small Magellanic Clouds (LMC and SMC), we report that the UGC 4703 pair-NGC 2718 system is probably an LMC-SMC-MW analog. Located at a sky-projected distance of 81 kpc from NGC 2718, we find that UGC 4703 is clearly interacting with its nearby lower-mass companion UGC 4703B, forming a bridge of stellar stream between them. Total B-band luminosity of UGC 4703 and its companion is -17.75 and -16.25 mag, respectively. We obtained H I 21 cm line data of UGC 4703 using the GMRT to get a more detailed view of neutral hydrogen (H I) emission. The H I image revealed evidence of interaction between the dwarf galaxy pair but no extended emission, such as the Magellanic Stream. We also detected star-forming regions along the UGC 4703/4703B bridge with stellar mass exceeding 107 M ⊙. While comparing the optical and H I morphology of the interacting dwarf pairs (UGC 4703-4703B and LMC-SMC), we discuss possible differences in interaction histories of these systems.

  17. Superwind evolution: the young starburst-driven wind galaxy NGC 2782

    NASA Astrophysics Data System (ADS)

    Bravo-Guerrero, Jimena; Stevens, Ian R.

    2017-06-01

    We present results from a 30-ks Chandra observation of the important starburst galaxy NGC 2782, covering the 0.3-10 keV energy band. We find evidence of a superwind of small extent, which is likely in an early stage of development. We find a total of 27 X-ray point sources within a region of radius 2D25 of the galaxy centre and that are likely associated with the galaxy. Of these, 13 are ultraluminous X-ray point sources (ULXs; LX ≥ 1039 erg s- 1) and a number have likely counterparts. The X-ray luminosities of the ULX candidates are 1.2-3.9 × 1039 erg s- 1. NGC 2782 seems to have an unusually large number of ULXs. Central diffuse X-ray emission extending to ˜3 kpc from the nuclear region has been detected. We also find an X-ray structure to the south of the nucleus, coincident with Hα filaments and with a 5-GHz radio source. We interpret this as a blow-out region of a forming superwind. This X-ray bubble has a total luminosity (0.3-10 keV) of 5 × 1039 erg s-1 (around 15 per cent of the total luminosity of the extended emission), and an inferred wind mass of 1.5 × 106 M⊙ . We also discuss the nature of the central X-ray source in NGC 2782, and conclude that it is likely a low-luminosity active galactic nucleus, with a total X-ray luminosity of LX = 6 × 1040 erg s-1, with strong Fe line emission at 6.4 keV.

  18. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values

  19. A Chandra observation of the interacting pair of galaxies NGC 4485/4490

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Warwick, R. S.; Ward, M. J.; Murray, S. S.

    2002-12-01

    We report the results of a 20-ks Chandra ACIS-S observation of the galaxy pair NGC 4485/4490. This is an interacting system containing a late-type spiral with an enhanced star formation rate (NGC 4490), and an irregular companion that possesses a disturbed morphology. A total of 29 discrete X-ray sources are found coincident with NGC 4490, but only one is found within NGC 4485. The sources range in observed X-ray luminosity from ~2 × 1037 to 4 × 1039 erg s-1. The more luminous sources appear, on average, to be spectrally harder than the fainter sources, an effect that is attributable to increased absorption in their spectra. Extensive diffuse X-ray emission is detected coincident with the disc of NGC 4490, and in the tidal tail of NGC 4485, which appears to be thermal in nature and hence the signature of a hot interstellar medium in both galaxies. However, the diffuse component accounts for only ~10 per cent of the total X-ray luminosity of the system (2 × 1040 erg s-1, 0.5-8 keV), which arises predominantly in a handful of the brightest discrete sources. This diffuse emission fraction is unusually low for a galaxy pair which has many characteristics that would lead it to be classified as a starburst system, possibly as a consequence of the small gravitational potential well of the system. The discrete source population, on the other hand, is similar to that observed in other starburst systems, possessing a flat luminosity function slope of ~-0.6 and a total of six ultraluminous X-ray sources (ULX). Five of the ULX are identified as probable black hole X-ray binary systems, and the sixth (which is coincident with a radio continuum source) is identified as an X-ray luminous supernova remnant. The ULX all lie in star formation regions, providing further evidence of the link between the ULX phenomenon and active star formation. Importantly, this shows that even in star-forming regions, the ULX population is dominated by accreting systems. We discuss the

  20. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  1. Stellar and Gas Kinematics in the Tully-Fisher Deviant Virgo Cluster Galaxy NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortes, J. R.; Kenney, J. D. P.

    2000-05-01

    NGC 4424 is a peculiar, gas-deficient, Virgo Cluster Sa galaxy which is probably the result of a merger. This galaxy seems to deviate from the Tully-Fisher relationship, as shown by Kenney et al (1996) and Rubin et al (1999). We present stellar and gas kinematics of NGC 4424 measured with Integral Field Spectroscopy using the Densepak fiber array on the WIYN telescope. Using a cross-correlation technique, we derive velocities and velocity dispersions of the stars thoughout the central region of the galaxy. We find that the mean line-of-sight velocities for both gas and stars are approximately a factor of 2 smaller than would be expected for the rotational motions of a galaxy of its luminosity and apparent inclination. Preliminary estimates of the stellar velocity dispersion are also lower than would be expected for the Faber-Jackson relationship. We discuss possible explanations for this behaviour, including the possibility that this disturbed galaxy is rotating in a plane different than the plane of the apparent disk, and is a tumbling object.

  2. Ultraviolet Imaging Telescope observations of the ScI galaxy NGC 628 (M74)

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.; Cornett, Robert H.; Roberts, Morton S.; Bohlin, Ralph C.; Neff, Susan G.; O'Connell, Robert W.; Parise, Ronald A.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    Ultraviolet images of NGC 628 at 1520 and 2490 A show that the nucleus has an oblong appearance and that the arms and disk exhibit features not seen in blue or H-alpha images. Aperture photometry of the nucleus gives results that are compatible with observations in other bandpasses and with models. The spiral arms appear more symmetrical in the UV than in other colors; in particular, two gaps are seen on either side of the nucleus. Combined UV and radio data appear to support a large-scale collective phenomenon, perhaps a quasi-static spiral structure mechanism, as being the dominant mode of spiral formation in this galaxy. We report the detection of a low surface brightness object at a distance of 7.6 arcmin southwest of the nucleus.

  3. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-01-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 10(exp 7) solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  4. LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Morandi, E.; Watkins, L. L.; Tosi, M.; Aloisi, A.; Buzzoni, A.; Cusano, F.; Fumana, M.; Marchetti, A.; Mignoli, M.; Mucciarelli, A.; Romano, D.; van der Marel, R. P.

    2018-05-01

    We present intermediate-resolution (R ˜ 1000) spectra in the ˜3500-10 000 Å range of 14 globular clusters in the Magellanic irregular galaxy NGC 4449 acquired with the Multi-Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the Ca II triplet index in the near-infrared in order to infer the clusters' stellar population properties. The inferred cluster ages are typically older than ˜9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range -1.2 ≲ [Fe/H] ≲ -0.7, and typically sub-solar [α/Fe] ratios, with a peak at ˜-0.4. These properties suggest that (i) during the first few Gyr NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the α-elements, and (ii) globular clusters in NGC 4449 formed relatively `late', from a medium already enriched in the products of Type Ia supernovae. The majority of clusters appear also underabundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M(<2.88 kpc) = 3.15^{+3.16}_{-0.75} × 10^9 M_{\\odot }. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.

  5. The Second Nucleus of NGC 7727: Direct Evidence for the Formation and Evolution of an Ultracompact Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Schweizer, François; Seitzer, Patrick; Whitmore, Bradley C.; Kelson, Daniel D.; Villanueva, Edward V.

    2018-01-01

    We present new observations of the late-stage merger galaxy NGC 7727, including Hubble Space Telescope/WFPC2 images and long-slit spectra obtained with the Clay telescope. NGC 7727 is relatively luminous ({M}V = ‑21.7) and features two unequal tidal tails, various bluish arcs and star clusters, and two bright nuclei 480 pc apart in projection. These two nuclei have nearly identical redshifts, yet are strikingly different. The primary nucleus, hereafter Nucleus 1, fits smoothly into the central luminosity profile of the galaxy and appears—at various wavelengths—“red and dead.” In contrast, Nucleus 2 is very compact, has a tidal radius of 103 pc, and exhibits three signs of recent activity: a post-starburst spectrum, an [O III] emission line, and a central X-ray point source. Its emission-line ratios place it among Seyfert nuclei. A comparison of Nucleus 2 ({M}V = ‑15.5) with ultracompact dwarf galaxies (UCDs) suggests that it may be the best case yet for a massive UCD having formed through tidal stripping of a gas-rich disk galaxy. Evidence for this comes from its extended star formation history, long blue tidal stream, and elevated dynamical-to-stellar-mass ratio. While the majority of its stars formed ≳ 10 {Gyr} ago, ∼1/3 formed during starbursts in the past 2 Gyr. Its weak active galactic nucleus activity is likely driven by a black hole of mass 3× {10}6-8 {M}ȯ . We estimate that the former companion’s initial mass was less than half that of then NGC 7727, implying a minor merger. By now this former companion has been largely shredded, leaving behind Nucleus 2 as a freshly minted UCD that probably moves on a highly eccentric orbit. Based in part on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ˜300 pc, with a width of ˜50 pc, and a velocity dispersion of ˜40 km s-1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s-1 pc-1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1-0)/CO(1-0) line ratio of ˜ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (˜ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ˜1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  7. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  8. Stellar populations in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Lee, Myung G.; Freedman, Wendy L.; Madore, Barry F.

    1993-01-01

    The study presents BVRI CCD photometry of about 5300 stars in the central area of the dwarf elliptical galaxy NGC 185 in the Local Group. The color-magnitude diagram shows three distinct stellar populations: a dominant RGB population, AGB stars located above the tip of the RGB stars, and a small number of young stars having blue to yellow colors. The foreground reddening is estimated to be 0.19 +/- 0.03 mag using the (B - V) - (V - I) diagram for the bright foreground stars with good photometry. Surface photometry of the central area of NGC 185 is presented; it shows that the colors become rapidly bluer inside R of about 10 arcsec. Structural parameters indicate that the mass-to-luminosity ratio ranges from 3 to 5.

  9. Resolving Molecular Clouds in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles J.; Forbrich, Jan

    2015-01-01

    We present results from our ongoing Submillimeter Array (SMA) survey in which we resolve Giant Molecular Clouds (GMCs) for the first time in the nearby (D = 1.9 Mpc) spiral galaxy NGC 300. We have conducted CO(2-1) and 1.3 mm dust continuum observations of several massive star-forming regions in NGC 300, following up on the Atacama Pathfinder Experiment (APEX) survey of Faesi et al. (2014). We find that the unresolved CO sources detected with APEX at ~250 pc resolution typically resolve into one dominant GMC in our SMA observations, which have a resolution of ~3.5' (30 pc). The majority of sources are significantly detected in CO, but only one exhibits dust continuum emission. Comparing with archival H-alpha, GALEX far-ultraviolet, and Spitzer 24 micron images, we note physical offsets between the young star clusters, warm dust, and ionized and molecular gas components in these regions. We recover a widely varying fraction -- between 30% and almost 100% -- of the full APEX single dish flux with our interferometric observations. This implies that the fraction of CO-emitting molecular gas that is in a diffuse state (i.e. with characteristic spatial scales > 100 pc) differs greatly amongst star forming regions in NGC 300. We investigate potential trends in the implied diffuse molecular gas fraction with GMC properties and star formation activity. We compute virial masses and analyze the velocity structure of these resolved extragalactic GMCs and compare to results from surveys of the Milky Way and other nearby galaxies.

  10. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-raymore » luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.« less

  11. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distributionmore » with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.« less

  12. The V-K colours of the nuclei of bright galaxies

    NASA Technical Reports Server (NTRS)

    Penston, M. V.

    1973-01-01

    Photometric observations of the nuclei of the galaxies M32, M33, M51, NGC5195 and M101 are reported. These give U-B, B-V, H-K and V-K colours for each object and the K-L colour for M32. No short-wavelength infra-red excesses are found. For M32, published population models (Spinrad & Taylor) predict a V-K colour too red to be compatible with the observations.

  13. VERITAS Upper Limit on the Very High Energy Emission from the Radio Galaxy NGC 1275

    DOE PAGES

    Acciari, V. A.; Aliu, E.; Arlen, T.; ...

    2009-11-16

    We report the recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 that makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. Finally, a 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at themore » decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.« less

  14. The NGC 7771+NGC 7770 minor merger: harassing the little one?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Rosales-Ortega, F. Fabián.; Sánchez, Sebastián. F.; Kennicutt, Robert C.; Pereira-Santaella, Miguel; Díaz, Ángeles I.

    2012-09-01

    Numerical simulations of minor mergers, typically having mass ratios greater than 3:1, predict little enhancement in the global star formation activity. However, these models also predict that the satellite galaxy is more susceptible to the effects of the interaction than the primary. We use optical integral field spectroscopy and deep optical imaging to study the NGC 7771+NGC 7770 interacting system (˜10:1 stellar mass ratio) to test these predictions. We find that the satellite galaxy NGC 7770 is currently experiencing a galaxy-wide starburst with most of the optical light being from young and post-starburst stellar populations (<1 Gyr). This galaxy lies off the local star-forming sequence for composite galaxies with an enhanced integrated specific star formation rate. We also detect in the outskirts of NGC 7770 Hα emitting gas filaments. This gas appears to have been stripped from one of the two galaxies and is being excited by shocks. All these results are consistent with a minor-merger-induced episode(s) of star formation in NGC 7770 after the first close passage. Such effects are not observed on the primary galaxy NGC 7771. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). The data presented here were obtained (in part) with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA.

  15. The peculiar asymmetry of NGC 949

    NASA Image and Video Library

    2015-05-04

    This image provides the clearest ever view of galaxy NGC 949, which lies over 30 million light-years away in the constellation of Triangulum. The galaxy has an unusual shape, made more obscure due to its inclination. From our point of view, it is difficult to discern exactly what type of galaxy NGC 949 is, but it is certainly a disc galaxy of some kind, most likely a spiral. NGC 949 was first discovered by Sir William Herschel on 21 September 1786, using an 18.7-inch reflecting telescope. The galaxy was one of about 3000 objects Herschel catalogued as "nebulae" during an intense and systematic deep sky survey, the results of which eventually formed the bulk of the New General Catalogue (NGC). Taken with Hubble’s Advanced Camera for Surveys (ACS), this new image shows extraordinary detail. This detail allows us to see a strange asymmetric alignment in the dark lanes of dust that snake across the galaxy. The top-right half of the galaxy appears considerably more marbled with dust in this image; a curious observation explained by stars tending to favour locations towards the centre of a galaxy, and dust preferring almost invariably to reside along the galactic plane. When a galaxy is inclined as NGC 949 is, some regions — in this case the top-right — are tipped towards us and the light from the stars we see in these regions has had to travel through more dust. This causes the light to appear redder — the result of the same process that gives the sun’s light a red hue at dusk — or else disappear entirely, making the dust appear more prominent on that side of the galaxy. In the part tipped away from us, the light from the stars has had to pass through much less dust to reach us, so it appears brighter, and the dust is much less prominent. Were it possible to view NGC 949 from the opposite side, the apparent alignment of the dust would be reversed. The scientific advantages of this effect were recently displayed in suitably stunning style in the M31 PHAT mosa

  16. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  17. NGC 4569

    NASA Image and Video Library

    2007-11-14

    This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 4569 in the constellation Virgo. It is one of the largest and brightest spiral galaxies found in the Virgo cluster of galaxies, the nearest major galaxy cluster to our Milky Way galaxy.

  18. A 5 × 10{sup 9}M{sub ⊙} BLACK HOLE IN NGC 1277 FROM ADAPTIVE OPTICS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Jonelle L.; Van den Bosch, Remco C. E.; Yıldırım, Akın

    The nearby lenticular galaxy NGC 1277 is thought to host one of the largest black holes known, however the black hole mass measurement is based on low spatial resolution spectroscopy. In this paper, we present Gemini Near-infrared Integral Field Spectrometer observations assisted by adaptive optics. We map out the galaxy's stellar kinematics within ∼440 pc of the nucleus with an angular resolution that allows us to probe well within the region where the potential from the black hole dominates. We find that the stellar velocity dispersion rises dramatically, reaching ∼550 km s{sup −1} at the center. Through orbit-based, stellar-dynamical modelsmore » we obtain a black hole mass of (4.9 ± 1.6) × 10{sup 9} M{sub ⊙} (1σ uncertainties). Although the black hole mass measurement is smaller by a factor of ∼3 compared to previous claims based on large-scale kinematics, NGC 1277 does indeed contain one of the most massive black holes detected to date, and the black hole mass is an order of magnitude larger than expectations from the empirical relation between black hole mass and galaxy luminosity. Given the galaxy's similarities to the higher redshift (z ∼ 2) massive quiescent galaxies, NGC 1277 could be a relic, passively evolving since that period. A population of local analogs to the higher redshift quiescent galaxies that also contain over-massive black holes may suggest that black hole growth precedes that of the host galaxy.« less

  19. Confirmation of Faint Dwarf Galaxies in the M81 Group

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  20. Atomic hydrogen bridge fueling NGC 4418 with gas from VV 655

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Costagliola, F.; Klöckner, H.-R.; Aalto, S.; Spoon, H.; Martí-Vidal, I.; Conway, J. E.; Privon, G. C.; König, S.

    2017-11-01

    Context. The galaxy NGC 4418 harbours a compact (<20 pc) core with a very high bolometric luminosity ( 1011L⊙). As most of the galaxy energy output comes from this small region, it is of interest to determine what fuels this intense activity. An interaction with the nearby blue irregular galaxy VV 655 has been proposed, where gas acquired by NGC 4418 could trigger intense star formation and/or black hole accretion in the centre. Aims: We aim to constrain the interaction hypothesis by studying neutral hydrogen structures that could reveal tails and debris connecting NGC 4418 to the nearby galaxy VV 655. Methods: We present observations at 1.4 GHz with the Very Large Array (VLA) of the radio continuum as well as emission and absorption from atomic hydrogen. Gaussian distributions are fitted to observed HI emission and absorption spectra. We estimate the star formation rates (SFRs) of NGC 4418 and VV 655 from the 1.4 GHz radio emission and compare them with estimates from archival 70 μm Herschel observations. Results: An atomic HI bridge is seen in emission, connecting NGC 4418 to the nearby galaxy VV 655. An HI tail is also seen extending south-west from VV 655. While NGC 4418 is bright in continuum emission and seen in HI absorption, VV 655 is barely detected in the continuum, but shows bright HI emission (MHI 109 M⊙). We estimate SFRs from the 1.4 GHz continuum of 3.2 M⊙ yr-1 and 0.13 M⊙ yr-1 for NGC 4418 and VV 655, respectively. Systemic HI velocities of 2202 ± 20 km s-1 (emission) and 2105.4 ± 10 km s-1 (absorption) are measured for VV 655 and NGC 4418, respectively. Redshifted HI absorption is seen (vc = 2194.0 ± 4.4 km s-1) towards NGC 4418, suggesting gas infall. North-west of NGC 4418, we detect HI in emission, blueshifted (vc = 2061.9 ± 5.1 km s-1) with respect to NGC 4418, consistent with an outflow perpendicular to the galaxy disk. We derive a deprojected outflow speed of 178 km s-1, which, assuming a simple cylindrical model, gives an order

  1. The ionization cone, obscured nucleus, and gaseous outflow in NGC 3281 - A prototypical Seyfert 2 galaxy?

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Wilson, Andrew S.; Baldwin, Jack A.

    1992-01-01

    Narrow-band images and long-slit spectroscopy of the central region of the highly inclined Seyfert galaxy NGC 3281 are presented. The image of the continuum-subtracted forbidden 4959 emission line shows a very clear conical morphology for the high-excitation gas. A possible similar structure can also be seen on the other side of the nucleus, but is dimmed by patchy obscuration in the dusk. The continuum images and long-slit spectroscopy are used to derive and map the extinction in the inner regions of NGC 3281; heavy obscuration is found along the present line of sight to the apex of the cone, suggesting that the true nucleus is located at the apex and is obscured. Low-resolution long-slit spectra are used to study the stellar population, which is found to be old, uniform within 2.5 kpc of the nucleus, and typical of the bulges of early-type galaxies. It is suggested that NGC3281 may be another example of a 'hidden' Seyfert 1, even though there is no direct evidence for a broad-line region in this particular galaxy.

  2. The Chemical Evolution Carousel of Spiral Galaxies: Azimuthal Variations of Oxygen Abundance in NGC1365

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Seibert, Mark; Meidt, Sharon E.; Kudritzki, Rolf-Peter; Kobayashi, Chiaki; Groves, Brent A.; Kewley, Lisa J.; Madore, Barry F.; Rich, Jeffrey A.; Schinnerer, Eva; D’Agostino, Joshua; Poetrodjojo, Henry

    2017-09-01

    The spatial distribution of oxygen in the interstellar medium of galaxies is the key to understanding how efficiently metals that are synthesized in massive stars can be redistributed across a galaxy. We present here a case study in the nearby spiral galaxy NGC 1365 using 3D optical data obtained in the TYPHOON Program. We find systematic azimuthal variations of the H II region oxygen abundance imprinted on a negative radial gradient. The 0.2 dex azimuthal variations occur over a wide radial range of 0.3–0.7 R 25 and peak at the two spiral arms in NGC 1365. We show that the azimuthal variations can be explained by two physical processes: gas undergoes localized, sub-kiloparsec-scale self-enrichment when orbiting in the inter-arm region, and experiences efficient, kiloparsec-scale mixing-induced dilution when spiral density waves pass through. We construct a simple chemical evolution model to quantitatively test this picture and find that our toy model can reproduce the observations. This result suggests that the observed abundance variations in NGC 1365 are a snapshot of the dynamical local enrichment of oxygen modulated by spiral-driven, periodic mixing and dilution.

  3. The Rings Survey. I. Hα and H I Velocity Maps of Galaxy NGC 2280

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl J.; Williams, T. B.; Spekkens, Kristine; Lee-Waddell, K.; Kuzio de Naray, Rachel; Sellwood, J. A.

    2015-03-01

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry-Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280. Based in part on observations obtained with the Southern African Large Telescope (SALT) program 2011-3-RU-003.

  4. Star Formation Histories of the LEGUS Dwarf Galaxies. I. Recent History of NGC 1705, NGC 4449, and Holmberg II

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sacchi, E.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Johnson, K. E.; Messa, M.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-03-01

    We use Hubble Space Telescope observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC 4449, Holmberg II, and NGC 1705, from their UV color–magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modeling. Irrespective of the adopted stellar models, all three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100–200 Myr, with modest enhancements (a factor of ∼2) above the 100 Myr averaged SFR. Significant differences among the three dwarfs are found in terms of the overall SFR, the timing of the most recent peak, and the SFR/area. The initial mass function of NGC 1705 and Holmberg II is consistent with a Salpeter slope down to ≈5 M ⊙, whereas it is slightly flatter, s = ‑2.0, in NGC 4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between the upper main-sequence and helium-burning stars, which is not apparent in the data. Since neither differential reddening, which is significant in NGC 4449, nor unresolved binaries appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  5. Deep Chandra Observations of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  6. Star formation histories in NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, R.; Javadi, A.; van Loon, J. Th

    2017-06-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). With similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? We present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars (LPVs). LPVs are low- to intermediate-mass stars at the asymptotic giant branch, which their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185 we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ∼ 3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times.

  7. Dark matter and MOND dynamical models of the massive spiral galaxy NGC 2841

    NASA Astrophysics Data System (ADS)

    Samurović, S.; Vudragović, A.; Jovanović, M.

    2015-08-01

    We study dynamical models of the massive spiral galaxy NGC 2841 using both the Newtonian models with Navarro-Frenk-White (NFW) and isothermal dark haloes, as well as various MOND (MOdified Newtonian Dynamics) models. We use the observations coming from several publicly available data bases: we use radio data, near-infrared photometry as well as spectroscopic observations. In our models, we find that both tested Newtonian dark matter approaches can successfully fit the observed rotational curve of NGC 2841. The three tested MOND models (standard, simple and, for the first time applied to another spiral galaxy than the Milky Way, Bekenstein's toy model) provide fits of the observed rotational curve with various degrees of success: the best result was obtained with the standard MOND model. For both approaches, Newtonian and MOND, the values of the mass-to-light ratios of the bulge are consistent with the predictions from the stellar population synthesis (SPS) based on the Salpeter initial mass function (IMF). Also, for Newtonian and simple and standard MOND models, the estimated stellar mass-to-light ratios of the disc agree with the predictions from the SPS models based on the Kroupa IMF, whereas the toy MOND model provides too low a value of the stellar mass-to-light ratio, incompatible with the predictions of the tested SPS models. In all our MOND models, we vary the distance to NGC 2841, and our best-fitting standard and toy models use the values higher than the Cepheid-based distance to the galaxy NGC 2841, and the best-fitting simple MOND model is based on the lower value of the distance. The best-fitting NFW model is inconsistent with the predictions of the Λ cold dark matter cosmology, because the inferred concentration index is too high for the established virial mass.

  8. Joint XMM-Newton and Chandra observations of the NGC 1407/1400 complex: A tail of an early-type galaxy and a tale of a nearby merging group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; Gu, Liyi; White III, Raymond E.

    2014-05-10

    The nearby group centered on its bright central galaxy NGC 1407 has been suggested by previous kinematic studies to be an unusually dark system. It is also known for hosting a bright galaxy, NGC 1400, with a large radial velocity (1200 km s{sup –1}) with respect to the group center. Previous ROSAT X-ray observations revealed an extended region of enhanced surface brightness just eastward of NGC 1400. We investigate the NGC 1407/1400 complex with XMM-Newton and Chandra observations. We find that the temperature and metallicity of the enhanced region are different (cooler and more metal rich) than those of themore » surrounding group gas but are consistent with those of the interstellar medium (ISM) in NGC 1400. The relative velocity of NGC 1400 is large enough that much of its ISM could have been ram pressure stripped while plunging through the group atmosphere. We conclude that the enhanced region is likely to be hot gas stripped from the ISM of NGC 1400. We constrain the motion of NGC 1400 using the pressure jump at its associated stagnation front and the total mass profile of the NGC 1407 group. We conclude that NGC 1400 is moving within ∼30° of the line of sight with Mach number M≲3. We do not detect any obvious shock features in this complex, perhaps because of the high line-of-sight motion of NGC 1400. With an XMM-Newton pointing on the relatively relaxed eastern side of NGC 1407, we derive a hydrostatic mass for this group of ∼1 × 10{sup 13} M {sub ☉} within 100 kpc. The total mass extrapolated to the virial radius (681 kpc) is 3.8 × 10{sup 13} M {sub ☉}, which puts an upper limit of ∼300 M{sub ⊙}/L{sub B{sub ⊙}} on the mass-to-light ratio of this group. This suggests that the NGC 1407 group is not an unusually dark group.« less

  9. NGC 1316

    NASA Image and Video Library

    2007-11-14

    This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 1316, located about 62 million light-years away in the constellation Fornax. The elliptical-shaped galaxy may be in the late stages of merging with a smaller companion galaxy.

  10. Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300

    NASA Astrophysics Data System (ADS)

    Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.

    2018-05-01

    Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  11. A Novel Approach to Constrain the Mass Ratio of Minor Mergers in Elliptical Galaxies: Application to NGC 4889, the Brightest Cluster Galaxy in Coma

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Ho, Luis C.; Peng, Chien Y.; Huang, Song

    2013-08-01

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (MI ≈ -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ~90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  12. Spectroscopic decomposition of the galaxy and halo of the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Merrifield, Michael; Aragón-Salamanca, Alfonso

    2018-05-01

    Information on the star-formation histories of cD galaxies and their extended stellar haloes lie in their spectra. Therefore, to determine whether these structures evolved together or through a two-phase formation, we need to spectroscopically separate the light from each component. We present a pilot study to use BUDDI to fit and extract the spectra of the cD galaxy NGC 3311 and its halo in an Integral Field Spectroscopy datacube, and carry out a simple stellar populations analysis to study their star-formation histories. Using MUSE data, we were able to isolate the light of the galaxy and its halo throughout the datacube, giving spectra representing purely the light from each of these structures. The stellar populations analysis of the two components indicates that, in this case, the bulk of the stars in both the halo and the central galaxy are very old, but the halo is more metal poor and less α-enriched than the galaxy. This result is consistent with the halo forming through the accretion of much smaller satellite galaxies with more extended star formation. It is noteworthy that the apparent gradients in age and metallicity indicators across the galaxy are entirely consistent with the radially-varying contributions of galaxy and halo components, which individually display no gradients. The success of this study is promising for its application to a larger sample of cD galaxies that are currently being observed by IFU surveys.

  13. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these

  14. HST Observations of NGC 7252

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-05-01

    A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9

  15. Spectroscopic observations of southern nearby galaxies. I. NGC 2442

    NASA Astrophysics Data System (ADS)

    Bajaja, E.; Agüero, E.; Paolantonio, S.

    1999-04-01

    The galaxy NGC 2442 was observed with a REOSC spectrograph, installed in the 2.15 m CASLEO telescope, in order to derive galactic parameters from the observed optical lines and to compare them with the results of radioastronomical observations made in the continuum, at 843 MHz, with the MOST and in the CO lines with the SEST telescope. Recent publications allowed us to extend the comparison to results from interferometric observations of Hα and H I 21 cm lines and of the continuum at 1415 MHz. The long slit observations were made placing the 5farcm 8 slit at six different positions on the optical image of the galaxy. The emission line intensity ratios at the nuclear region indicate that NGC 2442 is a LINER. The electron temperature and volume density are Te ~ 14 000 K and Ne ~ 530 cm(-3) , respectively. In contrast, a spectrum of a region 87arcsec to the NE shows the typical characteristics of a H Ii region. In this case Te ~ 6,500 K and Ne ~ 10 cm(-3) . Good correlations between the distributions of intensities, velocity fields and rotation curves have been found for the optical and radio lines. It is shown that the three intensity peaks along the line at PA = 40degr were not resolved by the observations at radio frequencies. The steep central rotation curve seen in CO has been confirmed and improved showing the existence of a disc or a ring, with a radius of 12.5 arcsec, rotating at 216/sin(i) km s(-1). Two velocity components in three optical spectra obtained in the nuclear region, have been related to two small Hα regions close to the nucleus and to the central ring. Asymmetries in the distributions of the emitting sources and irregularities in their velocity fields indicate the need of modelling the galaxy before any dynamical study is attempted. Based on observations made in the Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the National

  16. Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen

    2016-06-01

    We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.

  17. A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald

    1999-01-01

    We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the

  18. Isolated ellipticals and their globular cluster systems. III. NGC 2271, NGC 2865, NGC 3962, NGC 4240, and IC 4889

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Alabi, A.; Richtler, T.; Lane, R. R.

    2015-05-01

    As tracers of star formation, galaxy assembly, and mass distribution, globular clusters have provided important clues to our understanding of early-type galaxies. But their study has been mostly constrained to galaxy groups and clusters where early-type galaxies dominate, leaving the properties of the globular cluster systems (GCSs) of isolated ellipticals as a mostly uncharted territory. We present Gemini-South/GMOS g'i' observations of five isolated elliptical galaxies: NGC 3962, NGC 2865, IC 4889, NGC 2271, and NGC 4240. Photometry of their GCSs reveals clear color bimodality in three of them, but remains inconclusive for the other two. All the studied GCSs are rather poor with a mean specific frequency SN ~ 1.5, independently of the parent galaxy luminosity. Considering information from previous work as well, it is clear that bimodality and especially the presence of a significant, even dominant, population of blue clusters occurs at even the most isolated systems, which casts doubts on a possible accreted origin of metal-poor clusters, as suggested by some models. Additionally, we discuss the possible existence of ultra-compact dwarfs around the isolated elliptical NGC 3962. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Globular cluster photometry is available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A59Appendices are available in

  19. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    DOE PAGES

    Abdo, A. A.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with thosemore » for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results. We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV–20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10 -9 ph cm-2 s -1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10 -9 ph cm -2 s -1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations.« less

  20. NGC 300

    NASA Image and Video Library

    2007-11-14

    This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 300, located about seven million light-years away in the constellation Sculptor. It is a classic spiral galaxy with open arms and vigorous star formation throughout.

  1. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  2. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  3. The dark matter distribution of M87 and NGC 1399

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  4. Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1988-01-01

    Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.

  5. The Nature of the Optical "Jets" in the Spiral Galaxy NGC 1097

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Keel, William C.; Jones, Dayton L.

    1997-01-01

    We present new observations of the jet features in the barred spiral galaxy NGC 1097, including optical spectroscopy of the brightest jet features, two-color optical imagery, new VLA mapping at 327 MHz, and archival 1.4 GHz VLA data reprocessed for improved sensitivity. No optical emission lines appear to an equivalent width limit of 15-30 A (depending on the line wavelength). The jets are uniformly blue, with B - V = 0.45 for the two well-observed jets R1 and R2. No radio emission from the jets is detected at either frequency; the 327-MHz data set particularly stringent limits on "fossil" emission from aging synchrotron electrons. The morphology of the jets is shown to be inconsistent with any conical distribution of emission enhanced by edge-brightening; their combination of transverse profile and relative narrowness cannot be reproduced with cone models. The optical colors, lack of radio emission, and morphology of the features lead us to conclude that they are tidal manifestations, perhaps produced by multiple encounters of the small elliptical companion NGC 1097A with the disk of NGC 1097. We present photometric and morphological comparisons to the tail of NGC 465 1, which is similar in scale and morphology to the northeast "dogleg" feature R1 in NGC 1097.

  6. CHANG-ES - XI. Circular polarization in the cores of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Judith A.; Henriksen, Richard N.; WeŻgowiec, Marek; Damas-Segovia, Ancor; Wang, Q. Daniel; Krause, Marita; Heald, George; Dettmar, Ralf-Jürgen; Li, Jiang-Tao; Wiegert, Theresa; Stein, Yelena; Braun, Timothy T.; Im, Jisung; Schmidt, Philip; Macdonald, Scott; Miskolczi, Arpad; Merritt, Alison; Mora-Partiarroyo, S. C.; Saikia, D. J.; Sotomayor, Carlos; Yang, Yang

    2018-06-01

    We detect five galaxies in the Continuum Halos in Nearby Galaxies - an EVLA Survey (CHANG-ES) sample that show circular polarization (CP) at L band in our high-resolution data sets. Two of the galaxies (NGC 4388 and NGC 4845) show strong Stokes V/I ≡ mC ˜ 2 per cent, two (NGC 660 and NGC 3628) have values of mC ˜ 0.3 per cent, and NGC 3079 is a marginal detection at mC ˜ 0.2 per cent. The two strongest mC galaxies also have the most luminous X-ray cores and the strongest internal absorption in X-rays. We have expanded on our previous Faraday conversion interpretation and analysis and provide analytical expressions for the expected V signal for a general case in which the cosmic ray (CR) electron energy spectral index can take on any value. We provide examples as to how such expressions could be used to estimate magnetic field strengths and the lower energy cut-off for CR electrons. Four of our detections are resolved, showing unique structures, including a jet in NGC 4388 and a CP `conversion disc' in NGC 4845. The conversion disc is inclined to the galactic disc but is perpendicular to a possible outflow direction. Such CP structures have never before been seen in any galaxy to our knowledge. None of the galaxy cores show linear polarization at L band. Thus radio CP may provide a unique probe of the physical conditions in the cores of active galactic nuclei.

  7. ALMA CO Observations of Shocks and Star Formation in the Interacting Galaxies IC 2163 and NGC 2207

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, Bruce; Kaufman, Michele; Brinks, Elias; Struck, Curtis; Bournaud, Frederic; Sheth, Kartik; Juneau, Stephanie

    2017-01-01

    The spiral galaxies IC 2163 and NGC 2207 are a well-studied pair undergoing a grazing collision. ALMA CO observations of masses, column densities, and velocities are combined with HI, Hα, optical, and 24 micron data to study the star formation rates and efficiencies. The close encounter of the galaxies produced in-plane tidal forces in IC 2163, resulting in a large shock with high molecular velocity gradients and both radial and azimuthal streaming (100 km/s) that formed a pile-up of molecular gas in the resulting cuspy-oval or ``eyelid'' structure at mid-radius. The encounter also produced forces nearly orthogonal to the plane of NGC 2207, resulting in a warp. By comparing with the Kennicutt-Schmidt relation for star formation, we find that some regions of NGC 2207 with unusually high turbulent speeds (40-50 km/s) and high star formation rates (>0.01 Mo/pc2/Myr) have gas that is predominantly atomic with high density cores. Half of the CO mass is in 300 clouds each more massive than 4.0x105 Mo. The mass distribution functions for the CO clouds and star complexes in the eyelid in IC 2163 both have a slope similar to what is observed in Milky Way clouds; the CO slope is steeper in NGC 2207. The CO distribution in NGC 2207 also includes a nuclear ring, a mini-bar, and a mini-starburst region that dominates the 24 micron, radio, and Hα emission in both galaxies. Dust extinction, molecular column densities, and slightly negative molecular velocities indicate the mini-starburst region has ejected a jet of molecular gas nearly perpendicular to the plane of NGC 2207 on the near side with a kinetic energy of 1052 ergs. The large scale star formation efficiency, measured as the ratio of the summed masses of the star complexes near molecular clouds to the combined star complex and cloud masses, is 7% overall; it is 23% in the mini-starburst. The maximum age of star complexes in the galactic-scale shock front at the eyelid is about the same as the time since closest

  8. Intergalactic HI in the NGC5018 group

    NASA Technical Reports Server (NTRS)

    Guhathakurta, P.; Knapp, G. R.; Vangorkom, Jacqueline H.; Kim, D.-W.

    1990-01-01

    The cold interstellar and intergalactic medium is in the small group of galaxies whose brightest member is the elliptical galaxy NGC5018. Researchers' attention was first drawn to this galaxy as possibly containing cold interstellar gas by the detection by the Infrared Astronomy Satellite (IRAS) of emission at lambda 60 microns and lambda 100 microns at an intensity of about 1 Jy (Knapp et al. 1989), which is relatively strong for an elliptical (Jura et al. 1987). These data showed that the temperature of the infrared emission is less than 30K and that its likely source is therefore interstellar dust. A preliminary search for neutral hydrogen (HI) emission from this galaxy using the Very Large Array (VLA) showed that there appears to be HI flowing between NGC5018 and the nearby Sc galaxy NGC5022 (Kim et al. 1988). Since NGC5018 has a well-developed system of optical shells (cf. Malin and Carter 1983; Schweizer 1987) this observation suggests that NGC5018 may be in the process of forming its shell system by the merger of a cold stellar system with the elliptical, as suggested by Quinn (1984). Researchers describe follow-up HI observations of improved sensitivity and spatial resolution, and confirm that HI is flowing between NCG5022 and NGC5018, and around NGC5018. The data show, however, that the HI bridge actually connects NGC5022 and another spiral in the group, MCG03-34-013, both spatially and in radial velocity, and that in doing so it flows through and around NGC5018, which lies between the spiral galaxies. This is shown by the total HI map, with the optical positions of the above three galaxies labelled.

  9. Galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.

    The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars.

    Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars.

    Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away.

    The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard

  10. Deep spectroscopy of the dwarf spheroidal NGC 185

    NASA Astrophysics Data System (ADS)

    Gonçalves, Denise R.; Magrini, Laura; Martins, Lucimara P.; Teodorescu, Ana M.; Quireza, Cintia; Lanfranchi, Gaia

    2012-08-01

    Dwarf galaxies are crucial to understand the formation and evolution of galaxies, since they constitute the most abundant galaxy population. Abundance ratios and their variations due to star formation and inflow/outflow of gas are key constraints to chemical evolution models. The determination of these abundances in the dwarf galaxies of the Local Universe is thus of extreme importance. NGC 185 is one of the four brightest dwarf companions of M31, but unlike the other three it has an important content of gas and dust. Interestingly enough, in an optical survey of bright nearby galaxies NGC 185 was classified as a Seyfert galaxy based on its integrated emission-line ratios in the nuclear regions. However, although its emission lines formally place it in the category of Seyfert it is probable that this galaxy does not contain a genuine active nucleus. In this contribution, we resume, firstly, our results of an empirical study of the galaxy, on which we characterise its emission-line population and obtain planetary nebulae abundance ratios (Gonçalves et al. 2012). And, secondly, we discuss our attempt to identify the possible ionization mechanisms for NGC 185 enlighting the controversial classification of this galaxy dwarf spheroidal (dSph) as well as Seyfert, via stellar population synthesis and chemical evolution modelling (Martins et al. 2011).

  11. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  12. Tests of star formation metrics in the low-metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

    NASA Astrophysics Data System (ADS)

    Bendo, G. J.; Miura, R. E.; Espada, D.; Nakanishi, K.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.

    2017-11-01

    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low-metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9 ± 0.3) × 1052 s-1 and an SFR of 0.087 ± 0.013 M⊙ yr-1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on a previously published version of the H α flux that was extinction corrected using Paα and Paβ lines was lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on H α and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFRs lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1σ-2σ of each other. While further analysis on a broader range of galaxies is needed, these results are instructive of the best and worst methods to use when measuring SFR in low-metallicity dwarf galaxies like NGC 5253.

  13. Infrared-Bright Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  14. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  15. The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Hilker, M.; Mendes de Oliveira, C.; Richtler, T.

    2016-05-01

    Context. The history of the mass assembly of brightest cluster galaxies may be studied by mapping the stellar populations at large radial distances from the galaxy centre, where the dynamical times are long and preserve the chemodynamical signatures of the accretion events. Aims: We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster, and out to three effective radii. We wish to characterize the processes that drove the build-up of the stellar light at all these radii. Methods: We obtained the spectra from several regions in NGC 3311 covering an area of ~3 arcmin2 in the wavelength range 4800 ≲ λ(Å) ≲ 5800, using the FORS2 spectrograph at the Very Large Telescope in the MXU mode. We measured the equivalent widths of seven absorption-features defined in the Lick/IDS system, which were modelled by single stellar populations, to provide luminosity-weighted ages, metallicities, and alpha element abundances. Results: The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided in two radial regimes, one within and the another beyond one effective radius, Re = 8.4 kpc, similar to the distinction between the inner galaxy and the external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy (R ≤ Re) is old (age ~14 Gyr), has negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but has a negative age gradient. The metal and element abundances of the external halo both have a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0°< PA < 90° has higher metallicity with respect to the symmetric external halo. Conclusions: The different stellar populations in the inner galaxy and extended halo

  16. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 kmmore » s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.« less

  17. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-05

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

  18. Sampling methods for stellar masses and the mmax-Mecl relation in the starburst dwarf galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Weidner, Carsten; Kroupa, Pavel; Pflamm-Altenburg, Jan

    2014-07-01

    It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax - Mecl relation) is falsified by observations of the most-massive stars and the Hα luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here, it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the mmax - Mecl relation and with the integrated galactic stellar initial mass function theory. The difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax - Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled initial mass function. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.

  19. THE ARAUCARIA PROJECT: THE DISTANCE TO THE SCULPTOR GALAXY NGC 247 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gieren, Wolfgang; Pietrzynski, Grzegorz; Szewczyk, Olaf

    2009-08-01

    We have obtained deep near-infrared images in J and K filters of four fields in the Sculptor Group spiral galaxy NGC 247 with the ESO VLT and Infrared Spectrometer and Array Camera. For a sample of 10 Cepheids in these fields, previously discovered by GarcIa-Varela et al. from optical wide-field images, we have determined mean J and K magnitudes and have constructed the period-luminosity (PL) relations in these bands. Using the near-infrared PL relations together with those in the optical V and I bands, we have determined a true distance modulus for NGC 247 of 27.64 mag, with a randommore » uncertainty of {+-}2% and a systematic uncertainty of {approx}4% which is dominated by the effect of unresolved stars on the Cepheid photometry. The mean reddening affecting the NGC 247 Cepheids of E(B - V) = 0.18 {+-} 0.02 mag is mostly produced in the host galaxy itself and is significantly higher than what was found in the previous optical Cepheid studies in NGC 247 of our own group, and Madore et al., leading to a 7% decrease in the previous optical Cepheid distance. As in other studies of our project, the distance modulus of NGC 247 we report is tied to an assumed Large Magellanic Cloud distance modulus of 18.50. Comparison with other distance measurements to NGC 247 shows that the present IR-based Cepheid distance is the most accurate among these determinations. With a distance of 3.4 Mpc, NGC 247 is about 1.5 Mpc more distant than NGC 55 and NGC 300, two other Sculptor Group spirals analyzed before with the same technique by our group.« less

  20. Characterizing bar structures: application to NGC 1300, NGC 7479 and NGC 7723

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Muñoz-Tuñón, C.; Varela, A. M.; Prieto, M.

    2000-09-01

    Detailed surface photometry has been carried out for three barred galaxies with use of high resolution CCD broad-band images in the B, V and I bands. Using azimuthal luminosity profiles and their decomposition into Fourier Series, the structural parameters (length and strength) of the bars in the three galaxies have been obtained. We have also inferred the corotation radii (CR) using information available in the B-I and B-V colour index profiles. The regions selected for the CR were the ends of the bars, or a little further out and with an older stellar population than the su rrounding regions. The resulting values, RCR ~ 100''+/-10'' for NGC 1300, RCR ~ 63'' for NGC 7479 and RCR ~ 23'' for NGC 7723, are in agreement with those previously reported in the literature. This demonstrates the utility of accurate photometry for this type of observation.

  1. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Heesen, Volker

    2008-02-01

    The transport of cosmic rays (CR's) in large-scale magnetic fields can be bes t investigated in edge-on galaxies with radio continuum observations including p olarization. I observed the nearby starburst galaxy NGC 253 which hosts one of t he brightest known radio halos with the Effelsberg 100-m telescope and the VLA i nterferometer. The vertical emission profiles follow closely a two-component exp onential distribution where the scaleheight is a linear function of the synchrot ron lifetime of the CR electrons. This requires a convection dominated CR transp ort from the disk into the halo while the CR's lose their energy due to synchrot ron radiation the so-called CR aging. The interaction of the "disk-wind" with th e magnetic field explains the "X"-shaped magnetic field structure centered on th e nucleus where the ordered magnetic field is amplified by compression in the bo undaries of the expanding superbubbles of hot gas.

  2. Chandra X-Ray Observatory Image NGC 3603

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant 'starburst' galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  3. Hot and Cold Galactic Gas in the NGC 2563 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; van Gorkom, J. H.; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Lee, Duane; Roberts, Timothy P.

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (~1.4 R vir) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 1039 erg s-1 and 2 × 108 M ⊙, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  4. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  5. The soft x ray halo of the spiral galaxy NGC4631

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene A. M.; Steakley, Michael F.; Wang, Q. Daniel; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT PSPC observations of the close to edge-on spiral galaxy NGC4631 are presented. This vigorously star forming galaxy shows extented x ray emission perpendicular to the plane, out to about 6 to 8 kpc. The spatial extent is largest at soft x ray energies. The total x ray luminosity of hot gas can be easily supplied by star formation in the disk, and it is likely that the halo is due to outflow of hot gas from the inner disk. Spectral analysis of the x ray data shows that part of the halo emission may be quite cool, well below 10(exp 6)K. Implications of these results are briefly discussed.

  6. NGC 520

    NASA Image and Video Library

    2008-04-24

    NGC 520 is the product of a collision between two disk galaxies that started 300 million years ago. This image is part of a large collection of images of merging galaxies taken by NASA Hubble Space Telescope.

  7. Color-magnitude Diagrams of the Star-forming Galaxies Ho IX, Cam B, NGC 2976, and UGC 1281

    NASA Astrophysics Data System (ADS)

    Georgiev, T. B.; Bomans, D. J.

    We report results on a study of nearby late type galaxies performed with the 2m RC telescope of the Rozhen NAO with with 1×1 K CCD camera. The scale and the frame size are 0.32''/pix and 5.4'×5.4', respectively. At typical seeing of 1'' the data reach routinely a limiting magnitude of ˜4 mag. With these parameters many nearby galaxies, including the members of the IC 342 and M81 groups can be resolved into star-like and diffuse objects. This allows the determination of several fundamental properties of the galaxies, based on surface photometry and study of the brightest resolved objects. The most crucial parameter is the distance to the galaxy. It can be estimated to a standard error of 20 % using the brightest red and blue stars. Selection of these stars is greatly improved by analysis of the image shapes, which allows to detect diffuse objects, like cluster candidates and background galaxies. Further improvement gives the analysis of color-magnitude (CMD) and color-color diagrams. The CMDs also allow to estimate the age of the most recent star formation event and may hint at the metallicity. The CMDs of the low surface brightness irregular galaxies Ho IX and Cam B are very similar. Especially Cam B seems to be an extreme case of a low-mass star-forming dwarf galaxy. The CMD of NGC 2976 is very similar to this of the star burst galaxy M82 (Georgiev T., 2000, Compt. Rend. Acad. Bulg. Sci. 53/2, 5-8). The edge-on galaxy UGC 1281 is of intermediate star-forming activity, but the CMD is quite sparse.

  8. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually

  9. Interaction of NGC 2276 with the NGC 2300 group - Fabry-Perot observations of the H-alpha velocity field

    NASA Technical Reports Server (NTRS)

    Gruendl, Robert A.; Vogel, Stuart N.; Davis, David S.; Mulchaey, John S.

    1993-01-01

    We report kinematic observations of H-alpha emission from the spiral galaxy NGC 2276 obtained with a Fabry-Perot Camera. The 'bow shock' appearance and enhanced star formation in NGC 2276 have been attributed by Mulchaey et al. (1993) to a ram-pressure interaction with the dense IGM detected in ROSAT observations of the NGC 2300 group of galaxies. Along the 'bow shock' limb of the galaxy, we observe strong H-alpha emission and significant kinematic perturbations located immediately interior to an abrupt decrease in the scale length of the optical disk. Although ram-pressure forces may be important in the evolution of the outer gaseous disk, the peculiar kinematics and the truncation in the stellar disk are difficult to explain in a ram-pressure model; a more likely cause is tidal interaction, probably with the elliptical galaxy NGC 2300.

  10. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  11. The extent of CO in the early-type galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Hutchtmeier, W. K.; Bregman, J. N.; Hogg, D. E.; Roberts, M. S.

    1994-01-01

    NGC 4472, and E/SO system, is the earliest type normal galaxy with detected CO emission, and here we present additional radio observations in the lines of CO(1-0) and CO(2-1) to determine the distribution and internal properties of this gas. The original detection is reconfirmed, but observations at five surrounding locations and at two other locations in the galaxy do not show the gas to be extended; the total H2 gas mass is estimated to be 4 x 10(exp 7) solar mass. A high CO(1-0)/CO(2-1) brightness temperature ratio is found (greater than 3), which is indicative of subthermal excitation of the CO(2-1) line that can occur at low gas temperatures and low gas densities. Also, upper limits are given for the CO(2-1) fluxes in four other early-type galaxies.

  12. The galaxy NGC 1566 - Distribution and kinematics of the ionized gas

    NASA Astrophysics Data System (ADS)

    Comte, G.; Duquennoy, A.

    1982-10-01

    H-alpha narrowband observations are the basis of a study of ionized hydrogen in the large spiral galaxy NGC 1566 which has yielded a catalog of 418 H II regions covering the main body of the galaxy, supplemented by 59 positions and estimated H-alpha luminosities for regions located in the pseudo-outer ring where no H-alpha plate is available. A discussion of luminosity function, diameter distribution and spiral structure notes evidence for a double two-armed spiral pattern. The plane of the galaxy appears warped, and the efficiency of the two different spiral patterns in star formation is different. A preliminary radial velocity field is determined from three interferograms in H-alpha light, and is found to be acceptably fitted by a simple bulge-plus-disk dynamical model in which the apparent disk mass-to-light ratio sharply increases from center to edge.

  13. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  14. Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters and ROSAT Observations of Bright, Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1994-01-01

    Preliminary results on the elliptical galaxy NGC 1407 were published in the proceedings of the first ROSAT symposium. NGC 1407 is embedded in diffuse X-ray-emitting gas which is extensive enough that it is likely to be related to the surrounding group of galaxies, rather than just NGC 1407. Spectral data for NGC 1407 (AO2) and IC 1459 (AO3) are also included in a complete sample of elliptical galaxies I compiled in collaboration with David Davis. This allowed us to construct the first complete X-ray sample of optically-selected elliptical galaxies. The complete sample allows us to apply Malmquist bias corrections to the observed correlation between X-ray and optical luminosities. I continue to work on the implications of this first complete X-ray sample of elliptical galaxies. Paul Eskridge Dave Davis and I also analyzed three long ROSAT PSPC observations of the small (but not dwarf) elliptical galaxy M32. We found the X-ray spectra and variability to be consistent with either a Low Mass X-Ray Binary (LMXRB) or a putative 'micro"-AGN.

  15. High-Velocity Clouds in M 83 and M 51

    NASA Astrophysics Data System (ADS)

    Miller, E. D.; Bregman, J. N.

    2005-06-01

    Various scenarios have been proposed to explain the origin of the Galactic high-velocity clouds, predicting different distances and implying widely varying properties for the Galaxy's gaseous halo. To eliminate the difficulties of studying the Galactic halo from within, we have embarked on a program to study anomalous neutral gas in external galaxies, and here we present the results for two nearby, face-on spiral galaxies, M 83 and M 51. Significant amounts of anomalous-velocity H I are detected in deep VLA 21-cm observations, including an extended, slowly rotating disk and several discrete H I clouds. Our detection algorithm reaches a limiting H I source mass of 7×105 M⊙, and it allows for detailed statistical analysis of the false detection rate. We use this to place limits on the HVC mass distributions in these galaxies and the Milky Way; if the HVC populations are similar, then the Galacto-centric HVC distances must be less than about 25 kpc.

  16. HUBBLE REVEALS THE HEART OF THE WHIRLPOOL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images from NASA's Hubble Space Telescope are helping researchers view in unprecedented detail the spiral arms and dust clouds of a nearby galaxy, which are the birth sites of massive and luminous stars. The Whirlpool galaxy, M51, has been one of the most photogenic galaxies in amateur and professional astronomy. Easily photographed and viewed by smaller telescopes, this celestial beauty is studied extensively in a range of wavelengths by large ground- and space-based observatories. This Hubble composite image shows visible starlight as well as light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms. M51, also known as NGC 5194, is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of this image. The companion's gravitational pull is triggering star formation in the main galaxy, as seen in brilliant detail by numerous, luminous clusters of young and energetic stars. The bright clusters are highlighted in red by their associated emission from glowing hydrogen gas. This Wide Field Planetary Camera 2 image enables a research group, led by Nick Scoville (Caltech), to clearly define the structure of both the cold dust clouds and the hot hydrogen and link individual clusters to their parent dust clouds. Team members include M. Polletta (U. Geneva); S. Ewald and S. Stolovy (Caltech); R. Thompson and M. Rieke (U. of Arizona). Intricate structure is also seen for the first time in the dust clouds. Along the spiral arms, dust 'spurs' are seen branching out almost perpendicular to the main spiral arms. The regularity and large number of these features suggests to astronomers that previous models of 'two-arm' spiral galaxies may need to be revisited. The new images also reveal a dust disk in the nucleus, which may provide fuel for a nuclear black hole. The team is also studying this galaxy at near-infrared wavelengths with the NICMOS instrument onboard Hubble. At these

  17. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    NASA Astrophysics Data System (ADS)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  18. Probing the interstellar medium in early-type galaxies with Infrared Space Oberservatory observations

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.; hide

    2000-01-01

    Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.

  19. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  20. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  1. The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.

    2014-10-01

    Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.

  2. XMM-Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ≈ 0.41

    NASA Astrophysics Data System (ADS)

    Gargiulo, I. D.; García, F.; Combi, J. A.; Caso, J. P.; Bassino, L. P.

    2018-05-01

    We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268, in the Antlia cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM-Newton satellite complemented with optical images of CTIO-Blanco telescope, to attain for associations of the optical sources with the X-ray emission. The XMM-Newton observations show that the intracluster gas is concentrated in a region centred in one of the main galaxies of the cluster, NGC 3268. By means of a spatially-resolved spectral analysis we derived the abundances of the ICM plasma. We found a wall-like feature in the northeast direction where the gas is characterized by a lower temperature with respect to the rest of the ICM. Furthermore, using combined optical observations we inferred the presence of an elliptical galaxy in the centre of the extended X-ray source considered as a background cluster, which favours this interpretation.

  3. The hot interstellar medium in NGC 1399

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Serlemitsos, Peter J.

    1993-01-01

    The first two high signal-to-noise, broad bandpass x-ray spectra of elliptical galaxies were obtained with the Broad Band X-ray Telescope (BBXRT) as part of the December 1990 Astro mission. These observations provided unprecedented information on the thermal and metallicity structure of the hot interstellar media in two ellipticals: NGC 1399, the central galaxy in the Fornax cluster, and NGC 4472, the brightest galaxy in the Virgo cluster. The finalized analysis and interpretation of the approximately 4000 sec of BBXRT data on NGC 1399 is reported.

  4. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  5. Globular cluster content and evolutionary history of NGC 147

    NASA Astrophysics Data System (ADS)

    Sharina, M.; Davoust, E.

    2009-04-01

    Context: Globular clusters are representative of the oldest stellar populations. It is thus essential to have a complete census of these systems in dwarf galaxies, from which more massive galaxies are progressively formed in the hierarchical scenario. Aims: We present the results of spectroscopic observations of eight globular cluster candidates in NGC 147, a satellite dwarf elliptical galaxy of M 31. Our goal is to make a complete inventory of the globular cluster system of this galaxy, determine the properties of their stellar populations, and compare these properties with those of systems of globular clusters in other dwarf galaxies. Methods: The candidates were identified on Canada-France-Hawaii telescope photographic plates. Medium resolution spectra were obtained with the SCORPIO spectrograph at the prime focus of the 6 m telescope of the Russian Academy of Sciences. They were analyzed using predictions of stellar population synthesis models. Results: We were able to confirm the nature of all eight candidates, three of which (GC5, GC7, and GC10) are indeed globular clusters, and to estimate evolutionary parameters for the two brightest ones and for Hodge II. The bright clusters GC5 and GC7 appear to have metallicities ([Z/H] -1.5 div -1.8) that are lower than the oldest stars in the galaxy. The fainter GC Hodge II has a metallicity [Z/H] = -1.1, similar to that of the oldest stars in the galaxy. The clusters GC5 and GC7 have low alpha-element abundance ratios. The mean age of the globular clusters in NGC 147 is 9 ± 1 Gyr. We also measured the radial velocities of Hodge II and IV, and derived a mass of NGC 147 in good agreement with the value from the literature. The frequency, Sn = 6.4, and mass fraction, T = 14 of globular clusters in NGC 147 appear to be higher than those for NGC 185 and 205. Conclusions: Our results indicate that the bright clusters GC5, GC7, and Hodge III formed in the main star-forming period 8-10 Gyr ago, while the fainter clusters

  6. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  7. Ages of the Bulge Globular Clusters NGC 6522 and NGC 6626 (M28) from HST Proper-motion-cleaned Color–Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.

    2018-01-01

    Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  8. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Groupmore » of galaxies and reveals the great potential of this technique.« less

  9. The Araucaria Project. The Distance to the Sculptor Group Galaxy NGC 7793 from Near-infrared Photometry of Cepheid Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zgirski, Bartlomiej; Pietrzyński, Grzegorz; Wielgorski, Piotr

    Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared J - and K -band follow-up photometry of a subsample of these Cepheids to derive the distance to this galaxy with a higher accuracy than what was possible from optical photometry alone, by minimizing the effects of reddening and metallicity on the distance result. Combining our new near-infrared period–luminosity relations with previous optical photometry, we obtain a true distance modulus to NGC 7793 of (27.66 ± 0.04) mag (statistical) ±0.07 mag (systematic), i.e.,more » a distance of (3.40 ± 0.17) Mpc. We also determine the mean reddening affecting the Cepheids to be E(B − V) = (0.08 ± 0.02) mag, demonstrating that there is significant dust extinction intrinsic to the galaxy in addition to the small foreground extinction. A comparison of the new, improved Cepheid distance to earlier distance determinations of NGC 7793 from the Tully–Fisher and TRGB methods is in agreement within the reported uncertainties of these previous measurements.« less

  10. The Araucaria Project. The Distance to the Sculptor Group Galaxy NGC 7793 from Near-infrared Photometry of Cepheid Variables

    NASA Astrophysics Data System (ADS)

    Zgirski, Bartlomiej; Gieren, Wolfgang; Pietrzyński, Grzegorz; Karczmarek, Paulina; Gorski, Marek; Wielgorski, Piotr; Narloch, Weronika; Graczyk, Dariusz; Kudritzki, Rolf-Peter; Bresolin, Fabio

    2017-10-01

    Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared J- and K-band follow-up photometry of a subsample of these Cepheids to derive the distance to this galaxy with a higher accuracy than what was possible from optical photometry alone, by minimizing the effects of reddening and metallicity on the distance result. Combining our new near-infrared period-luminosity relations with previous optical photometry, we obtain a true distance modulus to NGC 7793 of (27.66 ± 0.04) mag (statistical) ±0.07 mag (systematic), I.e., a distance of (3.40 ± 0.17) Mpc. We also determine the mean reddening affecting the Cepheids to be E(B - V) = (0.08 ± 0.02) mag, demonstrating that there is significant dust extinction intrinsic to the galaxy in addition to the small foreground extinction. A comparison of the new, improved Cepheid distance to earlier distance determinations of NGC 7793 from the Tully-Fisher and TRGB methods is in agreement within the reported uncertainties of these previous measurements.

  11. Molecular cloud-scale star formation in NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily tomore » the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.« less

  12. Hidden Lair at the Heart of Galaxy NGC 1068

    NASA Image and Video Library

    2015-12-17

    Galaxy NGC 1068 can be seen in close-up in this view from NASA's Hubble Space Telescope. NuSTAR's high-energy X-rays eyes were able to obtain the best view yet into the hidden lair of the galaxy's central, supermassive black hole. This active black hole -- shown as an illustration in the zoomed-in inset -- is one of the most obscured known, meaning that it is surrounded by extremely thick clouds of gas and dust. The NuSTAR data revealed that the torus of gas and dust surrounding the black hole, also referred to as a doughnut, is more clumpy than previously thought. doughnuts around active, supermassive black holes were originally proposed in the mid-1980s to be smooth entities. More recently, researchers have been finding that doughnuts are not so smooth but have lumps. NuSTAR's latest finding shows that this is true for even the thickest of doughnuts. http://photojournal.jpl.nasa.gov/catalog/PIA20058

  13. DEEP CHANDRA OBSERVATIONS OF NGC 1404: CLUSTER PLASMA PHYSICS REVEALED BY AN INFALLING EARLY-TYPE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less

  14. The centre of NGC 247

    NASA Image and Video Library

    2016-10-03

      This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as this picture from ESO’s MPG/ESO 2.2-metre telescope. The northern part of NGC 247’s disc hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length. There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disc has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy.

  15. CS in nearby galaxies: Distribution, kinematics, and multilevel studies

    NASA Technical Reports Server (NTRS)

    Mauersberger, R.; Henkel, Christian

    1990-01-01

    As a result of observations at the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30-m telescope, maps of the distribution of the J = 2-1 transition of CS toward the galaxies IC 342 and NGC 253 are presented. The distribution of the CS emission from NGC 253 is consistent with the CO 1-0 line. The distribution of the CS emission from IC 342, however, resembles more that seen in the CO 3-2 line. For the first time, the detection of the isotopic substitution C-34S is reported toward an external galaxy: The C-34S 2-1 line has been detected toward NGC 253 and M 82 and the C-34S line has been detected tentatively toward M 82. Also for the first time, extragalactic CS has been observed in the 3-2 (toward NGC 253, IC 342 and M 82) and 5-4 (NGC 253 and IC 342) transitions.

  16. Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Collins, Michelle L. M.; Longeard, Nicolas; Tollerud, Erik

    2018-05-01

    It was recently proposed that the globular cluster system of the very low surface brightness galaxy NGC 1052-DF2 is dynamically very cold, leading to the conclusion that this dwarf galaxy has little or no dark matter. Here, we show that a robust statistical measure of the velocity dispersion of the tracer globular clusters implies a mundane velocity dispersion and a poorly constrained mass-to-light ratio. Models that include the possibility that some of the tracers are field contaminants do not yield a more constraining inference. We derive only a weak constraint on the mass-to-light ratio of the system within the half-light radius (M/{L}V< 6.7 at the 90% confidence level) or within the radius of the furthest tracer (M/{L}V< 8.1 at the 90% confidence level). This limit may imply a mass-to-light ratio on the low end for a dwarf galaxy, but many Local Group dwarf galaxies fall well within this contraint. With this study, we emphasize the need to reliably account for measurement uncertainties and to stay as close as possible to the data when determining dynamical masses from very small data sets of tracers.

  17. A CO J = 3-2 map of M51 with HARP-B: radial properties of the spiral structure

    NASA Astrophysics Data System (ADS)

    Vlahakis, C.; van der Werf, P.; Israel, F. P.; Tilanus, R. P. J.

    2013-08-01

    We present the first complete CO J = 3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ˜600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disc and out to the companion NGC 5195, with CO J = 3-2 emission detected over an area of ˜9 arcmin × 6 arcmin (˜21 × 14 kpc). We describe the CO J = 3-2 integrated intensity map and combine our results with maps of CO J = 2-1, CO J = 1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kiloparsec scales. We find that for the CO J = 3-2 and CO J = 2-1 transitions, there is a clear difference between the variation of arm and interarm emission with galactocentric radius, with the interarm emission relatively constant with radius and the contrast between arm and interarm emission decreasing with radius. For the CO J = 1-0 line and H I emission, the variation with radius shows a similar trend for the arm and interarm regions, and the arm-interarm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J = 3-2/2-1, J = 2-1/1-0 and J = 3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J = 3-2/J = 2-1 line ratios are found in the central ˜1 kiloparsec and in the spiral arms and the lowest line ratios in the interarm regions. We find no clear evidence of a trend with radius for the spiral arms, but for the interarm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J = 3-2 intensity to stellar-continuum-subtracted 8 μm PAH surface brightness and the CO J = 3-2 intensity that appears to vary with

  18. Newly discovered globular clusters in NGC 147 and NGC 185 from PAndAS

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Ferguson, A. M. N.; Huxor, A. P.; Mackey, A. D.; Fishlock, C. K.; Irwin, M. J.; Tanvir, N.; Chapman, S. C.; Ibata, R. A.; Lewis, G. F.; McConnachie, A.

    2013-11-01

    Using data from the Pan-Andromeda Archaeological Survey (PAndAS), we have discovered four new globular clusters (GCs) associated with the M31 dwarf elliptical (dE) satellites NGC 147 and NGC 185. Three of these are associated with NGC 147 and one with NGC 185. All lie beyond the main optical boundaries of the galaxies and are the most remote clusters yet known in these systems. Radial velocities derived from low-resolution spectra are used to argue that the GCs are bound to the dwarfs and are not part of the M31 halo population. Combining PAndAS with United Kingdom Infrared Telescope (UKIRT)/WFCAM (Wide-Field Camera) data, we present the first homogeneous optical and near-IR photometry for the entire GC systems of these dEs. Colour-colour plots and published colour-metallicity relations are employed to constrain GC ages and metallicities. It is demonstrated that the clusters are in general metal poor ([Fe/H] < -1.25 dex), while the ages are more difficult to constrain. The mean (V - I)0 colours of the two GC systems are very similar to those of the GC systems of dEs in the Virgo and Fornax clusters, as well as the extended halo GC population in M31. The new clusters bring the GC-specific frequency (SN) to ˜9 in NGC 147 and ˜5 in NGC 185, consistent with values found for dEs of similar luminosity residing in a range of environments.

  19. Winds of change - a molecular outflow in NGC 1377?. The anatomy of an extreme FIR-excess galaxy

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Martín, S.; Costagliola, F.

    2012-10-01

    Aims: Our goal was to investigate the molecular gas distribution and kinematics in the extreme far-infrared (FIR) excess galaxy NGC 1377 and to address the nature and evolutionary status of the buried source. Methods: We used high- (0''65 × 0''52, (65 × 52 pc)) and low- (4''88 × 2''93) resolution SubMillimeter Array (SMA) observations to image the 12CO and 13CO 2-1 line emission. Results: We find bright, complex 12CO 2-1 line emission in the inner 400 pc of NGC 1377. The 12CO 2-1 line has wings that are tracing a kinematical component that appears to be perpendicular to the component traced by the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are Mout(H2) > 1 × 107 M⊙ and Ṁ > 8 M⊙ yr-1. The age of the proposed outflow is estimated to be 1.4 Myr, the extent to be 200 pc and the outflow speed to be Vout = 140 km s-1. The total molecular mass in the SMA map is estimated to Mtot(H2) = 1.5 × 108 M⊙ (on a scale of 400 pc) while in the inner r = 29 pc the molecular mass is Mcore(H2) = 1.7 × 107 M⊙ with a corresponding H2 column density of N(H2) = 3.4 × 1023 cm-2 and an average 12CO 2-1 brightness temperature of 19 K. 13CO 2-1 emission is found at a factor 10 fainter than 12CO in the low-resolution map while C18O 2-1 remains undetected. We find weak 1 mm continuum emission of 2.4 mJy with spatial extent less than 400 pc. Conclusions: Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myr. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an active

  20. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  1. Submillimeter Array {sup 12}CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ya-Lin; Sakamoto, Kazushi; Pan, Hsi-An, E-mail: yalinwu@email.arizona.edu

    2017-04-10

    We present a {sup 12}CO (2–1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >10{sup 6} K km s{sup −1} pc{sup 2} and velocity dispersions >10 km s{sup −1}. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGCmore » 6946 has a shallower slope (index > −2) in the inner region, and a steeper slope (index < −2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.« less

  2. The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Hyejeon; Blakeslee, John P.; Chies-Santos, Ana L.; Jee, M. James; Jensen, Joseph B.; Peng, Eric W.; Lee, Young-Wook

    2016-05-01

    We present new Hubble Space Telescope (HST) optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g 475) and F814W (I 814) passbands and with the Wide Field Camera 3 IR Channel in F160W (H 160). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g 475-I 814 > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I 814-H 160 color. Consistent with past work, we find evidence for nonlinearity in the g 475-I 814 versus I 814-H 160 color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or “blue tilt,” for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I 814-H 160 color as a function of magnitude; for M 814 < -10 mag, these trends imply a steep mass-metallicity scaling with Z\\propto {M}{{GC}}1.4+/- 0.4, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4 ± 1 kpc toward the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km s-1 with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential

  3. The Vela Cloud: A Giant H I Anomaly in the NGC 3256 GROUP

    NASA Astrophysics Data System (ADS)

    English, Jayanne; Koribalski, B.; Bland-Hawthorn, J.; Freeman, K. C.; McCain, Claudia F.

    2010-01-01

    We present Australia Telescope Compact Array (ATCA) observations of a galaxy-sized intergalactic H I cloud ("the Vela Cloud") in the NGC 3256 galaxy group. The group contains the prominent merging galaxy NGC 3256, which is surrounded by a number of H I fragments, the tidally disturbed galaxy NGC 3263, and several other peculiar galaxies. The Vela Cloud, with an H I mass of 3-5 × 10^9 M_{⊙}, resides southeast of NGC 3256 and west of NGC 3263, within an area of 9' × 16' (100 kpc × 175 kpc for an adopted distance of 38 Mpc). In our ATCA data the Vela Cloud appears as three diffuse components and contains four density enhancements. The Vela Cloud's properties, together with its group environment, suggest that it has a tidal origin. Each density enhancement contains ˜ 10^{8} M_{⊙} of H I gas, which is sufficient material for the formation of globular cluster progenitors. However, if we represent the enhancements as Bonnor-Ebert spheres, then the pressure of the surrounding H I would need to increase by at least a factor of 9 in order to cause the collapse of an enhancement. Thus we do not expect them to form massive bound stellar systems like super star clusters or tidal dwarf galaxies. Since the H I density enhancements have some properties in common with high-velocity clouds, we explore whether they may evolve to be identified with these starless clouds instead. Original plate material is copyright © the Royal Observatory Edinburgh and the Anglo-Australian Observatory. The plates were processed into the present compressed digital form with their permission. The Digitized Sky Survey was produced at the Space Telescope Science Institute under US Government grant NAG W-2166.

  4. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Technical Reports Server (NTRS)

    Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-01-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.

  5. The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.

    2013-05-01

    Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that

  6. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, R. P.; Roediger, E.; Machacek, M.

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less

  7. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  8. THE SUZAKU VIEW OF THE DISK-JET CONNECTION IN THE LOW-EXCITATION RADIO GALAXY NGC 6251

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, D. A.; Kraft, R. P.; Lee, J. C.

    We present results from an 87 ks Suzaku observation of the canonical low-excitation radio galaxy (LERG) NGC 6251. We have previously suggested that LERGs violate conventional active galactic nucleus unification schemes: they may lack an obscuring torus and are likely to accrete in a radiatively inefficient manner, with almost all of the energy released by the accretion process being channeled into powerful jets. We model the 0.5-20 keV Suzaku spectrum with a single power law of photon index {Gamma} = 1.82{sup +0.04} {sub -0.05}, together with two collisionally ionized plasma models whose parameters are consistent with the known galaxy- andmore » group-scale thermal emission. Our observations confirm that there are no signatures of obscured, accretion-related X-ray emission in NGC 6251, and we show that the luminosity of any such component must be substantially sub-Eddington in nature.« less

  9. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  10. Dark matter study of NGC 5055

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ungku Ferwani Salwa Ungku; Hashim, Norsiah; Abidin, Zamri Zainal

    2013-05-01

    This paper is about rediscovering dark matter (DM) in galaxies before the year 1970. It is an Italy-Malaysia Astroproject (SISSA-Radio Cosmology Research group), introducing to the field of DM. Investigations about the rotation curve (RC) of NGC 5055 or the Sunflower Galaxy at that time showed that there was a distinct possibility that they had the knowledge and also the theory of gravitation to initiate the study of dark matter. NGC 5055 was chosen because of its good kinematical and photometric data. Information of the surface brightness of this spiral galaxy will determine the disk length scale, RD. Using this RD and by fitting the RC data of NGC 5055 with the velocity profile of the Freeman's disk, we look at the results to conclude whether there are signs of dark matter in the Sunflower Galaxy.

  11. A Hubble Study of the Peculiar Asymmetry of NGC 949

    NASA Image and Video Library

    2015-05-08

    This image provides the clearest ever view of galaxy NGC 949, which lies over 30 million light-years away in the constellation of Triangulum. The galaxy has an unusual shape, made more obscure due to its inclination. From our point of view, it is difficult to discern exactly what type of galaxy NGC 949 is, but it is certainly a disk galaxy of some kind, most likely a spiral. NGC 949 was first discovered by Sir William Herschel on September 21, 1786, using an 18.7-inch reflecting telescope. The galaxy was one of about 3,000 objects Herschel cataloged as "nebulae" during an intense and systematic deep sky survey, the results of which eventually formed the bulk of the New General Catalogue (NGC). Taken with Hubble’s Advanced Camera for Surveys (ACS), this image shows extraordinary detail. This detail allows us to see a strange asymmetric alignment in the dark lanes of dust that snake across the galaxy. The top-right half of the galaxy appears considerably more marbled with dust in this image; a curious observation explained by stars tending to favor locations towards the center of a galaxy, and dust preferring almost invariably to reside along the galactic plane. When a galaxy is inclined as NGC 949 is, some regions — in this case the top-right — are tipped toward us and the light from the stars we see in these regions has had to travel through more dust. This causes the light to appear redder — the result of the same process that gives the sun’s light a red hue at dusk — or else disappear entirely, making the dust appear more prominent on that side of the galaxy. In the part tipped away from us, the light from the stars has had to pass through much less dust to reach us, so it appears brighter, and the dust is much less prominent. Were it possible to view NGC 949 from the opposite side, the apparent alignment of the dust would be reversed. The scientific advantages of this effect were recently displayed in suitably stunning style in the M31 PHAT mosaic

  12. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  13. History and destiny of an emerging early-type galaxy. New IFU insights on the major-merger remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Husemann, B.; Kuntschner, H.; Martín-Navarro, I.; Bournaud, F.; Duc, P.-A.; Emsellem, E.; Krajnović, D.; Lyubenova, M.; McDermid, R. M.

    2018-06-01

    Context. The merging of galaxies is one key aspect in our favourite hierarchical ΛCDM Universe and is an important channel leading to massive quiescent elliptical galaxies. Understanding this complex transformational process is ongoing. Aims: We aim to study NGC 7252, which is one of the nearest major-merger galaxy remnants, observed 1 Gyr after the collision of presumably two gas-rich disc galaxies. It is therefore an ideal laboratory to study the processes inherent to the transformation of disc galaxies to ellipticals. Methods: We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50'' × 50'' of NGC 7252 to map the stellar and ionised gas kinematics, and the distribution and conditions of the ionised gas, revealing the extent of ongoing star formation and recent star formation history. Results: Contrary to previous studies, we find the inner gas disc not to be counter-rotating with respect to the stars. In addition, the stellar kinematics appear complex with a clear indication of a prolate-like rotation component which suggests a polar merger configuration. The ongoing star formation rate is 2.2 ± 0.6 M⊙ yr-1 and implies a typical depletion time of 2 Gyr given the molecular gas content. Furthermore, the spatially resolved star formation history suggests a slight radial dependence, moving outwards at later times. We confirm a large AGN-ionised gas cloud previously discovered 5 kpc south of the nucleus, and find a higher ionisation state of the ionised gas at the galaxy centre relative to the surrounding gas disc. Although the higher ionisation towards the centre is potentially degenerate within the central star forming ring, it may be associated with a low-luminosity AGN. Conclusions: Although NGC 7252 has been classified as post-starburst galaxy at the centre, the elliptical-like major-merger remnant still appears very active. A central kpc-scale gas disc has presumably re-formed quickly within the last

  14. VizieR Online Data Catalog: NGC3115 & NGC1399 VEGAS-SSS globular clusters (Cantiello+, 2018)

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; D'Abrusco, R.; Spavone, M.; Paolillo, M.; Capaccioli, M.; Limatola, L.; Grado, A.; Iodice, E.; Raimondo, G.; Napolitano, N.; Blakeslee, J. P.; Brocato, E.; Forbes, D. A.; Hilker, M.; Mieske, S.; Peletier, R.; van de Ven, G.; Schipani, P.

    2017-11-01

    Photometric catalogs for globular cluster (GC) candidates over the the 1 sq. degree area around NGC3115 and NGC1399 (ngc3115.dat and ngc1399.dat). The catalogues are based on u-, g- and i- band images from the VST elliptical galaxies survey (VEGAS). Aperture magnitudes, corrected for aperture correction are reported. We also provide the full catalogs of matched sources, which also include the matched background and foreground sources in the frames (ngc3115_full.dat and ngc1399_full.dat). (4 data files).

  15. The hidden dark side of NGC 24

    NASA Image and Video Library

    2016-09-26

      This shining disc of a spiral galaxy sits approximately 25 million light-years away from Earth in the constellation of Sculptor. Named NGC 24, the galaxy was discovered by British astronomer William Herschel in 1785, and measures some 40 000 light-years across. This picture was taken using the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys, known as ACS for short. It shows NGC 24 in detail, highlighting the blue bursts (young stars), dark lanes (cosmic dust), and red bubbles (hydrogen gas) of material peppered throughout the galaxy’s spiral arms. Numerous distant galaxies can also been seen hovering around NGC 24’s perimeter. However, there may be more to this picture than first meets the eye. Astronomers suspect that spiral galaxies like NGC 24 and the Milky Way are surrounded by, and contained within, extended haloes of dark matter. Dark matter is a mysterious substance that cannot be seen; instead, it reveals itself via its gravitational interactions with surrounding material. Its existence was originally proposed to explain why the outer parts of galaxies, including our own, rotate unexpectedly fast, but it is thought to also play an essential role in a galaxy’s formation and evolution. Most of NGC 24’s mass — a whopping 80 % — is thought to be held within such a dark halo.

  16. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  17. Vibrationally Excited HCN in the Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-01

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of Tvib ≈ 230 K between the vibrational ground and excited (v 2 = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v 2 = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO+, H13CN, HC15N, CS, N2H+, and HC3N at λ ~ 1 mm. Their relative intensities may also be affected by the infrared pumping.

  18. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  19. Disk mass and disk heating in the spiral galaxy NGC 3223

    NASA Astrophysics Data System (ADS)

    Gentile, G.; Tydtgat, C.; Baes, M.; De Geyter, G.; Koleva, M.; Angus, G. W.; de Blok, W. J. G.; Saftly, W.; Viaene, S.

    2015-04-01

    We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the observed NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M/L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of σz/σR = 1.21 ± 0.14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M/L ratio in the range 0.5-1.7, which is at the high end of (but consistent with) the predictions of stellar population synthesis models. Such a weak constraint on the stellar M/L ratio, however, does not allow us to securely determine the dark matter density distribution. To achieve this, either a statistical approach or additional data (e.g. integral-field unit) are needed. Based on observations collected at the European Southern Observatory, Chile, under proposal 68.B-0588.

  20. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less

  1. A dwarf galaxy's transformation and a massive galaxy's edge: detailed modeling of the extended stream in NGC1097

    NASA Astrophysics Data System (ADS)

    Cristiano Amorisco, Nicola; Martinez-Delgado, David

    2015-08-01

    Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies

  2. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  3. Integral Field Spectroscopy of the Merger Remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio

    2018-01-01

    The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.

  4. Stellar dynamics in E+E pairs of galaxies. 1: NGC 741/742, 1587/88 and 2672/73. The data

    NASA Astrophysics Data System (ADS)

    Bonfanti, P.; Rampazzo, R.; Combes, F.; Prugniel, P.; Sulentic, J. W.

    1995-05-01

    We present a kinematic study ofthree E+E galaxy pairs, NGC, 741/642, 1587/1588 (CPG 99) and 2672/2673 (CPG 175) All three pairs show a similar morpological distortion (i.e. the off-centering of inner versus outer isphototes; Davoust & Prungniel 1988) which is ascribed to the ongoing interaction. The data was obtained at the CFHT equipped with the Herzberg Spectrograph at a resolution of 0.88 A px-1 NGC741 and 2673 show significant rotation along the apparent minor axis. Both components of CPG 99 rotate very fast (with no evidence for rotation along the mirror axis of either component). None of the galaxies show abnormally high central velocity dispersion. We report some of the first clear detections of well defined velocity dispersions curves for interacting pairs. They show a systematic decrease with distance from the center, as expected for normal ellipticals. They do not show obvious heating in the outer parts as was previously reported. NGC 741 and 2672 show, respectively, possible U and inverse U-shaped structure in their velocity profiles.

  5. The ALMA View of GMCs in NGC 300: Physical Properties and Scaling Relations at 10 pc Resolution

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan

    2018-04-01

    We have conducted a 12CO(2–1) survey of several molecular gas complexes in the vicinity of H II regions within the spiral galaxy NGC 300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10 pc and 1 {km} {{{s}}}-1, sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC 300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth ΔV (ΔV ∝ R 0.48±0.05), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60 {M}ȯ pc‑2. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size–linewidth relation.

  6. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L., E-mail: puerari@inaoep.mx

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as amore » function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.« less

  7. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  8. Enormous Disc of Cool Gas Surrounding the Nearby Powerful Radio Galaxy NGC 612 (PKS 0131-36)

    DTIC Science & Technology

    2008-05-22

    galaxies in clus- ters appear to be much more devoid of H I gas, as sug- gested by a recent H I survey of the VIRGO cluster by di Serego Alighieri et...120th Street, New York, N.Y. 10027, USA 2Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands 3Kapteyn...NGC 612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies and it presents the first

  9. Fermi LAT detection of renewed gamma-ray flaring activity from the radio galaxy NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed GeV gamma-ray flaring activity from a source positionally consistent with NGC 1275 (also known as 2FGL J0319.8+4130, Nolan et al. 2012, ApJS, 199, 31, as Perseus A and 3C 84) a radio galaxy located at the center of the Perseus galaxy cluster (see also Abdo et al. 2009, ApJ, 699, 31).

  10. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  11. Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614

    NASA Astrophysics Data System (ADS)

    Olsson, E.; Aalto, S.; Thomasson, M.; Beswick, R.

    2010-04-01

    Aims: The aim is to investigate the star-formation and LINER (low ionization nuclear emission line region) activity within the central kiloparsec of the galaxy NGC 1614. In this paper the radio continuum morphology, which provides a tracer of both nuclear and star-formation activity, and the distribution and dynamics of the cold molecular and atomic gas feeding this activity, are studied. In particular, the nature of an R ≈ 300 pc nuclear ring of star-formation and its relationship to the LINER activity in NGC 1614 is addressed. Methods: A high angular resolution, multi-wavelength study of the LINER galaxy NGC 1614 has been performed. Deep observations of the CO 1-0 spectral line were performed using the Owens Valley Radio Observatory (OVRO). These data have been complemented by extensive multi-frequency radio continuum and Hi absorption observations using the Very Large Array (VLA) and Multi-Element Radio Linked Interferometer Network (MERLIN). Results: Toward the center of NGC 1614, we have detected a ring of radio continuum emission with a radius of 300 pc. This ring is coincident with previous radio and Paα observations. The dynamical mass of the ring based on Hi absorption is 3.1 × 109 M⊙. The peak of the integrated CO 1-0 emission is shifted by 1” to the north-west of the ring center. An upper limit to the molecular gas mass in the ring region is ~1.7 × 109 M⊙. Inside the ring, there is a north to south elongated 1.4 GHz radio continuum feature, with a nuclear peak. This peak is also seen in the 5 GHz radio continuum and in the CO. Conclusions: We suggest that the R = 300 pc star forming ring represents the radius of a dynamical resonance - as an alternative to the scenario that the starburst is propagating outwards from the center into a molecular ring. The ring-like appearance is probably part of a spiral structure. Substantial amounts of molecular gas have passed the radius of the ring and reached the nuclear region. The nuclear peak seen in 5

  12. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    To celebrate the 100 Hours of Astronomy, ESO is sharing two stunning images of unusual galaxies, both belonging to the Sculptor group of galaxies. The images, obtained at two of ESO's observatories at La Silla and Paranal in Chile, illustrate the beauty of astronomy. ESO PR Photo 14a/09 Irregular Galaxy NGC 55 ESO PR Photo 14b/09 Spiral Galaxy NGC 7793 As part of the International Year of Astronomy 2009 Cornerstone project, 100 Hours of Astronomy, the ambitious "Around the World in 80 Telescopes" event is a unique live webcast over 24 hours, following night and day around the globe to some of the most advanced observatories on and off the planet. To provide a long-lasting memory of this amazing world tour, observatories worldwide are revealing wonderful, and previously unseen, astronomical images. For its part, ESO is releasing outstanding pictures of two galaxies, observed with telescopes at the La Silla and Paranal observatories. The first of these depicts the irregular galaxy NGC 55, a member of the prominent Sculptor group of galaxies in the southern constellation of Sculptor. The galaxy is about 70 000 light-years across, that is, a little bit smaller than our own Milky Way. NGC 55 actually resembles more our galactic neighbour, the Large Magellanic Cloud (LMC), although the LMC is seen face-on, whilst NGC 55 is edge-on. By studying about 20 planetary nebulae in this image, a team of astronomers found that NGC 55 is located about 7.5 million light-years away. They also found that the galaxy might be forming a bound pair with the gorgeous spiral galaxy NGC 300 . Planetary nebulae are the final blooming of Sun-like stars before their retirement as white dwarfs. This striking image of NGC 55, obtained with the Wide Field Imager on the 2.2-metre MPG/ESO telescope at La Silla, is dusted with a flurry of reddish nebulae, created by young, hot massive stars. Some of the more extended ones are not unlike those seen in the LMC, such as the Tarantula Nebula. The quality

  13. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas

  14. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  15. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    NGC 1313's appearance suggests it has seen troubled times: its spiral arms look lop-sided and gas globules are spread out widely around them. This is more easily seen in ESO 43b/06, showing a larger area of the sky around the galaxy. Moreover, observations with ESO's 3.6-m telescope at La Silla have revealed that its 'real' centre, around which it rotates, does not coincide with the central bar. Its rotation is therefore also off kilter. Strangely enough NGC 1313 seems to be an isolated galaxy. It is not part of a group and has no neighbour, and it is not clear whether it may have swallowed a small companion in its past. So what caused its asymmetry and stellar baby boom? An explanation based on the presence of the central bar also does not hold for NGC 1313: the majority of its star formation is actually taking place not in its bar but in dense gassy regions scattered around the arms. By what mechanism the gas is compressed for stars to form at this staggering rate, astronomers simply aren't sure. Probing further into NGC 1313's insides reveals yet more mysteries. In the midst of the cosmic violence of the starburst regions lie two objects that emit large amounts of highly energetic X-rays - so-called ultra-luminous X-ray sources (ULX). Astronomers suspect that they might be black holes with masses of perhaps a few hundred times the mass of our Sun each, that formed as part of a binary star system. How such objects are created out of ordinary stars cannot be conclusively explained by current models. NGC 1313 is an altogether very intriguing target for astronomy. This image, obtained with ESO's Very Large Telescope, demonstrates once again how the imager FORS is ideally suited to capturing the beauty and stunning complexity of galaxies by observing them in different wavelength filters, combined here to form a stunning colour image. A high resolution image (with zoom-in possibilities) and its caption is available on this page.

  16. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    °. The overall position of the warp and the gross geometric shape of the halo have been determined unambiguously only in cases where the twisting of the warp is relatively strong. (Examples of galaxies whose disks sit in an oblate halo are M33, M83, NGC 2805, NGC 2841, and NGC 3718; prolate halos appear to surround NGC 5033 and NGC 5055; and ambiguous cases, at present permitting equally good oblate and prolate halo models, are M31, NGC 300, NGC 3079, NGC 3198, NGC 6946, NGC 7331, and IC 342). There appears to be a high degree of correlation between the twisting angles of kinematical models and precession angles derived from dynamical arguments. This correlation gives us considerable confidence that the kinematically identified twists in warped H I layers are real and that the general dynamical picture that has been put forward to explain their existence is correct. Adopting a scale-free, logarithmic halo potential having a quadrupole distortion η, we conclude specifically that in each of these twisted warped disk systems the product ητ8 is approximately equal to 1, where τ8 is the age of the warped layer in 108 yr.

  17. Hubble Views the Whirling Disk of NGC 4526

    NASA Image and Video Library

    2014-10-24

    This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space Telescope. Although this image paints a picture of serenity, the galaxy is anything but. It is one of the brightest lenticular galaxies known, a category that lies somewhere between spirals and ellipticals. It has hosted two known supernova explosions, one in 1969 and another in 1994, and is known to have a colossal supermassive black hole at its center that has the mass of 450 million suns. NGC 4526 is part of the Virgo cluster of galaxies. Ground-based observations of galaxies in this cluster have revealed that a quarter of these galaxies seem to have rapidly rotating disks of gas at their centers. The most spectacular of these is this galaxy, NGC 4526, and its spinning disk of gas, dust, and stars reaches out uniquely far from its heart, spanning some seven percent of the galaxy's entire radius. This disk is moving incredibly fast, spinning at more than 250 kilometers per second. The dynamics of this quickly whirling region were actually used to infer the mass of NGC 4526’s central black hole — a technique that had not been used before to constrain a galaxy’s central black hole. This image was taken with Hubble's Wide Field and Planetary Camera 2 and the Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  18. Distances to Nearby Galaxies via Long Period Variables

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    A new method of measuring extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and the period of their luminosity variation. This period-luminosity (PL) relationship has been calibrated with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33 in the broadband optical R and I-bands, in a narrow part of the I-band at 8250 Å, and in the infrared K-band. By using these RSV PL relations, the distances to a sample of nearby galaxies (M101, NGC 2403, and NGC 2366) were determined. These galaxies were chosen because they had existing Cepheid based distances which allowed for a comparison between the two methods and provided a means of verifying the effectiveness of the RSV PL relation. The galaxies were also chosen to span a range of metallicity to allow an investigation of any effects due to metallicity differences. Photometry in the R-band was obtained over a period of three years for the galaxies with a coverage of 20, 17, and 13 epochs for M101, NGC 2403, and NGC 2366, respectively. By looking for red variable stars with periods in the range 100-1200 days the total number of RSVs discovered in the three galaxies was 123. Assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. Similarly, PL relations were also found using phase averaged R-band magnitudes which produced distance moduli of 29.09 +/- 0.16, 27.56 +/- 0.16, and 27.76 +/- 0.21 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag. The distances derived agree with those found via Cepheids which indicates that RSVs provide a very useful new method for measuring

  19. The 'sleeping beauty' galaxy NGC 4826: an almost textbook example of the Abelian Higgs vorto-source (-sink)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod

    1995-03-01

    It is demonstrated that the kinematic 'peculiarity' of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio Omega greater than 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensor Tmu,nu are presented. It is argued that the sign-changing component Tphiphi could account for the existence of two counter-rotating gas disks while negative values of Trr imply inward gas motions as observed in the outer and transition regions of the galaxy.

  20. Green bank telescope observations of low column density H I around NGC 2997 and NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, D. J., E-mail: djpisano@mail.wvu.edu

    Observations of ongoing H I accretion in nearby galaxies have only identified about 10% of the fuel necessary to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, H I gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of Hmore » I down to N {sub H} {sub I} ∼ 10{sup 18} cm{sup –2}, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r ≲ 100-200 kpc) H I environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a 4 deg{sup 2} area around each galaxy with a 5σ detection limit of N{sub H} {sub I} ∼ 10{sup 18} cm{sup –2} over a 20 km s{sup –1} line width. This project complements absorption line studies, which are well-suited to the regime of lower N{sub H} {sub I}. Around NGC 2997, the GBT H I data reveal an extended H I disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the H I mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the H I extent of the galaxy is 23% larger at the N{sub H} {sub I} = 1.2 × 10{sup 18} cm{sup –2} level as measured by the GBT. On the other hand, the H I observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This H I filament has N{sub H} {sub I} ∼ 5 × 10{sup 18} cm{sup –2} and an FWHM of 55 ± 5 km s{sup –1} and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its

  1. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J.

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidatesmore » are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.« less

  2. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  3. VizieR Online Data Catalog: Radio haloes in nearby galaxies (Heesen+, 2018)

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.

    2018-02-01

    We present radio continuum observations of 12 nearby (D=2-27Mpc) edge-on galaxies at two different frequencies, namely at 1.4 and 5GHz (one galaxy at 8.5GHz instead of 5GHz). Our sample includes 11 late-type spiral (Sb or Sc) galaxies and one Magellanic-type barred galaxy (SBm), which are all highly inclined (i>=76°). As part of our study we have obtained several additional radio continuum maps. We make these maps publicly available (as well as all the other radio continuum maps in the paper). For 4 galaxies (NGC 55, 253, 891 and 4631) we have used single-dish maps, to correct for the missing zero-spacing flux where necessary. The Effelsberg maps of NGC 253 and 4631 were already presented in Heesen et al. (2009A&A...494..563H) and Mora & Krause (2013A&A...560A..42M), respectively, and the Effelsberg map of NGC 891 was already presented in Dumke (1997, PhD thesis, University of Bonn). We present these maps for completeness. The 4.80-GHz map of NGC 55 obtained with the 64-m Parkes telescope is so far unpublished. Furthermore, we show two maps of NGC 4631 at 1.35 and 1.65GHz observed with the VLA in D- configuration (R. Beck 2016, priv. comm.). The data were observed in August 1996, with 12 h on-source (ID: AG486) and reduced in standard fashion with AIPS. The maps have an angular resolution of 52 arcsec, so that we did not use them in the analysis, but they also show the halo of this galaxy very well. Lastly, we obtained maps of three further edge-on galaxies observed with the VLA (NGC 4157, 4217 and 4634). We reduced the data as described in Section 2, but since we had only one frequency available and no spectral index map, we did not use them in the analysis. The maps of NGC 4157 and 4217 were created by re-reducing archive data (IDs AI23, AF85, AH457 and AS392 for NGC 4157 and ID AM573 for NGC 4217). The map of NGC 4634 was created by using so far unpublished data from the VLA (ID: AD538). (3 data files).

  4. The Araucaria Project: The Distance to the Local Group Galaxy NGC 6822 from Cepheid Variables Discovered in a Wide-Field Imaging Survey

    NASA Astrophysics Data System (ADS)

    Pietrzyński, Grzegorz; Gieren, Wolfgang; Udalski, Andrzej; Bresolin, Fabio; Kudritzki, Rolf-Peter; Soszyński, Igor; Szymański, Michał; Kubiak, Marcin

    2004-12-01

    We have obtained mosaic images of NGC 6822 in the V and I bands on 77 nights. From these data, we have conducted an extensive search for Cepheid variables over the entire field of the galaxy, and we have found 116 such variables with periods ranging from 1.7 to 124 days. We used the long-period (>5.6 days) Cepheids to establish the period-luminosity (PL) relations in V, I, and in the reddening-independent Wesenheit index, which are all very tightly defined. Fitting the OGLE LMC slopes in the various bands to our data, we have derived distance values for NGC 6822 in V, I, and WI, which agree very well among themselves. Our adopted best distance value from the reddening-free Wesenheit index is 23.34+/-0.04 (statistical) +/-0.05 (systematic) mag. This value agrees within the combined 1 σ uncertainties with a previous distance value derived for NGC 6822 by McAlary and coworkers from near-IR photometry of nine Cepheids, but our new value is significantly more accurate. We compare the slopes of the Cepheid PL relation in V and I as determined in the five best-observed nearby galaxies, which span a metallicity range from -1.0 to -0.3 dex, and find the data consistent with no metallicity dependence of the PL relation slope in this range. Comparing the magnitudes of 10 day Cepheids with the I-band magnitudes of the tip of the red giant branch in the same set of galaxies, there is no evidence either for a significant variation of the PL zero points in V and I. The available data limit such a zero-point variation to less than 0.03 mag in the considered low-metallicity regime. Based on observations obtained with the 1.3 m telescope at the Las Campanas Observatory.

  5. Imaging the Hot Stellar Content of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco

    1991-07-01

    WE PROPOSE TO IMAGE WITH THE FOC IN THE F/96 CONFIGURATION FIVE EARLY TYPE GALAXIES IN FOUR PASSBANDS CENTERED AT 1500 A, 2200 A, 2800 A AND 3400 A. WHEN COUPLED WITH PHOTOMETRY OBTAINED FROM THE GROUND OUR OBSERVATIONS WILL ALLOW US TO DERIVE COMPLETE SED OF THESE GALAXIES AS A FUNCTION OF THE DISTANCE FROM THE CENTER. THIS IS A KEY STEP TOWARDS THE UNDERSTANDING OF STELLAR POPULATIONS - IN PARTICULAR THE ONE RESPONSIBLE FOR THE UV EMISSION - IN EARLY TYPE GALAXIES AND WILL PROVIDE IMPORTANT INSIGHT IN THEIR FORMATION AND EVOLUTION. WE PLAN TO OBSERVE NGC 1399, NGC 2681, NGC 4552, NGC 5018 AND NGC 4627 WHICH SAMPLE A WIDE RANGE OF INTRINSIC PROPERTIES AS INDICATED BY PREVIOUS IUE OBSERVATIONS. FOR NGC 4627 THERE IS EVIDENCE OF ONGOING STAR FORMATION AND THE HST WILL BE ABLE TO SHOW THE CHARACTERISTIC CLUMPINESS. NGC 2681 HAD A STARBUST OF AGE GREATER THAN 1 GYR. NGC 4552 IS ONE OF THE MOST METAL RICH GALAXY KNOWN. NGC 1399 HAS THE SAME METALLICITY AND LUMINOSITY OF THE PREVIOUS GALAXY BUT IS A MUCH STRONGER X-RAY EMITTER. NGC 5018 IS A VERY GOOD CANDIDATE FOR ONGOING STAR FORMATION. WE BELIEVE IN THIS WAY WE CAN OBTAIN SED FOR THE TWO-DIMENSIONAL IMAGES OF EARLY TYPE GALAXIES FROM BROAD BAND IMAGING ALONE. THE CALIBRATION OF OUR FILTER SYSTEM WILL ALLOW US TO APPLY IT TO THE BIDIMENSIONAL ANALYSIS OF THE GENERAL SAMPLE OF EARLY TYPE GALAXIES.

  6. A cosmic question in NGC 4696

    NASA Image and Video Library

    2017-12-08

    This picture, taken by Hubble’s Advanced Camera for Surveys, shows NGC 4696, the largest galaxy in the Centaurus Cluster. (To see a video of NGC 4696 go here: www.flickr.com/photos/gsfc/4888176841/) The huge dust lane, around 30 000 light-years across, that sweeps across the face of the galaxy makes NGC 4696 look different from most other elliptical galaxies. Viewed at certain wavelengths, strange thin filaments of ionised hydrogen are visible within it. In this picture, these structures are visible as a subtle marbling effect across the galaxy’s bright centre. Credit: ESA/Hubble and NASA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  7. Triggering the formation of the supergiant H II region NGC 604 in M 33

    NASA Astrophysics Data System (ADS)

    Tachihara, Kengo; Gratier, Pierre; Sano, Hidetoshi; Tsuge, Kisetsu; Miura, Rie E.; Muraoka, Kazuyuki; Fukui, Yasuo

    2018-05-01

    Formation mechanism of a supergiant H II region NGC 604 is discussed in terms of collision of H I clouds in M 33. An analysis of the archival H I data obtained with the Very Large Array (VLA) reveals complex velocity distributions around NGC 604. The H I clouds are composed of two velocity components separated by ˜20 km s-1 for an extent of ˜700 pc, beyond the size of the the H II region. Although the H I clouds are not easily separated in velocity with some mixed component represented by merged line profiles, the atomic gas mass amounts to 6 × 106 M_{⊙} and 9 × 106 M_{⊙} for each component. These characteristics of H I gas and the distributions of dense molecular gas in the overlapping regions of the two velocity components suggest that the formation of giant molecular clouds and the following massive cluster formation have been induced by the collision of H I clouds with different velocities. Referring to the existence of a gas bridging feature connecting M 33 with M 31 reported by large-scale H I surveys, the disturbed atomic gas possibly represents the result of past tidal interaction between the two galaxies, which is analogous to the formation of the R 136 cluster in the LMC.

  8. GHOSTS IN THE ATTIC: MAPPING THE STELLAR CONTENT OF THE S0 GALAXY NGC 5102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2010-02-15

    The spatial distribution of stars in the nearby S0 galaxy NGC 5102 is investigated using images obtained with WIRCam and MegaCam on the Canada-France-Hawaii Telescope. With the exception of gaps between detector elements, the entire galaxy is surveyed in r' and i', while the J and Ks data extend out to R {sub GC} {approx} 6 kpc, which corresponds to almost 7 disk scale lengths. A modest population of main-sequence stars with M{sub V} < -3.5 and ages {approx}70 Myr are detected throughout the disk, with the majority located in the southern half of the galaxy. The stellar disk inmore » the northern half of the galaxy is warped, following structure that is also seen in H I. Objects with photometric properties that are consistent with those of bright asymptotic giant branch (AGB) stars are seen throughout the disk, and the ratio of C stars to bright M giants is consistent with an overall increase in the star formation rate within the past 1 Gyr. Star-forming activity during the interval 0.1-2 Gyr was more centrally concentrated than during the past {approx}100 Myr. The structure of the disk changes near R {sub GC} {approx} 5 kpc (5.5 disk scale lengths), in the sense that the radial surface density profile defined by red supergiants (RSGs) and bright AGB stars levels off at larger radii. RSGs and bright AGB stars are traced out to a radius of 14 kpc (15.6 scale lengths) along the southern portion of the major axis, while a tentative detection is also made of bright AGB stars at a projected distance of {approx}16 kpc along the southeast minor axis. A large clump of AGB stars that subtends {approx}1 arcmin is identified to the west of the galaxy center. It is argued that this is the remnant of a companion galaxy that triggered past episodes of elevated star-forming activity.« less

  9. Evidence for a dwarf galaxy remnant around M82 from deep Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong; Sarajedini, Ata

    2018-01-01

    We present HST/ACS photometry of an over-dense region of stars in the southern halo of the edge-on galaxy M82. The structure is located at a projected distance of 5 kpc from the disk of the galaxy, and its color-magnitude diagram reveals a population of predominantly young stars, which are largely absent from the surrounding halo. Their ages are similar to those of the young stars formed in the tidal debris between M81, M82, and NGC3077 as a result of their interactions. We derive the mean metallicity of the surrounding stars, which are considered to be the halo population of M82, to be similar to that of the red giant branch (RGB) population of the halo of M81. However, the mean metallicity of the RGB in the over-dense structure is significantly more metal-rich than the halo. We theorize that this over-density existed as a dwarf galaxy prior to its interaction with M82 with the young stars forming later from the gas remaining in its main body.

  10. CO excitation in the Seyfert galaxy NGC 7130

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Vallini, L.; Vignali, C.; Talia, M.; Gruppioni, C.; Mingozzi, M.; Massardi, M.; Andreani, P.

    2017-09-01

    We present a coherent multiband modelling of the carbon monoxide (CO) spectral energy distribution of the local Seyfert galaxy NGC 7130 to assess the impact of the active galactic nucleus (AGN) activity on the molecular gas. We take advantage of all the available data from X-ray to the submillimetre, including ALMA data. The high-resolution (˜0.2 arcsec) ALMA CO(6-5) data constrain the spatial extension of the CO emission down to an ˜70 pc scale. From the analysis of the archival Chandra and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L2-10 keV ˜ 1.6 × 1043 erg s-1. We explore photodissociation and X-ray-dominated-region (PDR and XDR) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J ˜ 6; however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGNs as a source of excitation, and find that it can reproduce the observed CO spectral energy distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by the current generation of instruments to shed light on the properties of nearby galaxies by adopting state-of-the-art physical modelling.

  11. Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois

    1995-01-01

    New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely

  12. VLT photometry in the Antlia cluster: the giant ellipticals NGC3258 and NGC3268 and their globular cluster systems

    NASA Astrophysics Data System (ADS)

    Bassino, Lilia P.; Richtler, Tom; Dirsch, Boris

    2008-05-01

    We present a deep Very Large Telescope (VLT) photometry in the regions surrounding the two dominant galaxies of the Antlia cluster, the giant ellipticals NGC3258 and NGC3268. We construct the luminosity functions of their globular cluster systems (GCSs) and determine their distances through the turn-over magnitudes. These distances are in good agreement with those obtained by the SBF method. There is some, but not conclusive, evidence that the distance to NGC3268 is larger by several Mpc. The GCSs colour distributions are bimodal but the brightest globular clusters (GCs) show a unimodal distribution with an intermediate colour peak. The radial distributions of both GCSs are well fitted by de Vaucouleurs laws up to 5arcmin. Red GCs present a steeper radial density profile than the blue GCs, and follow closely the galaxies' brightness profiles. Total GC populations are estimated to be about 6000 +/- 150GCs in NGC3258 and NGC4750 +/- 150GCs in NGC3268. We discuss the possible existence of GCs in a field located between the two giant galaxies (intracluster GCs). Their luminosity functions and number densities are consistent with the two GCSs overlapping in projection. Based on observations carried out at the European Southern Observatory, Paranal (Chile). Programme 71.B-0122(A). E-mail: lbassino@fcaglp.unlp.edu.ar (LPB); tom@mobydick.cfm.udec.cl (TR); borischacabuco@yahoo.co.uk (BD)

  13. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  14. VEGAS-SSS. II. Comparing the globular cluster systems in NGC 3115 and NGC 1399 using VEGAS and FDS survey data. The quest for a common genetic heritage of globular cluster systems

    NASA Astrophysics Data System (ADS)

    Cantiello, Michele; D'Abrusco, Raffaele; Spavone, Marilena; Paolillo, Maurizio; Capaccioli, Massimo; Limatola, Luca; Grado, Aniello; Iodice, Enrica; Raimondo, Gabriella; Napolitano, Nicola; Blakeslee, John P.; Brocato, Enzo; Forbes, Duncan A.; Hilker, Michael; Mieske, Steffen; Peletier, Reynier; van de Ven, Glenn; Schipani, Pietro

    2018-04-01

    We analyze the globular cluster (GC) systems in two very different galaxies, NGC 3115 and NGC 1399. With the papers of this series, we aim at highlighting common and different properties in the GC systems in galaxies covering a wide range of parameter space. We compare the GCs in NGC 3115 and NGC 1399 as derived from the analysis of one square degree u-, g-, and i-band images taken with the VST telescope as part of the VST early-type galaxy survey (VEGAS) and Fornax deep survey (FDS). We selected GC candidates using as reference the morpho-photometric and color properties of confirmed GCs. The surface density maps of GCs in NGC 3115 reveal a morphology similar to the light profile of field stars; the same is true when blue and red GCs are taken separately. The GC maps for NGC 1399 are richer in structure and confirm the existence of an intra-cluster GC component. We confirm the presence of a spatial offset in the NGC 1399 GC centroid and find that the centroid of the GCs for NGC 3115 coincides well with the galaxy center. Both GC systems show unambiguous color bimodality in (g - i) and (u - i); the color-color relations of the two GC systems are slightly different with NGC 3115 appearing more linear than NGC 1399. The azimuthal average of the radial density profiles in both galaxies reveals a larger spatial extent for the total GCs population with respect to the galaxy surface brightness profile. For both galaxies, the red GCs have radial density profiles compatible with the galaxy light profile, while the radial profiles for blue GCs are shallower. As for the specific frequency of GCs, SN, we find it is a factor of two higher in NGC 1399 than for NGC 3115; this is mainly the result of extra blue GCs. By inspecting the radial behavior of the specific frequency, SN(

  15. NGC 5128 (Centaurus-A)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image of NGC 5128 (Centaurus-A). This unusual galaxy is believed to be the result of a collision of two normal galaxies. The blue regions toward the top are thought to be areas of star formation induced by powerful jets originating from a central black hole.

  16. The molecular cloud content of early type galaxies

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Henkel, Christian

    1990-01-01

    A survey of the CO content of early type galaxies led to 24 new detections, mostly lenticular galaxies. The galaxies, which are situated in both the Northern and Southern Hemispheres, were selected as being far-IR luminous compared to their blue luminosity, and situated at distances less than about 50 Mpc (H sub o=100 km/s Mpc(-1). Results for some early galaxies (NGC 404, NGC 3593 and NGC 4369 are given.

  17. Mapping the Spatial Distribution of Dust Extinction in NGC 959 Using Broadband Visible and Mid-Infrared Filters

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.

    2009-12-01

    We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.

  18. The Distance to M51

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2016-07-01

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. The Maybe Stream: A Possible Cold Stellar Stream in the Ultra-diffuse Galaxy NGC1052-DF2

    NASA Astrophysics Data System (ADS)

    Abraham, Roberto; Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie; Kruijssen, J. M. Diederik; Cohen, Yotam; Merritt, Allison; Zhang, Jielai; Lokhorst, Deborah; Mowla, Lamiya; Brodie, Jean; Romanowsky, Aaron J.; Janssens, Steven

    2018-05-01

    We report tentative evidence for a cold stellar stream in the ultra-diffuse galaxy NGC1052-DF2. If confirmed, this stream (which we refer to as "The Maybe Stream") would be the first cold stellar stream detected outside of the Local Group. The candidate stream is very narrow and has an unusual and highly curved shape.

  20. Hubble Views 'Third Kind' of Galaxy

    NASA Image and Video Library

    2017-12-08

    The subject of this image is NGC 6861, a galaxy discovered in 1826 by the Scottish astronomer James Dunlop. Almost two centuries later we now know that NGC 6861 is the second brightest member of a group of at least a dozen galaxies called the Telescopium Group — otherwise known as the NGC 6868 Group — in the small constellation of Telescopium (The Telescope). This NASA/ESA Hubble Space Telescope view shows some important details of NGC 6861. One of the most prominent features is the disk of dark bands circling the centre of the galaxy. These dust lanes are a result of large clouds of dust particles obscuring the light emitted by the stars behind them. Dust lanes are very useful for working out whether we are seeing the galaxy disk edge-on, face-on or, as is the case for NGC 6861, somewhat in the middle. Dust lanes like these are typical of a spiral galaxy. The dust lanes are embedded in a white oval shape, which is made up of huge numbers of stars orbiting the center of the galaxy. This oval is, rather puzzlingly, typical of an elliptical galaxy. So which is it — spiral or elliptical? The answer is neither! NGC 6861 does not belong to either the spiral or the elliptical family of galaxies. It is a lenticular galaxy, a family which has features of both spirals and ellipticals. The relationships between these three kinds of galaxies are not yet well understood. A lenticular galaxy could be a faded spiral that has run out of gas and lost its arms, or the result of two galaxies merging. Being part of a group increases the chances for galactic mergers, so this could be the case for NGC 6861. Credit: ESA/Hubble & NASA; acknowledgement: J. Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  1. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  2. Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    NASA Astrophysics Data System (ADS)

    Spavone, M.

    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings.

  3. KDG218, a nearby ultra-diffuse galaxy

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Makarova, L. N.; Sharina, M. E.; Karachentseva, V. E.

    2017-10-01

    We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈 D〉 = 5.1 Mpc, 〈 A e 〉 = 4.8 kpc, and 〈 SB B ( e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.

  4. Investigating Disk-halo Flows and Accretion: A Kinematic and Morphological Analysis of Extraplanar H I in NGC 3044 and NGC 4302

    NASA Astrophysics Data System (ADS)

    Zschaechner, Laura K.; Rand, Richard J.; Walterbos, Rene

    2015-01-01

    To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R 25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R 25 and R 25, suggesting internal processes are important in dictating extra-planar kinematics.

  5. Unveiling the nucleus of NGC 7172

    NASA Astrophysics Data System (ADS)

    Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.

    2012-08-01

    Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and

  6. Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Sargent, Wallace L. W.; Filippenko, Alexei V.

    1991-01-01

    Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.

  7. VEGAS: A VST Early-type GAlaxy Survey. I. Presentation, wide-field surface photometry, and substructures in NGC 4472

    NASA Astrophysics Data System (ADS)

    Capaccioli, Massimo; Spavone, Marilena; Grado, Aniello; Iodice, Enrichetta; Limatola, Luca; Napolitano, Nicola R.; Cantiello, Michele; Paolillo, Maurizio; Romanowsky, Aaron J.; Forbes, Duncan A.; Puzia, Thomas H.; Raimondo, Gabriella; Schipani, Pietro

    2015-09-01

    Context. We present the VST Early-type GAlaxy Survey (VEGAS), which is designed to obtain deep multiband photometry in g,r,i, of about one hundred nearby galaxies down to 27.3, 26.8, and 26 mag/arcsec2 respectively, using the ESO facility VST/OmegaCAM. Aims: The goals of the survey are 1) to map the light distribution up to ten effective radii, re; 2) to trace color gradients and surface brightness fluctuation gradients out to a few re for stellar population characterization; and 3) to obtain a full census of the satellite systems (globular clusters and dwarf galaxies) out to 20% of the galaxy virial radius. The external regions of galaxies retain signatures of the formation and evolution mechanisms that shaped them, and the study of nearby objects enables a detailed analysis of their morphology and interaction features. To clarify the complex variety of formation mechanisms of early-type galaxies (ETGs), wide and deep photometry is the primary observational step, which at the moment has been pursued with only a few dedicated programs. The VEGAS survey has been designated to provide these data for a volume-limited sample with exceptional image quality. Methods: In this commissioning photometric paper we illustrate the capabilities of the survey using g- and i-band VST/OmegaCAM images of the nearby galaxy NGC 4472 and of smaller ETGs in the surrounding field. Results: Our surface brightness profiles reach rather faint levels and agree excellently well with previous literature. Genuine new results concern the detection of an intracluster light tail in NGC 4472 and of various substructures at increasing scales. We have also produced extended (g - i) color profiles. Conclusions: The VST/OmegaCAM data that we acquire in the context of the VEGAS survey provide a detailed view of substructures in the optical emission from extended galaxies, which can be as faint as a hundred times below the sky level. Appendices are available in electronic form at http://www.aanda.org

  8. The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael

    2016-12-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.

  9. NGC 307 and the effects of dark-matter haloes on measuring supermassive black holes in disc galaxies

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Thomas, Jens; Saglia, Roberto P.; Fabricius, Maximilian; Rusli, Stephanie P.; Seitz, Stella; Bender, Ralf

    2018-01-01

    We present stellar-dynamical measurements of the central supermassive black hole (SMBH) in the S0 galaxy NGC 307, using adaptive-optics IFU data from VLT-SINFONI. We investigate the effects of including dark-matter haloes as well as multiple stellar components with different mass-to-light (M/L) ratios in the dynamical modelling. Models with no halo and a single stellar component yield a relatively poor fit with a low value for the SMBH mass [(7.0 ± 1.0) × 107 M⊙] and a high stellar M/L ratio (ϒK = 1.3 ± 0.1). Adding a halo produces a much better fit, with a significantly larger SMBH mass [(2.0 ± 0.5) × 108 M⊙] and a lower M/L ratio (ϒK = 1.1 ± 0.1). A model with no halo but with separate bulge and disc components produces a similarly good fit, with a slightly larger SMBH mass [(3.0 ± 0.5) × 108 M⊙] and an identical M/L ratio for the bulge component, though the disc M/L ratio is biased high (ϒK, disc = 1.9 ± 0.1). Adding a halo to the two-stellar-component model results in a much more plausible disc M/L ratio of 1.0 ± 0.1, but has only a modest effect on the SMBH mass [(2.2 ± 0.6) × 108 M⊙] and leaves the bulge M/L ratio unchanged. This suggests that measuring SMBH masses in disc galaxies using just a single stellar component and no halo has the same drawbacks as it does for elliptical galaxies, but also that reasonably accurate SMBH masses and bulge M/L ratios can be recovered (without the added computational expense of modelling haloes) by using separate bulge and disc components.

  10. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] < -1.5 are all α-enhanced at about the same level as Milky Way GCs. Their Na abundances are also generally enhanced relative to Milky Way halo stars, suggesting that these extragalactic GCs resemble their Milky Way counterparts in containing large numbers of Na-rich stars. For [Fe/H] > -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] < -2.0 account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack

  11. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  12. Hubble Sees Galaxies Spiraling around Leo

    NASA Image and Video Library

    2014-04-18

    Shown here is a spiral galaxy known as NGC 3455, which lies some 65 million light-years away from us in the constellation of Leo (the Lion). Galaxies are classified into different types according to their structure and appearance. This classification system is known as the Hubble Sequence, named after its creator Edwin Hubble. In this image released 14, April, 2014, NGC 3455 is known as a type SB galaxy — a barred spiral. Barred spiral galaxies account for approximately two thirds of all spirals. Galaxies of this type appear to have a bar of stars slicing through the bulge of stars at their center. The SB classification is further sub-divided by the appearance of a galaxy's pinwheeling spiral arms; SBa types have more tightly wound arms, whereas SBc types have looser ones. SBb types, such as NGC 3455, lie in between. NGC 3455 is part of a pair of galaxies — its partner, NGC 3454, lies out of frame. This cosmic duo belong to a group known as the NGC 3370 group, which is in turn one of the Leo II groups, a large collection of galaxies scattered some 30 million light-years to the right of the Virgo cluster. This image is from Hubble's Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. The interstellar medium in the starburst regions of NGC 253 and NGC 3256

    NASA Astrophysics Data System (ADS)

    Carral, P.; Hollenbach, D. J.; Lord, S. D.; Colgan, S. W. J.; Haas, Michael R.; Rubin, R. H.; Erickson, E. F.

    1994-03-01

    approximately 3 pc. Applying the simple model for the interstellar medium in galactic nuclei of Wolfire, Tielens, & Hollenbach (1990), we find the molecular gas in the central regions of NGC 253 and NGC 3256 to be distributed in a large number (5 x 103 to 5 x 105) of small (0.5-2 pc), dense (approximately 104/cu cm) clouds (or alternatively 'thin-flattened' structures) with volume filling factors 10-3 to 10-2, very different from the local Interstellar Medium (ISM) of the Galaxy. We suggest a self-consistent scenario for the ISM in NGC 253 in which clouds and H II gas are in pressure balance with a supernova-shocked, hot 1-3 x 106 K, low-density (approximately 104/cu cm), all pervasive medium. A feedback mechanism may be indicated in which the pressure generated by the supernovae compresses the molecular clouds and triggers further massive star formation. The similarity of ISM parameters deduced for NGC 253, NGC 3256, and M82 (Lord et al. 1993) suggests that the ISM properties are independent of the luminosity of the starburst or the triggering mechanism, but are rather endemic to starburst systems. The starburst in NGC 3256 appears to be a scaled-up version of the NGC 253 and M82 starbursts.

  14. The Dusty Disc of NGC 247

    NASA Astrophysics Data System (ADS)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a

  15. Hubble's Glittering Frisbee Galaxy

    NASA Image and Video Library

    2017-12-08

    This image from Hubble’s Wide Field Camera 3 (WFC3) shows a section of NGC 1448, a spiral galaxy located about 50 million light-years from Earth in the little-known constellation of Horologium (The Pendulum Clock). We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What’s going on? Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure — a great example from Hubble is the telescope’s view of Messier 51, otherwise known as the Whirlpool Galaxy. However, the NGC 1448 frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from NGC 1448’s dense core, can just about be seen. Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy’s core, with those on the inside making the orbit faster than those sitting further out. This makes the formation and continued existence of a spiral galaxy’s arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on — but this is not what we see. This is known as the winding problem. Credit: ESA/Hubble & NASA #nasagoddard #space #science #Hubble #star NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. High resolution CO images of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Meixner, M.; Puchalsky, R.; Blitz, L.; Wright, M.

    1990-01-01

    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity.

  17. Galaxy NGC 4013

    NASA Image and Video Library

    1999-12-15

    An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.

  18. Lithium in giant stars in NGC 752 and M67

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine; Saha, A.; Hobbs, L. M.

    1988-04-01

    Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.

  19. Tidal interaction of small satellite galaxies with spiral primaries

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1988-01-01

    The interaction of the disks of spiral galaxies and small companions is discussed. The gravitational drag effects of the disk on small satellites are of particular interest. Studies of the Andromeda Galaxy and its satellites, M32 and NGC 205, reveal the usefulness of few-body test-particle simulations in explaining many features of spiral galaxies and their satellites.

  20. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined

  1. A galaxy lacking dark matter.

    PubMed

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  2. Revealing the Faraday depth structure of radio galaxy NGC 612 with broad-band radio polarimetric observations

    NASA Astrophysics Data System (ADS)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-05-01

    We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  3. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  4. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  5. NGC 4945: The Milky Way's not-so-distant Cousin

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ESO has released a striking new image of a nearby galaxy that many astronomers think closely resembles our own Milky Way. Though the galaxy is seen edge-on, observations of NGC 4945 suggest that this hive of stars is a spiral galaxy much like our own, with swirling, luminous arms and a bar-shaped central region. These resemblances aside, NGC 4945 has a brighter centre that likely harbours a supermassive black hole, which is devouring reams of matter and blasting energy out into space. As NGC 4945 is only about 13 million light-years away in the constellation of Centaurus (the Centaur), a modest telescope is sufficient for skygazers to spot this remarkable galaxy. NGC 4945's designation comes from its entry number in the New General Catalogue compiled by the Danish-Irish astronomer John Louis Emil Dreyer in the 1880s. James Dunlop, a Scottish astronomer, is credited with originally discovering NGC 4945 in 1826 from Australia. Today's new portrait of NGC 4945 comes courtesy of the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile. NGC 4945 appears cigar-shaped from our perspective on Earth, but the galaxy is actually a disc many times wider than it is thick, with bands of stars and glowing gas spiralling around its centre. With the use of special optical filters to isolate the colour of light emitted by heated gases such as hydrogen, the image displays sharp contrasts in NGC 4945 that indicate areas of star formation. Other observations have revealed that NGC 4945 has an active galactic nucleus, meaning its central bulge emits far more energy than calmer galaxies like the Milky Way. Scientists classify NGC 4945 as a Seyfert galaxy after the American astronomer Carl K. Seyfert, who wrote a study in 1943 describing the odd light signatures emanating from some galactic cores. Since then, astronomers have come to suspect that supermassive black holes cause the turmoil in the centre of Seyfert galaxies. Black holes

  6. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  7. Discovery of Possible Bright Nova in NGC891 : P60-NGC891-080813

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Rau, A.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.

    2008-08-01

    On UT 2008 Aug 13.45, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient at RA(J2000)=02:22:32.70, DEC(J2000)=42:21:56.1 in the field of NGC891. P60-NGC891-080813 is offset from the nucleus of NGC891 by 8"W,59"N. The light curve thus far is g>22 (Jul 30.48), g=21.2 (Aug 13.45), g=21.0 (Aug 14.32), g=21.0 (Aug 15.32). Photometric calibration is wrt USNO-B1 and uncertain by 0.2 mags.

  8. Extraplanar H II Regions in Spiral Galaxies. II. In Situ Star Formation in the Interstellar Thick Disk of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H II region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q 0 ≈ 49.4 (photons s‑1). HST/WFPC2 imaging reveals an associated blue continuum source with M V = ‑8.21 ± 0.24. Together, these properties demonstrate that the H II region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H II regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10‑4 M ⊙ yr‑1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.

  9. Discovery of Classical Nova in NGC2403 : P60-NGC2403-090314

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Rau, A.; Caltech, Kulkarni, S. R.

    2009-03-01

    On UT 2009 Mar 14.160, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in NGC2403 at RA(J2000) = 07:36:35.00, DEC(J2000)=+65:40:20.8, offset from the nucleus by 101.0"W, 252.0"N. P60-NGC2403-090314 had a brightness of g = 20.6 +/- 0.1 at discovery. At peak, on Mar 15.147, the apparent g = 19.6 corresponded to Mg = -8.2, at the distance of NGC2403. It was not detected by P60 to g > 21.8 on Mar 2.164.

  10. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Image and Video Library

    2008-04-28

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait. The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust. From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic. Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away. Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky —equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history? M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red. http://photojournal.jpl.nasa.gov/catalog/PIA10600

  11. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi

    2017-02-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.

  12. A GIANT STAR FACTORY IN NEIGHBORING GALAXY NGC 6822

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy) NOTE TO EDITORS: For additional information, please contact C. R. O'Dell, Vanderbilt University, Physics and Astronomy Dept., Box 1807 Station B, Nashville, TN 37235, (phone) 615-343-1779, (fax) 615-343-7263, (e-mail) cr.odell@vanderbilt.edu or Luciana Bianchi, Johns Hopkins

  13. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo

  14. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  15. Hubble's makes a double galaxy gaze

    NASA Image and Video Library

    2017-12-08

    Some astronomical objects have endearing or quirky nicknames, inspired by mythology or their own appearance. Take, for example, the constellation of Orion (The Hunter), the Sombrero Galaxy, the Horsehead Nebula, or even the Milky Way. However, the vast majority of cosmic objects appear in astronomical catalogs and are given rather less poetic names based on the order of their discovery. Two galaxies are clearly visible in this Hubble image, the larger of which is NGC 4424. This galaxy is cataloged in the New General Catalog of Nebulae and Clusters of Stars (NGC), which was compiled in 1888. The NGC is one of the largest astronomical catalogs, which is why so many Hubble Pictures of the Week feature NGC objects. In total there are 7,840 entries in the catalog and they are also generally the larger, brighter, and more eye-catching objects in the night sky, and hence the ones more easily spotted by early stargazers. The smaller, flatter, bright galaxy sitting just below NGC 4424 is named LEDA 213994. The Lyon-Meudon Extragalactic Database (LEDA) is far more modern than the NGC and contains millions of objects. Many NGC objects still go by their initial names simply because they were christened within the NGC first. However, since astronomers can't resist a good acronym and “Leda” is more appealing than “the LMED,” the smaller galaxy is called "Leda." Leda was a princess in Ancient Greek mythology. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  17. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; hide

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  18. A Portrait of One Hundred Thousand and One Galaxies

    NASA Astrophysics Data System (ADS)

    2002-08-01

    Rich and Inspiring Experience with NGC 300 Images from the ESO Science Data Archive Summary A series of wide-field images centred on the nearby spiral galaxy NGC 300 , obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory , have been combined into a magnificent colour photo. These images have been used by different groups of astronomers for various kinds of scientific investigations, ranging from individual stars and nebulae in NGC 300, to distant galaxies and other objects in the background. This material provides an interesting demonstration of the multiple use of astronomical data, now facilitated by the establishment of extensively documented data archives, like the ESO Science Data Archive that now is growing rapidly and already contains over 15 Terabyte. Based on the concept of Astronomical Virtual Observatories (AVOs) , the use of archival data sets is on the rise and provides a large number of scientists with excellent opportunities for front-line investigations without having to wait for precious observing time. In addition to presenting a magnificent astronomical photo, the present account also illustrates this important new tool of the modern science of astronomy and astrophysics. PR Photo 18a/02 : WFI colour image of spiral galaxy NGC 300 (full field) . PR Photo 18b/02 : Cepheid stars in NGC 300 PR Photo 18c/02 : H-alpha image of NGC 300 PR Photo 18d/02 : Distant cluster of galaxies CL0053-37 in the NGC 300 field PR Photo 18e/02 : Dark matter distribution in CL0053-37 PR Photo 18f/02 : Distant, reddened cluster of galaxies in the NGC 300 field PR Photo 18g/02 : Distant galaxies, seen through the outskirts of NGC 300 PR Photo 18h/02 : "The View Beyond" ESO PR Photo 18a/02 ESO PR Photo 18a/02 [Preview - JPEG: 400 x 412 pix - 112k] [Normal - JPEG: 1200 x 1237 pix - 1.7M] [Hi-Res - JPEG: 4000 x 4123 pix - 20.3M] Caption : PR Photo 18a/02 is a reproduction of a colour-composite image of the nearby spiral galaxy

  19. Hubble Views a Young Elliptical Galaxy

    NASA Image and Video Library

    2017-12-08

    At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes (lines radiating from bright light sources in reflecting telescope images) that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disk. This is very unusual, as disks are one of the main distinguishing features of a spiral galaxy. And the disk in NGC 3610 is remarkably bright. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat disks and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disk galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disk implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge

  20. Mapping the filaments in NGC 1275

    NASA Astrophysics Data System (ADS)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  1. Detection of the Tip of Red Giant Branc in NGC 5128

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mould, Jeremy R.; Watson, Alan M.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; Griffiths, Richard E.; hide

    1996-01-01

    We present a color-magnitude diagram of more than 10,000 stars in the halo of galaxy NGC 5128 (Centaurus A), based on WFPC2 images through the V and I filters. The position of the red-giant branch stars is compared with the loci of the RGB in six well-studied globular clusters and in the dwarf elliptical galaxy NGC 185;...

  2. DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT M{sub BH}-{sigma}{sub *} RELATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Jong-Hak; Park, Daeseong; Kang, Wol-Rang

    To investigate the validity of the assumption that quiescent galaxies and active galaxies follow the same black hole mass (M{sub BH})-stellar velocity dispersion ({sigma}{sub *}) relation, as required for the calibration of M{sub BH} estimators for broad line active galactic nuclei (AGNs), we determine and compare the M{sub BH}-{sigma}{sub *} relations, respectively, for quiescent and active galaxies. For the quiescent galaxy sample, composed of 72 dynamical M{sub BH} measurements, we update {sigma}{sub *} for 28 galaxies using homogeneous H-band measurements that are corrected for galaxy rotation. For active galaxies, we collect 25 reverberation-mapped AGNs and improve {sigma}{sub *} measurement formore » two objects. Combining the two samples, we determine the virial factor f, first by scaling the active galaxy sample to the M{sub BH}-{sigma}{sub *} relation of quiescent galaxies, and second by simultaneously fitting the quiescent and active galaxy samples, as f=5.1{sub -1.1}{sup +1.5} and f=5.9{sub -1.5}{sup +2.1}, respectively. The M{sub BH}-{sigma}{sub *} relation of active galaxies appears to be shallower than that of quiescent galaxies. However, the discrepancy is caused by a difference in the accessible M{sub BH} distribution at given {sigma}{sub *}, primarily due to the difficulty of measuring reliable stellar velocity dispersion for the host galaxies of luminous AGNs. Accounting for the selection effects, we find that active and quiescent galaxies are consistent with following intrinsically the same M{sub BH}-{sigma}{sub *} relation.« less

  3. NGC 5626: a massive fast rotator with a twist

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Sarzi, M.; Baes, M.; Puerari, I.

    2018-02-01

    We present a kinematic analysis of the dust-lane elliptical NGC 5626 based on MUSE observations. These data allow us to robustly classify this galaxy as a fast rotator and to infer a virial mass of 1011.7 M⊙, making it one of the most massive fast rotators known. In addition, the depth and extent of the MUSE data reveal a strong kinematic twist in the stellar velocity field (by up to 45° beyond 1.5Re). A comparison with the ATLAS3D sample underlines the rareness of this system, although we show that such a large-scale kinematic twist could have been missed by the ATLAS3D data due to the limited spatial sampling of this survey (typically extending to 0.6Re for massive early-type galaxies). MUSE thus has the potential to unveil more examples of this type of galaxies. We discuss the environment and possible formation history of NGC 5626 and finally argue how a merger between the Milky Way and Andromeda could produce a galaxy of the same class as NGC 5626.

  4. VizieR Online Data Catalog: Black hole masses in megamaser disk galaxies (Greene+, 2016)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Seth, A.; Kim, M.; Lasker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-11-01

    The velocity dispersion (σ*) presented here for megamaser disk galaxies are measured from three data sets. Two galaxies (NGC1320, NGC5495) were observed with the B&C spectrograph on the Dupont telescope at the Las Campanas Observatory. These spectra have an instrumental resolution of σr~120km/s and a wavelength range of 3400-6000Å. Two galaxies (Mrk1029, ESO558-G009) have σ* measurements from the cross-dispersed near-infrared spectrograph Triplespec on the 3.5m telescope at Apache Point. Triplespec has a wavelength range of 0.9-2.4um with a spectral resolution of σr~37km/s. Finally, three galaxies (J0437+2456, NGC5765b, UGC6093) have spectra from the SDSS. They have a spectral resolution of σr~65km/s and cover a range of 3800-9200Å. (1 data file).

  5. A Search for a Near-Infrared Halo Around NGC 4565

    NASA Technical Reports Server (NTRS)

    Uemizu, Kazunori; Bock, James J.; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Watabe, Toyoki; Yost, Sarah A.

    1998-01-01

    We present a near-infrared (3.5-5 micron) search for the integrated emission from low-mass stars and/or brown dwarfs in the halo of the nearby edge-on spiral galaxy NGC 4565. The observation was made with a liquid-helium-cooled rocket-borne telescope using a 256 x 256 InSb array with a pixel scale of 17". Images of NGC 4565 were successfully obtained with sensitivity near the natural background limit. Our search reveals no evidence of a faint halo around the galaxy, in contrast with the previous reports of a halo around NGC 5907. The lower limit of the mass-to-light ratio for the halo of NGC 4565 is 260 (2 delta) in solar units at 3.5-5 microns. This implies that hydrogen-burning stars do not contribute significantly to the mass of the dark halo in NGC 4565.

  6. VizieR Online Data Catalog: Carbon in red giants in GCs and dSph galaxies (Kirby+, 2015)

    NASA Astrophysics Data System (ADS)

    Kirby, E. N.; Guo, M.; Zhang, A. J.; Deng, M.; Cohen, J. G.; Guhathakurta, P.; Shetrone, M. D.; Lee, Y. S.; Rizzi, L.

    2015-07-01

    We obtained Keck/DEIMOS spectra of the carbon G band in red giants in Milky Way (MW) globular clusters (GCs) and dwarf spheroidal galaxies (dSphs) between 2011 Jul 29 and 2012 Mar 19. The GCs are NGC 2419, NGC 4590 (M68), and NGC 7078 (M15). The dSphs are Sculptor, Fornax, Ursa Minor, and Draco. See table 1. (3 data files).

  7. GEMINI SPECTROSCOPY OF ULTRACOMPACT DWARFS IN THE FOSSIL GROUP NGC 1132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Donzelli, Carlos J.

    2013-06-20

    A spectroscopic follow-up of ultracompact dwarf (UCD) candidates in the fossil group NGC 1132 is undertaken with the Gemini Multi Object Spectrograph. These new Gemini spectra prove the presence of six UCDs in the fossil group NGC 1132 at a distance of D {approx} 100 Mpc and a recessional velocity of v{sub r} = 6935 {+-} 11 km s{sup -1}. The brightest and largest member of the UCD population is an M32 analog with a size of 77.1 pc and a magnitude of M{sub V} = -14.8 mag with the characteristics in between those of the brightest UCDs and compactmore » elliptical galaxies. The ensemble of UCDs have an average radial velocity of (v{sub r} ) = 6966 {+-} 208 km s{sup -1} and a velocity dispersion of {sigma}{sub v} = 169 {+-} 18 km s{sup -1} similar to the one of poor galaxy groups. This work shows that UCDs can be used as test particles to determine the dynamical properties of galaxy groups. The presence of UCDs in the fossil group environment is confirmed and thus the fact that UCDs can form across diverse evolutionary conditions.« less

  8. Are starburst galaxies proton calorimeters?

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  9. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  10. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (r< 3 kpc) the X-ray data underpredict the enclosed mass, when compared with the optical mass profiles. Consistent with previous results, we estimate a nonthermal pressure component accounting for 30% of the gas pressure, likely linked to nuclear activity. In NGC 5846 the X-ray mass profiles show significant azimuthal asymmetries, especially in the NE direction. Comparison with optical mass profiles in this direction suggests significant departures from HE, consistent with bulk gas compression and decompression due to sloshing on ˜15 kpc scales; this effect disappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  11. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Conroy, Charlie; Villaume, Alexa; Brodie, Jean; Romanowsky, Aaron J.

    2017-06-01

    There is good evidence that the centers of massive early-type galaxies have a bottom-heavy stellar initial mass function (IMF) compared to that of the Milky Way. Here we study the radial variation of the IMF within such galaxies, using a combination of high-quality Keck spectroscopy and a new suite of stellar population synthesis models that cover a wide range in metallicity. As in the previous studies in this series, the models are fitted directly to the spectra and treat all elemental abundance ratios as free parameters. Using newly obtained spectroscopy for six galaxies, including deep data extending to ˜ 1{R}{{e}} for the galaxies NGC 1407, NGC 1600, and NGC 2695, we find that the IMF varies strongly with galactocentric radius. For all six galaxies the IMF is bottom-heavy in the central regions, with average mass-to-light ratio “mismatch” parameter α \\equiv {({\\text{}}M/L)/({\\text{}}M/L)}{MW}≈ 2.5 at R = 0. The IMF rapidly becomes more bottom-light with increasing radius, flattening off near the Milky Way value (α ≈ 1.1) at R> 0.4{R}{{e}}. A consequence is that the luminosity-weighted average IMF depends on the measurement aperture: within R={R}{{e}} we find < α {> }L=1.3{--}1.5, consistent with recent lensing and dynamical results from SLACS and {{ATLAS}}3{{D}}. Our results are also consistent with several earlier studies that were based on analyses of radial gradients of line indices. The observed IMF gradients support galaxy formation models in which the central regions of massive galaxies had a different formation history than their outer parts. Finally, we make use of the high signal-to-noise central spectra of NGC 1407 and NGC 2695 to demonstrate how we can disentangle IMF effects and abundance effects.

  12. Tidal origin of NGC 1427A in the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Serra, P.; Koribalski, B.; Venhola, A.; Iodice, E.; Catinella, B.; Cortese, L.; Peletier, R.; Popping, A.; Keenan, O.; Capaccioli, M.

    2018-02-01

    We present new HI observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less HI tail that contains ˜10 per cent of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. Rather than being the result of ram pressure induced star formation, as previously suggested in the literature, the disturbed optical appearance of NGC 1427A has tidal origins. The galaxy itself likely consists of two individual objects in an advanced stage of merging. The HI tail may be made of gas expelled to large radii during the same tidal interaction. It is possible that some of this gas is subject to ram pressure, which would be considered a secondary effect and implies a north-west trajectory of NGC 1427A within the Fornax cluster.

  13. NGC1300 dynamics - II. The response models

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, C.; Patsis, P. A.; Grosbøl, P.

    2010-10-01

    We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp pattern speed values. Our goal is to discover the geometries and the Ωp supporting specific morphological features of NGC1300. For this purpose we use the method of response models. In order to compare the images of NGC1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild-type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp ~ 16 and 22 kms-1kpc-1 are able to reproduce efficiently certain morphological features of NGC1300, with each one having its advantages and drawbacks. Based on observations collected at the European Southern Observatory, Chile: programme ESO 69.A-0021. E-mail: ckalapot@phys.uoa.gr (CK); patsis@academyofathens.gr (PAP); pgrosbol@eso.org (PG)

  14. An X-ray study of the Centaurus Cluster of galaxies using Einstein

    NASA Technical Reports Server (NTRS)

    Matilsky, T.; Jones, C.; Forman, W.

    1985-01-01

    Einstein Imaging Proportional Counter observations of the core of the Centaurus Cluster of galaxies have been analyzed to map the 0.5-3.5 keV surface brightness and temperature of the intracluster gas. The emission is centered on NGC 4696, the elliptical galaxy believed to be at or near the dynamical center of the cluster. Because the X-ray-emitting gas responds to the gravitational potential of the cluster, the observations may be used to measure the total mass distribution around the central region. It is shown that the gas is very likely in hydrostatic equilibrium. It is found that surrounding NGC 4696, like M87 at the center of the Virgo Cluster, is a dark, massive halo, with a gravitating mass of about 2 x 10 to the 13th M out to a radius of about 20 arcmin (or 200 kpc for H(o) = 50 km/s Mpc). The elliptical galaxy NGC 4709, at the core of a more distant cluster, is also detected with a luminosity of 2 x 10 to the 40th ergs per sec.

  15. Dense cores of GMAs in M51

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Koda, J.; Scoville, N. Z.

    2010-01-01

    We present sensitive and high angular resolution CO(1-0) data obtained by CARMA observations toward the nearby grand-design spiral galaxy M51. From the data, Giant Molecular Associations (GMAs) in a spiral arm are found to be resolved into a few small clumps with mass of 106 Msun and size of 40 pc. As the densities of these clumps are estimated to be larger than 300 cm-3, we regard them as dense cores of GMAs. If GMAs were just confusion of Giant Molecular Clouds (GMCs) whose typical mass and size are almost the same as those of the detected clumps, we should have detected tens or more of them per each GMA considering the sensitivity of our data. However, only one or two cores are found in each GMA, indicating that GMAs are not ensembles of GMCs but are discrete smooth structures. This result is consistent with the conclusion by Koda et al. (2009), who worked on lower resolution CO data of M51. In addition, we have found that these cores are located downstream of the spiral arm. This suggests that the core formation of GMAs and their evolution are triggered by the spiral structure, or density waves. Our high resolution data reveal the inner structure of GMAs and its relationships to the global structure for the first time in grand-design spiral galaxies.

  16. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. http://www.nasa.gov/image-feature/goddard/hubble-spots-the-layers-of-ngc-3923

    NASA Image and Video Library

    2015-05-15

    The glowing object in this Hubble Space Telescope image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centers approach, they initially oscillate about a common center, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image, and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. Credit: ESA/Hubble & NASA

  18. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  19. Hubble’s Hunting Dog Galaxy

    NASA Image and Video Library

    2017-12-08

    Tucked away in the small northern constellation of Canes Venatici (The Hunting Dogs) is the galaxy NGC 4242, shown here as seen by the NASA/ESA Hubble Space Telescope. The galaxy lies some 30 million light-years from us. At this distance from Earth, actually not all that far on a cosmic scale, NGC 4242 is visible to anyone armed with even a basic telescope, as British astronomer William Herschel found when he discovered the galaxy in 1788. This image shows the galaxy’s bright center and the surrounding dimmer and more diffuse “fuzz.” Despite appearing to be relatively bright in this image, studies have found that NGC 4242 is actually relatively dim (it has a moderate-to-low surface brightness and low luminosity) and also supports a low rate of star formation. The galaxy also seems to have a weak bar of stars cutting through its asymmetric center, and a very faint and poorly-defined spiral structure throughout its disk. But if NGC 4242 is not all that remarkable, as with much of the Universe, it is still a beautiful and ethereal sight. Credit: ESA/Hubble & NASA

  20. Picture processing analysis of the optical structure of NGC 5128 /Centaurus A/

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.; Harvel, C. A.; Martins, D. M.; Schiffer, F. H., III; Talent, D. L.; Wells, D. C.; Van Den Bergh, S.; Talbot, R. J., Jr.

    1979-01-01

    Results are presented for a detailed study of the peculiar elliptical galaxy NGC 5128 (Cen A), based on computer video analysis of several photographic plates of exceptional quality reduced to the standard UBV system. The picture-processing results and the measured properties of the elliptical and gaseous-disk components of NGC 5128 are examined, along with the distribution, spectral characteristics, and chemical composition of the H II regions in the disk. The data show that NGC 5128 consists of a giant E2 galaxy containing a significant amount of gas and dust situated predominantly in an equatorial disk where vigorous star formation is occurring. Reasons why NGC 5128 is so different from giant ellipticals in clusters are considered.

  1. The interaction between hot and cold gas in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.

    1995-01-01

    SO and Sa galaxies have approximately equal masses of H I and X-ray emitting gas and are ideal sites for studying the interaction between hot and cold gas. An X-ray observation of the Sa galaxy NGC 1291 with the ROSAT position sensitive proportional counter (PSPC) shows a striking spatial anticorrelation between hot and cold gas where X-ray emitting material fills the large central black hole in the H I disk. This supports a previous suggestion that hot gas is a bulge phenomenon and neutral hydrogen is a disk phenomenon. The X-ray luminosity (1.5 x 10(exp 40) ergs/s) and radial surface brightness distribution (beta = 0.51) is the same as for elliptical galaxies with optical luminosities and velocity dispersions like that of the bulge of NGC 1291. Modeling of the X-ray spectrum requires a component with a temperature of 0.15 keV, similar to that expected from the velocity dispersion of the stars, and with a hotter component where kT = 1.07 keV. This hotter component is not due to emission from stars and its origin remains unclear. PSPC observations are reported for the SO NGC 4203, where a nuclear point source dominates the emission, preventing a study of the radial distribution of the hot gas relative to the H I.

  2. The NGC 4839 group falling into the Coma cluster observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Neumann, D. M.; Arnaud, M.; Gastaud, R.; Aghanim, N.; Lumb, D.; Briel, U. G.; Vestrand, W. T.; Stewart, G. C.; Molendi, S.; Mittaz, J. P. D.

    2001-01-01

    We present here the first analysis of the XMM-Newton EPIC-MOS data of the galaxy group around NGC 4839, which lies at a projected distance to the Coma cluster center of 1.6h50-1 Mpc. In our analysis, which includes imaging, spectro-imaging and spectroscopy we find compelling evidence for the sub group being on its first infall onto the Coma cluster. The complex temperature structure around NGC 4839 is consistent with simulations of galaxies falling into a cluster environment. We see indications of a bow shock and of ram pressure stripping around NGC 4839. Furthermore our data reveal a displacement between NGC 4839 and the center of the hot gas in the group of about 300h50-1 kpc. With a simple approximation we can explain this displacement by the pressure force originating from the infall, which acts much stronger on the group gas than on the galaxies. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). EPIC was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises the following Institutes: University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IAAP Tuebingen, MPE Garching, (Germany); IFC Milan, ITESRE Bologna, IAUP Palermo, Italy. EPIC is funded by: PPARC, CEA, CNES, DLR and ASI.

  3. Young star clusters in the interacting galaxies of Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Miah, J. A.; Sharples, R. M.; Cho, J.

    2015-03-01

    Deep images of Hickson Compact Group 90 (HCG 90) have been obtained using the Advanced Camera for Surveys on the Hubble Space Telescope. We report results for star clusters observed in the interacting pair of galaxies NGC 7174 and NGC 7176. We present magnitude and colour distributions for the observed cluster population and find that the majority of objects show colours similar to intermediate/old age (>1 Gyr) globular clusters. However, a significant population of blue star clusters are also observed which may have formed from the tidal interaction currently occurring between the two galaxies. We find luminosity function turnover magnitudes of m^{TO}g = 25.1 ± 0.1 and m^{TO}z = 24.3 ± 0.1 for the g and z bands, respectively, implying distances of Dg = 28.8 ± 2.6 Mpc and Dz = 34.7 ± 3.1 Mpc to these galaxies, using the globular cluster luminosity function method. Lastly, we determine a total cluster population of approximately NGC ≃ 212 ± 10 over all magnitudes and a low specific frequency of SN ˜ 0.6 ± 0.1 for this pair of interacting elliptical and spiral galaxies. The small globular cluster population is likely due to tidal interactions taking place between the two galaxies which may have stripped many progenitor clusters away and formed the diffuse light observed at the core of HCG 90.

  4. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, and from 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait.

    The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust.

    From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic.

    Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away.

    Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history?

    M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red.

  5. The President and the Galaxy

    NASA Astrophysics Data System (ADS)

    2004-12-01

    On December 9-10, 2004, the ESO Paranal Observatory was honoured with an overnight visit by His Excellency the President of the Republic of Chile, Ricardo Lagos and his wife, Mrs. Luisa Duran de Lagos. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, ESO's representative in Chile, Mr. Daniel Hofstadt, and Prof. Maria Teresa Ruiz, Head of the Astronomy Department at the Universidad de Chile, as well as numerous ESO staff members working at the VLT site. The visit was characterised as private, and the President spent a considerable time in pleasant company with the Paranal staff, talking with and getting explanations from everybody. The distinguished visitors were shown the various high-tech installations at the observatory, including the Interferometric Tunnel with the VLTI delay lines and the first Auxiliary Telescope. Explanations were given by ESO astronomers and engineers and the President, a keen amateur astronomer, gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. President Lagos showed a deep interest and impressed everyone present with many, highly relevant questions. Having enjoyed the spectacular sunset over the Pacific Ocean from the Residence terrace, the President met informally with the Paranal employees who had gathered for this unique occasion. Later, President Lagos visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the President took part in an observing sequence of the spiral galaxy NGC 1097 (see PR Photo 35d/04) from the console of the MELIPAL telescope. After one more visit to the telescope platform at the top of Paranal, the President and his wife left the Observatory in the morning of December 10, 2004, flying back to Santiago. ESO PR Photo 35e/04 ESO PR Photo 35e/04 President Lagos Meets with ESO Staff at the Paranal Residencia [Preview - JPEG: 400 x 267pix - 144k] [Normal

  6. The study of two barred galaxies with curious kinematical features

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.; Katkov, I. Y.; Khoperskov, S. A.; Zasov, A. V.; Uklein, R. I.

    2017-09-01

    We performed long-slit spectral observations of two SB-type galaxies: NGC 5347 and UGC 1344. They were previously suspected as the galaxies with unusually low mass-to-light ratios (on the ground of mass estimates from the H I linewidths), which are in conflict with their observed colours. The observations were conducted at the Russian 6-m telescope. The aim of this study was to clarify the kinematics and structure, as well as the properties of stellar populations of the galaxies. The results of observations disproved the peculiarly low mass-to-light ratios of both galaxies. The most probable reasons of underestimation of their masses are discussed. We tried to reproduce the main observed features of kinematical profiles of the galaxies in the N-body simulations of barred galaxies. We found that both galaxies possess central components of different structures. Indeed, the age and velocity dispersion of stellar population in NGC 5347 are low in its innermost part in comparison to that of the bulge or a bar, which agrees with the presence of nuclear kinematically decoupled disc. It probably was formed due to the bar that supplied the inner region with gas. The kinematical profiles of the second galaxy UGC 1344 give evidence in favour of the central peanut-shaped bulge. In spite of the different luminosities of the two galaxies, they possess nearly equal (close to solar) central stellar abundance and the flattening of the stellar metallicity gradient in the bar regions. However, in the less luminous NGC 5347, the mean stellar age is younger than that in UGC 1344.

  7. High-resolution mid-infrared observations of NGC 7469

    NASA Technical Reports Server (NTRS)

    Miles, J. W.; Houck, J. R.; Hayward, T. L.

    1994-01-01

    We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.

  8. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X

  9. Near-infrared structure of fast and slow-rotating disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less

  10. A Deep ROSAT HRI Observation of NGC 1313

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.; Petre, Robert; Colbert, E. J. M.; Miller, Scott

    2000-11-01

    We describe a series of observations of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ks. The observations span an interval between 1992 and 1998; the purpose of observations since 1994 was to monitor the X-ray flux of SN 1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of ~1-2×1037 ergs s-1 arcmin-2. A total of eight sources are detected in the summed image within the D25 diameter of the galaxy. The luminosities of five of the eight range from ~6×1037 to ~6×1038 ergs s-1 these sources are most likely accreting X-ray binaries, similar to sources observed in M31 and M33. The remaining three sources all emit above 1039 ergs s-1. We present light curves of the five brightest sources. Variability is detected at the 99.9% level in four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX 339-4 but with considerably higher peak X-ray luminosity. An additional seven sources lie outside the D25 diameter and are either foreground stars or background active galactic nuclei.

  11. Cannibalization and Rebirth in the NGC 5387 System. I. The Stellar Stream and Star-forming Region

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael L.; Martínez-Delgado, David; Majewski, Steven R.; D'Onghia, Elena; Zibetti, Stefano; Gabany, R. Jay; Johnson, Kelsey E.; Blanton, Michael; Verbiscer, Anne

    2014-08-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B - V) = 0.7, has a stellar mass of 6 × 108 M ⊙, which implies a 1:50 merger ratio, has a circular radius, R circ ~ 11.7 kpc, formed in ~240 Myr, and the progenitor had a total mass of ~4 × 1010 M ⊙. Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (~10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (~1-3 M ⊙ yr-1). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper. Based on observations with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  12. Hydrodynamical simulations of the barred spiral galaxy NGC 1300. Dynamical interpretation of observations

    NASA Astrophysics Data System (ADS)

    Lindblad, P. A. B.; Kristen, H.

    1996-09-01

    We perform two-dimensional time dependent hydrodynamical simulations of the barred spiral galaxy NGC 1300. The input potential is divided into an axisymmetric part mainly derived from the observed rotation curve, and a perturbing part obtained from near infrared surface photometry of the bar and spiral structure. Self-gravitation of the gas is not taken into account in our modeling. A pure bar perturbed model is unable to reproduce the observations. It was found necessary to add a weak spiral potential to the perturbation, thus suggesting the presence of massive spiral arms in NGC 1300. We find two models, differing mainly in pattern speed, which are able to reproduce the essentials of NGC 1300. The high pattern speed model has {OMEGA}_p_=20km/s/kpc, corresponding to a corotation radius at R_CR_~104"=1.3R_bar_. Furthermore, the adopted rotation curve for this model supports one ILR at R_ILR_~26" and an OLR at R_OLR_~188". The low pattern speed model has {OMEGA}_p_=12km/s/kpc, corresponding to a corotation radius at R_ CR_~190"=2.4R_bar_. The adopted rotation curve for this model, which differs from the fast pattern speed model, supports one ILR at R_ILR_~25" and an OLR at R_OLR_~305". Morphological features, like spiral arms and offset dust lanes, are basically reproduced by both models. They are driven by orbit crowding effects across various resonances, leading to density enhancements. The general velocity structure, as described by HI data and optical long slit measurements, is fairly consistent with the model velocities.

  13. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but ismore » close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.« less

  14. Deep millimeter spectroscopy observations toward NGC 1068

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjie; Wang, Junzhi; Shi, Yong; Zhang, Jiangshui; Fang, Min; Li, Fei

    2018-05-01

    Aims: We aim for a better understanding of gas properties in the circum-nuclear disk (CND) region of the nearby gas-rich Seyfert 2 galaxy NGC 1068. We focus on line identification and the basic physical parameters estimation of molecular gas in the CND region. Methods: We used the IRAM 30 m telescope to conduct deep millimeter spectroscopy observations toward the center of NGC 1068. Results: Thirty-two lines were detected in this galaxy, 15 lines of wich were detected for the first time. With a sensitivity better by about a factor of 4 than observations in the literature for this source at 3 mm band, we detected several weak lines for the first time in this source, such as lines from CH3CCH, CH3OCH3, and HC18O+. Column densities of these molecules were estimated based on line emissions. Some marginal detections in the literature, such as HN13C (1-0), were confirmed. CH3OCH3 was detected for the first time in external galaxies. Lines from several carbon chain molecules and shock-related molecules were also detected in this source. The reduced spectrum (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A3

  15. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  16. Hubble Sees a Dwarf Galaxy Shaped by a Grand Design

    NASA Image and Video Library

    2014-06-20

    The subject of this Hubble image is NGC 5474, a dwarf galaxy located 21 million light-years away in the constellation of Ursa Major (The Great Bear). This beautiful image was taken with Hubble's Advanced Camera for Surveys (ACS). The term "dwarf galaxy" may sound diminutive, but don't let that fool you — NGC 5474 contains several billion stars! However, when compared to the Milky Way with its hundreds of billions of stars, NGC 5474 does indeed seem relatively small. NGC 5474 itself is part of the Messier 101 Group. The brightest galaxy within this group is the well-known spiral Pinwheel Galaxy (also known as Messier 101). This galaxy's prominent, well-defined arms classify it as a "grand design galaxy," along with other spirals Messier 81 and Messier 74. Also within this group are Messier 101's galactic neighbors. It is possible that gravitational interactions with these companion galaxies have had some influence on providing Messier 101 with its striking shape. Similar interactions with Messier 101 may have caused the distortions visible in NGC 5474. Both the Messier 101 Group and our own Local Group reside within the Virgo Supercluster, making NGC 5474 something of a neighbor in galactic terms. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  18. Bulgeless Galaxy Hides Black Hole

    NASA Image and Video Library

    2014-03-26

    The galaxy NGC 4395 is shown here in infrared light, captured by NASA Spitzer Space Telescope. This dwarf galaxy is relatively small in comparison with our Milky Way galaxy, which is nearly 1,000 times more massive.

  19. The CO-12 and CO-13 J=2-1 and J=1-0 observations of hot and cold galaxies

    NASA Technical Reports Server (NTRS)

    Xie, Shuding; Schloerb, F. Peter; Young, Judith

    1990-01-01

    Researchers observed the nuclear regions of the galaxies NGC 2146 and IC 342 in CO-12 and CO-13 J=1-0 and J=2-1 lines using the Five College Radio Astronomy Observatory (FCRAO) 14m telescope. NGC 2146 is a peculiar Sab spiral galaxy. Its complex optical morphology and strong nuclear radio continuum emission suggest that it is experiencing a phase of violent activity and could have a polar ring which may have resulted from an interaction. IC 342 is a nearby luminous Scd spiral galaxy. Strong CO, infrared and radio continuum emission from the nuclear region of IC 342 indicate enhanced star-forming activity, and interferometric CO-12 J=1-0 observations reveal a bar-like structure centered on the nucleus, along the dark lane in the NS direction. These two galaxies are selected based on their different dust temperatures and star formation efficiencies (SFE) as derived from the Infrared Astronomy Satellite (IRAS) S sub 60 mu/S sub 100 mu flux density ratio and L sub IR/M(H2), respectively, with a relatively high SFE and dust temperature of 45 K in NGC 2146 and a relatively low SFE and dust temperature of 35 K in IC 342. The data from the different CO-12 and CO-13 lines are used to study the physical conditions in the molecular clouds in the galaxies. Researchers also consider the radiative transfer to determine whether a warm and optically thin gas component exists in these galaxies, as has been suggested in the case of M82 (Knapp et al. 1980), and whether the warm gas is related to the dust properties. Since optically thin CO-12 gas is rarely detected in our own Galaxy (except in outflow sources), to confirm its existence in external galaxies is very important in understanding the molecular content of external galaxies and its relationship to star formation activity. The present CO-12 J=2-1 and CO-13 J=2-1 and J=1-0 data for NGC 2146 are the first detections of this galaxy to our knowledge. The CO-12 J=1-0 distribution in NGC 2146 has been measured as part of the FCRAO

  20. The dark matter distribution of NGC 5921

    NASA Astrophysics Data System (ADS)

    Ali, Israa Abdulqasim Mohammed; Hashim, Norsiah; Abidin, Zamri Zainal

    2018-04-01

    We used the neutral atomic hydrogen data of the Very Large Array for the spiral galaxy NGC 5921 with z = 0.0045 at the distance of 22.4 Mpc, to investigate the nature of dark matter. The investigation was based on two theories, namely, dark matter and Modified Newtonian Dynamics (MOND). We presented the kinematic analysis of the rotation curve with two models of dark matter, namely, the Burkert and NFW profiles. The results revealed that the NFW halo model can reproduce the observed rotation curve, with χ 2_{red}≈ 1, while the Burkert model is unable to fit the observation data. Therefore, the dark matter density profile of NGC 5921 can be presented as a cuspy halo. We also tried to investigate the observed rotation curve of NGC 5921 with MOND, along with the possible assumption on baryonic matter and distance. We note that MOND is still incapable of mimicking the rotation curve with the observed data of the galaxy.

  1. Rescuing the intracluster medium of NGC 5813

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Hillel, Shlomi; Sternberg, Assaf

    2016-06-01

    We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.

  2. Hubble Spies a Loopy Galaxy

    NASA Image and Video Library

    2015-02-02

    This NASA Hubble Space Telescope photo of NGC 7714 presents an especially striking view of the galaxy's smoke-ring-like structure. The golden loop is made of sun-like stars that have been pulled deep into space, far from the galaxy's center. The galaxy is located approximately 100 million light-years from Earth in the direction of the constellation Pisces. The universe is full of such galaxies that are gravitationally stretched and pulled and otherwise distorted in gravitational tug-o'-wars with bypassing galaxies. The companion galaxy doing the "taffy pulling" in this case, NGC 7715, lies just out of the field of view in this image. A very faint bridge of stars extends to the unseen companion. The close encounter has compressed interstellar gas to trigger bursts of star formation seen in bright blue arcs extending around NGC 7714's center. The gravitational disruption of NGC 7714 began between 100 million and 200 million years ago, at the epoch when dinosaurs ruled the Earth. The image was taken with the Wide Field Camera 3 and the Advanced Camera for Surveys in October 2011. Credit: NASA and ESA. Acknowledgment: A. Gal-Yam (Weizmann Institute of Science) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Near-Infrared Continuum and 3.3um PAH Imaging of the Starburst Ring in the Type I Seyfert Galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Mazzarella, J.; Voit, G.; Soifer, B.; Matthews, K.; Graham, J.; Armus, L.; Shupe, D.

    1993-01-01

    High resolution near-infrared images of the type 1 Seyfert Galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct images are relatively featureless, but residual images created by subtacting a smooth model based on best-fitting elliptical isoophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3.

  4. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  5. Coma cluster of galaxies

    NASA Image and Video Library

    1999-12-02

    Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.

  6. Morphology of Our Galaxy Twin

    NASA Image and Video Library

    2004-06-28

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light. The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to "read" this story by dissecting the galaxy into its separate components. The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye. The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation. One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at sub-millimeter and radio

  7. Morphology of Our Galaxy's 'Twin'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light.

    The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to 'read' this story by dissecting the galaxy into its separate components.

    The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye.

    The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation.

    One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at

  8. Young globular clusters in NGC 1316

    NASA Astrophysics Data System (ADS)

    Sesto, Leandro A.; Faifer, Favio R.; Smith Castelli, Analía V.; Forte, Juan C.; Escudero, Carlos G.

    2018-05-01

    We present multi-object spectroscopy of the inner zone of the globular cluster (GC) system associated with the intermediate-age merger remnant NGC 1316. Using the multi-object mode of the GMOS camera, we obtained spectra for 35 GCs. We find pieces of evidence that the innermost GCs of NGC 1316 rotate almost perpendicular to the stellar component of the galaxy. In a second stage, we determined ages, metallicities and α-element abundances for each GC present in the sample, through the measurement of different Lick/IDS indices and their comparison with simple stellar population models. We confirmed the existence of multiple GC populations associated with NGC 1316, where the presence of a dominant subpopulation of very young GCs, with an average age of 2.1 Gyr, metallicities between -0.5 < [Z/H] < 0.5 dex and α-element abundances in the range -0.2 < [α/Fe] < 0.3 dex, stands out. Several objects in our sample present subsolar values of [α/Fe] and a large spread of [Z/H] and ages. Some of these objects could actually be stripped nuclei, possibly accreted during minor merger events. Finally, the results have been analyzed with the aim of describing the different episodes of star formation and thus provide a more complete picture about the evolutionary history of the galaxy. We conclude that these pieces of evidence could indicate that this galaxy has cannibalized one or more gas-rich galaxies, where the last fusion event occurred about 2 Gyr ago.

  9. Surface-brightness profiles of dwarf galaxies in the NGC 5044 Group: Implications for the luminosity-shape and scalelength-shape relationships as distance indicators

    NASA Astrophysics Data System (ADS)

    Young, C. K.; Currie, M. J.

    2001-04-01

    In a recent paper, which presents CCD photometry for fifteen dwarf and intermediate early-type galaxies in the NGC 5044 Group, it has been claimed that ``a few relatively bright galaxies with ``convex'' profiles destroy the known relation between total magnitude and the ``shape'' parameter... thus ruling out the use of this relation as a distance indicator for individual galaxies''. In the same paper, further reasons were cited supposedly ``limiting also its use as a distance indicator for groups of galaxies''. We demonstrate that none of the three relatively bright galaxies cited as possessing ``convex'' profiles actually has a convex profile, and that one of these objects should be excluded because it is a late-type galaxy. Of the two remaining objects, one has an anomalous profile shape whilst the other is brighter than one might expect from its colour alone. However, we show that all of the other issues raised have already been accounted for by Young & Currie (\\cite{you94}, \\cite{you95} & \\cite{you98}). The main implications of the new observations are: (1) that the case of one galaxy with an anomalous profile shape, N42, highlights the need for some a priori criteria to be defined in order to establish objectively which objects are not suitable for distance determinations; and (2) on the basis of another unusual galaxy, N50, colour has now been shown to be a poorer discriminant between objects of the same profile shape and scalelength (but of different central surface brightness) than previously thought. How significant this latter problem is depends on how common N50-like objects are. This consideration reinforces the case for always using the more general scalelength-shape relationship of Young & Currie (\\cite{you95}) in preference to the luminosity-shape one of Young & Currie (\\cite{you94}). Reassuringly, through a re-analysis of the same CCD photometry, we find that NGC 5044 Group galaxies observe a tight scalelength-shape relationship. This finding

  10. Why Are Galaxies So Smooth?

    NASA Image and Video Library

    2009-04-30

    This image from NASA's Spitzer Space Telescope shows the spiral galaxy NGC 2841, located about 46 million light-years from Earth in the constellation Ursa Major. The galaxy is helping astronomers solve one of the oldest puzzles in astronomy: Why do galaxies look so smooth, with stars sprinkled evenly throughout? An international team of astronomers has discovered that rivers of young stars flow from their hot, dense stellar nurseries, dispersing out to form large, smooth distributions. This image is a composite of three different wavelengths from Spitzer's infrared array camera. The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. The cooler areas are highlighted in red, and show the dusty, gaseous regions of the galaxy. Blue shows infrared light of 3.6 microns, green represents 4.5-micron light and red, 8.0-micron light. The contribution from starlight measured at 3.6 microns has been subtracted from the 8.0-micron data to enhance the visibility of the dust features.The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA12001

  11. A Stellar Dynamical Black Hole Mass for the Reverberation Mapped AGN NGC 5273

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Valluri, Monica; Onken, Christopher A.

    2018-01-01

    We present preliminary results from stellar dynamical modeling of the mass of the central super-massive black hole (MBH) in the active galaxy NGC 5273. NGC 5273 is one of the few AGN with a secure MBH measurement from reverberation-mapping that is also nearby enough to measure MBH with stellar dynamical modeling. Dynamical modeling and reverberation-mapping are the two most heavily favored methods of direct MBH determination in the literature, however the specific limitations of each method means that there are very few galaxies for which both can be used. To date only two such galaxies, NGC 3227 and NGC 4151, have MBH determinations from both methods. Given this small sample size, it is not yet clear that the two methods give consistent results. Moreover, given the inherent uncertainties and potential systematic biases in each method, it is likewise unclear whether one method should be preferred over the other. This study is part of an ongoing project to increase the sample of galaxies with secure MBH measurements from both methods, so that a direct comparison may be made. NGC 5273 provides a particularly valuable comparison because it is free of kinematic substructure (e.g. the presence of a bar, as is the case for NGC 4151) which can complicate and potentially bias results from stellar dynamical modeling. I will discuss our current results as well as the advantages and limitations of each method, and the potential sources of systematic bias that may affect comparison between results.

  12. The connection between globular cluster systems and their host galaxy and environment: a case study of the isolated elliptical NGC 821

    NASA Astrophysics Data System (ADS)

    Spitler, Lee R.; Forbes, Duncan A.; Strader, Jay; Brodie, Jean P.; Gallagher, Jay S.

    2008-03-01

    In an effort to probe the globular cluster (GC) system of an isolated elliptical galaxy, a comprehensive analysis of the NGC 821 GC system was performed. New imaging from the WIYN Mini-Mosaic imager, supplemented with Hubble Space Telescope (HST) WFPC2 images reveals a GC system similar to those found in counterpart ellipticals located in high-density environments. To put these results into the context of galaxy formation, a robustly determined census of GC systems is presented and analysed for galaxies spanning a wide range of masses (> M*), morphologies and environments. Results from this meta-study: (1) confirm previous findings that the number of GCs normalized by host galaxy stellar mass increases with host stellar mass. Spiral galaxies in the sample show smaller relative GC numbers than those of massive ellipticals, suggesting the GC systems of massive ellipticals were not formed from major spiral-spiral mergers; (2) indicate that GC system numbers per unit galaxy baryon mass increases with host baryon mass and that GC formation efficiency may not be universal as previously thought; (3) suggest previously reported trends with environment may be incorrect due to sample bias or the use of galaxy stellar masses to normalize GC numbers. Thus claims for environmentally dependent GC formation efficiencies should be revisited; (4) in combination with weak-lensing halo mass estimates, suggest that GCs formed in direct proportion to the halo mass; (5) are consistent with theoretical predictions whereby the local epoch of reionization did not vary significantly with environment or host galaxy type. Based upon data from the WIYN Observatory, which is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University and the National Optical Astronomy Observatories. Also includes analysis of observations made with the Hubble Space Telescope obtained from the ESO/ST-ECF Science Archive Facility. E-mail: lspitler@astro.swin.edu.au

  13. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  14. CHANG-ES X: Spatially Resolved Separation of Thermal Contribution from Radio Continuum Emission in Edge-on Galaxies

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos J.; Mora-Partiarroyo, Silvia Carolina; Schmidt, Philip; Rand, Richard J.; Stein, Yelena; Walterbos, René A. M.; Wang, Q. Daniel; Basu, Aritra; Patterson, Maria; Kepley, Amanda; Beck, Rainer; Irwin, Judith; Heald, George; Li, Jiangtao; Wiegert, Theresa

    2018-02-01

    We analyze the application of star formation rate calibrations using Hα and 22 μm infrared (IR) imaging data in predicting the thermal radio component for a test sample of three edge-on galaxies (NGC 891, NGC 3044, and NGC 4631) in the Continuum Halos in Nearby Galaxies—an EVLA Survey (CHANG-ES). We use a mixture of Hα and 24 μm calibration from Calzetti et al. and a linear 22 μm only calibration from Jarrett et al. on the test sample. We apply these relations on a pixel-to-pixel basis to create thermal prediction maps in the two CHANG-ES bands: L and C band (1.5 GHz and 6.0 GHz, respectively). We analyze the resulting nonthermal spectral index maps, and find a characteristic steepening of the nonthermal spectral index with vertical distance from the disk after application of all methods. We find possible evidence of extinction in the 22 μm data as compared to 70 μm Spitzer Multiband Imaging Photometer imaging in NGC 891. We analyze a larger sample of edge-on and face-on galaxy 25–100 μm flux ratios, and find that the ratios for edge-ons are systematically lower by a factor of 1.36, a result we attribute to excess extinction in the mid-IR in edge-ons. We introduce a new calibration for correcting the Hα luminosity for dust when galaxies are edge-on or very dusty.

  15. Triple Scoop from Galaxy Hunter

    NASA Image and Video Library

    2006-07-28

    Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky as seen in this edge-on view from NASA Galaxy Evolution Explorer.

  16. The Physical Characteristics of Interstellar Medium in NGC 3665 with Herschel Observations

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Yuan; Zhao, Yinghe; Gu, Qiu-Sheng; Shi, Yong

    2018-02-01

    We present the analysis of the physical properties of the interstellar medium in the nearby early-type galaxy NGC 3665, based on the far-infrared photometric and spectroscopic data as observed by the Herschel Space Observatory. The fit to the spectral energy distribution reveals a high dust content in the galaxy, with a dust-to-stellar mass ratio of {M}dust}/M * ∼ 1.1 × 10‑4 that is nearly three times larger than the mean value of local S0+S0a galaxies. For the ionized regions (H II regions), the electron density (n e ) is around 49.5 ± 11.9 cm‑3 based on the [N II] 122 μm/[N II] 205 μm ratio. For the photodissociation regions, the heating efficiency ranges from 1.26 × 10‑3 to 1.37 × 10‑3 based on the ([C II]+[O I] 63 μm)/{L}TIR}, which is slightly lower than other local galaxies; the hydrogen nucleus density and the strength of the far-UV radiation field are n ∼ 104 cm‑3 and G 0 ∼ 10‑0.25, respectively. The above results are consistent with the presence of weak active galactic nuclei and a low level of star-forming activity in NGC 3665. Our results give strong support to the “morphological quenching” scenario, where a compact, massive bulge can stabilize the amount of cool gas against star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  18. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok

    2012-07-10

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars ofmore » NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.« less

  19. The discovery of five new H2O megamasers in active galaxies

    NASA Technical Reports Server (NTRS)

    Braatz, J. A.; Wilson, A. S.; Henkel, C.

    1994-01-01

    H2O megamasers with (isotropic) luminosities between 60 and 200 solar luminosity (H(sub 0) = 75 km/s/Mpc) have been detected in the Seyfert 2 galaxies Mrk 1, Mrk 1210, and NGC 5506 and in the LINERs NGC 1052 and NGC 2639. No megamasers have been found in Seyfert 1's. The galaxies have redshifts between 1500 and 4800 km/s and are the most distant H2O sources reported to date. NGC 1052 is also the first elliptical galaxy known to contain an H2O maser. The intensity distribution of an H2O five-point map obtained toward NGC 5506 shows that the H2O emission is pointlike compared to the 40 sec telescope beam. The lack of CO emission in NGC 1052 implies a conservative lower limit to the H2O brightness temperature of 1000 K, thus ruling out a thermal origin for the H2O emission. The success of this survey relative to other recent searches makes it evident that H2O megamasers are preferentially found in galaxies with active nuclei.

  20. Classic Galaxy with Glamour

    NASA Image and Video Library

    2005-04-11

    Young hot blue stars dominate the outer spiral arms of nearby galaxy NGC 300, while the older stars congregate in the nuclear regions which appear yellow-green in this image from NASA Galaxy Evolution Explorer.

  1. Hubble Spies Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Spiral galaxy NGC 3274 is a relatively faint galaxy located over 20 million light-years away in the constellation of Leo (The Lion). This NASA/ESA Hubble Space Telescope image comes courtesy of Hubble's Wide Field Camera 3 (WFC3), whose multi-color vision allows astronomers to study a wide range of targets, from nearby star formation to galaxies in the most remote regions of the cosmos. This image combines observations gathered in five different filters, bringing together ultraviolet, visible and infrared light to show off NGC 3274 in all its glory. NGC 3274 was discovered by Wilhelm Herschel in 1783. The galaxy PGC 213714 is also visible on the upper right of the frame, located much farther away from Earth. Image Credit: ESA/Hubble & NASA, D. Calzetti NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (˜1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (˜2.6-4 M⊙ yr-1). The soft emission at circumnuclear scales (inner ˜400 pc) originates from hot gas, with kT ˜ 0.7 keV, while the most extended thermal emission is cooler (kT ˜ 0.3 keV). We refine previous measurements of the extreme Fe Kα equivalent width in this source ({EW}={2.5}-1.0+2.6 {keV}), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH > 1.25 × 1024 cm-2) and an intrinsic hard (2-10 keV) X-ray luminosity of ˜3-8 × 1042 erg s-1 (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα EWs (I.e., >2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  3. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (approx. 1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation [approx. 2.6-4 Mass compared to Earth yr(exp.- 1)]. The soft emission at circumnuclear scales (inner approx. 400 pc) originates from hot gas, with kT approx. 0.7 keV, while the most extended thermal emission is cooler (kT approx. 0.3 keV). We refine previous measurements of the extreme Fe K alpha equivalent width in this source (EW 2.5 + 2.6/-1.0 keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density [N(sub H) is greater than 1.25× 10(exp 24) cm(exp.- 2)] and an intrinsic hard (2-10 keV) X-ray luminosity of approx. 3-8× 10(exp. 42) erg s(exp. - 1) (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe K Alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe K Alpha EWs (i.e., greater than 2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  4. The Hawaii Imaging Fabry-Perot Interferometer (HIFI)

    NASA Technical Reports Server (NTRS)

    Bland, Jonathan; Cecil, Gerald; Tully, Brent

    1990-01-01

    At Mauna Kea Observatory, researchers conducted optical, imaging spectrophotometric studies of selected active galaxies using both the Canada-France-Hawaii 3.6m and University of Hawaii 2.2m telecopes (Tully, Bland and Cecil 1988). To maximize spatial resolution, researchers select galaxies independent of luminosity but known to possess interesting morphologies or high-velocity, extranuclear ionized gas (Walker 1968; Rubin and Ford 1968). They study both the large-scale patterns produced in IR-luminous, starburst systems (e.g., M82, NGC 253, NGC 6240) and those with compact, but spatially extended, circumnuclear, narrow line regions (e.g., M51, NGC 1068, NGC 4151). Current studies are restricted to the optical (SII), (NII) and (OIII) lines and the brightest Balmer recombination lines. These lines are, in principle, sufficient to constrain the dynamical structure and dominant excitation mechanism of the ionized component.

  5. Far-ultraviolet Observations of Outflows from Infrared-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida; Schaerer, Daniel

    2013-08-01

    We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 Å of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Lyα emitters with equivalent widths ranging between 2 and 13 Å. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of ~400 km s-1 and maximum velocities of almost 900 km s-1. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of ~100 M ⊙ yr-1 are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.

  6. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  7. Chandra/HETG Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    2017-09-01

    NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.

  8. Hubble Views a Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood. NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing star birth, NGC 5477 looks much like an typical dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white. The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars. In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars. This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes. ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  10. Buoyancy, Uplift, and AGN Feedback - Deep Chandra and XMM-Newton Observations of the Radio Outbursts in NGC 4472 and NGC 1399

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Su, Y.; Gendron Marsolais, M.; Roediger, E.; Nulsen, P.; Hlavacek-Larrondo, J.; Forman, W.; Jones, C.; Randall, S.; Machacek, M.

    2017-10-01

    We present results from deep Chandra and XMM-Newton observations of the AGN outbursts in the nearby early-type galaxies NGC 4472 and NGC 1399. Both pairs of radio bubbles are surrounded by rims of enhanced X-ray emission. Spectral analysis shows that the temperatures of these rims are less than that of the surrounding medium, suggesting that they are gas uplifted from the group center by the buoyant rise of the radio bubbles and not shocks due to the supersonic inflation of the lobes. The energy required to uplift these shells can be a significant fraction of the total outburst energy, and thus may play an important role in the thermodynamic evolution of the galaxy core. Buoyant uplift could also be a very efficient means of transporting metals from the galaxy core to the halo.

  11. A photometric determination of twists in early-type galaxies. II

    NASA Technical Reports Server (NTRS)

    Williams, T. B.; Schwarzschild, M.

    1979-01-01

    In continuation of previous work, detailed photometric data have been obtained for two elliptical galaxies by using the Mount Lemmon 1.5-m telescope and a large SEC television camera. As before, the aim of this photometry is to gain additional information on the occurrence of twists in such galaxies; i.e., on the change of the position angle of the major axes of the isophotes from the center outward. No significant twist was found in NGC 1052. However, NGC 584 was found to have a securely observed twist of about 10 deg within 10 kpc from its center. These data strengthen previous indications that many ellipticals contain twists in their inner, bright portions.

  12. The distribution of alpha elements in Andromeda dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Luis C.; Geha, Marla C.; Tollerud, Erik J., E-mail: luis.vargas@yale.edu

    We present alpha to iron abundance ratios for 226 individual red giant branch stars in nine dwarf galaxies of the Andromeda (M31) satellite system. The abundances are measured from the combined signal of Mg, Si, Ca, and Ti lines in Keck/DEIMOS medium-resolution spectra. This constitutes the first large sample of alpha abundance ratios measured in the M31 satellite system. The dwarf galaxies in our sample exhibit a variety of alpha abundance ratios, with the average values in each galaxy ranging from approximately solar ([α/Fe] ∼ + 0.0) to alpha-enhanced ([α/Fe] ∼ + 0.5). These variations do not show a correlationmore » with internal kinematics, environment, or stellar density. We confirm radial gradients in the iron abundance of two galaxies out of the five with sufficient data (NGC 185 and And II). There is only tentative evidence for an alpha abundance radial gradient in NGC 185. We homogeneously compare our results to the Milky Way classical dwarf spheroidals, finding evidence for wider variation in average alpha abundance. In the absence of chemical abundances for the M31 stellar halo, we compare to the Milky Way stellar halo. A stellar halo comprised of disrupted M31 satellites is too metal-rich and inconsistent with the Milky Way halo alpha abundance distribution even if considering only satellites with predominantly old stellar populations. The M31 satellite population provides a second system in which to study chemical abundances of dwarf galaxies and reveals a wider variety of abundance patterns than the Milky Way.« less

  13. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  14. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  15. The Araucaria Project: The Distances to the NGC 247 and WLM Galaxies From Cepheid Variables Discovered in a Wide-Field Imaging Survey

    NASA Astrophysics Data System (ADS)

    García, A.; Gieren, W.; Pietrzynski, G.

    2009-05-01

    Two different and extensive wide-field imaging surveys for Cepheid variables have been made in the Sculptor Group galaxy NGC 247 and in the Local Group Irregular galaxy WLM. We present the principal results obtained in this surveys in the context of the Araucaria project. We have discovered 60 Cepheids in WLM and 24 Cepheids in NGC 247. Our data define tight period-luminosity relations in V, I and the reddening-free Wesenheit magnitude W_I which are all extremely well fit by the corresponding slopes of the LMC Cepheid PL relation, suggesting no change of the PL relation slope down to a Cepheid metal abundance of about -1.0 dex, in agreement with other recent studies. We derive a true distance modulus to NGC 247 of 27.80+/-0.09 (r) +/-0.06 (s) mag from our data, in good agreement with the earlier 27.9+/-0.1 mag determination of Davidge (2006, ApJ, 641, 822) from TRGB I band magnitude. The true distance modulus to WLM derived from our data was 25.144+/-0.03 (r) +/-0.07 (s), in good agreement with the earlier 24.92+/-0.21determination of Lee, Freedman, & Madore (1993, ApJ, 417, 553) from Cepheid variables. Aditional information is available in The Araucaria Project homepage (http://ezzelino.ifa.hawaii.edu/ bresolin/Araucaria/index.html) and in the series of papers entitled: The Araucaria Project.

  16. FIREWORKS NEAR A BLACK HOLE IN THE CORE OF SEYFERT GALAXY NGC 4151

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Telescope Imaging Spectrograph (STIS) simultaneously records, in unprecedented detail, the velocities of hundreds of gas knots streaming at hundreds of thousands of miles per hour from the nucleus of NGC 4151, thought to house a supermassive black hole. This is the first time the velocity structure in the heart of this object, or similar objects, has been mapped so vividly this close to its central black hole. The twin cones of gas emission are powered by the energy released from the supermassive black hole believed to reside at the heart of this Seyfert galaxy. The STIS data clearly show that the gas knots illuminated by one of these cones is rapidly moving towards us, while the gas knots illuminated by the other cone are rapidly receding. The images have been rotated to show the same orientation of NGC 4151. The figures show: WFPC2 (upper left) -- A Hubble Wide Field Planetary Camera 2 image of the oxygen emission (5007 Angstroms) from the gas at the heart of NGC 4151. Though the twin cone structure can be seen, the image does not provide any information about the motion of the oxygen gas. STIS OPTICAL (upper right) -- In this STIS spectral image of the oxygen gas, the velocities of the knots are determined by comparing the knots of gas in the stationary WFPC2 image to the horizontal location of the knots in the STIS image. STIS OPTICAL (lower right) -- In this false color image the two emission lines of oxygen gas (the weaker one at 4959 Angstroms and the stronger one at 5007 Angstroms) are clearly visible. The horizontal line passing through the image is from the light generated by the powerful black hole at the center of NGC 4151. STIS ULTRAVIOLET (lower left) -- This STIS spectral image shows the velocity distribution of the carbon emission from the gas in the core of NGC 4151. It requires more energy to make the carbon gas glow (CIV at 1549 Angstroms) than it does to ionize the oxygen gas seen in the other images. This means we expect that the

  17. A (likely) X-ray jet from NGC6217 observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Falocco, Serena; Larsson, Josefin; Nandi, Sumana

    2017-12-01

    NGC6217 is a nearby spiral galaxy with a starburst region near its centre. Evidence for a low-luminosity Active Galactic Nucleus (AGN) in its core has also been found in optical spectra. Intriguingly, X-ray observations by ROSAT revealed three knots aligned with the galaxy centre, resembling a jet structure. This paper presents a study of XMM-Newton observations made to assess the hypothesis of a jet emitted from the centre of NGC6217. The XMM data confirm the knots found with ROSAT and our spectral analysis shows that they have similar spectral properties with a hard photon index Γ ∼ 1.7. The core of NGC6217 is well fitted by a model with an AGN and a starburst component, where the AGN contributes at most 46 per cent of the total flux. The candidate jet has an apparent length ∼15 kpc and a luminosity of ∼5 × 1038 erg s- 1. It stands out by being hosted by a spiral galaxy, since jets are more widely associated with ellipticals. To explain the jet launching mechanism we consider the hypothesis of an advection dominated accretion flow with a low accretion rate. The candidate jet emitted from NGC6217 is intriguing since it represents a challenge to the current knowledge of the connection between AGN, jets and host galaxies.

  18. Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

    NASA Astrophysics Data System (ADS)

    Pechetti, Renuka; Seth, Anil; Cappellari, Michele; McDermid, Richard; den Brok, Mark; Mieske, Steffen; Strader, Jay

    2017-11-01

    We present dynamical measurements of the central mass-to-light ratio (M/L) of a sample of 27 low-mass early-type {{ATLAS}}3{{D}} galaxies. We consider all {{ATLAS}}3{{D}} galaxies with 9.7 < log({M}\\star /{M}⊙ ) < 10.5 in our analysis, selecting out galaxies with available high-resolution Hubble Space Telescope (HST) data, and eliminating galaxies with significant central color gradients or obvious dust features. We use the HST images to derive mass models for these galaxies and combine these with the central velocity dispersion values from {{ATLAS}}3{{D}} data to obtain a central dynamical M/L estimate. These central dynamical {\\text{}}M/L{{s}} are higher than dynamical {\\text{}}M/L{{s}} derived at larger radii and stellar population estimates of the galaxy centers in ˜80% of galaxies, with a median enhancement of ˜14% and a statistical significance of 3.3σ. We show that the enhancement in the central M/L is best described either by the presence of black holes in these galaxies or by radial initial mass function variations. Assuming a black hole model, we derive black hole masses for the sample of galaxies. In two galaxies, NGC 4458 and NGC 4660, the data suggest significantly overmassive black holes, while in most others only upper limits are obtained. We also show that the level of M/L enhancements we see in these early-type galaxy nuclei are consistent with the larger enhancements seen in ultracompact dwarf galaxies (UCDs), supporting the scenario where massive UCDs are created by stripping galaxies of these masses.

  19. Einstein observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1980-01-01

    X-ray observations of Cen A (NGC 5128) and seven other X-ray emitting active galaxies are discussed which were made with the imaging proportional counter and the high-resolution imager aboard the Einstein Observatory. In addition to Cen A, the sources observed were the N-type galaxy 3C 120, the quasars OX 169 and 3C 273, and four Class 1 Seyfert galaxies, viz., Mkn 509, Mkn 79, NGC 6814, and NGC 4151. For Cen A, it is found that the X-ray data are dominated by a central point source of about 2 cts/sec, that X-ray elongations (possibly associated with the inner radio lobes) extend in the NE and SW directions, and that an X-ray jet exists which is aligned with the optical jet. The results for the other sources are used to derive emitting-region sizes and black-hole masses for models based on an accreting central black hole.

  20. A Minor-Merger Interpretation for NGC 1097's ``Jets''

    NASA Astrophysics Data System (ADS)

    Higdon, James L.; Wallin, John F.

    2003-03-01

    We have conducted a deep search for neutral hydrogen gas associated with the faint optical ``jets'' of NGC 1097 using the Very Large Array. Measurable H I would have been expected if the jets were tidal in origin given their moderately blue optical and near-infrared colors. The jets are free of H I emission to a limiting surface density (ΣHI) of 0.06 Msolar pc-2 (3 σ) over a 1102 km s-1 velocity range. We also rule out extended H I emission down to 0.02 Msolar pc-2 (3 σ, ΔV=45 km s-1) within a 4' FWHM aperture centered on the right-angle turn in jet R1. We have detected an H I source [MHI=(5.1+/-1.0)×106 Msolar] coincident with a small edge-on spiral or irregular galaxy (NGC 1097B) 12' southwest of NGC 1097, situated between two jets. Two other ~106 Msolar H I point sources in the field are considered marginal detections. Neither are associated with the optical jets. The jets' radio-X-ray spectral energy distribution is most consistent with starlight. However, from their morphology, optical/near-infrared colors, and lack of H I, we argue that the jets are not tidal tails drawn out of NGC 1097's disk or stars stripped from the elliptical companion NGC 1097A. We also reject in situ star formation in ancient radio jets as this requires essentially 100% conversion of gas into stars on large scales. Instead, we conclude that the jets represent the captured remains of a disrupted dwarf galaxy that passed through the inner few kiloparsecs of NGC 1097's disk. We present N-body simulations of such an encounter that reproduce the essential features of NGC 1097's jets: A long and narrow ``X''-shaped morphology centered near the spiral's nucleus, right-angle bends, and no discernible dwarf galaxy remnant. A series of jetlike distributions are formed, with the earliest appearing ~1.4 Gyr after impact. Well-defined X shapes form only when the more massive galaxy has a strong disk component. Ram-pressure stripping of the dwarf's interstellar medium would be expected to occur

  1. The Discovery of an 1862 Drawing of M 51, the Whirlpool Nebula

    NASA Astrophysics Data System (ADS)

    Holberg, Jay B.; Tobin, W.

    2006-12-01

    An early drawing of the spiral galaxy Messier 51 in Canes Venatici has recently come to light. The drawing was made on 25 April 1862 by Jean Chacornac (1823-1873), at the Paris Observatory, using Léon Foucault’s then newly completed 80-cm silvered-glass reflector. Chacornac’s observation of M 51 was among the first results from the new telescope announced to the Académie des Sciences by observatory director Urbain Verrier in 1862. Although the existence of the drawing was known from Le Verrier’s description, the original had never been located. The circumstances surrounding the origin and the discovery of this drawing will be discussed and a brief comparison will be made with other nineteenth century drawings and photographs of M 51.

  2. Environmental Effects on the Metallicities of Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2004-01-01

    We completed and published two papers in the Astrophysical Journal based on research from grant. In the first paper we analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type II supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia. In the second paper We analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type I1 supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia.

  3. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  4. A Study of the Stellar Population in Selected SO Galaxies

    NASA Technical Reports Server (NTRS)

    Perez, M.; Danks, A.

    1997-01-01

    The goal of this program was to observe at least two SO galaxies with abnormal colors in the blue and clear optical signatures of dust and gas. The galaxies NGC 2217 and NGC 1808 were observed at least in one of the IUE cameras (1200-200 and 2000-3200 A) during the 13th episode, using the 4 US1 shifts assigned to this program. The galaxy NGC 2217 had been found to be part of a subgroup of SO galaxies with external gas rotating in retrograde motion with respect to the stars. This galaxy is a face-on object with indications of large amount of gas, quite rare for a SO galaxy. We observed this object on three different occasions with IUE at different positions of the large aperture (spacecraft roll angle) with respect to the nuclear region. These exposures allowed us to take full advantage of the spatial resolution of IUE by mapping nuclear and bulge region of this galaxy. We found that the data point to a marginally earlier stellar population toward the central region. The UV light as a whole is dominated by a late-type stellar population of principally G and K stars. The almost face-on view of this galaxy appears optically thick to UV light. It is conceivable that in analogy to out own Galaxy, the stellar populations weakly detected in NGC 2217, are mostly halo and late-type stars in the center with an increasing contribution of dust and early stellar populations (so far undetected) as we move outward along the faint spiral arms. This result is contrary to our initial expectation, since the counterrotating gas does not appear to be enhancing star formation in this galaxy. Even more interesting were the observations of NGC 1808; galaxy which has been classified, with a handful of other objects, both as a starburst and Seyfert galaxy. Attachment: 'The White-Dwarf Companions of 56 Persei and HR 3643.'

  5. DIFFERENT DYNAMICAL AGES FOR THE TWO YOUNG AND COEVAL LMC STAR CLUSTERS, NGC 1805 AND NGC 1818, IMPRINTED ON THEIR BINARY POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan

    2015-05-20

    The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less

  6. Resolving the disc-halo degeneracy - I: a look at NGC 628

    NASA Astrophysics Data System (ADS)

    Aniyan, S.; Freeman, K. C.; Arnaboldi, M.; Gerhard, O. E.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.; Ponomareva, A. A.

    2018-05-01

    The decomposition of the rotation curve of galaxies into contribution from the disc and dark halo remains uncertain and depends on the adopted mass-to-light ratio (M/L) of the disc. Given the vertical velocity dispersion of stars and disc scale height, the disc surface mass density and hence the M/L can be estimated. We address a conceptual problem with previous measurements of the scale height and dispersion. When using this method, the dispersion and scale height must refer to the same population of stars. The scale height is obtained from near-infrared (IR) studies of edge-on galaxies and is weighted towards older kinematically hotter stars, whereas the dispersion obtained from integrated light in the optical bands includes stars of all ages. We aim to extract the dispersion for the hotter stars, so that it can then be used with the correct scale height to obtain the disc surface mass density. We use a sample of planetary nebulae (PNe) as dynamical tracers in the face-on galaxy NGC 628. We extract two different dispersions from its velocity histogram - representing the older and younger PNe. We also present complementary stellar absorption spectra in the inner regions of this galaxy and use a direct pixel fitting technique to extract the two components. Our analysis concludes that previous studies, which do not take account of the young disc, underestimate the disc surface mass density by a factor of ˜2. This is sufficient to make a maximal disc for NGC 628 appear like a submaximal disc.

  7. Discovery of a Molecular Collision Front in Interacting Galaxies NGC 4567/4568 with ALMA

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroyuki; Kuno, Nario; Saitoh, Takayuki R.

    2018-06-01

    We present results of 12CO(J = 1–0) imaging observations of NGC 4567/4568, a galaxy pair in a close encounter, with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we find clear evidence of a molecular collision front with a velocity dispersion that is 16.8 ± 1.4 km s‑1 at the overlapping region, owing to high spatial and velocity resolution. By integrating over the velocity width that corresponds to the molecular collision front, we find a long filamentary structure with a size of 1800 pc × 350 pc at the collision front. This filamentary molecular structure spatially coincides with a dark lane seen in the R-band image. We find four molecular clouds in the filament, each with a radius of 30 pc and mass of 106 M ⊙ the radii matching a typical value for giant molecular clouds (GMCs) and the masses corresponding to those between GMCs and giant molecular associations (GMAs). All four clouds are gravitationally bound. The molecular filamentary structure and its physical conditions are similar to the structure expected via numerical simulation. The filament could be a progenitor of super star clusters.

  8. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  9. Coupling of jet and accretion activity in the active galaxy NGC 1052

    NASA Astrophysics Data System (ADS)

    Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil

    The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.

  10. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE PAGES

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.; ...

    2017-10-16

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  11. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  12. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ -rays

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-03-27

    The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) γ-ray emitter by MAGIC, is one of the few non-blazar active galactic nuclei detected in the VHE regime. The purpose of this work is to better understand the origin of the γ-ray emission and locate it within the galaxy. We studied contemporaneous multifrequency observations of NGC 1275 and modeled the overall spectral energy distribution. We analyzed unpublished MAGIC observations carried out between October 2009 and February 2010, and the previously published observations taken between August 2010 and February 2011. Here, we studied the multiband variabilitymore » and correlations by analyzing data of Fermi-LAT in the 100 MeV–100 GeV energy band, as well as Chandra (X-ray), KVA (optical), and MOJAVE (radio) data taken during the same period. Using customized Monte Carlo simulations corresponding to early MAGIC stereoscopic data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the 3.6σ level. In the Fermi-LAT band, both flux and spectral shape variabilities are reported. Furthermore, the optical light curve is also variable and shows a clear correlation with the γ-ray flux above 100 MeV. In radio, three compact components are resolved in the innermost part of the jet. One of these components shows a similar trend as the Fermi-LAT and KVA light curves. The γ-ray spectra measured simultaneously with MAGIC and Fermi-LAT from 100 MeV to 650 GeV can be well fitted either by a log-parabola or by a power-law with a subexponential cutoff for the two observation campaigns. A single-zone synchrotron-self-Compton model, with an electron spectrum following a power-law with an exponential cutoff, can explain the broadband spectral energy distribution and the multifrequency behavior of the source. But, this model suggests an

  13. Hubble Views a Galaxy Fit to Burst

    NASA Image and Video Library

    2017-12-08

    This NASA/ESA Hubble Space Telescope image reveals the vibrant core of the galaxy NGC 3125. Discovered by John Herschel in 1835, NGC 3125 is a great example of a starburst galaxy — a galaxy in which unusually high numbers of new stars are forming, springing to life within intensely hot clouds of gas. Located approximately 50 million light-years away in the constellation of Antlia (The Air Pump), NGC 3125 is similar to, but unfathomably brighter and more energetic than, one of the Magellanic Clouds. Spanning 15,000 light-years, the galaxy displays massive and violent bursts of star formation, as shown by the hot, young, and blue stars scattered throughout the galaxy’s rose-tinted core. Some of these clumps of stars are notable — one of the most extreme Wolf–Rayet star clusters in the local Universe, NGC 3125-A1, resides within NGC 3125. Despite their appearance, the fuzzy white blobs dotted around the edge of this galaxy are not stars, but globular clusters. Found within a galaxy’s halo, globular clusters are ancient collections of hundreds of thousands of stars. They orbit around galactic centers like satellites — the Milky Way, for example, hosts over 150 of them. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  15. Chandra Observation of the X-ray Source Population of NGC 6946

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Schlegel, E. M.; Hwang, U.; Petre, R.

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  16. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  17. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  18. Dissection of a Galaxy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor.

    This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside.

    Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms.

    The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved.

    This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  19. Dissection of a Galaxy

    NASA Image and Video Library

    2004-05-11

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor. This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside. Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms. The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved. This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05879

  20. THE MEGAMASER COSMOLOGY PROJECT. VIII. A GEOMETRIC DISTANCE TO NGC 5765b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Zhao, W.; Braatz, J. A.

    As part of the Megamaser Cosmology Project, here we present a new geometric distance measurement to the megamaser galaxy NGC 5765b. Through a series of very long baseline interferometry observations, we have confirmed the water masers trace a thin, sub-parsec Keplerian disk around the nucleus, implying an enclosed mass of 4.55 ± 0.40 × 10{sup 7} M{sub ⊙}. Meanwhile, from single-dish monitoring of the maser spectra over two years, we measured the secular drifts of maser features near the systemic velocity of the galaxy with rates between 0.5 and 1.2 km s{sup −1} yr{sup −1}. Fitting a warped, thin-disk model to these measurements, wemore » determine a Hubble Constant H{sub 0} of 66.0 ± 6.0 km s{sup −1} Mpc{sup −1} with an angular-diameter distance to NGC 5765b of 126.3 ± 11.6 Mpc. Apart from the distance measurement, we also investigate some physical properties related to the maser disk in NGC 5765b. The high-velocity features are spatially distributed into several clumps, which may indicate the existence of a spiral density wave associated with the accretion disk. For the redshifted features, the envelope defined by the peak maser intensities increases with radius. The profile of the systemic masers in NGC 5765b is smooth and shows almost no structural changes over the two years of monitoring time, which differs from the more variable case of NGC 4258.« less

  1. Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.

  2. The nuclear superbubble of NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Cecil, G.; Bland-Hawthorn, J.; Tully, R. B.; Filippenko, A. V.; Sargent, W. L. W.

    1994-01-01

    We have used the Hawaii Imaging Fabry-Perot Interferometer (HIFI) at the CFH 3.6 m telescope to map H-alpha + (N II) lambda-lambda 6548, 6583 emission-line profiles across the entire edge-on, nearby SBc galaxy NGC 3079, with resolution 70 km/s and subarcsecond sampling. Blue and red long-slit spectra were obtained with the Double Spectrograph on the Palomar 5 meter telescope to provide additional emission-line diagnostics. A spectacular, line emitting bubble of diameter 13 sec (approximately 1.1 kpc) is observed immediately east of the nucleus. Its unusual gaseous excitation (e.g., (N II) lambda(6583)/H-alpha greater than 1) suggests that shocks are important. Extremely violent gas motions that range over 2000 km/s are detected across the bubble and diametrically opposite on the west side of the nucleus. Nonrotational motions are also found in the inner galaxy disk. The superbubble of NGC 3079 is the most powerful example known of a wind-blown bubble, and an excellent laboratory to study wind dynamics. The dimensions and energies of the bubble imply that is likely to be in the blowout phase and partially ruptured. The predicted rate of kinetic energy output from the central starburst appears sufficient to power most of this outflow. It is possible that a central active galactic nucleus also contributes to the outflow.

  3. Radial gas motions in The H I Nearby Galaxy Survey (THINGS)

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias M.; Bigiel, Frank; Klessen, Ralf S.; de Blok, W. J. G.

    2016-04-01

    The study of 21 cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution Very Large Array data from The H I Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the outer parts (up to 3 × r25) of 10 nearby spiral galaxies. Inflows are expected to replenish the gas reservoir and fuel star formation under the assumption that galaxies evolve approximately in steady state. We carry out a detailed investigation of existing tilted ring fitting schemes and discover systematics that can hamper their ability to detect signatures of radial flows. We develop a new Fourier decomposition scheme that fits for rotational and radial velocities and simultaneously determines position angle and inclination as a function of radius. Using synthetic velocity fields we show that our novel fitting scheme is less prone to such systematic errors and that it is well suited to detect radial inflows in discs. We apply our fitting scheme to 10 THINGS galaxies and find clear indications of, at least partly previously unidentified, radial gas flows, in particular for NGC 2403 and NGC 3198 and to a lesser degree for NGC 7331, NGC 2903 and NGC 6946. The mass flow rates are of the same order but usually larger than the star formation rates. At least for these galaxies a scenario in which continuous mass accretion feeds star formation seems plausible. The other galaxies show a more complicated picture with either no clear inflow, outward motions or complex kinematic signatures.

  4. The spatially resolved star formation history of mergers. A comparative study of the LIRGs IC 1623, NGC 6090, NGC 2623, and Mice

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; Di Matteo, P.; Sánchez, S. F.; de Amorim, A. L.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.

    2017-11-01

    This paper presents the spatially resolved star formation history (2D-SFH) of a small sample of four local mergers: the early-stage mergers IC 1623, NGC 6090, and the Mice, and the more advanced merger NGC 2623, by analyzing IFS data from the CALIFA survey and PMAS in LArr mode. Full spectral fitting techniques are applied to the datacubes to obtain the spatially resolved mass growth histories, the time evolution of the star formation rate intensity (ΣSFR), and the local specific star formation rate (sSFR), over three different time scales (30 Myr, 300 Myr, and 1 Gyr). The results are compared with non-interacting Sbc-Sc galaxies, to quantify if there is an enhancement of the star formation and to trace its time scale and spatial extent. Our results for the three LIRGs (IC 1623 W, NGC 6090, and NGC 2623) show that a major phase of star formation is occurring in time scales of 107 yr to few 108 yr, with global SFR enhancements of between approximately two and six with respect to main-sequence star forming (MSSF) galaxies. In the two early-stage mergers IC 1623 W and NGC 6090, which are between first pericentre passage and coalescence, the most remarkable increase of the SFR with respect to non-interacting spirals occurred in the last 30 Myr, and it is spatially extended, with enhancements of factors between two and seven both in the centres (r < 0.5 half light radius, HLR), and in the disks (r > 1 HLR). In the more advanced merger NGC 2623 an extended phase of star formation occurred on a longer time scale of 1 Gyr, with a SFR enhancement of a factor of approximately two-to-three larger than the one in Sbc-Sc MSSF galaxies over the same period, probably relic of the first pericentre passage epoch. A SFR enhancement in the last 30 Myr is also present, but only in NGC 2623 centre, by a factor of three. In general, the spatially resolved SFHs of the LIRG-mergers are consistent with the predictions from high spatial resolution simulations. In contrast, the star

  5. Stellar complexes in spiral arms of galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  6. Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Pereira-Santaella, M.; García-Burillo, S.; Davies, R. I.; Combes, F.; Asmus, D.; Bunker, A.; Díaz-Santos, T.; Gandhi, P.; González-Martín, O.; Hernán-Caballero, A.; Hicks, E.; Hönig, S.; Labiano, A.; Levenson, N. A.; Packham, C.; Ramos Almeida, C.; Ricci, C.; Rigopoulou, D.; Rosario, D.; Sani, E.; Ward, M. J.

    2018-06-01

    We present ALMA Band 6 12CO(2–1) line and rest-frame 232 GHz continuum observations of the nearby Compton-thick Seyfert galaxy NGC 5643 with angular resolutions 0.″11–0.″26 (9–21 pc). The CO(2–1) integrated line map reveals emission from the nuclear and circumnuclear region with a two-arm nuclear spiral extending ∼10″ on each side. The circumnuclear CO(2–1) kinematics can be fitted with a rotating disk, although there are regions with large residual velocities and/or velocity dispersions. The CO(2–1) line profiles of these regions show two different velocity components. One is ascribed to the circular component and the other to the interaction of the AGN outflow, as traced by the [O III]λ5007 Å emission, with molecular gas in the disk a few hundred parsecs from the AGN. On nuclear scales, we detected an inclined CO(2–1) disk (diameter 26 pc, FWHM) oriented almost in a north–south direction. The CO(2–1) nuclear kinematics can be fitted with a rotating disk that appears to be tilted with respect to the large-scale disk. There are strong non-circular motions in the central 0.″2–0.″3 with velocities of up to 110 km s‑1. In the absence of a nuclear bar, these motions could be explained as radial outflows in the nuclear disk. We estimate a total molecular gas mass for the nuclear disk of M(H2) = 1.1 × 107 M ⊙ and an H2 column density toward the location of the AGN of N(H2) ∼ 5 × 1023 cm‑2, for a standard CO-to-H2 conversion factor. We interpret this nuclear molecular gas disk as the obscuring torus of NGC 5643 as well as the collimating structure of the ionization cone.

  7. Resolved Giant Molecular Clouds in Nearby Spiral Galaxies: Insights from the CANON CO (1-0) Survey

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, Jennifer; Koda, Jin; Momose, Rieko; Mooney, Thomas; Egusa, Fumi; Carty, Misty; Kennicutt, Robert; Kuno, Nario; Rebolledo, David; Sawada, Tsuyoshi; Scoville, Nick; Wong, Tony

    2013-08-01

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 × 105 M ⊙ in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and 12CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H2 mass (or X CO) for each galaxy is 1-2 × 1020 cm-2 (K km s-1)-1, all within a factor of two of the Milky Way disk value (~2 × 1020 cm-2 (K km s-1)-1). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X CO trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.

  8. STIS Observations of the Intrinsic UV Absorption in the Dwarf Seyfert Nucleus of NGC 4395

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven

    2002-07-01

    The Sd IV dwarf galaxy NGC 4395 is one of the nearest {d 4.2 Mpc} and least luminous {L_bol 10^41 ergs s^-1} examples of Seyfert 1 galaxies. Furthermore, it is the only known example of an active nucleus within a bulgeless, extreme late-type galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines and highly variable X-ray emission, presumably powered by a small {few x 10^4 M_odot} black hole. Furthermore, we have discovered evidence for blueshifted, intrinsic absorption lines in the UV {C IV LambdaLambda1548.2, 1550.8}, while X-ray spectra show the presence of bound-free edges from O VII and O VIII. We propose HST/STIS echelle observations to determine the properties {ionization states, column densities, velocity coverages, covering factors} of the intrinsic UV absorbers in NGC 4395. Due to the high covering factor of its narrow-line emission, NGC 4395 offers the best case for testing the connection between the absorbers and the narrow-line region {NLR}. Furthermore, an empirical comparison of its absorption properties with those in higher luminosity active galactic nuclei {AGN} will provide valuable constraints on dynamical models of the absorbers, which make predictions that are strongly dependent on luminosity and/or central black hole mass.

  9. Reconstructing the velocity dispersion profiles from the line-of-sight kinematic data in disc galaxies

    NASA Astrophysics Data System (ADS)

    Marchuk, A. A.; Sotnikova, N. Y.

    2017-03-01

    We present a modification of the method for reconstructing the stellar velocity ellipsoid (SVE) in disc galaxies. Our version does not need any parametrization of the velocity dispersion profiles and uses only one assumption that the ratio σz/σR remains constant along the profile or along several pieces of the profile. The method was tested on two galaxies from the sample of other authors and for the first time applied to three lenticular galaxies NGC 1167, NGC 3245 and NGC 4150, as well as to one Sab galaxy NGC 338. We found that for galaxies with a high inclination (I >55° - 60°) it is difficult or rather impossible to extract the information about SVE, while for galaxies at an intermediate inclination the procedure of extracting is successful. For NGC 1167 we managed to reconstruct SVE, provided that the value of σz/σR is piecewise constant. We found σz/σR = 0.7 for the inner parts of the disc and σz/σR = 0.3 for the outskirts. We also obtained a rigid constraint on the value of the radial velocity dispersion σR for highly inclined galaxies, and tested the result using the asymmetric-drift equation, provided that the gas rotation curve is available.

  10. NGC 3627: Revealing Hidden Black Holes

    NASA Image and Video Library

    2012-12-13

    The spiral galaxy NGC 3627, located about 30 million light years from Earth as seen by four NASA telescopes; inset shows the central region, which contains a bright X-ray source that is likely powered by material falling onto a supermassive black hole.

  11. The Herschel Perspective on Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    2013-01-01

    This thesis presents an investigation of local galaxies using new data from the Herschel Space Observatory. Herschel observes the entire far-infrared peak of galaxies, at higher sensitivities and angular resolution than previously possible, and can observe large samples of galaxies or areas of sky. I developed data reduction routines to optimise the data processing of SPIRE extragalactic fields, and found the best methods of flux extraction for galaxies and for fitting of spectral energy distributions. For all the objects I investigated, a single-temperature modified blackbody was a good fit to the global fluxes between 100–500 μm. Within an individual galaxy (i.e., M31, NGC4501 and NGC4567/8) the dust temperature varies between 15–30K. In M31 the dust emissivity index varies between 1.2–2.5 suggesting a change in the physical properties of the grains. The dust and gas are highly correlated in M31, with the gas-to-dust ratio varying from ˜20 in the centre to ˜200 at 18 kpc as expected from the metallicity gradient of the galaxy. By averaging the radial profiles of the late-type objects in the Herschel Reference Survey (HRS), I have shown that dust emission can be traced to at least twice the optical radius (R25) of the galaxy. Within the HRS, dust is detected in 24% of Ellipticals and 62% of S0s and has a mean temperature of 23.9 ± 0.8K for early-type galaxies, warmer than that found for other Herschel studies of late-type galaxies. The mean dust mass for the entire detected early-type sample is logMd = 6.1 ± 0.1M⊙ with a mean dust-to-stellar-mass ratio of log(Md/M∗) = ‑4.3 ± 0.1, a factor of ˜50 lower dust-to-stellar-mass ratio than for the spiral galaxies in the HRS. The wide range in the dust-to-stellar-mass ratio for ETGs and the lack of a correlation between dust mass and optical luminosity suggest that much of the dust in the ETGs detected by Herschel has been acquired as the result of interactions, although these are unlikely to have had a

  12. A time domain experiment with Swift: monitoring of seven nearby galaxies

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; D'Avanzo, P.; Campana, S.; Branchesi, M.; Bernardini, M. G.; Della Valle, M.; Mannucci, F.; Melandri, A.; Tagliaferri, G.

    2016-03-01

    Context. Focused on the study of transient sources, time domain astronomy today is one of the most active and growing areas of research in astronomy. Most of the present and planned surveys aimed at carrying out time domain studies work in the optical band and founded their searching strategies on fixed cadences. Although nothing similar currently exists in the X-ray and ultraviolet (UV) bands, the Swift satellite is certainly the most appropriate available instrument to carry out such surveys. Aims: We aimed to detect a supernova (SN) shock breakout (SBO) in nearby galaxies. The SBO marks the first escape of radiation from the blast wave that breaks through the photosphere of the star and launches the SN ejecta. The detection of an SBO is a diagnostic for the radius of the progenitor star and the ratio of explosion energy to ejecta mass. It also allows us to determine the onset of the explosion with an accuracy of a few hours to a few seconds. Methods: Using the XRT and UVOT instruments onboard the Swift satellite, we carried out a weekly cadenced, six-month monitoring of seven nearby galaxies: NGC 1084, NGC 2207/IC 2163, NGC 2770, NGC 4303/M 61, NGC 3147, NGC 3690, and NGC 6754. We searched for variable or transient sources in the collected data. These galaxies were selected because they are close (distance ≤50 Mpc), small enough to fit in the Swift/UVOT field of view, and are hosts of at least three SNe in the past 20 yr. Results: We found no evidence for an SN SBO event. Five objects located within the light of the sample galaxies were found to be variable in the X-ray and/or in the UV. These include mainly background active galactic nucleus and unresolved ULX in NGC 3690. In addition to these objects, we found two variable Galactic sources: the known nova CP Draconis (which experienced an outburst during our monitoring) and an uncatalogued eclipsing binary. Conclusions: Despite the lack of SBO detections, the results of our explorative study encourage the

  13. The missing UV absorption lines of NGC 4151

    NASA Technical Reports Server (NTRS)

    Leech, K. J.; Penston, M. V.; Snijders, M. A. J.; Ward, M. J.; Gull, T. R.

    1990-01-01

    Near simultaneous high dispersion long and short wavelength International Ultraviolet Explorer (IUE) observations of the Seyfert galaxy NGC 4151 are discussed. Previous observations revealed a narrow absorption system in Mg II not present in Ly alpha or C IV. The new observations confirm the presence of this system in Mg II and its absence in the other lines. Possible reasons for this are discussed. Future Hubble Space Telescope studies of NGC 4151 are discussed.

  14. VEGAS-SSS. A VST early-type galaxy survey: analysis of small stellar systems. Testing the methodology on the globular cluster system in NGC 3115

    NASA Astrophysics Data System (ADS)

    Cantiello, Michele; Capaccioli, Massimo; Napolitano, Nicola; Grado, Aniello; Limatola, Luca; Paolillo, Maurizio; Iodice, Enrica; Romanowsky, Aaron J.; Forbes, Duncan A.; Raimondo, Gabriella; Spavone, Marilena; La Barbera, Francesco; Puzia, Thomas H.; Schipani, Pietro

    2015-03-01

    We present a study of globular clusters (GCs) and other small stellar systems (SSSs) in the field of NGC 3115, observed as part of the ongoing wide-field imaging survey VEGAS, carried out with the 2.6 m VST telescope. We used deep g and i observations of NGC 3115, a well-studied lenticular galaxy that is covered excellently well in the scientific literature. This is fundamental to test the methodologies, verify the results, and probe the capabilities of the VEGAS-SSS. Leveraging the large field of view of the VST allowed us to accurately study the distribution and properties of SSSs as a function of galactocentric distance, well beyond ~20 galaxy effective radii, in a way that is rarely possible. Our analysis of colors, magnitudes, and sizes of SSS candidates confirms the results from existing studies, some of which were carried out with 8-10 m class telescopes, and further extends them to previously unreached galactocentric distances with similar accuracy. In particular, we find a color bimodality for the GC population and a de Vaucouleurs r1/4 profile for the surface density of GCs similar to the galaxy light profile. The radial color gradient of blue and red GCs previously found, for instance, by the SLUGGS survey with Subaru and Keck data, is further extended out to the largest galactocentric radii inspected, ~65 kpc. In addition, the surface density profiles of blue and red GCs taken separately are well approximated by a r1/4 density profile, with the fraction of blue GCs being slightly larger at larger radii. We do not find hints of a trend for the red GC subpopulation and for the GC turnover magnitude to vary with radius, but we observe a ~0.2 mag difference in the turnover magnitude of the blue and red GC subpopulations. Finally, from inspecting SSS sizes and colors, we obtain a list of ultracompact dwarf galaxies and GC candidates suitable for future spectroscopic follow-up. In conclusion, our study shows i) the reliability of the methodologies developed

  15. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  16. NGC 3312: A victim of ram pressure sweeping

    NASA Technical Reports Server (NTRS)

    Mcmahon, P. M.; Richter, O.-G.; Vangorkom, Jacqueline H.; Ferguson, H. C.

    1990-01-01

    Researchers are undertaking a volume limited survey of the Hydra I cluster in neutral hydrogen using the National Radio Astronomy Observatory's Very Large Array (VLA). The main purpose is to study the effects of a dense environment on the gaseous component of the galaxies. Observational evidence has been accumulating recently that ram pressure sweeping does occur in the centers of clusters, but it is possible that tidal interactions play a role as well. Results of high resolution HI imaging of NGC 3312, the large peculiar spiral near the cluster center are presented. Hydra I (= A1060) is the nearest rich cluster beyond Virgo and, as such, presents a unique opportunity to do a complete survey of a cluster. It is similar to the Virgo cluster in many of its general physical characteristics, such as size, x ray luminosity, velocity dispersion, and galaxy content (high spiral fraction). However, Hydra I appears to be more regular and relaxed. This is evident in the x ray distribution in its central region, which is radially symmetric and centered on the dominant galaxy, NGC 3311, a cD-like elliptical. The observed x ray luminosity implies a central gas density of 4.5 x 10 to the 3rd power cm(-3). Gallagher (1978) argued from optical images of NGC 3312 that this galaxy might be an ideal candidate to directly study effects of the ram pressure process; it might currently be undergoing stripping of its interstellar medium. The researchers' data are consistent with this suggestion, but other origins of the peculiar appearance cannot yet be ruled out.

  17. Hubble Space Telescope imaging of the central star forming region in NGC 1140 (exp 1)

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; O'Connell, Robert W.; Gallagher, John S. Iii

    1994-01-01

    We present broadband images taken with the Hubble Space Telescope's Planetary Camera of the central supergiant H II region in the amorphous galaxy NGC 1140. These images allow observations to a resolution of about 13 pc at the galaxy, and they reveal that its central 1/2 kpc contains 6-7 blue, luminous, compact super star clusters, many of which would be comparable in luminosity to globular clusters at the same age. A blue arc-shaped structure near the center may be a grouping of less luminous, R136/NGC 2070-sized clusters or a sheet of OB stars. Additional somewhat less luminous and redder clusters are also found farther out from the center. If these clusters are older, they too could have had luminosities comparable to those of the central six clusters at a comparable age. Thus, we find that NGC 1140 is remarkable in the number of extreme clusters that it has formed recently in a relatively small area of the galaxy. Since NGC 1140 exhibits global characteristics that are consistent with a recent merger, these clusters are likely to be a product of that event. This galaxy adds to the number of cases where rapid star formation has evidently produced super star clusters.

  18. A physical process of the radial acceleration of disc galaxies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2018-03-01

    An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.

  19. Distance determinations to shield galaxies from Hubble space telescope imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc bymore » applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.« less

  20. Stochastic External Accretion and Asymmetric Outflows in NGC 4388

    NASA Astrophysics Data System (ADS)

    Shaver, Skylar; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Hicks, Erin K. S.

    2018-06-01

    We present here our findings on the Seyfert 2 galaxy, NGC 4388, one of the 40 active galactic nuclei (AGN) studied in the Keck/OSIRIS nearby AGN survey (KONA). NGC 4388 is located in the heart of the dense Virgo cluster, making it susceptible to interactions with neighboring galaxies and the intra-cluster medium. Using near-Infrared Adaptive-Optics Integral-Field Spectroscopy, we examined the two-dimensional spatial distribution and kinematics of the molecular and ionized gas in NGC 4388. We found that the nearly edge on galaxy exhibits an asymmetric outflow and signatures of external accretion feeding the AGN. To the southwest an outflow of ionized gas is extended along a position angle (PA) of 35 degrees and to the northeast a position angle between 30 to 60 degrees. This indicates a misalignment between the AGN torus and the galactic plane. As a result of the outflow in the southwest, molecular gas in the disk has been pushed to the west. Examining the molecular gas further led us to determine the presence of a warped disk surrounding the nucleus. In comparing our near-Infrared kinematic results to studies in different multi-wavelength datasets, we found evidence for a past minor merger event that drives gas inward to feed the AGN.