Sample records for galaxy properties including

  1. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  2. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  3. Dynamically hot galaxies. I - Structural properties

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1992-01-01

    Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.

  4. The Far-Infrared Properties of the Most Isolated Galaxies

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Verdes-Montenegro, L.; Sulentic, J.; Leon, S.; Espada, D.; Bergond, G.; García, E.; Sabater, J.; Santander-Vela, J. D.; Verley, S.

    2007-05-01

    A long-standing question in galaxy evolution involves the role of nature (self-regulation) vs. nurture (environment) on the observed properties (and evolution) of galaxies. A collaboration centreed at the Instituto de Astrofisica de Andalucia (Granada, Spain) is trying to address this question by producing a observational database for a sample of 1050 isolated galaxies from the catalogue of Karachentseva (1973) with the overarching goal being the generation of a "zero-point" sample against which effects of environment on galaxies can be assessed. The AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) database (see www.iaa.es/AMIGA.html) will include optical, IR and radio line and continuum measures. The galaxies in the sample represent the most isolated galaxies in the local universe. In the present contribution, we will present the project, as well as the results of an analysis of the far-infrared (FIR) and molecular gas properties of this sample.

  5. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  6. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  7. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  8. Galaxy properties and the cosmic web in simulations

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda; Crain, Robert A.; Theuns, Tom

    2015-01-01

    We seek to understand the relationship between galaxy properties and their local environment, which calls for a proper formulation of the notion of environment. We analyse the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological hydrodynamical simulations within the framework of the cosmic web as formulated by Hoffman et al., focusing on properties of simulated dark matter haloes and luminous galaxies with respect to voids, sheets, filaments, and knots - the four elements of the cosmic web. We find that the mass functions of haloes depend on environment, which drives other environmental dependence of galaxy formation. The web shapes the halo mass function, and through the strong dependence of the galaxy properties on the mass of their host haloes, it also shapes the galaxy-(web) environment dependence.

  9. Far-infrared properties of cluster galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Giovanelli, R.

    1987-01-01

    Far-infrared properties are derived for a sample of over 200 galaxies in seven clusters: A262, Cancer, A1367, A1656 (Coma), A2147, A2151 (Hercules), and Pegasus. The IR-selected sample consists almost entirely of IR normal galaxies, with Log of L(FIR) = 9.79 solar luminosities, Log of L(FIR)/L(B) = 0,79, and Log of S(100 microns)/S(60 microns) = 0.42. None of the sample galaxies has Log of L(FIR) greater than 11.0 solar luminosities, and only one has a FIR-to-blue luminosity ratio greater than 10. No significant differences are found in the FIR properties of HI-deficient and HI-normal cluster galaxies.

  10. Structural properties of faint low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Saha, Kanak

    2018-05-01

    We study the structural properties of Low Surface Brightness galaxies (LSB) using a sample of 263 galaxies observed by the Green Bank Telescope (Schneider et al. 1992). We perform 2D decompositions of these galaxies in the SDSS g, r and i bands using the GALFIT software. Our decomposition reveals that about 60% of these galaxies are bulgeless i.e., their light distributions are well modelled by pure exponential disks. The rest of the galaxies were fitted with two components: a Sersic bulge and an exponential disk. Most of these galaxies have bulge-to-total (B/T) ratio less than 0.1. However, of these 104 galaxies, 20% have B/T > 0.1 i.e., hosting significant bulge component and they are more prominent amongst the fainter LSBs. According to g - r colour criteria, most of the LSB galaxies in our sample are blue, with only 7 classified as red LSBs. About 15% of the LSB galaxies (including both blue and red) in our sample host stellar bars. The incidence of bars is more prominent in relatively massive blue LSB galaxies with very high gas fraction. These findings may provide important clues to the formation and evolution of LSB galaxies - in particular on the bar/bulge formation in faint LSB disks.

  11. Surface Photometric Properties of HII Galaxies

    NASA Astrophysics Data System (ADS)

    Vajgel, B.; Telles, E.

    2009-05-01

    HII galaxies are dwarf galaxies undergoing violent star formation. They were firstly selected by objective-prism spectroscopy and were object of extensive studies to characterize their physical conditions of the interstellar medium. Their SFR together with their low Z raised the question whether some of them can be truly ``young'' galaxies. To infer the SFH, one needs information in a large spectral range. We obtained images in the optical region of the spectrum with the 0.6 m B&C and the 1.6 m telescopes at the Laboratório Nacional de Astrofísica, for a sample of 50 objects in B, V, R and I, which combined with recent evolutionary models, enable us to deduce the stellar population content and its spatial distribution. These seem to be the nearest youngest galaxies that can be studied in detail, and their structural properties offer important indications about the evolutionary relation and the origin of dwarf galaxies in the universe. With this sample we built a morphological catalogue with broad-band photometry, including the structural analysis through the brightness profiles. The initial analysis suggests that the galaxies can be segregated in two broad classes, in agreement with what had already been proposed in the literature; Type I have irregular envelopes with signs of perturbation and turn out to the more luminous sub-sample; while Type II have regular external isophotes and are less luminous. The brightness profiles are well represented by exponential fits, as in irregular and elliptical dwarf galaxies. However, HII galaxies are more compact in comparison with their more diffuse counterparts. We study the behavior of the HII galaxies in the metallicity-luminosity plane. This relation, interpreted as a relation between the mass and the metallicity of dwarf galaxies of low surface brightness (dE and dIrr), has direct implications for their formation and evolution, and over the possible evolutionary links between HII galaxies and other types of dwarf

  12. Properties of the X-ray emitting gas in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Canizares, Claude R.; Fabbiano, Giuseppina; Trinchieri, Ginevra

    1987-01-01

    The properties of the X-ray emitting gas in a sample of 81 E and S0 galaxies observed with the Einstein Observatory are studied. Measured fluxes for 55 of the galaxies and upper limits for 26 of them are reported. An attempt is made to use consistent optical parameters for the galaxies, including a correction to the velocities for the Virgocentric flow. The sample is then used to explore the contribution from discrete sources, the global physical properties of the hot gas, and the implications for heating by supernovae and gravity. Finally, the question of the presence of heavy halos is addressed.

  13. The physical properties of Lyα emitting galaxies: not just primeval galaxies?

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.

    2009-02-01

    Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than

  14. A Multivariate Analysis of Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Djorgovski, S.

    1993-05-01

    We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.

  15. General properties of HII regions in galaxies

    NASA Technical Reports Server (NTRS)

    Smirnov, M. A.; Komberg, B. V.

    1979-01-01

    The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.

  16. A survey of the properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.

    1990-01-01

    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.

  17. The Intrinsic Properties of SDSS Galaxies: Taking off the Rose Tinted Glasses

    NASA Astrophysics Data System (ADS)

    Maller, Ariyed; Berlind, A.; Blanton, M.; Hogg, D.

    2006-12-01

    It is well known that most galaxies contain dust. Dust reddens galaxies and does so as an increasing function of the galaxies observed inclination. Therefore when one looks at the properties of observed galaxies, such as the luminosity function, the correlation function or the color magnitude-diagram, one gets a distorted view of the properties of galaxies. This effect can be corrected for in a large galaxy sample such as the Sloan Digital Sky Survey. The procedure is to identify inclination dependence in an observed galaxy property, color being the most obvious choice, and then to solve for the function of inclination that will remove this observed dependence. In this way we can determine the intrinsic properties of galaxies, properties that are independent of their inclination. The distribution of these intrinsic properties give us an undistorted view into the nature of galaxies and are thus more useful for determining evolutionary effects and comparing to theoretical models.

  18. LINER galaxy properties and the local environment

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  19. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  20. Properties of Narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  1. Properties of Massive Stars in Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    According to R. Dave, the phases of galaxy formation are distinguished by their halo mass and governing feedback mechanism. Galaxies in the birth phase (our "primitive galaxies") have a low halo mass (M<10(exp 9) Msun); and star formation is affected by photoionizing radiation of massive stars. In contrast, galaxies in the growth phase (e.g. Lyman Break galaxies) are more massive (M=10(exp 9)-10(exp 12) Msun); star formation is fueled by cold accretion but modulated by strong outflows from massive stars. I Zw 18 is a local blue, compact dwarf galaxy that meets the requirements for a birth-phase galaxy: halo mass <10(exp 9) Msun, strong photo ionizing radiation, no galactic outflow, and very low metallicity, log(O/H)=7.2. We will describe the properties of massive stars in I Zw 18 based on analysis of ultraviolet spectra obtained with HST.

  2. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  3. The Star Formation Reference Survey - II. Activity demographics and host-galaxy properties for infrared-selected galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2018-04-01

    We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.

  4. Photometric properties of galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02galaxy's 5-band SDSS photometry has been k-corrected to a common rest-frame photometric system. A number-density contribution 1/V {max} has been calculated for each galaxy. The photometry is of excellent quality; every galaxy has CCD imaging with signal-to-noise for the flux well above 100. The distribution of galaxies in the (six-dimensional) space spanned by four colors, central surface-brightness, and radial concentration is described and analyzed, with the following results: \\textsl{(1)} The galaxies occupy only a small part of the six-dimensional space. \\textsl{(2)} The distribution of galaxy number density in the space is a strong function of intrinsic galaxy luminosity. \\textsl{(3)} Elliptical (or early type) and spiral (or late type) galaxies are clearly separated in the space. The ratio of early-type to late-type galaxy contributions to the luminosity density of the Universe is computed, as a function of wavelength. At 1 {μm }, early-type galaxies dominate the luminosity density. \\textsl{(4)} Outliers in color tend to be lower surface-brightness galaxies. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, NASA, NSF, DOE, the Japanese Monbukagakusho, and the Max Planck Society. This research has been supported by the NYU Faculty of Arts and Sciences.

  5. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  6. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  7. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  8. The Influence Of Environment On The Star Formation Properties Of Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez Del Pino, Bruno

    2015-10-01

    This thesis explores the properties of galaxies that reside in regions of high density and the influence of the environment in their evolution. n particular, it aims to shed more light on the understanding of how galaxies stop forming stars, becoming passive objects, and the role played by environment in this process. The work presented here includes the study of the properties of galaxies in clusters at two different stages of their evolution: we first look at cluster galaxies that have recently stopped forming stars, and then we investigate the influence of environment on galaxies while they are still forming stars. The first study is based on Integral Field Spectroscopic (IFS) observations of a sample of disk `k+a' galaxies in a cluster at z 0.3. The `k+a' spectral feature imply a recent suppression of star formation in the galaxies, and therefore the study of their properties is crucial to understanding how the suppression happened. We study the kinematics and spatial distributions of the different stellar populations inhabiting these galaxies. We found that the last stars that were formed (i.e., younger stars) are rotationally-supported and behave similar to the older stars. Moreover, the spatial distribution of the young stars also resembles that of the older stellar populations, although the young stars tend to be more concentrated towards the central regions of the galaxies. These findings indicate that the process responsible for the suppression of the star formation in the cluster disk galaxies had to be gentle, withouth perturbing significantly the old stellar disks. However, a significant number of galaxies with centrally-concentrated young populations were found to have close companions, therefore implying that galaxy-galaxy interactions might also contribute to the cessation of the star formation. These results provide very valuable information on the putative transformation of star-forming galaxies into passive S0s. We then move to the study of the

  9. Photometric Properties of Face-on Isolated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bahr, Alexander; Epstein, P.; Durbala, A.

    2011-05-01

    We want to quantify the relative role of nature versus nurture in defining the observed properties of galaxies. In simpler terms we would like to disentangle the ``genetic'’ and the environmental influences in shaping the morphology of galaxies. In order to do that one needs to firstly define a zero-order baseline, i.e., a sample of galaxies that have been minimally perturbed by neighbors in the last few billion years of their existence. Such a sample has been produced and refined in different stages in the context of the AMIGA international project (www.iaa.es/AMIGA.html). The recent catalogue ``The All-Sky Catalog of Isolated Galaxies Selected from 2MASS'’ (Karachentseva, V. E. et al. 2010) allows us to complete and enrich the initial sample constructed within AMIGA with new objects, thus enhancing the statistical relevance of our study. Our focus is to define a subset of isolated disk spiral galaxies. We constrain the sample selection by: 1) orientation, restricting to almost face-on galaxies and 2) availability of good photometric images in SDSS. The goal is to ``dissect'’ (decompose) these galaxies in major components (disk, bulge, bars, etc.) and to study the properties of the components in a statistical context. Having a reasonable representation of all morphological types, we aim to test the bimodality of bulges and bars. We present a progress report of our work.

  10. E+A Galaxy Properties and Post-Starburst Galaxy Evolution Data through SDSS-IV MaNGA and Illustris: A Co-Analysis

    NASA Astrophysics Data System (ADS)

    Ojanen, Winonah; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Liu, Charles; Sloan Collaboration, SDSS-IV MaNGA

    2018-01-01

    E+A galaxies (Elliptical + A-type stars) are post-starburst galaxies that have experienced a sudden quenching phase. Using previous research methods, 39 candidates out of 2,812 galaxies observed, or 1.4%, were selected from the SDSS-IV MaNGA survey. We then identified morphological characteristics of the 39 galaxies including stellar kinematics, Gini coefficient, gas density and distribution and stellar ages. To study the origin of how E+A galaxies evolved to their present state, galaxy simulation data from the Illustris simulation was utilized to identify similar quenched post-starburst candidates. Seven post-starburst candidates were identified through star formation rate histories of Illustris simulated galaxies. The evolution of these galaxies is studied from 0 to 13.8 billion years ago to identify what caused the starburst and quenching of the Illustris candidates. Similar morphological characteristics of Illustris post-starburst candidates are pulled from before, during, and post-starburst and compared to the same morphological characteristics of the E+A galaxies from SDSS-IV MaNGA. The characteristics and properties of the Illustris galaxies are used to identify the possible evolutionary histories of the observed E+A galaxies. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  11. The Properties of Faint Field Galaxies

    NASA Astrophysics Data System (ADS)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  12. Properties of low-redshift QSO absorption systems - QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The chance proximity of QSOs and galaxies provides unique opportunities to probe the extent and content of gas in the foreground galaxies through evaluation of the incidence and strength of absorption lines in the spectra of the background QSOs. Recent results on the observed properties of these low-redshift, heavy-element absorption systems are summarized. These results are discussed in the context of the galaxy morphologies and environments and are briefly compared with Galactic absorption and with the inferred properties of higher-redshift QSO absorption systems.

  13. Recovering Galaxy Properties Using Gaussian Process SED Fitting

    NASA Astrophysics Data System (ADS)

    Iyer, Kartheik; Awan, Humna

    2018-01-01

    Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.

  14. Global properties of infrared bright galaxies

    NASA Technical Reports Server (NTRS)

    Young, Judith S.; Xie, Shuding; Kenney, Jeffrey D. P.; Rice, Walter L.

    1989-01-01

    Infrared flux densities of 182 galaxies, including 50 galaxies in the Virgo cluster, were analyzed using IRAS data for 12, 25, 60, and 100 microns, and the results were compared with data listed in the Point Source Catalog (PSC, 1985). In addition, IR luminosities, L(IRs), colors, and warm dust masses were derived for these galaxies and were compared with the interstellar gas masses and optical luminosities of the galaxies. It was found that, for galaxies whose optical diameter measures between 5 and 8 arcmin, the PSC flux densities are underestimated by a factor of 2 at 60 microns, and by a factor of 1.5 at 100 microns. It was also found that, for 49 galaxies, the mass of warm dust correlated well with the H2 mass, and that L(IR) correlated with L(H-alpha), demonstrating that the L(IR) measures the rate of star formation in these galaxies.

  15. Understanding the dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Decleir, Marjorie; Baes, Maarten; De Looze, Ilse; Camps, Peter

    2018-04-01

    Dust is a crucial component in the interstellar medium of galaxies. It regulates several physical and chemical processes. Dust grains are also efficient at absorbing and scattering ultraviolet/optical photons and then re-radiating the absorbed energy in the infrared/submm wavelength range. The spatial distribution and properties of dust in galaxies can hence be investigated in two complementary ways: by its attenuation effects at short wavelengths, and by its thermal emission at long wavelengths. Both approaches have their advantages and challenges. In this contribution, we discuss a number of recent interesting results on interstellar dust in nearby galaxies, obtained by our research group at Ghent University.

  16. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less

  17. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2015-08-01

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  18. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  19. The physical properties and evolution of Lyα emitting galaxies

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Fontana, A.

    2009-05-01

    A significant fraction of high redshift starburst galaxies presents strong Lyα emission. Understanding the nature of these galaxies is important to assess the role they played in the early Universe and to shed light on the relation between the narrow band selected Lyα emitters and the Lyman break galaxies: are the Lyα emitters a subset of the general LBG population? or do they represent the youngest galaxies in their early phases of formation? We studied a sample of UV continuum selected galaxies from z~2.5 to z~6 (U, B, V and i-dropouts) from the GOODS-South survey, that have been observed spectroscopically. Using the GOODS-MUSIC catalog we investigated their physical properties, such as total masses, ages, SFRs, extinction etc as determined from a spectrophotometric fit to the multi-wavelength (U band to mid-IR) SEDs, and their dependence on the emission line characteristics. In particular we determined the nature of the LBGs with Lyα in emission and compared them to the properties of narrow band selected Lyα emitters. For U and B-dropouts we also compared the properties of LBGs with and without the Lyα emission line.

  20. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future

  1. Host galaxy properties of calcium II and sodium I quasar absorption-line systems

    NASA Astrophysics Data System (ADS)

    Cherinka, Brian

    Many questions remain within the areas of galaxy formation and evolution. Understanding the origin of gas in galaxy environments, whether as tidal debris, infalling High Velocity Clouds, galaxy outflows, or as gaseous material residing in galaxy disks, is an important step in answering those questions. Quasar absorption-lines can often be used to probe the environments of intervening galaxies. Traditionally, quasar absorption-lines are studied independently of the host galaxy but this method denies us the exploration of the connection between galaxy and environment. Instead, one can select pairs of known galaxies and quasars. This gives much more information regarding the host galaxy and allows us to better connect galaxy properties with associated absorbers. We use the seventh data release of the Sloan Digital Sky Survey to generate a sample of spectroscopic galaxy-quasar pairs. We cross-correlated a sample of 105,000 quasars and ˜800,000 galaxies to produce ˜98,000 galaxy-quasar pairs, with the quasar projected within 100 kpc of the galaxy. Adopting an automated line-finding algorithm and using the galaxy redshift as a prior, we search through all quasar spectra and identify Ca II and Na I absorption due to the intervening galaxy. This procedure produced 1745 Ca II absorbers and 4500 Na I absorbers detected at or above 2σ. Stacking analysis of a subset of absorbers at z > 0.01, with significances at or above 3σ, showed strong Ca II and Na I features around external galaxies. Using the same subset of absorbers at z > 0.01, we looked for correlations between absorber and galaxy properties and examined differences in galaxy properties between the absorbers and non-absorbers. We found no correlations with absorber strength or differences between many galaxy properties at the 3σ level. The lack of correlations and differences between absorbers and non-absorbers suggest a ubiquitous nature for Ca II and Na I around all types of galaxies, with the absorbers showing

  2. GALEX studies on UV properties of Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team

    2005-12-01

    We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.

  3. The IR properties of ringed galaxies and the IRAS database

    NASA Technical Reports Server (NTRS)

    Buta, Ronald J.; Crocker, Deborah A.

    1993-01-01

    Our study of the Infrared Astronomy Satellite (IRAS) properties of ringed galaxies has been largely successful. We have identified what we think is the probable cause of the differences in the IRAS properties among non-interacting barred galaxies as the pattern speed of the bar. The key to identifying this parameter has been our focusing the study on outer-ringed galaxies where we know precisely what is present in the central regions (from available BVI CCD images in our library of images). The theory is that outer rings, through their morphology and other characteristics, can be identified with the outer Lindblad resonance, one of the major resonances in galaxy structure. Using a library of n-body simulations for comparison, we can reliably infer both low and high pattern speed galaxies from the appearance of outer rings and the existence of other ring features. It is clear that in some barred galaxies, the bar pattern speed is high enough to avoid an inner Lindblad resonance, hence such objects do not contain nuclear or circumnuclear star formation. The IRAS observations are most sensitive to nuclear star formation in early-type barred galaxies, and will thus select those barred galaxies where the pattern speed is low enough to allow an inner Lindblad resonance to exist. High pattern speed barred galaxies therefore weaken the correlation between bars and infrared excess. This finding helps to reconcile the inconsistent results found between different studies on the correlation between bars and far-IR emission.

  4. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  5. Cosmic evolution of star formation properties of galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun

    2014-01-01

    Development of bolometer array and camera at submillimeter wavelength has played an important role in detecting submillimeter bright galaxies, so called submillimeter galaxies. These galaxies seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates if there is a close link between the submillimeter galaxies and the star formation activities, and the interstellar dust in galaxies is mainly heated by the star light. We review assembly of submillimeter galaxies chosen from the AzTEC and the Herschel SPIRE/PACS data archives, and investigate their spectral energy distribution fits including the data at other wavelengths to deduce details about stellar parameters including star formation rates and parameters yielding the metallicity, composition and abundance in dust, and disc structure of these galaxies. This work has been supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2011-0028001.

  6. General properties of a sample of isolated galaxies containing active nucleus

    NASA Astrophysics Data System (ADS)

    Chesnok, N. G.

    2010-10-01

    We investigated the general properties of 62 isolated galaxies with active nuclei (AGN) selected from the Catalogue 2MIG and Catalogue Veron+2010. The main characteristics of the distribution of these objects are given. The sample under investigation can be included to the scientific research program for "Radioastron".

  7. Properties of Galaxies and Groups: Nature versus Nurture

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias

    2011-09-01

    Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.

  8. Fundamental Properties of the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  9. Infrared Properties of Star Forming Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Vaduvescu, Ovidiu

    2005-11-01

    Dwarf galaxies are the most common galaxies in the Universe. They are systems believed to consist of matter in a near-primordial state, from which giant galaxies probably form. As such, they are important probes for studying matter in its near-primordial state. In an effort to study the main physical and chemical properties of dwarfs, the present thesis focuses upon the main physical properties of dwarfs. Two classes of star forming dwarf galaxies are considered: dwarf irregulars (dIs), and blue compact dwarfs (BCDs). A third class, dwarf ellipticals (dEs), is studied based on its structural properties and compared with dIs. Possible evolutionary connections are addressed between dIs and BCDs. To measure the luminosity, deep imaging in the near-infrared (NIR) is considered. Compared with the visible, the NIR domain gives a better gauge of the galaxy mass contained in the old stellar populations, minimising the starburst contribution and also the effects of extinction. Two observing samples of star-forming dwarf galaxies are considered. The first includes 34 dIs in the Local Volume closer than 5 Mpc. The second sample includes 16 BCDs in the Virgo Cluster. In six observing runs between 2001 and 2004, we acquired deep NIR images (J and K_s) using the 3.6m Canada-France-Hawaii-Telescope (CFHT) in Hawaii and the 2.1m telescope at the National Astronomical Observatory ''San Pedro Martir'' (OAN-SPM) in Mexico. Deep spectrocopy was acquired in 2003 on the 8.1m Gemini-North telescope in Hawaii. We completed the observed samples with spectroscopic data from the literature, and photometry from the 2MASS survey and GOLDMine database. From a statistical study at CFHT, we derived some strategies necessary to image optimally faint extended sources in the NIR. Due to the airglow variation in the atmosphere and the thermal contribution of the dome, telescope and the instrumentation, repeated observations of the sky must be alternated every 3-4 minutes with the science images, in

  10. Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chi; Ho, Shirley; Mandelbaum, Rachel; Bahcall, Neta A.; Brownstein, Joel R.; Freeman, Peter E.; Genovese, Christopher R.; Schneider, Donald P.; Wasserman, Larry

    2017-04-01

    We study the effects of filaments on galaxy properties in the Sloan Digital Sky Survey (SDSS) Data Release 12 using filaments from the 'Cosmic Web Reconstruction' catalogue, a publicly available filament catalogue for SDSS. Since filaments are tracers of medium- to high-density regions, we expect that galaxy properties associated with the environment are dependent on the distance to the nearest filament. Our analysis demonstrates that a red galaxy or a high-mass galaxy tends to reside closer to filaments than a blue or low-mass galaxy. After adjusting the effect from stellar mass, on average, early-forming galaxies or large galaxies have a shorter distance to filaments than late-forming galaxies or small galaxies. For the main galaxy sample, all signals are very significant (>6σ). For the LOWZ and CMASS sample, the stellar mass and size are significant (>2σ). The filament effects we observe persist until z = 0.7 (the edge of the CMASS sample). Comparing our results to those using the galaxy distances from redMaPPer galaxy clusters as a reference, we find a similar result between filaments and clusters. Moreover, we find that the effect of clusters on the stellar mass of nearby galaxies depends on the galaxy's filamentary environment. Our findings illustrate the strong correlation of galaxy properties with proximity to density ridges, strongly supporting the claim that density ridges are good tracers of filaments.

  11. Lyα vs. fundamental properties of galaxies

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Salzer, John; COS Science Team

    2013-03-01

    We obtained HST COS Lyα spectroscopy for 20 galaxies that were Hα-selected from the Kitt Peak International Spectroscopic Survey data release. We cover redshifts of z=0.02-0.06 and a broad range in metallicity, reddening, and luminosity. We investigate correlations between the properties of the Lyα-lines and fundamental properties of the galaxies. Our seven emitters have: equivalent widths in the range EW(Lyα)=1-12 Å, i.e., below the completeness limits of higher redshift studies; extinction corrected Lyα/Hα ratios of at most 12-15% of the case B recombination theory value; and O I λ1302 ISM absorptions blueshifted to = - 117±40 km/s, which are consistent with H I gas outflows. Six emitters have P-Cygni-like Lyα profiles with peaks redshifted to =172±25 km/s, and one of our face-on spiral galaxies has two Lyα peaks separated by 370 km/s. The latter peaks are such that the blueshifted peak is twice as strong as the redshifted peak. The rest of the galaxies show Lyα absorption troughs centered at =19 km/s and O I λ1302 absorptions centered at = - 34±25 km/s, which is consistent with static or low velocity H I gas. Our two most metal poor and least reddened galaxies, which have large Hα equivalent widths are absorbers. The spiral galaxies in our sample have Lyα in single emission, double emission, or absorption. There appears to be a correlation between the Hα derived SFR and the strength of the Lyα emission but our sample is small. Our observations cover regions of at most 3 kpc in diameter and may miss a significant fraction of the resonantly scattered Lyα emission. This work is supported by NASA grant N1317.

  12. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  13. Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna

    2016-10-01

    We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.

  14. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    NASA Astrophysics Data System (ADS)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  15. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1properties of passive and star-forming galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  16. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties and Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-05-01

    We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma

  17. Neutral Gas Properties of Extremely Isolated Early-type Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Marcum, Pamela M.; Fanelli, Michael N., E-mail: trisha.l.ashley@nasa.gov, E-mail: pamela.m.marcum@nasa.gov, E-mail: michael.n.fanelli@nasa.gov

    We present the results of single-dish atomic hydrogen (H i) observations of six highly isolated early-type galaxies. These objects are a representative subset of galaxies previously studied at optical wavelengths and selected to be separated by at least 2.5 Mpc from companions brighter than M{sub V}  = −16.5 mag. Each galaxy was observed with a single pointing using the NRAO Green Bank Telescope L -band receiver. Five of these systems were strongly detected in H i. These five galaxies exhibit H i profiles with a range of properties: single Gaussian-like peaks, separate double peaks, and double horn-like profiles. The four bluestmore » galaxies ( B − V < 0.54) all contain significant gas with H i masses ranging from 1.1 × 10{sup 8} to 1.4 × 10{sup 9}.« less

  18. The Statistical Properties of Galaxies Containing Ultraluminous X-Ray Objects

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Colbert, E.

    2004-05-01

    We present a statistical analysis of the properties of galaxies containing ultraluminous X-ray objects (ULXs). Our primary goal is to establish the fraction of galaxies containing a ULX as a function of ULX luminosity. Our sample is based on ROSAT HRI observations of galaxies. We find that ~12% of galaxies contain at least one ULX with LX>1039 ergs s-1, and ~1% of galaxies contain at least one ULX with LX>1040 ergs s-1. These ULX frequencies are lower limits, since ROSAT HRI observations would miss absorbed ULXs (i.e., with NH>~1021cm-2) and those within ~10" of the nucleus (due to the positional error circle of the ROSAT HRI). The Hubble type distribution of galaxies with a ULX differs significantly from the distribution of types for nearby Third Reference Catalog galaxies but does not differ significantly from the galaxy type distribution of galaxies observed by the HRI in general. We find no increase in the mean far-infrared (FIR) luminosity or FIR/K-band luminosity ratio for galaxies with a ULX relative to galaxies observed by the HRI in general; however, this result is also most likely biased by the soft bandpass of the HRI and the relatively low number of high star formation rate galaxies observed by the HRI with enough sensitivity to detect a ULX.

  19. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle.

  20. Correlations among the properties of galaxies found in a blind HI survey, which also have SDSS optical data

    NASA Astrophysics Data System (ADS)

    Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.

    2009-03-01

    We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.

  1. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  2. SDSS IV MaNGA - Properties of AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  3. Galaxy Properties Across and Through the 6dFGS Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Springob, Chris M.; Magoulas, C.; Proctor, R.; Colless, M.; Jones, D. H.; Kobayashi, C.; Campbell, L.; Lucey, J.; Mould, J.; Merson, A.

    2011-05-01

    The 6dF Galaxy Survey (6dFGS) is an all southern sky galaxy survey, including 125,000 redshifts and a Fundamental Plane (FP) subsample of 10,000 peculiar velocities, making it the largest peculiar velocity sample to date. We have developed a robust procedure for fitting the FP, performing a maximum likelihood fit to a tri-variate Gaussian. We have subsequently examined the variation of a variety of properties across and through the FP, including environment, morphology, metallicity, alpha-enhancement, and stellar age. We find little variation in the FP with global environment. Some variation of morphology is found along the plane, though this is likely a consequence of selection effects. Elemental abundances are found to vary both across and through the FP. The parameter that varies most directly through the FP is stellar age. We find that galaxies with stellar populations with average ages older than 3 Gyr occupy a thinner FP than those younger than 3 Gyr. Thus, a modest improvement in distance errors is realized if one divides the sample into subsamples segregated by age, and fits the FP of each subsample independently.

  4. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  5. The frequency and properties of young tidal dwarf galaxies in nearby groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2017-03-01

    We present the results of a multi-wavelength investigation of the dwarf galaxy populations in three interacting galaxy groups: NGC 871/6/7, NGC 3166/9, NGC 4725/47. Using degree-scale Giant Metrewave Radio Telescope Hi mosaics and deep optical photometry from the Canada-France-Hawaii Telescope, we measured the Hi and stellar properties of the gas-rich low-mass group members to classify each one as a classical dwarf galaxy, a short-lived tidal knot or a tidal dwarf galaxy (TDG). Our observations detect several dwarf irregulars and various tidal knots. We identify four potentially long-lived tidal objects in the three groups, implying that TDGs are not readily produced. The tidal objects examined in this small survey also appear to have a wider variety of properties than TDGs formed in current simulations.

  6. VLBA Observations of Low Luminosity Flat Spectrum Radio Galaxies and BL Lac Objects: Polarisation Properties

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.

    We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.

  7. Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, C. Jakob

    2015-12-01

    We study the sources of biases and systematics in the derivation of galaxy properties from observational studies, focusing on stellar masses, star formation rates, gas and stellar metallicities, stellar ages, magnitudes and colours. We use hydrodynamical cosmological simulations of galaxy formation, for which the real quantities are known, and apply observational techniques to derive the observables. We also analyse biases that are relevant for a proper comparison between simulations and observations. For our study, we post-process the simulation outputs to calculate the galaxies' spectral energy distributions (SEDs) using stellar population synthesis models and also generate the fully consistent far-UV-submillimetre wavelength SEDs with the radiative transfer code SUNRISE. We compared the direct results of simulations with the observationally derived quantities obtained in various ways, and found that systematic differences in all studied galaxy properties appear, which are caused by: (1) purely observational biases, (2) the use of mass-weighted and luminosity-weighted quantities, with preferential sampling of more massive and luminous regions, (3) the different ways of constructing the template of models when a fit to the spectra is performed, and (4) variations due to different calibrations, most notably for gas metallicities and star formation rates. Our results show that large differences can appear depending on the technique used to derive galaxy properties. Understanding these differences is of primary importance both for simulators, to allow a better judgement of similarities and differences with observations, and for observers, to allow a proper interpretation of the data.

  8. Galactic Outflows and Their Correlation with Galaxy Properties at 0.8 < z < 1.6

    NASA Astrophysics Data System (ADS)

    Whiting, Lindsey M.

    Out. ows have been shown to be ubiquitous in galaxies between z = 1 and z=2, and many models and observations have attempted to correlate the absorption line. properties of these out. ows with morphological characteristics of their host galaxies. In this study, we examined the spectra of 71 galaxies with redshifts 1< z<2, paying. particular attention to the FeII and MgII absorption lines. We plotted the equivalent. width, velocity, and maximum velocity of the absorption features against various. physical properties of the galaxies, obtained from catalogues created by Skelton et. al., (2014) and van der Wel et al., (2012). We conrmed the presence of out. ows in. our galaxy sample, and found a signicant trend between the equivalent width and. star formation rate - out. owing gas has stronger absorption lines in galaxies with. higher star formation rates.

  9. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  10. VizieR Online Data Catalog: GALEX BCG galaxies sample properties (Boissier+, 2018)

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-01-01

    Tables 2 to 5 from the paper, providing the properties of a sample of 166 BCG galaxies with UV photometry from GALEX. In table 3 -9.999999 indicates galaxies for which no values is provided. (4 data files).

  11. Starburst Galaxies. III. Properties of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.

    1998-02-01

    We have analyzed the properties of the 20 most radio-luminous UGC starburst galaxies from Condon, Frayer, & Broderick. Near-infrared images, spectra, and optical rotation curves were presented in Smith et al. In this paper, we use these data and published radio data to assess the stellar populations, dust contents, ionizing conditions, and dynamics of the starbursts. Certain properties of the star formation occurring in these galaxies differ from those observed locally. The infrared excesses (IREs) are lower than and span a narrower range of values than those of Galactic H II regions. The starbursts appear to produce a higher proportion of ionizing photons than most Galactic H II regions. Consequently, the initial mass functions (IMFs) of the starbursts may be more strongly biased toward high-mass star formation. The starbursts may also contain fewer old H II regions than the Milky Way. Furthermore, the starburst IRE is likely to be influenced by the presence of large reservoirs of gas that absorb a larger fraction of the Lyman continuum photons. The OB stellar and far-infrared luminosities imply that the upper mass range of the starburst IMF (M > 10 M⊙) is characterized by a slope of 2.7 +/- 0.2. The starburst IMF thus bears a strong similarity to that observed in Magellanic OB associations. Optical line ratios indicate that a range of excitation conditions are present. We conclude that the near-infrared light from many of the starbursts is dominated by a heavily obscured mixture of emission from evolved red stars and young blue stars with small contributions (~5%) from thermal gas and hot dust, under the assumptions that a Galactic or SMC extinction law can be applied to these systems and that the true reddening curve follows one of the models currently existing in the literature. In some cases, larger amounts of emission from blue stars or hot dust may be required to explain the observed near-infrared colors. The amount of dust emission exceeds that predicted

  12. Multi-Wavelength Analysis of Active Galactic Nuclei and Host Galaxies Physical Properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan

    In this dissertation we study the properties of active galactic nuclei (AGN), which are powered by the accretion activity of supermassive black holes residing at the centers of galaxies. While observations propose that growth of AGN and galaxies are globally tied, we investigate whether this connection exists in individual galaxies. We also investigate various AGN selection techniques and star formation rate (SFR) estimates using multi-wavelength data from Chandra, Spitzer and rest-frame optical spectra from the Keck telescope. We find that combining multi-wavelength identification techniques provides a more complete AGN sample, as each selection method suffers from selection biases. In particular, all selection techniques are biased against identifying AGN in lower mass galaxies. Once stellar mass selection biases are taken into account, we find that AGN reside in galaxies with similar physical properties (i.e., SFR) as inactive galaxies. We find that while AGN are prevalent in both star-forming and quiescent galaxies, AGN of a given accretion rate are more likely to reside in star-forming galaxies. The probability of fueling an AGN does not strongly depend on SFR for a star-forming galaxy, though it decreases when star formation is shut down in quiescent galaxies. We also find no evidence for a strong correlation between SFR or stellar mass of the host galaxy and AGN luminosity. These results indicate that while both AGN and galaxy growth are reliant on the same fuel, enhanced star formation activity does not necessarily go hand-in-hand with increased AGN activity. While the star formation activity of galaxies can be traced with various indicators, our investigations indicate that extrapolations from mid-infrared data using calibrations based on local galaxies overestimates SFRs at higher redshift. We show that a combina- tion of mid-infrared and far-infrared data provide a more reliable SFR estimation than the mid-infrared data alone. We also find that the

  13. Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.

    2007-08-01

    We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.

  14. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  15. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties, Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, T.; Takeuchi, T. T.

    2001-12-01

    A new model of infrared galaxy counts and the cosmic background radiation (CBR) is developed by extending a model for optical/near-infrared galaxies. Important new characteristics of this model are that mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that the big grain dust temperature T dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T dust and total infrared luminosity L IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L IR-T dust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μ m) and CBR by this model. We found considerably different results from most of previous works based on the empirical L IR-T dust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40--80K). This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2--3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE\\ detections of FIR CBR. The authors thank the financial support by the Japan Society for Promotion of Science.

  16. Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Toshikazu

    2015-08-01

    Most stars are born as clusters in Giant Molecular Clouds (hereafter GMCs), and therefore the understanding of the evolution of GMCs in a galaxy is one of the key issues to investigate the evolution of the galaxy. The recent state-of-the-art radio telescopes have been enabling us to reveal the distribution of GMCs extensively in the Galaxy as well as in the nearby galaxies, and the physical properties and the evolution of the GMCs leading to cluster formations are actively being investigated. Here we present a review of studies of spatially resolved GMCs in the Galaxy and in the Large Magellanic Cloud (LMC), aiming at providing a template of GMC properties. For the Galactic GMCs, we will focus on the recent extensive survey of GMCs along the Galactic plane; the recent studies suggest cloud-cloud collision as mechanism of massive star formation. For the extra galactic GMCs, we will present recent high-resolution observations of GMCs in the LMC.The LMC is among the nearest star-forming galaxy (distance ~ 50kpc) and is almost face-on. From these aspects, it is becoming the most popular region for studying interstellar medium over an entire galaxy. For molecular gas, the NANTEN covered the entire LMC with a spatial resolution of 40 pc, revealing 272 molecular clouds whose mass ranges from ~104 to ~107 M⊙, which is the first uniform sample of GMCs in a single galaxy. Our Spitzer SAGE and Herschel HERITAGE surveys show that the interstellar medium has much smaller scale structures; full of filamentary and shell-like structures. In order to resolve the filamentary distributions and pre-stellar cores we definitely need to resolve clouds at sub-pc resolutions with ALMA and to cover regions of active cluster formation which are to be selected based on the Spitzer and Hershel data. Our ALMA targets in Cycle 1 and Cycle 2 include N159, which is the most intense and concentrated molecular cloud as shown by the brightest CO J=3-2 source in the LMC, and GMCs with different

  17. Near-infrared properties of quasar and Seyfert host galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1994-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is

  18. Near-Infrared Properties of Quasar and Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1995-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale

  19. Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H ii regions

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Marino, R. A.; Iglesias-Páramo, J.; Vílchez, J. M.; Kennicutt, R. C.; Díaz, A. I.; Mast, D.; Monreal-Ibero, A.; García-Benito, R.; Bland-Hawthorn, J.; Pérez, E.; González Delgado, R.; Husemann, B.; López-Sánchez, Á. R.; Cid Fernandes, R.; Kehrig, C.; Walcher, C. J.; Gil de Paz, A.; Ellis, S.

    2012-10-01

    We analyse the spectroscopic properties of thousands of H ii regions identified in 38 face-on spiral galaxies. All galaxies were observed out to 2.4 effective radii using integral field spectroscopy (IFS) over the wavelength range ~3700 to ~6900 Å. The near uniform sample has been assembled from the PPAK IFS Nearby Galaxy (PINGS) survey and a sample described in Paper I. We develop a new automatic procedure to detect H ii regions, based on the contrast of the Hα intensity maps extracted from the datacubes. Once detected, the algorithm provides us with the integrated spectra of each individual segmented region. In total, we derive good quality spectroscopic information for ~2600 independent H ii regions/complexes. This is by far the largest H ii region survey of its kind. Our selection criteria and the use of 3D spectroscopy guarantee that we cover the regions in an unbiased way. A well-tested automatic decoupling procedure has been applied to remove the underlying stellar population, deriving the main properties (intensity, dispersion and velocity) of the strongest emission lines in the considered wavelength range (covering from [O ii] λ3727 to [S ii] λ6731). A final catalogue of the spectroscopic properties of H ii regions has been created for each galaxy, which includes information on morphology, spiral structure, gaskinematics, and surface brightness of the underlying stellar population. In the current study, we focus on the understanding of the average properties of the H ii regions and their radial distributions. We find a significant change in the ionisation characteristics of H ii regions within r < 0.25 re due to contamination from sources with different ionising characteristics, as we discuss. We find that the gas-phase oxygen abundance and the Hα equivalent width present a negative and positive gradient, respectively. The distribution of slopes is statistically compatible with a random Gaussian distribution around the mean value, if the radial

  20. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  1. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  2. The influence of environment on the properties of galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yasuhiro

    1999-11-01

    I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star

  3. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Capak, Peter L.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.; Masters, Daniel C.

    2017-09-01

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope (β UV) and the infrared excess (IRX; L IR/L UV) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX-β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX-β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX-β diagram.

  4. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C.

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β {sub UV}) and the infrared excess (IRX; L {sub IR}/ L {sub UV}) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. Themore » trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.« less

  5. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is

  6. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  7. Welcome to the Twilight Zone: The Mid-infrared Properties of Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Bitsakis, Theodoros; Lanz, Lauranne; Lacy, Mark; Brown, Michael J. I.; French, K. Decker; Ciesla, Laure; Appleton, Philip N.; Beaton, Rachael L.; Cales, Sabrina L.; Crossett, Jacob; Falcón-Barroso, Jesús; Kelson, Daniel D.; Kewley, Lisa J.; Kriek, Mariska; Medling, Anne M.; Mulchaey, John S.; Nyland, Kristina; Rich, Jeffrey A.; Urry, C. Meg

    2017-07-01

    We investigate the optical and Wide-field Survey Explorer (WISE) colors of “E+A” identified post-starburst galaxies, including a deep analysis of 190 post-starbursts detected in the 2 μm All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone. Furthermore, we find that post-starbursts occupy a distinct region of [3.4]-[4.6] versus [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broadband photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that the mid-infrared (4-12 μm) properties of post-starbursts are consistent with either 11.3 μm polycyclic aromatic hydrocarbon emission, or thermally pulsating asymptotic giant branch (TP-AGB) and post-AGB stars. The composite SED of extended post-starburst galaxies with 22 μm emission detected with signal-to-noise ratio ≥slant 3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22 μm. The composite SED of WISE 22 μm non-detections (S/N < 3), created by stacking 22 μm images, is also flat, requiring a hot dust component. The most likely source of the mid-infrared emission of these E+A galaxies is a buried active galactic nucleus (AGN). The inferred upper limits to the Eddington ratios of post-starbursts are 10-2-10-4, with an average of 10-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections capable of identifying AGNs as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.

  8. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  9. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    NASA Astrophysics Data System (ADS)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  10. Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Simpson, Christine M.

    2014-08-01

    We analyse the properties of the circumgalactic medium and the metal content of the stars comprising the central galaxy in eight hydrodynamical `zoom-in' simulations of disc galaxy formation. We use these properties as a benchmark for our model of galaxy formation physics implemented in the moving-mesh code AREPO, which succeeds in forming quite realistic late-type spirals in the set of `Aquarius' initial conditions of Milky-Way-sized haloes. Galactic winds significantly influence the morphology of the circumgalactic medium and induce bipolar features in the distribution of heavy elements. They also affect the thermodynamic properties of the circumgalactic gas by supplying an energy input that sustains its radiative losses. Although a significant fraction of the heavy elements are transferred from the central galaxy to the halo, and even beyond the virial radius, enough metals are retained by stars to yield a peak in their metallicity distributions at about Z⊙. All our default runs overestimate the stellar [O/Fe] ratio, an effect that we demonstrate can be rectified by an increase of the adopted Type Ia supernova rate. Nevertheless, the models have difficulty in producing stellar metallicity gradients of the same strength as observed in the Milky Way.

  11. Multiwavelength Properties of Faint Submillimeter Galaxies with Archival ALMA Data

    NASA Astrophysics Data System (ADS)

    Patil, Pallavi; Lacy, Mark; Nyland, Kristina

    2018-01-01

    Detection of Faint submillimeter galaxies was made possible by large improvements in the spatial resolution and sensitivity by interferometric observations. These galaxies are a dominant contributor to the extragalactic background light at millimeter wavelengths and are likely to play a significant role in galaxy evolution. We present a catalog of 28 such galaxies with S(1.1 mm) < 1.0 mJy that have 13-band optical/near IR photometry (Spitzer DeepDrill, VIDEO, CFHTLS, and HSC) and serendipitous detections in ALMA band 6. ALMA 1.1 mm continuum observations were cross-matched with the K-band VIDEO catalog in the XMM-LSS field to identify multiwavelength counterparts. A forced Photometry approach based on the Tractor image modeling code is used to construct the catalog. The median photometric redshift of the sample is z ~ 1.96 along with two high redshift candidates at z ~ 5. We have provided population statistics using multiband photometry and estimated galaxy properties such as dust and gas masses. We aim to provide a detailed characterization of this population to ultimately devise better selection techniques for future wide-area sky surveys.

  12. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin, E-mail: ywmao@pmo.ac.cn, E-mail: xkong@ustc.edu.cn, E-mail: linlin@shao.ac.cn

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies,more » we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.« less

  13. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    NASA Astrophysics Data System (ADS)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  14. Accounting for the dispersion in the x ray properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III; Sarazin, Craig L.

    1990-01-01

    The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances

  15. Investigating the Environmental Properties of Galaxies in the SDSS-MaNGA Survey

    NASA Astrophysics Data System (ADS)

    Spindler, Ashley

    2018-05-01

    This thesis presents a study of galaxy evolution in the local universe. I study how environments shape the structures of galaxies, and how internal and external processes affect star formation. I perform four investigations of galaxy properties: a study of the relations between size, mass and velocity dispersion of 124,524 galaxies from SDSS DR7; I estimate star formation rates using Hα and Dn4000 for galaxies in the MaNGA survey; a study of the spatial distribution of star formation in 1494 MaNGA galaxies; and finally, a study of 215 barred and 402 unbarred galaxies, to investigate how bars affect star formation. I find that environment plays a key role in the evolution of galaxies, both structurally and in terms of their star formation. Using core velocity dispersion to study the effects of minor mergers and tidal/ram pressure stripping, I find that central galaxies are up to 30% larger and more massive than satellites. I suggest that minor mergers play a crucial role in the increase in size and mass of centrals. In addition, I find that satellites have a uniform radial suppression of star formation, compared to centrals, which may be due to the strangulation of their cold gas supplies. I study the internal processes that affect star formation and find that specific star formation rate is suppressed at all radii for high mass galaxies. Massive galaxies are more likely to have suppressed star formation in their cores, which I determined is caused by a combination of morphological quenching and AGN feedback. Finally, I study the role of galaxy bars in regulating the circumnuclear and disk star formation in late-type galaxies. I find that barred galaxies have lower star formation in their disks than unbarred galaxies, and that they are more likely to have enhanced star formation in their cores.

  16. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  17. Studying the properties of massive galaxies in protoclusters using millimetre-wavelength observations

    NASA Astrophysics Data System (ADS)

    Zeballos, M.; Hughes, D. H.; Aretxaga, I.; Wilson, G.

    2011-10-01

    We present an analysis of the number density and spatial distribution of the population of millimetre galaxies (MMGs) towards 17 high-z active galaxies using 1.1 mm observations taken with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE) and the James Clerk Maxwell Telescope (JCMT). The sample allows us to study the properties of MMGs in protocluster environments and compare them to the population in blank (unbiased) fields. The goal is to identify if these biased environments are responsible for differences in the number and distribution of dust-obscured star-forming galaxies and whether these changes support the suggestion that MMGs are the progenitors of massive (elliptical) galaxies we see today in the centre of rich clusters.

  18. A New Approach for Simulating Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Arieli, Y.; Rephaeli, Y.; Norman, M. L.

    2008-08-01

    We describe a subgrid model for including galaxies into hydrodynamical cosmological simulations of galaxy cluster evolution. Each galaxy construct—or galcon—is modeled as a physically extended object within which star formation, galactic winds, and ram pressure stripping of gas are modeled analytically. Galcons are initialized at high redshift (z ~ 3) after galaxy dark matter halos have formed but before the cluster has virialized. Each galcon moves self-consistently within the evolving cluster potential and injects mass, metals, and energy into intracluster (IC) gas through a well-resolved spherical interface layer. We have implemented galcons into the Enzo adaptive mesh refinement code and carried out a simulation of cluster formation in a ΛCDM universe. With our approach, we are able to economically follow the impact of a large number of galaxies on IC gas. We compare the results of the galcon simulation with a second, more standard simulation where star formation and feedback are treated using a popular heuristic prescription. One advantage of the galcon approach is explicit control over the star formation history of cluster galaxies. Using a galactic SFR derived from the cosmic star formation density, we find the galcon simulation produces a lower stellar fraction, a larger gas core radius, a more isothermal temperature profile, and a flatter metallicity gradient than the standard simulation, in better agreement with observations.

  19. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not havemore » the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.« less

  20. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  1. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  2. Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Scarlata, C.; Fontana, A.; Castellano, M.; Giallongo, E.; Vanzella, E.

    2010-05-01

    Aims: We investigate the physical and morphological properties of Lyman break galaxies (LBGs) at redshift ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyα emission. Methods: We selected U-dropout galaxies from the z-detected GOODS-MUSIC catalog by adapting the classical Lyman break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands information (U to IRAC), we determined the physical properties of the galaxies through a standard spectral energy distribution fitting procedure with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations of the GOODS field, i.e. the 24 μm observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M20 and ellipticity), we characterized the rest-frame UV morphologies of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyα emission line in the optical spectra. Results: We find that unlike at higher redshift, the dependence of physical properties on the Lyα line is milder: galaxies without Lyα in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, star formation rates (SFR), X-ray emission and UV morphology do not depend strongly on the presence of the Lyα emission. A simple scenario where all LBGs have intrinsically high Lyα emission, but where the dust and neutral hydrogen content (which shapes the final appearance of the Lyα) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z˜3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.

  3. Inferring physical properties of galaxies from their emission-line spectra

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  4. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  5. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  6. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  7. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  8. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    NASA Astrophysics Data System (ADS)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  9. The Undergraduate ALFALFA Groups Project: Development of a Galaxy Environment Index

    NASA Astrophysics Data System (ADS)

    Crone, Mary; Turner, J.; ALFALFA Team

    2010-01-01

    The Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project is a collaborative undertaking of faculty and undergraduates at 8 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey. We present a galaxy environment index designed to reflect local density in the regions surrounding galaxy groups. These regions typically include hundreds of galaxies with optical and HI properties that can be compared with environment. For example, an 8x10 degree region surrounding the group MKW 11 includes 535 galaxies at the group redshift of 0.02, 139 of which are detected in HI. This work has been supported by NSF grants AST-0724918, AST-0725267, and AST-0725380.

  10. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  11. Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf

    2001-04-01

    Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and

  12. Why do Galaxies Stop Forming Stars? New Evidence for the Role of AGN-feedback in Driving Galaxy Bimodality

    NASA Astrophysics Data System (ADS)

    Bluck, Asa; Teimoorinia, Hossen; Ellison, Sara L.; Mendel, Trevor

    2018-01-01

    One of the most striking features of the population of local galaxies is that the distributions of several key galaxy properties are highly bimodal (e.g. color and star formation rate). In general, high mass galaxies in dense environments, with bulge-dominated morphologies and pressure supported kinematics are more frequently passive (non-star forming) than lower mass galaxies in low density environments, with disc-dominated morphologies and rotationally supported kinematics. Understanding which, if any, of these correlations is causally related to the ‘quenching’ of star formation in galaxies remains an active and hotly debated area of investigation in modern astrophysics.Theoretically, a wealth of physical processes have been evoked to account for central galaxy quenching, including halo mass quenching from virial shocks, feedback from active galactic nuclei (AGN; in either the quasar or radio mode), stabilizing torques from central mass concentrations, feedback from supernovae, or even magnetic fields interacting with the hot gas halo.I will present strong new statistical evidence which suggests that the quenched fraction of local central galaxies is primarily related to their central kinematics (Bluck et al. 2016; 2017 in prep.). I will show that this is broadly consistent with quenching from AGN feedback, through a detailed comparison with a semi-analytic model and a cosmological hydrodynamical simulation.Using a sample of over half a million local galaxies from the SDSS DR7, we go on to develop a number of sophisticated techniques, including machine learning with artificial neural networks, to rank the importance of galaxy properties to quenching (Teimoorinia, Bluck & Ellison 2016). We find that properties closely correlated with the central supermassive black hole are highly favoured statistically to predict whether a galaxy will be star forming or not. Perhaps surprisingly, stellar mass and halo mass have no impact on star formation activity in central

  13. The optical properties of galaxies in the Ophiuchus cluster

    NASA Astrophysics Data System (ADS)

    Durret, F.; Wakamatsu, K.; Adami, C.; Nagayama, T.; Omega Muleka Mwewa Mwaba, J. M.

    2018-05-01

    Context. Ophiuchus is one of the most massive clusters known, but due to its low Galactic latitude its optical properties remain poorly known. Aims: We investigate the optical properties of Ophiuchus to obtain clues on the formation epoch of this cluster, and compare them to those of the Coma cluster, which is comparable in mass to Ophiuchus but much more dynamically disturbed. Methods: Based on a deep image of the Ophiuchus cluster in the r' band obtained at the Canada France Hawaii Telescope with the MegaCam camera, we have applied an iterative process to subtract the contribution of the numerous stars that, due to the low Galactic latitude of the cluster, pollute the image, and have obtained a photometric catalogue of 2818 galaxies fully complete at r' = 20.5 mag and still 91% complete at r' = 21.5 mag. We use this catalogue to derive the cluster Galaxy Luminosity Function (GLF) for the overall image and for a region (hereafter the "rectangle" region) covering exactly the same physical size as the region in which the GLF of the Coma cluster was previously studied. We then compute density maps based on an adaptive kernel technique, for different magnitude limits, and define three circular regions covering 0.08, 0.08, and 0.06 deg2, respectively, centred on the cluster (C), on northwest (NW) of the cluster, and southeast (SE) of the cluster, in which we compute the GLFs. Results: The GLF fits are much better when a Gaussian is added to the usual Schechter function, to account for the excess of very bright galaxies. Compared to Coma, Ophiuchus shows a strong excess of bright galaxies. Conclusions: The properties of the two nearby very massive clusters Ophiuchus and Coma are quite comparable, though they seem embedded in different large-scale environments. Our interpretation is that Ophiuchus was built up long ago, as confirmed by its relaxed state (see paper I) while Coma is still in the process of forming. The photometric catalogue of Ophiuchus (full Table B.1) is

  14. Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina

    2018-02-01

    We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

  15. Interactions of galaxies outside clusters and massive groups

    NASA Astrophysics Data System (ADS)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  16. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  17. The 1000 Brightest HIPASS Galaxies: H I Properties

    NASA Astrophysics Data System (ADS)

    Koribalski, B. S.; Staveley-Smith, L.; Kilborn, V. A.; Ryder, S. D.; Kraan-Korteweg, R. C.; Ryan-Weber, E. V.; Ekers, R. D.; Jerjen, H.; Henning, P. A.; Putman, M. E.; Zwaan, M. A.; de Blok, W. J. G.; Calabretta, M. R.; Disney, M. J.; Minchin, R. F.; Bhathal, R.; Boyce, P. J.; Drinkwater, M. J.; Freeman, K. C.; Gibson, B. K.; Green, A. J.; Haynes, R. F.; Juraszek, S.; Kesteven, M. J.; Knezek, P. M.; Mader, S.; Marquarding, M.; Meyer, M.; Mould, J. R.; Oosterloo, T.; O'Brien, J.; Price, R. M.; Sadler, E. M.; Schröder, A.; Stewart, I. M.; Stootman, F.; Waugh, M.; Warren, B. E.; Webster, R. L.; Wright, A. E.

    2004-07-01

    We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H I Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is based on their H I peak flux density (Speak>~116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from ~107 to 4×1010 Msolar. While the BGC (z<0.03) is complete in Speak, only a subset of ~500 sources can be considered complete in integrated H I flux density (FHI>~25 Jy km s-1). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s-1, one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes |b|>10deg. Therefore, the BGC yields no evidence for a population of ``free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.

  18. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  19. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  20. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  1. Physical properties of z ~ 4 LBGs: differences between galaxies with and without Lyα emission

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Fontana, A.; Salimbeni, S.; Santini, P.; de Santis, C.; Gallozzi, S.; Giallongo, E.

    2007-08-01

    Aims:We analysed the physical properties of z ˜4 Lyman Break Galaxies observed in the GOODS-S survey, in order to investigate possible differences between galaxies where the Lyα is present in emission, and those where the line is absent or in absorption. Methods: The objects were selected from their optical color and then spectroscopically confirmed by Vanzella et al. (2005). From the public spectra we assessed the nature of the Lyα emission and divided the sample into galaxies with Lyα in emission and objects without a Lyα line (i.e. either absent or in absorption). We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, to study the observational properties of the galaxies, such as UV spectral slopes and optical to mid-infrared colors, and the possible differences between the two samples. Lastly, we used standard spectral fitting techniques to determine the physical properties of the galaxies, such as total stellar mass, stellar ages and so on, and again we looked at the possible differences between the two samples. Results: Our results indicate that LBG with Lyα in emission are on average a much younger and less massive population than the LBGs without Lyα emission. Both populations are forming stars very actively and are relatively dust free, although those with line emission seem to be even less dusty on average. We briefly discuss these results in the context of recent models for the evolution of Lyman break galaxies and Lyα emitters.

  2. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10'more » northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR

  3. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  4. Constraining the galaxy-halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.

    2017-09-01

    We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ˜ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ˜2.5, could be the result of dry minor mergers.

  5. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  6. Clustering properties of g -selected galaxies at z ~ 0.8

    DOE PAGES

    Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...

    2016-06-21

    In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less

  7. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  8. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  9. 77 FR 27767 - Galaxy Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1692-000] Galaxy Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Galaxy Energy...

  10. The MUSIC of Galaxy Clusters - III. Properties, evolution and Y-M scaling relation of protoclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan

    2014-06-01

    In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.

  11. Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling

    NASA Astrophysics Data System (ADS)

    Kamenetzky, J.; Privon, G. C.; Narayanan, D.

    2018-05-01

    Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4‑3 through J = 13‑12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the “best-case” scenario of a fully sampled SLED through J = 10‑9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.

  12. Beyond the fibre: resolved properties of Sloan Digital Sky Survey galaxies

    NASA Astrophysics Data System (ADS)

    Gerssen, J.; Wilman, D. J.; Christensen, L.

    2012-02-01

    We have used the Visible Multi-Object Spectrograph (VIMOS) integral field spectrograph to map the emission-line properties in a sample of 24 star-forming galaxies selected from the Sloan Digital Sky Survey (SDSS) data base. In this paper we present and describe the sample, and explore some basic properties of SDSS galaxies with resolved emission-line fields. We fit the Hα+[N II] emission lines in each spectrum to derive maps of continuum, Hα flux, velocity and velocity dispersion. The Hα, Hβ, [N II] and [O III] emission lines are also fit in summed spectra for circular annuli of increasing radius. A simple mass model is used to estimate dynamical mass within 10 kpc, which compared to estimates of stellar mass shows that between 10 and 100 per cent of total mass is in stars. We present plots showing the radial behaviour of equivalent width (EW)[Hα], u-i colour and emission-line ratios. Although EW[Hα] and u-i colour trace current or recent star formation, the radial profiles are often quite different. Whilst line ratios do vary with annular radius, radial gradients in galaxies with central line ratios typical of active galactic nucleus (AGN) or low-ionization nuclear emission-line regions are mild, with a hard component of ionization required out to large radii. We use our VIMOS maps to quantify the fraction of Hα emission contained within the SDSS fibre, taking the ratio of total Hα flux to that of a simulated SDSS fibre. A comparison of the flux ratios to colour-based SDSS extrapolations shows a 175 per cent dispersion in the ratio of estimated to actual corrections in normal star-forming galaxies, with larger errors in galaxies containing AGN. We find a strong correlation between indicators of nuclear activity: galaxies with AGN-like line ratios and/or radio emission frequently show enhanced dispersion peaks in their cores, requiring non-thermal sources of heating. Altogether, about half of the galaxies in our sample show no evidence for nuclear activity

  13. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  14. Painting galaxies into dark matter halos using machine learning

    NASA Astrophysics Data System (ADS)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  15. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  16. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ <ρgal> on ρtot/<ρtot>. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity

  17. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  18. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    NASA Astrophysics Data System (ADS)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  19. Census of the Local Universe (CLU) Hα Galaxy Survey: Characterization of Galaxy Catalogs from Preliminary Fields

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Kasliwal, Mansi; Van Sistine, Anglea; Kaplan, David; iPTF

    2018-01-01

    In this talk I introduce the Census of the Local Universe (CLU) galaxy survey. The survey uses 4 wavelength-adjacent, narrowband filters to search for emission-line (Hα) sources across ~3π (26,470 deg2) of the sky and out to distance of 200 Mpc. I will present an analysis of galaxy candidates in 14 preliminary fields (out of 3626) to assess the limits of the survey and the potential for finding new galaxies in the local Universe. We anticipate finding tens-of-thousands of new galaxies in the full ~3π survey. In addition, I present some interesting galaxies found in these fields, which include: newly discovered blue compact dwarfs (e.g., blueberries), 1 new green pea, 1 new QSO, and a known planetary nebula. The majority of the CLU galaxies show properties similar to normal star-forming galaxies; however, the newly discovered blueberries tend to have high star formation rates for their given stellar mass.

  20. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinis, S.; Gezari, S.; Kumar, S.

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less

  1. Physical Properties of UV-bright Clumps in Star-forming Galaxies at 0.5 ≤ z < 3

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Dekel, Avishai; Mandelker, Nir; Primack, Joel R.; CANDELS

    2018-06-01

    Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. As a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from the rest-frame images of 1270 galaxies at 0.5≤z<3.0. The physical properties of clumps (e.g., rest-frame color, stellar mass, star formation rate, age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U-V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and stellar mass of the host galaxies: at a fixed stellar mass, the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with stellar mass. Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B-V) gradient, and a positive specific star formation rate gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.

  2. MULTIDARK-GALAXIES: data release and first results

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Stoppacher, Doris; Prada, Francisco; Behrens, Christoph; Benson, Andrew; Cora, Sofia A.; Croton, Darren J.; Padilla, Nelson D.; Ruiz, Andrés N.; Sinha, Manodeep; Stevens, Adam R. H.; Vega-Martínez, Cristian A.; Behroozi, Peter; Gonzalez-Perez, Violeta; Gottlöber, Stefan; Klypin, Anatoly A.; Yepes, Gustavo; Enke, Harry; Libeskind, Noam I.; Riebe, Kristin; Steinmetz, Matthias

    2018-03-01

    We present the public release of the MULTIDARK-GALAXIES: three distinct galaxy catalogues derived from one of the Planck cosmology MULTIDARK simulations (i.e. MDPL2, with a volume of (1 h-1 Gpc)3 and mass resolution of 1.5 × 109 h-1 M⊙) by applying the semi-analytic models GALACTICUS, SAG, and SAGE to it. We compare the three models and their conformity with observational data for a selection of fundamental properties of galaxies like stellar mass function, star formation rate, cold gas fractions, and metallicities - noting that they sometimes perform differently reflecting model designs and calibrations. We have further selected galaxy subsamples of the catalogues by number densities in stellar mass, cold gas mass, and star formation rate in order to study the clustering statistics of galaxies. We show that despite different treatment of orphan galaxies, i.e. galaxies that lost their dark-matter host halo due to the finite-mass resolution of the N-body simulation or tidal stripping, the clustering signal is comparable, and reproduces the observations in all three models - in particular when selecting samples based upon stellar mass. Our catalogues provide a powerful tool to study galaxy formation within a volume comparable to those probed by ongoing and future photometric and redshift surveys. All model data consisting of a range of galaxy properties - including broad-band SDSS magnitudes - are publicly available.

  3. Physical Properties of Massive, Star-Forming Galaxies When the Universe Was Only Two Billion Years Old

    NASA Astrophysics Data System (ADS)

    Fu, Nicole Christina

    Due to the finite speed of light and a vast, expanding universe, telescopes are just now receiving the light emitted by galaxies as they were forming in the very early universe. The light from these galaxies has been redshifted (stretched to longer, redder wavelengths) as a result of its journey through expanding space. Using sophisticated techniques and exceptional multi-wavelength optical and infrared data, we isolate a population of 378 galaxies in the process of formation when the Universe was only two billion years old. By matching the distinctive properties of the light spectra of these galaxies to models, the redshift, age, dust content, star formation rate and total stellar mass of each galaxy are determined. Comparing our results to similar surveys of galaxy populations at other redshifts, a picture emerges of the growth and evolution of massive, star-forming galaxies over the course of billions of years.

  4. Kinematic properties and dark matter fraction of Virgo dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Boselli, A.; Peletier, R.; Gorgas, J.

    2015-03-01

    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity (Fig. 1). These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older (Fig. 1). Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.

  5. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlatedmore » with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.« less

  6. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0galaxies, in a local vicinity of 10 h-1 Mpc radius to determine some photometric and population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  7. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  8. X-Ray properties of Post-Merger Spheroidal Galaxies: The Missing Link in Understanding the Merger-AGN connection

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2017-09-01

    We propose to characterize the AGN properties of post-merger spheroidal galaxies, a well-defined, significant post starburst phase in merging galaxies. These galaxies probe the "coalesced" late stage of mergers lying between ULIRGs and quenched elliptical galaxies. They are characterized by shells and tidal tails with lifetimes (0.5 - 1 Gyr) similar to those of low luminosity AGN. The AGN detection fraction for 12 serendipitous Chandra sources is 83%. These `shell' galaxies may represent a key time step in major mergers which has previously been unexplored. We propose to image a well selected sample of 12 shells drawn from SDSS to investigate this missing chapter in mergers.

  9. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  10. Multi-wavelength observations of barred, flocculent galaxies

    NASA Astrophysics Data System (ADS)

    Ratay, Douglas Lee

    Although it is generally accepted that large galaxies form through the assemblage of smaller objects, an explanation for the morphology of galaxies is not available. Any complete theory of galaxy morphology must include production and dissolution mechanisms for galactic bars, rings, nuclear bars, spiral arms, and companions. This theory does not exist because of the lack of detailed data from many types of galaxies in different environments. We have defined a new sample of galaxies which are simultaneously flocculent, barred, and isolated. We have performed optical, near-infrared, and radio (HI) observations of the galaxies in this sample. We measured properties of our galaxies including bar length, bar axis ratio, HI diameter, HI mass, and dynamical mass. We found that our sample group is heterogeneous, and compares well to a standard samples of galaxies. We found two of our galaxies to possess companions, and two others to show evidence of current interactions. This is consistent with other observations indicating that local isolated galaxies do not possess a large number of small companions. We cannot rule out the possibility of very small companions. We find that as a group our sample is slightly less luminous than normal galaxies and may be more likely to be involved in interactions. We conclude that the bar and spiral arm features in our sample are due to processes internal to the galaxies, likely involving the interaction between the galactic disk and halo. We defined a control sample of barred, grand design galaxies to further determine the acceptability of barred, flocculent galaxies as a physically meaningful subset of galaxies.

  11. DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.

    2011-08-01

    Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the

  12. Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie; van Dokkum, Pieter

    2018-02-01

    Forward modeling of the full galaxy SED is a powerful technique, providing self-consistent constraints on stellar ages, dust properties, and metallicities. However, the accuracy of these results is contingent on the accuracy of the model. One significant source of uncertainty is the contribution of obscured AGN, as they are relatively common and can produce substantial mid-IR (MIR) emission. Here we include emission from dusty AGN torii in the Prospector SED-fitting framework, and fit the UV–IR broadband photometry of 129 nearby galaxies. We find that 10% of the fitted galaxies host an AGN contributing >10% of the observed galaxy MIR luminosity. We demonstrate the necessity of this AGN component in the following ways. First, we compare observed spectral features to spectral features predicted from our model fit to the photometry. We find that the AGN component greatly improves predictions for observed Hα and Hβ luminosities, as well as mid-infrared Akari and Spitzer/IRS spectra. Second, we show that inclusion of the AGN component changes stellar ages and SFRs by up to a factor of 10, and dust attenuations by up to a factor of 2.5. Finally, we show that the strength of our model AGN component correlates with independent AGN indicators, suggesting that these galaxies truly host AGN. Notably, only 46% of the SED-detected AGN would be detected with a simple MIR color selection. Based on these results, we conclude that SED models which fit MIR data without AGN components are vulnerable to substantial bias in their derived parameters.

  13. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  14. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  15. Paired and interacting galaxies: Conference summary

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.

  16. Statistical study of some Lee galaxy groups

    NASA Astrophysics Data System (ADS)

    Mohamed, Sabry A.; Fouad, Ahmed M.

    2017-12-01

    Compact groups of galaxies are systems of small number of galaxies close to each other. They are a good laboratory to study galaxy properties, such as structure, morphology and evolution which are affected by the environment and galaxy interactions. We applied the tree clustering technique (the Euclidean separation distance coefficients) to test the physical reality of groups and used certain criteria (Sabry et al., 2009) depending on the physical attributes of the galaxies. The sample of the data is the quintets groups of Lee compact groups of galaxies (Lee et al., 2004). It is based on a modified version of Hickson's criteria (Hickson, 1982). The results reveal the membership of each galaxy and how it is related to its group. The tables of groups and their members are included. Our results indicates that 12 Groups are real groups with real members while 18 Groups have one galaxy that has attribute discordant and should be discarded from its group.

  17. WINGS-SPE. III. Equivalent width measurements, spectral properties, and evolution of local cluster galaxies

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Poggianti, B. M.; Cava, A.; Moretti, A.; Varela, J.; Bettoni, D.; Couch, W. J.; D'Onofrio D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Marziani, P.; Moles, M.; Omizzolo, A.

    2014-06-01

    Context. Cluster galaxies are the ideal sites to look at when studying the influence of the environment on the various aspects of the evolution of galaxies, such as the changes in their stellar content and morphological transformations. In the framework of wings, the WIde-field Nearby Galaxy-cluster Survey, we have obtained optical spectra for ~6000 galaxies selected in fields centred on 48 local (0.04 < z < 0.07) X-ray selected clusters to tackle these issues. Aims: By classifying the spectra based on given spectral lines, we investigate the frequency of the various spectral types as a function of both the clusters' properties and the galaxies' characteristics. In this way, using the same classification criteria adopted for studies at higher redshift, we can consistently compare the properties of the local cluster population to those of their more distant counterparts. Methods: We describe a method that we have developed to automatically measure the equivalent width of spectral lines in a robust way, even in spectra with a non optimal signal-to-noise ratio. This way, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [Oii] and Hδ lines. Results: After a quality check, we are able to measure 4381 of the ~6000 originally observed spectra in the fields of 48 clusters, of which 2744 are spectroscopically confirmed cluster members. The spectral classification is then analysed as a function of galaxies' luminosity, stellar mass, morphology, local density, and host cluster's global properties and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of MV < -18, galaxies in a post-starburst phase represent only ~11% of the cluster population, and this fraction is reduced to ~5% at MV < -19.5, which compares to the 18% at the same magnitude limit for high

  18. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  19. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  20. Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Mori, M.; Umemura, M.

    2008-10-01

    High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.

  1. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  2. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.

  3. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  4. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-07-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  5. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  6. Gas and Dust Properties in Dwarf Irregular Galaxies

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Madden, S. C.; Colgan, S. W. J.; Geis, N.; Haas, M.; Maloney, P.; Nikola, T.; Poglitsch, A.

    1997-01-01

    We present a study of the 158 (micron)meter [C II] fine structure emission line from a sample of 11 low metallicity irregular galaxies using the NASA Kuiper Airborne Observatory (KAO). Our preliminary results demonstrate that the ratio of the 158 (micron)meter [C II] emission to the CO-12(1 yields 0) emission ranges from 6,000 to 46,000. These ratios are significantly enhanced relative to clouds within the Galaxy and to normal metallicity galaxies, which typically have values in the range 2,000 to 6,300. We also find that the [C II] emission in dwarf irregular galaxies can be up to 5% of the far-infrared (FIR) emission, a higher fraction of the FIR than in normal metallicity galaxies. We discuss these results for the dwarf irregular galaxies and compare them to those observed in normal metallicity galaxies. The enhanced 158 (micron)meter [C II] emission relative to CO-12(1 yields 0) emission can be understood in terms of the increased penetration depth of ultraviolet (UV) photons into the clouds in low metallicity environments.

  7. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, C.; Prandoni, I.; Lapi, A.

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less

  8. Mosfire Spectroscopy Of Galaxies In Cosmic Noon

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya

    2017-07-01

    -EW distribution is much broader (10-500˚A) than can be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. This result is robust against uncertainties in dust correction and observational bias, and no single IMF (i.e. non-Salpeter slope) can explain the distribution. Starburst models cannot explain the Hα-EW distribution because: 1) spectral stacking still shows an excess Hα-EW in composite populations and 2) Monte Carlo burst models show that the timescale for high Hα-EW is too short to explain their abundance in the ZFIRE sample. Other possible physical mechanisms that could produce excess ionising photons for a given star-formation rate, and hence high equivalent widths, including models with variations in stellar rotation, binary star evolution, metallicity, and upper mass cutoff of the IMF are investigated and ruled out. IMF variation is one possible explanation for the high Hα-EWs. However, the highest Hα-EW values would require very shallow slopes (Γ > -1.0) and no single IMF change can explain the large variation in Hα-EWs. Instead the IMF would have to vary stochastically. Therefore, currently there is no simple physical model to explain the large variation in Hα-EWs at z ˜ 2, but the distinct differences of the z ˜ 2 sample with that of local galaxies are found to be intriguing. Further study is required to fully constrain the stellar population parameters of actively star-forming galaxies at the epoch of maximum star-formation. Probing multiple rest-frame UV and optical features of galaxies simultaneously along with galaxy dynamical studies via integral field spectroscopy will be vital to understand stellar and ionized gas properties of these galaxies. Furthermore, low-z analogues of galaxies at z ˜ 2 will provide vital clues to constrain galaxy evolution models aided by the ability to probe galaxies in high resolution to low surface brightness limits.

  9. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.

    2009-04-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that

  10. The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.

    2008-08-01

    The VVDS-Wide survey has been designed to trace the large-scale distribution of galaxies at z ~ 1 on comoving scales reaching ~100~h-1 Mpc, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude IAB = 22.5, targeting four independent fields with sizes of up to 4 deg2 each. We discuss the survey strategy which covers 8.6 deg2 and present the general properties of the current redshift sample. This includes 32 734 spectra in the four regions, covering a total area of 6.1 deg2 with a sampling rate of 22 to 24%. This paper accompanies the public release of the first 18 143 redshifts of the VVDS-Wide survey from the 4 deg2 contiguous area of the F22 field at RA = 22^h. We have devised and tested an objective method to assess the quality of each spectrum, providing a compact figure-of-merit. This is particularly effective in the case of long-lasting spectroscopic surveys with varying observing conditions. Our figure of merit is a measure of the robustness of the redshift measurement and, most importantly, can be used to select galaxies with uniform high-quality spectra to carry out reliable measurements of spectral features. We also use the data available over the four independent regions to directly measure the variance in galaxy counts. We compare it with general predictions from the observed galaxy two-point correlation function at different redshifts and with that measured in mock galaxy surveys built from the Millennium simulation. The purely magnitude-limited VVDS Wide sample includes 19 977 galaxies, 304 type I AGNs, and 9913 stars. The redshift success rate is above 90% independent of magnitude. A cone diagram of the galaxy spatial distribution provides us with the current largest overview of large-scale structure up to z ~ 1, showing a rich texture of over- and under-dense regions. We give the mean N(z) distribution averaged over 6

  11. Sub-millimetre properties of massive star-forming galaxies at z ~ 2 in SHADES/SXDF

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Dunlop, J. S.

    2007-05-01

    We study the submillimetre (submm) properties of the following NIR-selected massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs), distant red galaxies (DRGs) and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. We detected 6 NIR-selected galaxies in our SCUBA map. Four submm-detected galaxies out of six are found to be detected both at 24 micron and in radio (1.4 GHz), and therefore confirmed as genuine submm-bright galaxies. We identify two submm-bright NIR-selected galaxies are the BzK-DRG-ERO overlapping population. Although this overlapping population is rare, about 12% of this population could be submm galaxies. With a stacking analysis, we detected the 850-micron flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution from BzKs at z˜2 to submm background is about 10 - 15 % and similar to that from EROs typically at z˜1, BzKs have a higher fraction (˜30%) of flux in resolved sources than EROs do. Therefore, submm flux of BzKs seems to be biased high. From the SED fitting using an evolutionary model of starbursts with radiative transfer, submm-bright NIR-selected galaxies, mostly BzKs, are found to have the stellar mass of >5x1010M[sun] with the bolometric luminosity of >3x1012L[sun]. On the other hand, an average SED of submm-faint BzKs indicates the typical stellar mass of <6x1010M[sun] and therefore less massive.

  12. New Methods for Tracking Galaxy and Black Hole Evolution Using Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    French, Katheryn Decker

    2017-08-01

    Galaxies in transition from star-forming to quiescence are a natural laboratory for exploring the processes responsible for this evolution. Using a sample of post-starburst galaxies identified to have recently experienced a recent burst of star formation that has now ended, I explore both the fate of the molecular gas that drives star formation and the increased rate of stars disrupted by the central supermassive black hole. Chapter 1 provides an introduction to galaxy evolution through the post-starburst phase and to tidal disruption events, which surprisingly favor post-starburst galaxy hosts. In Chapter 2, I present a survey of the molecular gas properties of 32 post-starburst galaxies traced by CO (1-0) and CO (2-1). In order to accurately put galaxies on an evolutionary sequence, we must select likely progenitors and descendants. We do this by identifying galaxies with similar starburst properties, such as the amount of mass produced in the burst and the burst duration. In Chapter 3, I describe a method to determine the starburst properties and the time elapsed since the starburst ended, and discuss trends in the molecular gas properties of these galaxies with time. In Chapter 4, I present the results of followup observations with ALMA of HCN (1-0) and HCO+ (1-0) in two post-starburst galaxies. CO (1-0) is detected in over half (17/32) the post-starburst sample and the molecular gas mass traced by CO declines on ˜100 Myr timescales after the starburst has ended. HCN (1-0) is not detected in either galaxy targeted, indicating the post-starbursts are now quiescent because of a lack of the denser molecular gas traced by HCN. In Chapter 5 I quantify the increase in TDE rate in quiescent galaxies with strong Balmer absorption to be 30 - 200x higher than in normal galaxies. Using the stellar population fitting method from Chapter 3, I examine possible reasons for the increased TDE rate in post-starburst galaxies in Chapter 6. The TDE rate could be boosted due to a

  13. Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1)

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Norberg, P.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Loveday, J.; Merson, A.; Peacock, J. A.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K. A.; Phillipps, S.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    Using the complete Galaxy and Mass Assembly I (GAMA-I) survey covering ˜142 deg2 to rAB= 19.4, of which ˜47 deg2 is to rAB= 19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Λ cold dark matter N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14 388 galaxy groups (with multiplicity ≥2), including 44 186 galaxies out of a possible 110 192 galaxies, implying ˜40 per cent of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with five or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin. The G3Cv1 catalogue will be made publicly available as and when the relevant GAMA redshifts are made available at .

  14. GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Japelj, J.; Vergani, S. D.; Savaglio, S.; Palazzi, E.; Covino, S.; Flores, H.; Goldoni, P.; Cupani, G.; Krühler, T.; Mannucci, F.; Onori, F.; Rossi, A.; D'Elia, V.; Pian, E.; D'Avanzo, P.; Gomboc, A.; Hammer, F.; Randich, S.; Fiore, F.; Stella, L.; Tagliaferri, G.

    2015-10-01

    Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognized that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained Very Large Telescope (VLT)/X-Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well-constrained information on their characteristics such as metallicity, dust extinction and star formation rate (SFR). We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, SFRs, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. SFRs and metallicities are measured for all the hosts analysed in this paper and metallicities are well determined for four hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star-forming galaxies.

  15. How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Tumlinson, Jason

    2009-07-01

    We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from the Sloan Digital Sky Survey. In aggregate, these sightlines will constitute a statistically sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain

  16. Obscured Active Galactic Nuclei in Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shier, L. M.; Rieke, M. J.; Rieke, G. H.

    1996-10-01

    We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.

  17. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  18. Shocked POststarbust Galaxy Survey. I. Candidate Post-starbust Galaxies with Emission Line Ratios Consistent with Shocks

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Cales, Sabrina L.; Rich, Jeffrey A.; Appleton, Philip N.; Kewley, Lisa J.; Lacy, Mark; Lanz, Lauranne; Medling, Anne M.; Nyland, Kristina

    2016-06-01

    SPOGs* further, including their morphologies, AGN properties, and environments, has the potential for us to build a more complete picture of the initial conditions that can lead to a galaxy evolving.

  19. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less

  20. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less

  1. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  2. The gas content in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    The results from two large and homogeneous surveys, one in H I, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal FIR radiation and nonthermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher FIR luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, it is concluded that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties.

  3. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large

  4. Resolved Star Formation in Galaxies Using Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team

    2018-06-01

    The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.

  5. Extreme emission-line galaxies out to z ~ 1 in zCOSMOS. I. Sample and characterization of global properties

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.

    2015-06-01

    Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (<0.1 Z⊙) EELGs. While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and cometary or tadpole galaxies, we find that ~29% of them show additional low-surface-brightness features, which strongly suggests recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of

  6. A Study of the Dependence of the Properties of Galaxy Clusters on Cluster Morphology.

    NASA Astrophysics Data System (ADS)

    Lugger, Phyllis Minnie

    1982-03-01

    A quantitative study of the properties of clusters of galaxies as a function of cluster morphology has been carried out using photographic plates obtained with the Palomar 48 inch Schmidt telescope. Surface brightness profiles of 35 first ranked cluster galaxies and luminosity functions of nine clusters are presented and analyzed. The dispersion in the metric magnitudes of first ranked galaxies is quite small ((TURN) 0.4 mag) which is consistent with the results of Kristian, Sandage and Westphal as well as Hoessel, Gunn and Thuan. For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is (TURN) 0.5 mag brighter than for the non-cD galaxies. The dispersion in the metric magnitudes for the 10 cD galaxies studied is found to be much smaller ((sigma) (TURN) 0.1 mag) than the dispersion in the metric magnitudes of the non-cD first ranked galaxies ((sigma) (TURN) 0.4 mag). The de Vaucouleurs effective radius - magnitude relation determined in the present study for first ranked galaxies (log r(,e) = -0.2 M + const.) is consistent with the extrapolations to brighter magnitudes of the range of relations found by Strom and Strom. The average residuals from the mean radius-magnitude relation for the cD and non-cD galaxy samples were not found to differ at a significant level. Luminosity functions for the region within 0.5 Mpc of the cluster center for three of the clusters studied (A1656, A2147, and A2199) show a deficit of bright galaxies when compared to a concentric annular region with bounds of 0.5 and 1.0 Mpc. Characteristic magnitudes for the nine clusters (determined from square regions 4.6 Mpc on a side) show no significant correlation with cluster morphology, central density, or total magnitude of the first ranked galaxy. The mean values of the Schechter function parameters M('*) and (alpha) are in very good agreement with the previous determinations by Schechter and by Dressler. The differential luminosity functions for A569 and A1656 do not

  7. The Dynamical Properties of Virgo Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Ouellette, Nathalie N.-Q.

    By virtue of its proximity, the Virgo Cluster is an ideal laboratory for us to test our understanding of the formation of structure in our Universe. In this spirit, we present a dynamical study of 33 gas-poor and 34 gas-rich Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo survey. Our final spectroscopic data set was acquired at the 3.5-m telescope at the Apache Point Observatory. Halpha rotation curves for the gas-rich galaxies were modelled with a multi-parameter fit function from which various velocity measurements were inferred. Analog values were measured off of the observed rotation curves, but yielded noisier scaling relations, such as the luminosity-velocity relation (also known as the Tully-Fisher relation). Our best i -band Tully-Fisher relation has slope alpha = --7.2 +/- 0.5 and intercept Mi(2.3) = --21.5 +/- 1.1 mag, matching similar previous studies. Our study takes advantage of our own, as well as literature, data; we plan to continue expanding our compilation in order to build the largest Tully-Fisher relation for a cluster to date. Following extensive testing of the IDL routine pPXF , extended velocity dispersion profiles were extracted for our gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy velocity dispersion in the literature, we have endeavoured to rectify this situation by determining the radius at which the measured velocity dispersion, coupled with the galaxy luminosity, yields the tightest Faber-Jackson relation. We found that radius to be 1.5 R e, which exceeds the extent of most dispersion profiles in other works. The slope of our Faber-Jackson relation is alpha = --4.3 +/- 0.2, which closely matches the virial value of 4. This analysis will soon be applied to a study of the Virgo Cluster Fundamental Plane. Rotation correction of our dispersion profiles will also permit the study of galaxies' velocity dispersion profile shapes in an attempt to refine our

  8. An Archival COS Study of Multi-phase Galactic Outflows and Their Dependence on Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Chisholm, John

    2013-10-01

    Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.

  9. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  10. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  11. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  12. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  13. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  14. nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain

    2016-05-01

    We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.

  15. Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.

    2011-11-01

    We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.

  16. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  17. Low Ionization Absorbing Gas Kinematics Around Z ~ 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Churchill, C. W.; Steidel, C. C.; Vogt, S. S.

    1996-12-01

    Absorption profiles of the Mg II lambda lambda 2796,2803 doublet arising from gas associated with 48 ``normal'' intermediate redshift (0.4 < z < 1.7) galaxies have been resolved in QSO spectra at 6 km s(-1) resolution using HIRES on Keck I. We have found evidence for pronounced redshift evolution in the subcomponent velocity two--point correlation function, suggestive that the gas surrounding galaxies has settled over a 5--10 Gyr look--back time. Based upon a sub--sample of 15 galaxies at z<1, we found no evidence for correlations between the absorbing gas kinematics and the projected galactocentric distance of the gas, galaxy luminosities, or galaxy rest--frame colors (though trends between galaxy properties and absorption properties are apparent from a larger low resolution absorption line sample). The implication is that low ionization gas surrounding early epoch galaxies was not smoothly distributed either spatially or kinematically out to a galactocentric distance ~ 40 kpc. Directly from the profiles, we have measured the number of separate absorbing ``kinematic subsystems'' associated with each galaxy, and each subsystem's profile velocity width, asymmetry (skew), and integrated column density. The distribution in these subsystem properties with velocity is highly peaked at zero, and does not exhibit a bimodality. The lack of a bimodality is suggestive that the gas kinematics is not dominated by quasi--symmetric infall into galactic potential wells. In view of absorption line studies of local galaxies, it appears that extended regions of low ionization gas surrounding galaxies represent a dynamical and active epoch of ``normal'' galaxy evolution. The reservoirs of gas for these extended ``halos'' were probably residual infalling fragments (from earlier formation processes and on--going dynamical events) whose evolution first included a settling in velocity dispersion and then more recently a decline in number. The build up of thick and/or extended gaseous

  18. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  19. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also

  20. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  1. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  2. LOSS Revisited. I. Unraveling Correlations Between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search

    NASA Astrophysics Data System (ADS)

    Graur, Or; Bianco, Federica B.; Huang, Shan; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Eldridge, J. J.

    2017-03-01

    Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, I.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.

  3. A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample

    DOE PAGES

    Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...

    2012-01-01

    Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less

  4. COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

    NASA Astrophysics Data System (ADS)

    Laigle, C.; Pichon, C.; Arnouts, S.; McCracken, H. J.; Dubois, Y.; Devriendt, J.; Slyz, A.; Le Borgne, D.; Benoit-Lévy, A.; Hwang, Ho Seong; Ilbert, O.; Kraljic, K.; Malavasi, N.; Park, Changbom; Vibert, D.

    2018-03-01

    The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation HORIZON-AGN. They show that the photometric redshift accuracy of the observed catalogue (σz < 0.015 at M* > 1010M⊙ and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the HORIZON-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties.

  5. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The

  6. On the fundamental properties of dynamically hot galaxies

    NASA Astrophysics Data System (ADS)

    Kritsuk, Alexei G.

    1997-01-01

    A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.

  7. Galaxies driven only by secular evolution?

    NASA Astrophysics Data System (ADS)

    Verdes-Montenegro, Lourdes

    2015-03-01

    The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies, http://amiga.iaa.es) has identified a significant sample of very isolated (T cc (nearest-neighbor) ~2-3Gyr) galaxies in the local Universe and revealed that they have different properties than galaxies in richer environments. Our analysis of a multiwavelength database includes quantification of degree of isolation, morphologies, as well as FIR and radio line/continuum properties. Properties usually regarded as susceptible to interaction enhancement show lower averages in AMIGA-lower than any galaxy sample yet identified. We find lower MIR/FIR measures (Lisenfeld et al. 2007), low levels of radio continuum emission (Leon et al. 2008), no radioexcess above the radioFIR correlation (0%, Sabater et al.2008), a small number of AGN (22%, Sabater et al. 2012), and lower molecular gas content (Lisenfeld et al. 2011). The late-type spiral majority in our sample show very small bulge/total ratios (largely <0.1) and Sersic indices consistent with an absence of classical bulges (Durbala et al. 2008). They show redder g-r colors and lower color dispersion for AMIGA subtypes (Fernandez-Lorenzo et al. 2012) and show the narrowest (gaussian) distribution of HI profile asymmetries of any sample yet studied. This work has been supported by Grant AYA2011-30491-C02-01 co-financed by MICINN and FEDER funds, and the Junta de Andalucia (Spain) grants P08-FQM-4205 and TIC-114.

  8. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  9. Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs

    NASA Astrophysics Data System (ADS)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.

    2018-01-01

    In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.

  10. Probabilistic Inference of Dark Matter Properties in Galaxy Clusters and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Ng, Yin-Yee

    2016-03-01

    "Mass tells spacetime how to curve, spacetime tells mass how to move". This famous quote by physicist John Archibald Wheeler succinctly summarizes General Relativity, the most successful theory that describes our universe at large scale. However, most of the mass that General Relativity describes, namely dark matter (DM), remains a mystery. We have solid evidence of the existence of DM from various observations, but we know little or nothing about the particle nature of DM and how DM particles interact with different particles. Completing this knowledge gap would improve or revolutionize our established cosmological model, the Lambda Cold-Dark Matter (CDM) model, and give directions to theories beyond the standard particle physics model. This work attempts to study DM by examining and extending existing modeling approaches of DM and its visible tracers in a probabilistic way. The single verified form of DM interaction is gravitational. Currently, the only way to infer the properties of DM is through visible tracers. Most of these indirect detections either have low signal-to-noise, sparse coverage, or missing variables. These limitations introduce additional modeling choices and uncertainties. A probabilistic approach allows us to propagate the uncertainties appropriately and marginalize any missing variables. There are two recurring types of visible tracers that my work uses. The first type of tracers are galaxies and observables in the overdense regions of DM. These tracers allow us to infer the macroscopic dynamical properties of DM distribution that we want to study. The second type of tracers, on the hand, are in the background, i.e. further away than the foreground dark matter, from us observers. The gravity of DM can bend spacetime such that the path of light traveling in the vicinity would also curve, leaving distortions in the galaxy images. In the introduction (first chapter) of this thesis, I will lay out the technical history, terminology and the

  11. On the Supermassive Black Hole-Galaxy Coevolution

    NASA Astrophysics Data System (ADS)

    Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.

    2017-01-01

    In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  12. Galaxy morphology - An unsupervised machine learning approach

    NASA Astrophysics Data System (ADS)

    Schutter, A.; Shamir, L.

    2015-09-01

    Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.

  13. Stellar properties of dwarf galaxies and their connections with the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Revaz, Yves; Pascale Jablonka

    2018-06-01

    In this talk, relying on recent chemo-dynamical simulations, I will describe the stellar properties and in particular the abundances ratios of dwarf galaxies emerging from a LCDM framework. Faint systems quenched by the UV-background as well as luminous ones exhibiting an extended star formation history nicely reproduce observations, without necessary requiring a strong interaction with the Milky Way. However, dwarf galaxies with complex star formation histories like Carina and Fornax are much more difficult to reproduce. Those systems are often believed to result from an interaction with the Milky Way. I will show that when such interaction is taken into account in our high resolution simulations through ram pressure stripping, a much more complex reality appears.

  14. The dark side of galaxy colour

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.

    2013-10-01

    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin

  15. The JCMT Nearby Galaxies Legacy Survey - VII. Hα imaging and massive star formation properties

    NASA Astrophysics Data System (ADS)

    Sánchez-Gallego, J. R.; Knapen, J. H.; Wilson, C. D.; Barmby, P.; Azimlu, M.; Courteau, S.

    2012-06-01

    We present Hα fluxes, star formation rates (SFRs) and equivalent widths (EWs) for a sample of 156 nearby galaxies observed in the 12CO J= 3-2 line as part of the James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey. These are derived from images and values in the literature and from new Hα images for 72 galaxies which we publish here. We describe the sample, observations and procedures to extract the Hα fluxes and related quantities. We discuss the SFR properties of our sample and confirm the well-known correlation with galaxy luminosity, albeit with high dispersion. Our SFRs range from 0.1 to 11 M⊙ yr-1 with a median SFR value for the complete sample of 0.2 M⊙ yr-1. This median value is somewhat lower than similar published measurements, which we attribute, in part, to our sample being H I selected and, thus, not biased towards high SFRs as has frequently been the case in previous studies. Additionally, we calculate internal absorptions for the Hα line, A(Hα), which are lower than many of those used in previous studies. Our derived EWs, which range from 1 to 880 Å with a median value of 27 Å, show little dependence on luminosity but rise by a factor of 5 from early- to late-type galaxies. This paper is the first in a series aimed at comparing SFRs obtained from Hα imaging of galaxies with information derived from other tracers of star formation and atomic and molecular gas.

  16. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  17. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  18. Properties of galaxies reproduced by a hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.

  19. WISE infrared properties of OH megamaser galaxies: Guide for future FAST OHM searching?

    NASA Astrophysics Data System (ADS)

    Zhang, JiangShui; Wang, JunZhi; Li, Di

    2015-08-01

    All 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH > 10 Lsun) published so far were compiled and were cross-identified with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4 band) were collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about 40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1-W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22 μm and the color [W1]-[W4] for the Arecibo OHM hosts. In summary, these clues should provide suitable constraints on the sample selection for future OH megamaser surveys through the Five hundred aperture spherical telescope (FAST). Further potentials on FAST OH megamasers research are investigated, including detectability, sky density of OH megamasers etc.

  20. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  1. X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-02-01

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ˜7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ˜0.1% to 50%, I.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (I.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  2. LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graur, Or; Bianco, Federica B.; Huang, Shan

    Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties.more » The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.« less

  3. Does the galaxy-halo connection vary with environment?

    NASA Astrophysics Data System (ADS)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  4. Galaxy and Mass Assembly (GAMA): Mid-infrared Properties and Empirical Relations from WISE

    NASA Astrophysics Data System (ADS)

    Cluver, M. E.; Jarrett, T. H.; Hopkins, A. M.; Driver, S. P.; Liske, J.; Gunawardhana, M. L. P.; Taylor, E. N.; Robotham, A. S. G.; Alpaslan, M.; Baldry, I.; Brown, M. J. I.; Peacock, J. A.; Popescu, C. C.; Tuffs, R. J.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Lara-López, M. A.; Leschinski, K.; López-Sánchez, A. R.; Norberg, P.; Owers, M. S.; Wang, L.; Wilkins, S. M.

    2014-02-01

    The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Survey Explorer (WISE), allows us to explore for the first time the mid-infrared properties of >110, 000 galaxies over 120 deg2 to z ~= 0.5. In this paper we detail the procedure for producing the matched GAMA-WISE catalog for the G12 and G15 fields, in particular characterizing and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4 μm and 4.6 μm WISE measurements. Similarly dust-corrected Hα-derived star formation rates can be compared to 12 μm and 22 μm luminosities to quantify correlations that can be applied to large samples to z < 0.5. To illustrate the applications of these relations, we use the 12 μm star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at z ~ 0.5. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100 h -1 kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.

  5. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  6. Fitting and Phenomenology in Type IA Supernova Cosmology: Generalized Likelihood Analyses for Multiple Evolving Populations and Observations of Near-Infrared Lightcurves Including Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Ponder, Kara A.

    In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature

  7. Properties of galaxies reproduced by a hydrodynamic simulation.

    PubMed

    Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L

    2014-05-08

    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales.

  8. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  9. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  10. COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.

    We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less

  11. Exploring Properties of HI Clouds in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Berger, Clara; Hunter, Deidre Ann

    2018-01-01

    Dwarf Irregular galaxies form stars and maintain exponential stellar disks at extremely low gas densities. One proposed method of maintaining such regular outer disks is scattering stars off of HI clouds. In order to understand the processes present in dwarf irregular stellar disks, we present a survey of atomic hydrogen clouds in and around a subset of representative galaxies from the LITTLE THINGS survey. We apply a cloud identification program to the 21 cm HI line emission cubes and extract masses, radii, surface densities, and distances from the center of the galaxy in the plane of the galaxy of each cloud. Our data show a wide range of clouds characterized by low surface densities but varied in mass and size. The number of clouds found and the mass of the most massive cloud show no correlation to integrated star forming rates or luminosity in these galaxies. However, they will be used as input for models of stars scattering off of HI clouds to better understand the regular stellar disks in dwarf Irregular galaxies.We acknowledge support from the National Science Foundation grant AST-1461200 to Northern Arizona University for Research Experiences for Undergraduates summer internships.

  12. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  13. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  14. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  15. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  16. Spiral galaxy HI models, rotation curves and kinematic classifications

    NASA Astrophysics Data System (ADS)

    Wiegert, Theresa B. V.

    Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional "tilted-ring'' method RCs. The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a

  17. X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldassare, Vivienne F.; Gallo, Elena; Reines, Amy E.

    2017-02-10

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39}more » to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.« less

  18. Host galaxy identification for supernova surveys

    DOE PAGES

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; ...

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less

  19. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less

  20. Host galaxy identification for supernova surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less

  1. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less

  2. Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-12-01

    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

  3. Herschel observations of Hickson compact groups of galaxies: Unveiling the properties of cold dust

    NASA Astrophysics Data System (ADS)

    Bitsakis, T.; Charmandaris, V.; Appleton, P. N.; Díaz-Santos, T.; Le Floc'h, E.; da Cunha, E.; Alatalo, K.; Cluver, M.

    2014-05-01

    We present a Herschel far-infrared and sub-millimetre (sub-mm) study of a sample of 120 galaxies in 28 Hickson compact groups (HCGs). Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminosities, and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically "old" groups, those with more than 25% of early-type members and redder UV-optical colours, also have significantly lower dust-to-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and in the field. Examining their dust-to-gas mass ratios, we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced owing to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically "old" groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given their stellar masses, star formation rates, and UV-optical colours, we suggest that red late-type and dusty lenticular galaxies represent transition populations between blue star-forming disk galaxies and quiescent early-type ellipticals. On the other hand, both the complete absence of any correlation between the dust and stellar masses of the dusty ellipticals and their enhanced star formation activity, suggest the increase in their gas and dust content due to accretion and merging. Our deep Herschel observations also allow us to detect the presence of diffuse cold intragroup dust in 4 HCGs. We also find that the fraction of 250 μm emission that is located outside of the main bodies of both the red late-type galaxies and the dusty lenticulars is 15-20% of their integrated emission at this band. All these findings are consistent with an evolutionary scenario in which gas dissipation, shocks, and turbulence, in addition to

  4. Spectrophotometric Properties of E+A Galaxies in SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Marinelli, Mariarosa; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Melchert, Nancy; Ojanen, Winonah; Weaver, Olivia; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    Quenched post-starburst galaxies, or E+A galaxies, represent a unique and informative phase in the evolution of galaxies. We used a qualitative rubric-based methodology, informed by the literature, to manually select galaxies from the SDSS-IV IFU survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) using the single-fiber spectra from the Sloan Digital Sky Survey Data Release 8. Of the 2,812 galaxies observed so far in MaNGA, we found 39 galaxies meeting our criteria for E+A classification. Spectral energy distributions of these 39 galaxies from the far-UV to the mid-infrared demonstrate a heterogeneity in our sample emerging in the infrared, indicating many distinct paths to visually similar optical spectra. We used SDSS-IV MaNGA Pipe3D data products to analyze stellar population ages, and found that 34 galaxies exhibited stellar populations that were older at 1 effective radius than at the center of the galaxy. Given that our sample was manually chosen based on E+A markers in the single-fiber spectra aimed at the center of each galaxy, our E+A galaxies may have only experienced their significant starbursts in the central region, with a disk of quenched or quenching material further outward. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  5. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  6. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  7. SDSS-II Supernova survey. An analysis of the largest sample of type IA supernovae and correlations with host-galaxy spectral properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less

  8. The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering

    NASA Technical Reports Server (NTRS)

    Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.

  9. ASCA observations of distant clusters of galaxies.

    NASA Astrophysics Data System (ADS)

    Tsuru, T.; Koyama, K.; Hughes, J. P.; Arimoto, N.; Kii, T.; Hattori, M.

    It is important not only in studies of clusters of galaxies but also in cosmological aspects to investigate the evolution of X-ray properties of clusters of galaxies. ASCA enables detailed spectral studies on distant clusters and the evolution of temperature for the first time. The authors present here "preliminary" results of ASCA observation of 17 distant (z = 0.14 - 0.55) clusters of galaxies. The sample includes: Cl0016+16 Abell 370, Abell 1995, Abell 959, ACGG 118, Zw 3136, EMSS 1305.4+2941, Abell 1851, Abell 963, Abell 2163, EMSS 0839.8+2938, Abell 665, Abell 1689, Abell 2218, Abell 586, Abell 1413, Abell 1895. The cosmological constants of H0 = 50 km/s/Mpc and q0 = 0.5 are adopted in this paper.

  10. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial

  11. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less

  12. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-05-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  13. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  14. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  15. What lensed galaxies say about winds and physical conditions in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Gladders, Michael; Sharon, Keren; Wuyts, Eva; Bayliss, Matthew B.; Bordoloi, Rongmon

    2015-08-01

    Gravitational lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using imaging from Hubble and Spitzer, and high-quality spectroscopy from Keck, Magellan, and Hubble, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed. In particularly favorable cases, the imaging and spectra measure variations in physical and wind properties over spatial scales down to ~200 pc. My talk will include results from Bayliss et al. 2014, Wuyts et al. 2014, Whitaker et al. 2014, and Rigby et al. 2014, as well as results not yet published.

  16. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  17. Baryonic distributions in galaxy dark matter haloes - II. Final results

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  18. Infrared Emission and Thermal Processes in Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Mundy, Lee; Wolfire, Mark

    1999-01-01

    In this research we constructed theoretical models of the infrared and submillimeter line and continuum emission from the neutral interstellar medium in the Milky Way and external galaxies. The model line intensities were compared to observations of the Galactic disk and several galaxies to determine the average physical properties of the neutral gas including the density, temperature, and ultraviolet radiation field which illuminates the gas. In addition we investigated the heating mechanisms in the Galactic disk and estimated the emission rate of the [C 11] 158 micrometer line as a function of position in the Galaxy. We conclude that the neutral gas is heated mainly by the grain photoelectric effect and that a two phase (CNM+WNM) is possible between Galactic radii R = 3 kpc and R = 18 kpc. Listings of meeting presentations and publications are included.

  19. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  20. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  1. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard

  2. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard

  3. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gómez, Mario E.; Prada, Francisco

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  4. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  5. Panchromatic properties of 99000 galaxies detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys

    NASA Astrophysics Data System (ADS)

    Obrić, M.; Ivezić, Ž.; Best, P. N.; Lupton, R. H.; Tremonti, C.; Brinchmann, J.; Agüeros, M. A.; Knapp, G. R.; Gunn, J. E.; Rockosi, C. M.; Schlegel, D.; Finkbeiner, D.; Gaćeša, M.; Smolčić, V.; Anderson, S. F.; Voges, W.; Jurić, M.; Siverd, R. J.; Steinhardt, W.; Jagoda, A. S.; Blanton, M. R.; Schneider, D. P.

    2006-08-01

    We discuss the panchromatic properties of 99088 galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 1 `main' spectroscopic sample (a flux-limited sample for 1360deg2). These galaxies are positionally matched to sources detected by ROSAT, Galaxy Evolution Explorer (GALEX), two-Micron All-Sky Survey (2MASS), Infrared Astronomical Satellite (IRAS), Green Bank GB6 survey (GB6), Faint Images of the Radio Sky at Twenty-centimetres (FIRST), NRAO VLA Sky Survey (NVSS) and Westerbork Northern Sky Survey (WENSS). The matching fraction varies from <1 per cent for ROSAT and GB6 to ~40 per cent for GALEX and 2MASS. In addition to its size, the advantages of this sample are well-controlled selection effects, faint flux limits and the wealth of measured parameters, including accurate X-ray to radio photometry, angular sizes and optical spectra. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colours and emission-line strengths. For example, ~2/3 of SDSS `main' galaxies classified as active galactic nucleus (AGN) using emission-line strengths are detected by 2MASS, while the corresponding fraction for star-forming galaxies (SFs) is only ~1/10. Similarly, over 90 per cent of galaxies detected by IRAS display strong emission lines in their optical spectra, compared to ~50 per cent for the whole SDSS sample. Using GALEX, SDSS and 2MASS data, we construct the ultraviolet-infrared (UV-IR) broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, the SDSS u- and r-band data, supplemented with redshift, can be used to `predict' K-band magnitudes measured by 2MASS with an rms scatter of only 0.2mag. When a dust content estimate determined from SDSS spectra with the aid of models is also utilized, this scatter decreases to 0.1mag and can be fully accounted for by measurement uncertainties. We demonstrate that this

  6. Intracluster medium cooling, AGN feedback, and brightest cluster galaxy properties of galaxy groups. Five properties where groups differ from clusters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V.; Reiprich, T. H.; Schellenberger, G.; Eckmiller, H. J.; Mittal, R.; Israel, H.

    2014-12-01

    Aims: We aim to investigate cool-core and non-cool-core properties of galaxy groups through X-ray data and compare them to the AGN radio output to understand the network of intracluster medium (ICM) cooling and feedback by supermassive black holes. We also aim to investigate the brightest cluster galaxies (BCGs) to see how they are affected by cooling and heating processes, and compare the properties of groups to those of clusters. Methods: Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC), and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the BCG was obtained using radio catalogue data and/or literature, which in turn was compared to the cooling time of the ICM to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used a scaling relation to constrain the masses of the supermassive black holes, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The results obtained for the group sample were also compared to previous results for clusters. Results: The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen: 1) for clusters, all SCCs have a central temperature drop, but for groups this is not the case as some have centrally rising temperature profiles despite very short cooling times; 2) while for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups; 3) for clusters, there are indications of an anticorrelation trend between radio luminosity and CCT. However, for groups this trend is absent; 4) the indication of

  7. Environmental influences on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1993-01-01

    We investigate the role of mergers and interactions in the evolution of galaxies by studying galaxies in compact groups. Compact groups of galaxies have high spatial densities and low velocity dispersions making these regions ideal laboratories in which to study the effect of interactions and mergers. Based on a detailed spectroscopic and multi-color imaging study, we find that both the isophotal shapes and the stellar kinematics indicate that many of the elliptical galaxies in compact groups have been affected by tidal interactions. At the same time, however, we find that only a few elliptical galaxies in compact groups have evidence for the young stellar populations that would be expected if they are the result of recent merger of two spiral galaxies. Therefore, we conclude that tidal interactions affect galaxy properties at the current epoch, but the bulk of basic galaxy formation and transformation must have occurred at much higher redshift.

  8. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  9. The Dynamical Properties of Virgo Cluster Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Ouellette, N. N. Q.; Courteau, S.; Holtzman, J. A.; Dalcanton, J. J.; McDonald, M.; Zhu, Y.

    2014-03-01

    By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding of structure formation in the Universe. In this spirit, we present a dynamical study of Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. Hα rotation curves (RC) for our gas-rich galaxies were modeled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 Re, which exceeds the extent of most dispersion profiles in other works.

  10. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna

    2014-12-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.

  11. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating a Realistic Population of Satellites around a Milky Way-mass Galaxy

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-08-01

    Low-mass “dwarf” galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FIRE). This simulation models the formation of an MW-mass galaxy to z=0 within ΛCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 {M}⊙ with gas kernel/softening that adapts down to 1 {pc} (with a median of 25{--}60 {pc} at z=0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around an MW-mass host down to {M}{star}≳ {10}5 {M}⊙ . Latte’s population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) diverse range of star formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at {M}{star}≳ {10}5 {M}⊙ that does not suffer from the “missing satellites” or “too big to fail” problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ΛCDM cosmology.

  12. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  13. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  14. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  15. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  16. Field spheroid-dominated galaxies in a Λ-CDM Universe

    NASA Astrophysics Data System (ADS)

    Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.; Avila-Reese, V.; Lacerna, I.; Bignone, L. A.; Ibarra-Medel, H. J.; Varela, S.

    2018-06-01

    Context. Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly in low-density environments. Aims: Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a Λ-cold dark matter (Λ-CDM) scenario to assess to what extent they are consistent with observations. Methods: We selected spheroid-dominated systems from a Λ-CDM simulation that includes star formation (SF), chemical evolution, and supernova feedback. The sample is made up of 18 field systems with MStar ≲ 6 × 1010M⊙ that are dominated by the spheroid component. For this sample we estimated the fundamental relations of ellipticals and compared them with current observations. Results: The simulated spheroid galaxies have sizes that are in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, fundamental plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates (SFRs) than the observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. Conclusions: The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since our simulation has not been calibrated to match them. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. The need for more efficient

  17. The Structure and Kinematics of Little Blue Spheroid Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Phillipps, Steven; Robotham, Aaron; Driver, Simon; Bremer, Malcolm; GAMA survey team, SAMI survey team

    2018-01-01

    A population of blue, morphologically early-type galaxies, dubbed "Little Blue Spheroids" (LBSs), has been identified as a significant contributor to the low redshift galaxy population in the GAMA survey. Using deep, high-resolution optical imaging from KiDS and the new Bayesian, two-dimensional galaxy profile modelling code PROFIT, we examine the detailed structural characteristics of LBSs, including low surface brightness components not detected in previous SDSS imaging. We find that these LBS galaxies combine features typical of early-type and late-type populations, with structural properties similar to other low-mass early types and star formation rates similar to low-mass late types. We further consider the environments and SAMI-derived IFU kinematics of LBSs in order to investigate the conditions of their formation and the current state of their dynamical evolution.

  18. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.

    2010-08-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our

  19. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij

    2018-01-01

    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  20. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  1. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  2. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  3. Feeding, Feedback and the Growth of Galaxies - Molecules as Tools for Probing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Aalto, Susanne

    2017-06-01

    Cold gas plays a central role in feeding and regulating star formation and growth of supermassive black holes (SMBH) in galaxy nuclei. Particularly powerful activity occurs when interactions of gas-rich galaxies funnel large amounts of gas and dust into nuclei of luminous and ultra luminous infrared galaxies (LIRGs/ULIRGs). These dusty objects are of key importance to galaxy mass assembly over cosmic time. Some (U)LIRGS have deeply embedded galaxy nuclei that harbour a very active evolutionary stage of AGNs and/or starbursts. The nuclear activity will often drive mechanical feedback in the form of molecular winds, jets and outflows. This feedback can for example remove baryons from low-mass galaxies, prevent overgrowth of galaxies, be linked to the M_{BH}-σ relation, and explain "red-and dead" properties of local ellipticals. With the ALMA and NOEMA telescopes we can use molecules as diagnostic tools to probe the properties of dust-enshrouded galaxy nuclei and their associated cold winds and outflows. Their morphology, velocity structure, physical conditions and even chemistry can be studied at unprecedented sensitivity and resolution, opening new avenues to further our understanding of the growth of galaxies. I will give a brief review of the ALMA/NOEMA view of AGN and starburst radiative and mechanical feedback, and how it is linked to the properties of the nuclear power source. I will discuss the use of molecules (e.g. H_2O, H_3O^{+}, HCN, HCO^+, H_2S) for studying dusty nuclei and the nature of the embedded activity. We can, for example, investigate ionization rates and the impact of cosmic ray-, X-ray- and PDR-chemistry and the onset of outflows and winds. Interestingly, in some deeply obscured nuclei the chemistry shows strong similarities to that of Galactic hot cores. Finally I will show peculiar molecular jets and very recent ALMA observations at resolutions of tens of milli-arcseconds (few pc) of vibrationally excited HCN in opaque nuclei. These regions

  4. Investigations of Galaxy Clusters Using Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less

  5. The Role of Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Martin, C. L.

    2004-12-01

    Our understanding of galaxy formation is founded on the well-understood principle of gravitational amplification of structure but lacks the astrophysical knowledge needed to predict the properties of galaxies and small scale properties of the intergalactic medium. While gas cooling and galaxy merging are now modeled with reasonable accuracy, the complex process of gas reheating by massive stars and active nuclei is described by simple empirical "feedback" recipes. Chandra and XMM-Newton observations now provide direct imaging of this hot gas in nearby starburst galaxies; and outflow speeds -- of cooler gas entrained in hot galactic winds -- have been measured over a large range of galaxy masses and formation epochs. My talk will describe how these empirical studies help us understand the dynamics of galactic winds and discuss the consequences for the shape of the galaxy luminosity function and the enrichment of the intergalactic medium with metals. Funding from NASA, the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation made much of this work possible.

  6. Cosmological Simulations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano; Kravtsov, Andrey

    2011-02-01

    We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using state-of-art numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, while we will also discuss numerical predictions on properties of the galaxy population in clusters, as observed in the optical band. Many of the salient observed properties of clusters, such as scaling relations between X-ray observables and total mass, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed "cool core" structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes both an overestimate of the star formation in the cluster centers and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.

  7. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on Hα Emitter Galaxies at 0.3 < z < 0.7

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin

    2017-03-01

    Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.

  8. The middle infrared properties of OH megamaser host galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.

    2014-10-01

    We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support

  9. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  10. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  11. Galaxy Zoo: Observing secular evolution through bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Edmond; Faber, S. M.; Koo, David C.

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We findmore » that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).« less

  12. Panchromatic spectral energy distributions of simulated galaxies: results at redshift z = 0

    NASA Astrophysics Data System (ADS)

    Goz, David; Monaco, Pierluigi; Granato, Gian Luigi; Murante, Giuseppe; Domínguez-Tenreiro, Rosa; Obreja, Aura; Annunziatella, Marianna; Tescari, Edoardo

    2017-08-01

    We present predictions of spectral energy distributions (SEDs), from the UV to the FIR, of simulated galaxies at z = 0. These were obtained by post-processing the results of an N-body+hydro simulation of a cosmological box of side 25 Mpc, which uses the Multi-Phase Particle Integrator (MUPPI) for star formation and stellar feedback, with the grasil-3d radiative transfer code that includes reprocessing of UV light by dust. Physical properties of our sample of ˜500 galaxies resemble observed ones, though with some tension at small and large stellar masses. Comparing predicted SEDs of simulated galaxies with different samples of local galaxies, we find that these resemble observed ones, when normalized at 3.6 μm. A comparison with the Herschel Reference Survey shows that the average SEDs of galaxies, divided in bins of star formation rate (SFR), are reproduced in shape and absolute normalization to within a factor of ˜2, while average SEDs of galaxies divided in bins of stellar mass show tensions that are an effect of the difference of simulated and observed galaxies in the stellar mass-SFR plane. We use our sample to investigate the correlation of IR luminosity in Spitzer and Herschel bands with several galaxy properties. SFR is the quantity that best correlates with IR light up to 160 μm, while at longer wavelengths better correlations are found with molecular mass and, at 500 μm, with dust mass. However, using the position of the FIR peak as a proxy for cold dust temperature, we assess that heating of cold dust is mostly determined by SFR, with stellar mass giving only a minor contribution. We finally show how our sample of simulated galaxies can be used as a guide to understand the physical properties and selection biases of observed samples.

  13. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  14. Global effects of interactions on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Kennicutt, Robert C., Jr.

    1990-01-01

    Recent observations of the evolutionary properties of paired and interacting galaxies are reviewed, with special emphasis on their global emission properties and star formation rates. Data at several wavelengths provide strong confirmation of the hypothesis, proposed originally by Larson and Tinsley, that interactions trigger global bursts of star formation in galaxies. The nature and properties of the starbursts, and their overall role in galactic evolution are also discussed.

  15. Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, S. M.; Giavalisco, Mauro; Koekemoer, Anton M.; Koo, David C.; Lu, Yu; Mandelker, Nir; Primack, Joel R.; Ceverino, Daniel; de Mello, Duilia F.; Ferguson, Henry C.; Hathi, Nimish; Kocevski, Dale; Lucas, Ray A.; Pérez-González, Pablo G.; Ravindranath, Swara; Soto, Emmaris; Straughn, Amber; Wang, Weichen

    2018-02-01

    Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from 1270 galaxies at 0.5≤slant z< 3.0. The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties (e.g., rest-frame color, stellar mass ({M}* ), star formation rate (SFR), age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U ‑ V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and {M}* of the host galaxies: at a fixed {M}* , the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with {M}* . Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B ‑ V) gradient, and a positive specific SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra

  16. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  17. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less

  18. Integrated Properties of Nearby Seyfert Galaxies Measured by 2-D Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Junjie; Malkan, Matthew Arnold

    2017-01-01

    We present our measurements of mosaicing long-slit spectra of 12 nearby Seyfert galaxies. We obtained these data cubes at ~6‧‧ spatial resolution using the Kast double spectrograph on the 3-m Shane telescope of Lick Observatory. We have measured the integrated emission lines of [O III], Hβ, Hα, [N II], and [S II]. We compare the relative strength of these lines from the galaxy nucleus with the total emission from the entire galaxy. In classification line ratio diagrams (BPT), the individual galaxy moves from the Seyfert region to the composite/star-forming locus as the effective absorbing aperture grows. This trend means that Seyfert galaxies observed at higher redshifts will become increasingly misclassified. We use our sample to quantify this systematic trend. We also estimate the rates of star formation in the host galaxies based on the emission lines.

  19. Neutral hydrogen and optical properties of three amorphous galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; Woerden, Hugo Van; Gallagher, John S., III

    1994-01-01

    (exp 9) solar mass for NGC 1800 at 1.5 R(sub H). At approximately R(sub 25) to the east there is a large H I shell. Also at approximately R(sub 25) on both sides the velocity gradient switches by 90 deg, and in the interior the rotation is about the major axis. The central gas density is low and falls off slowly. In the inner regions NGC 4670 resembles an S0/a galaxy seen rather edge-on. It contains a central supergiant H II region with very high velocity widths (FWHM less than or equal to 180 km/s) and complex velocity structures. It is a radio continuum source as well. The H I gas is a single spherical cloud or a disk at low inclination centered on the galaxy with a slight elongation along the optical major axis and rotation about the minor axis. The central gas density is high, and there is a high degree of concentration. The rotation speed indicates a total mass of 5 x 10(exp 10) solar mass at 1.1 R(sub H). We compare these characteristics with properties of gas in the presence of stellar bar potentials, gas warps, and interacting and merging galaxy models. Although there are inconsistencies and uncertainties, we conclude that NGC 1140 is a spiral of low surface brightness that has undergone a merger, while NGC 1800 and NGC 4670 are, respectively, probably an Im system and a spiral that had an encounter of the Noguchi (1988a) kind.

  20. VizieR Online Data Catalog: Galaxy properties in clusters. II. (Muriel+, 2014)

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-06-01

    In paper I (Coenda & Muriel, 2009A&A...504..347C, Cat. J/A+A/504/347), we selected an X-ray sample of 49 clusters of galaxies from Popesso et al. (2004A&A...423..449P, Cat. J/A+A/423/449, hereafter P04) in the redshift range 0.05Galaxies in these clusters were identified using the Main Galaxy Sample (MGS; Strauss et al. 2002AJ....124.1810S) of the Fifth Data Release (DR5; Adelman-McCarthy et al. 2007ApJS..172..634A, Cat. II/276) of SDSS, which includes spectroscopic redshifts down to a Petrosian magnitude r=17.77. In this paper, we expand the X-ray cluster sample using the cross-correlation between NORAS and SDSS. We identify a subsample from Bohringer et al. (2000ApJS..129..435B, Cat. J/ApJS/129/435, hereafter B00), which we labelled C-B00-I, using the MGS of the Seventh Data Release (DR7; Abazajian et al. 2009ApJS..182..543A) of SDSS. This subsample comprises 55 galaxy clusters in the redshift range 0.05

  1. The FMOS-COSMOS Survey of Star-forming Galaxies at Z ˜ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi

    2017-07-01

    We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h < 1012 M ⊙, finding M */M h ≈ 5 × 10-3 at M h = 7. 5 × 1011 M ⊙, which is lower by a factor of 2-4 than those measured at higher masses (M h ˜ 1012-13 M ⊙). Finally, we use our results to illustrate the future capabilities of Subaru’s Prime-Focus Spectrograph, a next-generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1.

  2. On the galaxy-halo connection in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Desmond, Harry; Mao, Yao-Yuan; Wechsler, Risa H.; Crain, Robert A.; Schaye, Joop

    2017-10-01

    Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.

  3. RCSED—A Value-added Reference Catalog of Spectral Energy Distributions of 800,299 Galaxies in 11 Ultraviolet, Optical, and Near-infrared Bands: Morphologies, Colors, Ionized Gas, and Stellar Population Properties

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor V.; Zolotukhin, Ivan Yu.; Katkov, Ivan Yu.; Melchior, Anne-Laure; Rubtsov, Evgeniy V.; Grishin, Kirill A.

    2017-02-01

    We present RCSED, the value-added Reference Catalog of Spectral Energy Distributions of galaxies, which contains homogenized spectrophotometric data for 800,299 low- and intermediate-redshift galaxies (0.007< z< 0.6) selected from the Sloan Digital Sky Survey spectroscopic sample. Accessible from the Virtual Observatory (VO) and complemented with detailed information on galaxy properties obtained with state-of-the-art data analysis, RCSED enables direct studies of galaxy formation and evolution over the last 5 Gyr. We provide tabulated color transformations for galaxies of different morphologies and luminosities, and analytic expressions for the red sequence shape in different colors. RCSED comprises integrated k-corrected photometry in up to 11 ultraviolet, optical, and near-infrared bands published by the GALEX, SDSS, and UKIDSS wide-field imaging surveys; results of the stellar population fitting of SDSS spectra including best-fitting templates, velocity dispersions, parameterized star formation histories, and stellar metallicities computed for instantaneous starburst and exponentially declining star formation models; parametric and non-parametric emission line fluxes and profiles; and gas phase metallicities. We link RCSED to the Galaxy Zoo morphological classification and galaxy bulge+disk decomposition results of Simard et al. We construct the color-magnitude, Faber-Jackson, and mass-metallicity relations; compare them with the literature; and discuss systematic errors of the galaxy properties presented in our catalog. RCSED is accessible from the project web site and via VO simple spectrum access and table access services using VO-compliant applications. We describe several examples of SQL queries to the database. Finally, we briefly discuss existing and future scientific applications of RCSED and prospective catalog extensions to higher redshifts and different wavelengths. .

  4. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  5. X-raying galaxies: a Chandra legacy.

    PubMed

    Wang, Q Daniel

    2010-04-20

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete x-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and active galactic nuclear feedback--the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our galaxy. The gas is concentrated around the galactic bulge and disk on scales of a few kiloparsec. The column density of chemically enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The x-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed x-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circumgalactic medium, hence the evolution of galaxies.

  6. X-raying galaxies: A Chandra legacy

    PubMed Central

    Wang, Q. Daniel

    2010-01-01

    This presentation reviews Chandra’s major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete x-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and active galactic nuclear feedback—the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our galaxy. The gas is concentrated around the galactic bulge and disk on scales of a few kiloparsec. The column density of chemically enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The x-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed x-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circumgalactic medium, hence the evolution of galaxies. PMID:20212160

  7. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  8. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.

  9. IRAS observations of Shapley-Ames galaxies

    NASA Technical Reports Server (NTRS)

    De Jong, T.; Clegg, P. E.; Rowan-Robinson, M.; Soifer, B. T.; Habing, H. J.; Houck, J. R.; Aumann, H. H.; Raimond, E.

    1984-01-01

    A preliminary discussion of the infrared properties of a representative subsample of galaxies in the Revised Shapley-Ames Catalog (B less than about 13 mag) is presented. Of the 165 galaxies in the sample, 108 predominantly spiral galaxies, are detected in the infrared by IRAS. None of the elliptical galaxies and only about 25 percent of the lenticular galaxies scanned were detected. The range of infrared-to-blue luminosity ratios, a measure of the infrared excess of galaxies, is large, varying from roughly 0.1 to roughly 5. The data suggest that weakly infrared emitting galaxies are cool (100-60 micron color temperatures of about 25 K), while the more infrared luminous ones tend to be warmer (about 50 K). The rate of star formation in barred spiral galaxies is apparently higher than in normal spirals. About 1 solar mass/year of interstellar matter is converted into massive stars in the typical spiral galaxy.

  10. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  11. Confirmation of Faint Dwarf Galaxies in the M81 Group

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  12. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  13. Active Galactic Nuclei in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hein, Megan; Secrest, N.; Satyapal, S.

    2014-01-01

    Supermassive black holes (SMBHs) one million to a few billion times the mass of our sun are thought to reside in the center of most, if not all, bulge-dominated galaxies. It has been observed that the mass of these SMBHs is strongly correlated with the mass of these bulges, leading to the popular view that these central black holes are formed by galaxy mergers, which induce the growth of the galaxy's bulge and provide matter with which to feed the black hole. Although these properties and their possible consequences have been studied extensively in high mass galaxies and galaxies with large bulges, there is very little research on the possible existence and subsequent properties of SMBHs in low mass galaxies or galaxies with small or no central bulges. This is a significant weakness in the research of these objects as the study of this population of galaxies would allow us to gain valuable insight into SMBH seeds, black holes thought to have formed in the early universe. Strong X-rays are a good indicator of an accreting black hole, because they require more energy to produce and SMBHs are highly energetic, as well as being easier to see due to their ability to penetrate matter more easily than other forms of radiation. In this poster, I will present the results from an X-ray investigation using data matched from the Chandra X-ray observatory to a sample of low mass galaxies (with a mass of log(M) < 9).

  14. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  15. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  16. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  17. Moving-mesh cosmology: characteristics of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2012-09-01

    We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates

  18. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  19. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  20. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  1. Deep learning for studies of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.

    2017-06-01

    Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

  2. Chandra Survey Of Galactic Coronae Around Nearby Edge-on Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Wang, D.

    2012-01-01

    The X-ray emitting coronae in nearby galaxies are expected to be produced either by accretion from the IGM or by various galactic feedbacks. It is already well known that the total hot gas luminosity of these galaxies is correlated with the stellar mass for early-type galaxies and with SFR for star forming galaxies. However, such relations always have large scatter, indicating various other processes must be involved in regulating the coronal properties. In this work, we conduct a systematical analysis of the Chandra data of 53 nearby edge-on disk galaxies. The data are reduced in a uniform manner. Various coronal properties, such as the luminosity, temperature, emission measure, electron number density, total mass, thermal energy, radiative cooling timescale, vertical and horizontal extension, elongation, and steepness of the vertical distribution, are characterized for most of the sample galaxies. For some galaxies with high enough counting statistics, we also study the thermal and chemical states of the coronal gas. We then compare these hot gas properties to other galactic properties to further study the role of different processes in producing and/or maintaining the coronae. The soft X-ray luminosity of the coronae generally correlates well with the SF activity for our sample galaxies over more than 3 orders of magnitude in SFR or Lx. In addition, the inclusion of other galactic properties could significantly improve the correlation of the SFR-Lx relation. The SN feedback efficiency is at most 10% for all the sample galaxies. We also find evidence for the effectiveness of old stellar feedback, gravitation, environmental effects, and cold-hot gas interaction in regulating the coronal properties.

  3. The AMIGA sample of isolated galaxies. IV. A catalogue of neighbours around isolated galaxies

    NASA Astrophysics Data System (ADS)

    Verley, S.; Odewahn, S. C.; Verdes-Montenegro, L.; Leon, S.; Combes, F.; Sulentic, J.; Bergond, G.; Espada, D.; García, E.; Lisenfeld, U.; Sabater, J.

    2007-08-01

    Context: Studies of the effects of environment on galaxy properties and evolution require well defined control samples. Such isolated galaxy samples have up to now been small or poorly defined. The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies) represents an attempt to define a statistically useful sample of the most isolated galaxies in the local (z ≤ 0.05) Universe. Aims: A suitable large sample for the AMIGA project already exists, the Catalogue of Isolated Galaxies (CIG, Karachentseva, 1973, Astrofizicheskie Issledovaniia Izvestiya Spetsial'noj Astrofizicheskoj Observatorii, 8, 3; 1050 galaxies), and we use this sample as a starting point to refine and perform a better quantification of its isolation properties. Methods: Digitised POSS-I E images were analysed out to a minimum projected radius R ≥ 0.5 Mpc around 950 CIG galaxies (those within Vr = 1500 km s-1 were excluded). We identified all galaxy candidates in each field brighter than B = 17.5 with a high degree of confidence using the LMORPHO software. We generated a catalogue of approximately 54 000 potential neighbours (redshifts exist for ≈30% of this sample). Results: Six hundred sixty-six galaxies pass and two hundred eighty-four fail the original CIG isolation criterion. The available redshift data confirm that our catalogue involves a largely background population rather than physically associated neighbours. We find that the exclusion of neighbours within a factor of four in size around each CIG galaxy, employed in the original isolation criterion, corresponds to Δ Vr ≈ 18 000 km s-1 indicating that it was a conservative limit. Conclusions: Galaxies in the CIG have been found to show different degrees of isolation. We conclude that a quantitative measure of this is mandatory. It will be the subject of future work based on the catalogue of neighbours obtained here. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc

  4. Galaxy Zoo: Infrared and Optical Morphology

    NASA Astrophysics Data System (ADS)

    Carla Shanahan, Jesse; Lintott, Chris; Zoo, Galaxy

    2018-01-01

    We present the detailed, visual morphologies of approximately 60,000 galaxies observed by the UKIRT Infrared Deep Sky Survey and then classified by participants in the Galaxy Zoo project. Our sample is composed entirely of nearby objects with redshifts of z ≤ 0.3, which enables us to robustly analyze their morphological characteristics including smoothness, bulge properties, spiral structure, and evidence of bars or rings. The determination of these features is made via a consensus-based analysis of the Galaxy Zoo project data in which inconsistent and outlying classifications are statistically down-weighted. We then compare these classifications of infrared morphology to the objects’ optical classifications in the Galaxy Zoo 2 release (Willett et al. 2013). It is already known that morphology is an effective tool for uncovering a galaxy’s dynamical past, and previous studies have shown significant correlations with physical characteristics such as stellar mass distribution and star formation history. We show that majority of the sample has agreement or expected differences between the optical and infrared classifications, but also present a preliminary analysis of a subsample of objects with striking discrepancies.

  5. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.

    2010-01-01

    We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.

  6. Some observational tests of a minimal galaxy formation model

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2017-04-01

    Dark matter simulations can serve as a basis for creating galaxy histories via the galaxy-dark matter connection. Here, one such model by Becker is implemented with several variations on three different dark matter simulations. Stellar mass and star formation rates are assigned to all simulation subhaloes at all times, using subhalo mass gain to determine stellar mass gain. The observational properties of the resulting galaxy distributions are compared to each other and observations for a range of redshifts from 0 to 2. Although many of the galaxy distributions seem reasonable, there are noticeable differences as simulations, subhalo mass gain definitions or subhalo mass definitions are altered, suggesting that the model should change as these properties are varied. Agreement with observations may improve by including redshift dependence in the added-by-hand random contribution to star formation rate. There appears to be an excess of faint quiescent galaxies as well (perhaps due in part to differing definitions of quiescence). The ensemble of galaxy formation histories for these models tend to have more scatter around their average histories (for a fixed final stellar mass) than the two more predictive and elaborate semi-analytic models of Guo et al. and Henriques et al., and require more basis fluctuations (using principal component analysis) to capture 90 per cent of the scatter around their average histories. The codes to plot model predictions (in some cases alongside observational data) are publicly available to test other mock catalogues at https://github.com/jdcphysics/validation/. Information on how to use these codes is in Appendix A.

  7. The fraction of quiescent massive galaxies in the early Universe

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Santini, P.; Grazian, A.; Pentericci, L.; Fiore, F.; Castellano, M.; Giallongo, E.; Menci, N.; Salimbeni, S.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2009-07-01

    Aims: We attempt to compile a complete, mass-selected sample of galaxies with low specific star-formation rates, and compare their properties with theoretical model predictions. Methods: We use the f(24 μ m})/f(K) flux ratio and the SED fitting to the 0.35-8.0 μm spectral distribution, to select quiescent galaxies from z≃ 0.4 to z≃ 4 in the GOODS-MUSIC sample. Our observational selection can be translated into thresholds in specific star-formation rate dot{M}/M_*, which can be compared with theoretical predictions. Results: In the framework of the well-known global decline in quiescent galaxy fraction with redshift, we find that a non-negligible fraction {≃ 15-20% of massive galaxies with low specific star-formation rate exists up to z≃ 4, including a tail of “red and dead” galaxies with dot{M}/M_*<10-11 yr-1. Theoretical models vary to a large extent in their predictions for the fraction of galaxies with low specific star-formation rates, but are unable to provide a global match to our data.

  8. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    NASA Astrophysics Data System (ADS)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  9. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  10. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  11. Optical and Near-Infrared Structural Properties of Cluster Galaxies at z ~ 0.3

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Busarello, G.; Merluzzi, P.; Massarotti, M.; Capaccioli, M.

    2002-06-01

    properties. The lack of any major change in re,NIR since z~0.3 suggests that merging involving bright galaxies did not play a significant role in the last ~4.4 Gyr (ΩM=0.3, ΩΛ=0, H0=50 km s-1 Mpc-1). The results of the present paper will be applied to the study of the scaling laws in subsequent works. Based on observations collected at European Southern Observatory (ESO 62.O-0369, 63.O-0257, 64.O-0236) and on data from the STScI Science Archive.

  12. A statistical analysis of the Einstein normal galaxy sample. III - Radio and X-ray properties of elliptical and S0 galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.

    1987-01-01

    Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.

  13. Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale

    NASA Technical Reports Server (NTRS)

    Sandage, Allan; Bedke, John

    1988-01-01

    A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.

  14. An Exploration of Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  15. Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Aff004

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.

  16. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% ofmore » the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.« less

  17. Kinematic classification of non-interacting spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wiegert, Theresa; English, Jayanne

    2014-01-01

    Using neutral hydrogen (HI) rotation curves of 79 galaxies, culled from the literature, as well as measured from HI data, we present a method for classifying disk galaxies by their kinematics. In order to investigate fundamental kinematic properties we concentrate on non-interacting spiral galaxies. We employ a simple parameterized form for the rotation curve in order to derive the three parameters: the maximum rotational velocity, the turnover radius and a measure of the slope of the rotation curve beyond the turnover radius. Our approach uses the statistical Hierarchical Clustering method to guide our division of the resultant 3D distribution of galaxies into five classes. Comparing the kinematic classes in this preliminary classification scheme to a number of galaxy properties, we find that our class containing galaxies with the largest rotational velocities has a mean morphological type of Sb/Sbc while the other classes tend to later types. Other trends also generally agree with those described by previous researchers. In particular we confirm correlations between increasing maximum rotational velocity and the following observed properties: increasing brightness in B-band, increasing size of the optical disk (D25) and increasing star formation rate (as derived using radio continuum data). Our analysis also suggests that lower velocities are associated with a higher ratio of the HI mass over the dynamical mass. Additionally, three galaxies exhibit a drop in rotational velocity amplitude of ≳20% after the turnover radius. However recent investigations suggest that they have interacted with minor companions which is a common cause for declining rotation curves.

  18. Infrared-Bright Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  19. Thermal Conduction in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Jubelgas, M.; Springel, V.; Borgani, S.; Rasia, E.

    2004-05-01

    We study the formation of clusters of galaxies using high-resolution hydrodynamic cosmological simulations that include the effect of thermal conduction with an effective isotropic conductivity of 1/3 the classical Spitzer value. We find that, for both a hot (TLX~=12 keV) and several cold (TLX~=2 keV) galaxy clusters, the baryonic fraction converted into stars does not change significantly when thermal conduction is included. However, the temperature profiles are modified, particularly in our simulated hot system, where an extended isothermal core is readily formed. As a consequence of heat flowing from the inner regions of the cluster both to its outer parts and into its innermost resolved regions, the entropy profile is altered as well. This effect is almost negligible for the cold cluster, as expected based on the strong temperature dependence of the conductivity. Our results demonstrate that while thermal conduction can have a significant influence on the properties of the intracluster medium (ICM) of rich clusters, it appears unlikely to provide by itself a solution for the overcooling problem in clusters or to explain the current discrepancies between the observed and simulated properties of the ICM.

  20. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; von Ferber, C.; Holovatch, Yu; Novosyadlyj, B.

    2018-07-01

    The galaxy data provided by COSMOS survey for 1°×1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94, and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments, we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differs from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realizes somewhat different behaviour.

  1. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; Ferber, C. von; Holovatch, Yu; Novosyadlyj, B.

    2018-03-01

    The galaxy data provided by COSMOS survey for 1° × 1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94 and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differ from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realises somewhat different behaviour.

  2. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE PAGES

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; ...

    2017-03-10

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  3. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  4. H II regions as probes of galaxy evolution and the properties of massive stars

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.

    1993-01-01

    The use of H II regions as probes to study the chemical evolution of galaxies and the spectral properties of hot, massive stars is reviewed. The observable parameters for this task are the physical conditions, elemental abundances, and ionization balance in the ionized gas. Some outstanding uncertainties in the determination of these parameters and some approaches to remedy or circumvent the problems are discussed.

  5. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, H. B.

    2016-08-01

    We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.

  6. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  7. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  8. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  9. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  10. Satellite accretion on to massive galaxies with central black holes

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Ma, Chung-Pei

    2007-02-01

    Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect

  11. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  12. HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team

    2018-01-01

    The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.

  13. Three-Dimensional View of Ionized Gas Conditions in Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie; NOAO Data Lab

    2018-06-01

    We present a 3D version of common emission line diagnostic diagrams used to identify the source of ionization in galaxies, and highlight interesting features in this new 3D space, which are associated with global galaxy properties. Namely, we combine the BPT and Mass-Excitation (MEx) diagrams, and apply it to a set of >300,000 galaxies from the SDSS survey. Among other features, we show that the usual “branch” of star-forming galaxies becomes a curved surface in the new 3D space. Understanding the underlying reasons can shed light on the nearby galaxy population but also aid our interpretation of high-redshift surveys, which indicate a strong evolution of emission line ratios. Despite efforts to explain the origin of this strong evolution, a consensus has not yet been reached. Yet, the implications are crucial to our understanding of galaxy growth across cosmic time, and in particular to assess how star forming regions differed at earlier times (gas properties? stellar properties? a combination?). We perform this analysis within the framework of the NOAO Data Lab (datalab.noao.edu) jointly with public visualization tools. The final workflow will be released publicly.

  14. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  15. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  16. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  17. Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Genel, Shy; Bryan, Greg

    2017-08-01

    Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.

  18. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  19. Examining Gaseous Behavior of Galaxies and their Environments

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Barger, Kathleen

    2017-01-01

    The development of galaxies hinges upon the behavior of the gas within and around them, as this is paramount to understanding the regulation of star formation. To investigate these processes, we analyzed data from the MaNGA survey for two galaxies with nearby background quasars for which Hubble Space Telescope data exists. We plotted and analyzed spectra for various elemental transitions, especially [N II] , [O III], and H-alpha, to gain information about gas properties such as temperature, ionization fraction, and star formation. We also plotted velocity fields based upon the gas motions as determined through Doppler shift. One of the galaxies displayed signs of heavy star formation and the other displayed signs of Active Galactic Nucleus activity. The stellar and gaseous velocity fields of the AGN galaxy were very disparate which suggests some sort of interaction with another galaxy in the galaxy’s past. The properties of the gas in these galaxies could potentially teach us more about the evolutionary path of the Milky Way, which forms stars itself while interacting heavily with other galaxies. This work base on data from the forth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0034 in SDSS-IV.

  20. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  1. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  2. RR Lyrae in the UMi dSph Galaxy

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles; Kinemuchi, Karen; Jeffery, Elizabeth; Grabowski, Kathleen; Nemec, James; Herrera, Daniel

    2018-01-01

    Over the past two years we have obtained observations of the Ursa Minor dwarf spheroidal galaxy with the goal of completing an updated catalog of the variable stars in the dwarf galaxy. In addition to finding new variable stars, this updated catalog will allow us to look at period changes in the variables and to determine stellar characteristic for the RR Lyrae stars in the dSph. We will compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies; these comparisons can give us insights to the near-field cosmology of the Local Group. In this poster we present our updated catalog of RR Lyrae stars in the UMi dSph; the updated catalog includes Fourier decomposition parameters, metallicities, and other physical properties for the RR Lyrae stars.

  3. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  4. On the Nature and History of Blue Amorphous Galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, Amanda True

    1998-07-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 blue amorphous galaxies (BAGs) whose properties suggest that they are dwarf galaxies in a starburst or post-burst state. It seems likely that BAGs are related to other 'starburst' dwarfs such as blue compact dwarfs (BCDs) and HII galaxies. The BAGs in our sample, however, are considerably closer than BCDs and HII galaxies in other samples, and therefore easier to study. These galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of BAGs in evolutionary scenarios for dwarf galaxies, we present and analyze Hα and UBVI data for our sample. BAGs, like BCDs and HII galaxies, have surface brightness profiles that are exponential in the outer regions but have a predominantly blue central blue excess, suggesting a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The starbursting regions are young events compared to the older underlying galaxy, which follow an exponential surface brightness law. Not all of the galaxies develop superwinds: the appearance of superwinds is most sensitive to the concentration and rate of star formation in the starbursting core. The underlying exponential galaxies are very similar to those found in BCDs and HII galaxies, though the 'burst' colors are slightly redder than those found in HII galaxies. BAGs are structurally similar to BCDs and HII galaxies. How BAGs fit into the dwarf galaxy evolutionary debate is less clear. While some compact dIs have properties similar to those of the underlying exponential galaxy in our sample, issues such as mass loss from superwinds, the impact of the starbursting core on the underlying galaxy, and

  5. The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High Redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun

    2017-03-10

    We report the detection of diffuse Ly α emission, or Ly α halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ∼1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly α images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly α radial profile into a compact galaxy-like andmore » an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly α luminosities, but not on Ly α equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Ly α emitters ( M {sub UV} ≳ −21), exhibit LAH sizes of 5–6 kpc. However, the most UV- or Ly α- luminous galaxies have more extended halos with scale-lengths of 7–9 kpc. The stacked Ly α radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H i column density, and outflow velocity) change with halo mass and/or star formation rates.« less

  6. The Diversity of Diffuse Lyα Nebulae around Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun; Reddy, Naveen; Hong, Sungryong; Prescott, Moire K. M.; Inami, Hanae; Jannuzi, Buell T.; Gonzalez, Anthony H.

    2017-03-01

    We report the detection of diffuse Lyα emission, or Lyα halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ˜1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Lyα images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Lyα radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Lyα luminosities, but not on Lyα equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lyα emitters (M UV ≳ -21), exhibit LAH sizes of 5-6 kpc. However, the most UV- or Lyα-luminous galaxies have more extended halos with scale-lengths of 7-9 kpc. The stacked Lyα radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H I column density, and outflow velocity) change with halo mass and/or star formation rates.

  7. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{submore » ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.« less

  8. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.

    2010-11-15

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 {mu}m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples showmore » such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.« less

  9. GLACiAR: GaLAxy survey Completeness AlgoRithm

    NASA Astrophysics Data System (ADS)

    Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal

    2018-05-01

    GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

  10. A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigiel, F.; Leroy, A. K.; Walter, F.

    2011-04-01

    We combine new sensitive, wide-field CO data from the HERACLES survey with ultraviolet and infrared data from GALEX and Spitzer to compare the surface densities of H{sub 2}, {Sigma}{sub H2}, and the recent star formation rate, {Sigma}{sub SFR}, over many thousands of positions in 30 nearby disk galaxies. We more than quadruple the size of the galaxy sample compared to previous work and include targets with a wide range of galaxy properties. Even though the disk galaxies in this study span a wide range of properties, we find a strong, and approximately linear correlation between {Sigma}{sub SFR} and {Sigma}{sub H2}more » at our common resolution of 1 kpc. This implies a roughly constant median H{sub 2} consumption time, {tau}{sup H2}{sub Dep} = {Sigma}{sub H2}/{Sigma}{sub SFR}, of {approx}2.35 Gyr (including heavy elements) across our sample. At 1 kpc resolution, there is only a weak correlation between {Sigma}{sub H2} and {tau}{sup H2}{sub Dep} over the range {Sigma}{sub H2} {approx} 5-100 M{sub sun} pc{sup -2}, which is probed by our data. We compile a broad set of literature measurements that have been obtained using a variety of star formation tracers, sampling schemes, and physical scales and show that overall, these data yield almost exactly the same results, although with more scatter. We interpret these results as strong, albeit indirect evidence that star formation proceeds in a uniform way in giant molecular clouds in the disks of spiral galaxies.« less

  11. Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sun孙, Jiayi嘉懿; Leroy, Adam K.; Schruba, Andreas; Rosolowsky, Erik; Hughes, Annie; Kruijssen, J. M. Diederik; Meidt, Sharon; Schinnerer, Eva; Blanc, Guillermo A.; Bigiel, Frank; Bolatto, Alberto D.; Chevance, Mélanie; Groves, Brent; Herrera, Cinthya N.; Hygate, Alexander P. S.; Pety, Jérôme; Querejeta, Miguel; Usero, Antonio; Utomo, Dyas

    2018-06-01

    We measure the velocity dispersion, σ, and surface density, Σ, of the molecular gas in nearby galaxies from CO spectral line cubes with spatial resolution 45–120 pc, matched to the size of individual giant molecular clouds. Combining 11 galaxies from the PHANGS-ALMA survey with four targets from the literature, we characterize ∼30,000 independent sightlines where CO is detected at good significance. Σ and σ show a strong positive correlation, with the best-fit power-law slope close to the expected value for resolved, self-gravitating clouds. This indicates only a weak variation in the virial parameter α vir ∝ σ 2/Σ, which is ∼1.5–3.0 for most galaxies. We do, however, observe enormous variation in the internal turbulent pressure P turb ∝ Σσ 2, which spans ∼5 dex across our sample. We find Σ, σ, and P turb to be systematically larger in more massive galaxies. The same quantities appear enhanced in the central kiloparsec of strongly barred galaxies relative to their disks. Based on sensitive maps of M31 and M33, the slope of the σ–Σ relation flattens at Σ ≲ 10 M ⊙ pc‑2, leading to high σ for a given Σ and high apparent α vir. This echoes results found in the Milky Way and likely originates from a combination of lower beam-filling factors and a stronger influence of local environment on the dynamical state of molecular gas in the low-density regime.

  12. Demographics of Isolated Galaxies along the Hubble Sequence

    NASA Astrophysics Data System (ADS)

    Khim, Hong-geun; Park, Jongwon; Seo, Seong-Woo; Lee, Jaehyun; Smith, Rory; Yi, Sukyoung K.

    2015-09-01

    Isolated galaxies in low-density regions are significant in the sense that they are least affected by the hierarchical pattern of galaxy growth and interactions with perturbers, at least for the last few gigayears. To form a comprehensive picture of the star-formation history of isolated galaxies, we constructed a catalog of isolated galaxies and their comparison sample in relatively denser environments. The galaxies are drawn from the Sloan Digital Sky Survey Data Release 7 in the redshift range of 0.025\\lt z\\lt 0.044. We performed a visual inspection and classified their morphology following the Hubble classification scheme. For the spectroscopic study, we make use of the catalog provided by Oh et al. in 2011. We confirm most of the earlier understanding on isolated galaxies. The most remarkable additional results are as follows. Isolated galaxies are dominantly late type with the morphology distribution (E:S0:S:Irr) = (9.9:11.3:77.6:1.2)%. The frequency of elliptical galaxies among isolated galaxies is only a third of that of the comparison sample. Most of the photometric and spectroscopic properties are surprisingly similar between the isolated and comparison samples. However, early-type isolated galaxies are less massive by 50% and younger (by Hβ) by 20% than their counterparts in the comparison sample. This can be explained as a result of different merger and star-formation histories for differing environments in the hierarchical merger paradigm. We provide an online catalog for the list and properties of our sample galaxies.

  13. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; White, Simon D. M.

    2017-05-01

    We introduce a suite of 30 cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code arepo, together with a comprehensive model for galaxy formation physics, including active galactic nuclei (AGN) feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two-component disc-dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scalelengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high-angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion on to the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.

  14. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  15. Star Cluster Properties in Two LEGUS Galaxies Computed with Stochastic Stellar Population Synthesis Models

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Adamo, Angela; Fumagalli, Michele; Wofford, Aida; Calzetti, Daniela; Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Grasha, Kathryn; Gouliermis, Dimitrios A.; Kim, Hwihyun; Nair, Preethi; Ryon, Jenna E.; Smith, Linda J.; Thilker, David; Ubeda, Leonardo; Zackrisson, Erik

    2015-10-01

    We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.

  16. Dark-ages reionization and galaxy-formation simulation- VI. The origins and fate of the highest known redshift galaxy

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Liu, Chuanwu; Poole, Gregory B.; Geil, Paul M.; Duffy, Alan R.; Trenti, Michele; Oesch, Pascal A.; Illingworth, Garth D.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-12-01

    Using Hubble data, including new grism spectra, Oesch et al. recently identified GN-z11, an MUV = -21.1 galaxy at z = 11.1 (just 400 Myr after the big bang). With an estimated stellar mass of ˜109 M⊙, this galaxy is surprisingly bright and massive, raising questions as to how such an extreme object could form so early in the Universe. Using MERAXES, a semi-analytic galaxy-formation model developed as part of the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations (DRAGONS) programme, we investigate the potential formation mechanisms and eventual fate of GN-z11. The volume of our simulation is comparable to that of the discovery observations and possesses two analogue galaxies of similar luminosity to this remarkably bright system. Existing in the two most massive subhaloes at z = 11.1 (Mvir = 1.4 × 1011 M⊙ and 6.7 × 1010 M⊙), our model analogues show excellent agreement with all available observationally derived properties of GN-z11. Although they are relatively rare outliers from the full galaxy population at high-z, they are no longer the most massive or brightest systems by z = 5. Furthermore, we find that both objects possess relatively smooth, but extremely rapid mass growth histories with consistently high star formation rates and UV luminosities at z > 11, indicating that their brightness is not a transient, merger-driven feature. Our model results suggest that future wide-field surveys with the James Webb Space Telescope may be able to detect the progenitors of GN-z11 analogues out to z ˜ 13-14, pushing the frontiers of galaxy-formation observations to the early phases of cosmic reionization and providing a valuable glimpse of the first galaxies to reionize the Universe on large scales.

  17. Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan L.; Shapley, Alice E.; Zhang, Kai; Yan, Renbin

    2017-12-01

    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of H II and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for H II regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the H II region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single H II regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.

  18. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  19. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  20. The Hidden Lives of Galaxies: An Information & Activity Booklet, Grades 9-12, 2000-2001. Imagine the Universe! Probing the Structure & Evolution of the Cosmos.

    ERIC Educational Resources Information Center

    Lochner, James C.; Williamson, Lisa; Fitzhugh, Ethel

    This National Aeronautics and Space Administration (NASA) document presents activities on the properties of galaxies for additional curriculum support. The activities presented in this document include: (1) "How Big Is the Universe"; (2) "Identifying Galaxies"; (3) "Classifying Galaxies Using Hubble's Fork Diagram"; (4) "Identifying Unusual…

  1. GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.

    2015-08-01

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.

  2. The Impact of Starbursts on the Gaseous Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2009-07-01

    Perhaps the most important {yet uncertain} aspects of galaxy evolution are the processes by which galaxies accrete gas and by which the resulting star formation and black hole growth affects this accreting gas. It is believed that both the form of the accretion and the nature of the feedback change as a function of the galaxy mass. At low mass the gas comes in cold and the feedback is provided by massive stars. At high mass, the gas comes in hot, and the feedback is from an AGN. The changeover occurs near the mass where the galaxy population transitions from star-forming galaxies to red and dead ones. The population of red and dead galaxies is building with cosmic time, and it is believed that feedback plays an imporant role in this process: shutting down star formation by heating and/or expelling the reservoir of cold halo gas. To investigate these ideas, we propose to use COS far-UV spectra of background QSOs to measure the properties of the halo gas in a sample of galaxies near the transition mass that have undergone starbursts within the past 100 Myr to 1 Gyr. The galactic wind associated with the starburst is predicted to have affected the properties of the gaseous halo. To test this, we will compare the properties of the halos of the post-starburst galaxies to those of a control sample of galaxies matched in mass and QSO impact parameter. Do the halos of the post-starburst galaxies show a higher incidence rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the halo gas more disturbed in the post-starbursts? Has the wind affected the ionization state and/or the metallicity of the halo? These data will provide fresh new insights into the role of feedback from massive stars on the evolution of galaxies, and may also offer clues about the properties of the QSO metal absorption-line systems at high-redshift.

  3. SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara

    2016-02-15

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short.{sup 5} sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium,more » Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling–radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.« less

  4. Gas Dynamics in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    McCourt, Michael Kingsley, Jr.

    Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to

  5. Identifying Nearby Galaxy Outliers Using Neutral Hydrogen Scaling Relations

    NASA Astrophysics Data System (ADS)

    Mohammed, Steven; Schiminovich, D.

    2013-01-01

    Galaxies appear to be divided into two distinct families: blue, star-forming, gas-rich, spiral galaxies and red, gas-deficient, elliptical galaxies. However, the transition between these two families is not well understood. A galaxy's gas content could be a good indicator of processes that affect this transition. We assembled a catalog of physical properties for 535 nearby massive galaxies (redshifts 0.025 < z < 0.05; stellar masses M* > 108 solar masses) from various existing surveys to examine their neutral hydrogen (HI) gas content. We obtained HI data (e.g., HI masses and HI radii) from several surveys; other properties (e.g., stellar masses, light radii and star formation rates) were derived from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX). Our goal is to identify any outliers from scaling relations derived from galaxies in the GALEX Arecibo SDSS Survey (GASS) in hope that these outliers can provide us with insight into processes relevant to the blue-to-red-galaxy transition. Results indicate that our heterogeneous selection yields a sample that shows similar scaling relations as the GASS galaxies. For example, the atomic HI gas fraction (MHI/M*) decreases strongly as both stellar mass and stellar mass surface density increase. Here, we show recent work that investigates the HI distribution maps of our galaxies to identify environmental effects that might cause outliers to exist.

  6. Probing Circum Galactic Medium of Galaxies in Emission

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali

    Nearby late-type galaxies are missing a large fraction of their baryonic mass. Galaxies have also lost most of the metals that they produced. Cosmological simulations of galaxy formation suggest that a large fraction of the missing baryonic mass and metals should reside in the circum-galactic medium (CGM), in a warm-hot gas phase at temperatures between one million and 10 million K. Although theoretical models predict the existence of the warm-hot gas in the CGM, detecting and characterizing the diffuse CGM has been difficult. At the expected temperatures the baryons are in the form of highly ionized plasma,observable in soft X-rays. Using observations from Chandra, XMM-Newton and Suzaku, we found that there is a huge reservoir of ionized gas around the Milky Way, with a mass of over 2 billion solar masses and a radius of over 100 kpc. The baryonic mass fraction of this gas is consistent with the Universal value. Similar to the Milky Way, other spiral galaxies should also have massive, extended reservoirs of ionized hot gas in the CGM. Searches of such a warm-hot gas in CGMs of external galaxies, however, have given mixed results. There are three sets of observations which are in apparent conflict: (1) CGMs around nearby spiral galaxies are apparently not extended (this might be an observational bias which we will test with the proposed program); (2) CGMs around massive spirals are extended and massive, but given the large mass of these galaxies, about an order of magnitude higher than the Milky Way, the fraction of baryons in the CGM is still small, and the baryons are still missing; (3) the Milky Way CGM is extended and massive and may account for the missing baryons. Theoretical models suggest that CGM properties depend on galaxy properties such as the gravitational mass, stellar mass and specific star formation rate. So to understand the physics of galaxy formation and evolution and the role of the accretion and feedback mechanisms, we must probe the entire

  7. The Intriguing Case of the (Almost) Dark Galaxy AGC 229385

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2015-10-01

    The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.

  8. GREEN GALAXIES IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, basedmore » on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.« less

  9. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  10. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive

  11. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  12. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  13. Type Ia supernova host galaxies as seen with IFU spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanishev, V.; Rodrigues, M.; Mourão, A.; Flores, H.

    2012-09-01

    Context. Type Ia supernovae (SNe Ia) have been widely used in cosmology as distance indicators. However, to fully exploit their potential in cosmology, a better control over systematic uncertainties is required. Some of the uncertainties are related to the unknown nature of the SN Ia progenitors. Aims: We aim to test the use of integral field unit (IFU) spectroscopy for correlating the properties of nearby SNe Ia with the properties of their host galaxies at the location of the SNe. The results are to be compared with those obtained from an analysis of the total host spectrum. The goal is to explore this path of constraining the nature of the SN Ia progenitors and further improve the use of SNe Ia in cosmology. Methods: We used the wide-field IFU spectrograph PMAS/PPAK at the 3.5 m telescope of Calar Alto Observatory to observe six nearby spiral galaxies that hosted SNe Ia. Spatially resolved 2D maps of the properties of the ionized gas and the stellar populations were derived. Results: Five of the observed galaxies have an ongoing star formation rate of 1-5 M⊙ yr-1 and mean stellar population ages ~5 Gyr. The sixth galaxy shows no star formation and has an about 12 Gyr old stellar population. All galaxies have stellar masses larger than 2 × 1010 M⊙ and metallicities above solar. Four galaxies show negative radial metallicity gradients of the ionized gas up to -0.058 dex kpc-1 and one has nearly uniform metallicity with a possible shallow positive slope. The stellar components show shallower negative metallicity gradients up to -0.03 dex kpc-1. We find no clear correlation between the properties of the galaxy and those of the supernovae, which may be because of the small ranges spanned by the galaxy parameters. However, we note that the Hubble residuals are on average positive while negative Hubble residuals are expected for SNe Ia in massive hosts such as the galaxies in our sample. Conclusions: The IFU spectroscopy on 4-m telescopes is a viable technique for

  14. Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function

    NASA Astrophysics Data System (ADS)

    Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.

    2011-05-01

    We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.

  15. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  16. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  17. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  18. VizieR Online Data Catalog: Chandra ACIS survey in nearby galaxies. II (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Qiu, Y.; Liu, J.; Bregman, J. N.

    2018-03-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α{\\sim}1.50{\\pm}0.07) to elliptical ({\\sim}1.21{\\pm}0.02), to spirals ({\\sim}0.80{\\pm}0.02), to peculiars ({\\sim}0.55{\\pm}0.30), and to irregulars ({\\sim}0.26{\\pm}0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D25 and 2D25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24{\\pm}0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4x1040erg/s, and this break may suggest a mild boundary between the stellar black hole population possibly including 30M{\\sun} black holes with super-Eddington radiation and intermediate mass black holes. (1 data file).

  19. Blue diffuse dwarf galaxies: a clearer picture

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), I.e. galaxies with <1/10 solar metallicity. However, due to the bright emission-line-based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ˜150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 < 12 + log(O/H) < 8.01), with ˜20 per cent of our sample classified as being XMP galaxies, and find that they are actively forming stars at rates of ˜1-33 × 10-2 M⊙ yr-1 in H II regions randomly embedded in a blue, low-surface-brightness continuum. Stellar masses are calculated from population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  20. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max

    2018-06-01

    We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.

  1. Integral field spectroscopy of a sample of nearby galaxies. I. Sample, observations, and data reduction

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.; Sánchez, S. F.; Marino, R. A.; Mast, D.; Viironen, K.; Gil de Paz, A.; Iglesias-Páramo, J.; Rosales-Ortega, F. F.; Vilchez, J. M.

    2011-10-01

    Aims: Integral field spectroscopy (IFS) is a powerful approach to studying nearby galaxies since it enables a detailed analysis of their resolved physical properties. Here we present our study of a sample of nearby galaxies selected to exploit the two-dimensional information provided by the IFS. Methods: We observed a sample of 48 galaxies from the local universe with the PPaK integral field spectroscopy unit (IFU), of the PMAS spectrograph, mounted at the 3.5 m telescope at Calar Alto Observatory (Almeria, Spain). Two different setups were used during these studies (low - V300 - and medium - V600 - resolution mode) covering a spectral range of around 3700-7000 ÅÅ. We developed a full automatic pipeline for the data reduction, which includes an analysis of the quality of the final data products. We applied a decoupling method to obtain the ionised gas and stellar content of these galaxies, and derive the main physical properties of the galaxies. To assess the accuracy in the measurements of the different parameters, we performed a set of simulations to derive the expected relative errors obtained with these data. In addition, we extracted spectra for two types of aperture, one central and another integrated over the entire galaxy, from the datacubes. The main properties of the stellar populations and ionised gas of these galaxies and an estimate of their relative errors are derived from those spectra, as well as from the whole datacubes. Results: We compare the central spectrum extracted from our datacubes and the SDSS spectrum for each of the galaxies for which this is possible, and find close agreement between the derived values for both samples. We find differences on the properties of galaxies when comparing a central and an integrated spectra, showing the effects of the extracted aperture on the interpretation of the data. Finally, we present two-dimensional maps of some of the main properties derived with the decoupling procedure. Based on observations

  2. The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael

    2016-12-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.

  3. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime

    We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between the two most luminous members, and the offset between the position of the BGG and the luminosity centroid of the group. We find that the radio luminosity of the largest galaxy in the group strongly depends on its environment, such that the BGGs in dynamically young (evolving) groups are anmore » order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model that allows us to explore the various causes of these findings. We find that the fraction of radio-loud BGGs in the observed dynamically young groups is ∼2 times that of the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super massive black hole accretion rate.« less

  4. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  5. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  6. Circumnuclear Star Formation in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Marquette, Melissa; Hicks, Erin K.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Davies, Richard

    2017-01-01

    We examine a group of Seyfert 1 and Seyfert 2 galaxies to determine whether there exists a correlation between the circumnuclear starburst age and the luminosity of the active galactic nucleus. Using data from the Keck OSIRIS Nearby AGN (KONA) survey, we have a sample size of 40 Seyfert galaxies (split between Seyfert 1s and 2s), in which we measure the circumnuclear properties down to a few tens of parsecs. We determine the age of the most recent episode of circumnuclear star formation by analyzing the equivalent width of the Br Gamma 2.16 micron emission line and further constrain the age using measurements of the K-band mass to light ratio. The results of these analyses will be presented, including a comparison of the Seyfert 1 and Seyfert 2 subsamples.

  7. Extent of warm haloes around medium-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.

    1989-01-01

    The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.

  8. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  9. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  10. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  11. X-Ray Characteristics of Megamaser Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2017-10-01

    Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.

  12. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  13. Approximations to galaxy star formation rate histories: properties and uses of two examples

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  14. Dusty Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Su, Ting

    2017-02-01

    Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter

  15. Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Moscardini, L.; Bartelmann, M.

    2009-06-01

    We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zel'dovich effect. Several different background cosmological models are assumed, including the concordance ΛCDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard ΛCDM model. Among the cluster catalogs studied in this work, it turns out that those based on eRosita, Planck, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.

  16. Understanding Galaxy Shapes Across Cosmic Time Using The IllustrisTNG Simulation

    NASA Astrophysics Data System (ADS)

    Genel, Shy

    2017-08-01

    Legacy HST observations have enabled groundbreaking measurements of galaxy structure over cosmic time, measurements that still require theoretical interpretation in the context of a comprehensive galaxy evolution model. This proposed research aims at significantly promoting our understanding of the shapes of galaxies as quantified by their principal axes ratios. The main tool we propose to use is IllustrisTNG, a suite consisting of two of the largest cosmological hydrodynamical simulations run to date, which contain resolved galaxy populations (thousands of L* galaxies) that represent a state-of-the-art match to observed galaxies. In Part I of the program, we will use the simulations to create mock images and study the dependence of projected shape measurements on various factors: shape estimator, observed band, the presence of dust, radial and surface brightness cuts, and noise. We will then perform apples-to-apples comparison with observations (including HST), and provide predictions for archival as well as future observations. Further, we will quantify the intrinsic, three-dimensional, shape distribution of galaxies as a function of various galaxy parameters: redshift, mass, color, and size. In Part II of the program, we will develop theoretical insights into the physical mechanisms driving these results. We will study how galaxy shapes relate to angular momentum and merger history, and will follow the shape evolution of individual galaxies over time, looking for correlations to the evolution of other galaxy properties, e.g. size and SFR. We will also study galaxy shape relations to dark matter halo shape, thereby providing input for high-precision cosmic shear models.

  17. Spectral Analysis of CLU Galaxies

    NASA Astrophysics Data System (ADS)

    Sutter, Jessica; Cook, David O.; Kasliwal, Mansi M.; Dale, Daniel A.

    2017-01-01

    In order to help select possible EM signals from gravitational wave-emitting sources, a more complete catalog of local galaxies is being created. This catalog, called the Census of the Local Universe (CLU), will attempt to find the position of all star-forming galaxies within 200 Mpc. By doing this, the area on the sky from which a gravitational wave could possibly have originated is reduced by a factor of 100. Besides providing this valuable resource for gravitational wave follow-up, the CLU survey provides an exciting new opportunity for better understanding the properties of galaxies near the same age as the Milky Way. Using spectra obtained with the Palomar 200-inch double-prime spectrograph as well as data from the WISE survey, we have created a main sequence for the CLU survey. By analyzing how this main sequence behaves in local galaxies, we can better understand the relationship between current star formation rate and total galaxy stellar mass.

  18. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    negative colour gradients supports the picture of inside-out growth through gas accretion for blue, low-n galaxies, and through dry minor mergers for red, high-n galaxies. An exception is the blue high-n population which has properties indicative of dissipative major mergers. In the third section of this thesis I apply bulge-disc decompositions to my sample of galaxies, in order to discover the structural origin of the wavelength dependences found in the previous two chapters. I find that most galaxies with a substantial disc, even those with no discernible bulge, display a high value of N. The increase in Sérsic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of R (< 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. I also study how bulge and disc colour distributions vary with galaxy type. I find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. I even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.

  19. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes?

    NASA Astrophysics Data System (ADS)

    Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.

    2016-08-01

    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.

  20. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  1. Cosmic evolution and metal aversion in superluminous supernova host galaxies

    NASA Astrophysics Data System (ADS)

    Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; Anderson, J. P.; Bauer, F. E.; Christensen, L.; de Pasquale, M.; de Ugarte Postigo, A.; Gallazzi, A.; Hjorth, J.; Morrell, N.; Malesani, D.; Sparre, M.; Stalder, B.; Stark, A. A.; Thöne, C. C.; Wheeler, J. C.

    2018-01-01

    The SUperluminous Supernova Host galaxIES survey aims to provide strong new constraints on the progenitors of superluminous supernovae (SLSNe) by understanding the relationship to their host galaxies. We present the photometric properties of 53 H-poor and 16 H-rich SLSN host galaxies out to z ∼ 4. We model their spectral energy distributions to derive physical properties, which we compare with other galaxy populations. At low redshift, H-poor SLSNe are preferentially found in very blue, low-mass galaxies with high average specific star formation rates. As redshift increases, the host population follows the general evolution of star-forming galaxies towards more luminous galaxies. After accounting for secular evolution, we find evidence for differential evolution in galaxy mass, but not in the B band and the far-ultraviolet luminosity (3σ confidence). Most remarkable is the scarcity of hosts with stellar masses above 1010 M⊙ for both classes of SLSNe. In case of H-poor SLSNe, we attribute this to a stifled production efficiency above ∼0.4 solar metallicity. However, we argue that, in addition to low metallicity, a short-lived stellar population is also required to regulate the SLSN production. H-rich SLSNe are found in a very diverse population of star-forming galaxies. Still, the scarcity of massive hosts suggests a stifled production efficiency above ∼0.8 solar metallicity. The large dispersion of the H-rich SLSNe host properties is in stark contrast to those of gamma-ray burst, regular core-collapse SN, and H-poor SLSNe host galaxies. We propose that multiple progenitor channels give rise to this subclass.

  2. The Stability Of Disk Barred Galaxies Over the Past 7 Billion Years

    NASA Astrophysics Data System (ADS)

    Tapia, Amauri; Simmons, Brooke

    2017-01-01

    A recently released model of interacting disk galaxies provides a hypothesis for the origins of off center bars in disks. No systematic search for offset bars in the early universe has yet been undertaken. The Galaxy Zoo project has produced data regarding the large-scale bars of many galaxies. Using this data alongside images collected by the Hubble Space Telescope and other sources, we have examined 5190 galaxies for signatures of off-centered bars. Less than 5 percent of the sample shows clear signs of an offset bar. We describe their overall properties of this sub-sample and compare the properties of galaxies with offset bars to those with centered bars. We assess the feasibility of the proposed model and place these galaxies in the context of the overall evolution of galaxies.

  3. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  4. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  5. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  6. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; onlymore » 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.« less

  7. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  8. Galaxy Surface Photometry

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Jørgensen, Inger

    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.

  9. A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees

    NASA Astrophysics Data System (ADS)

    Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.

    2018-04-01

    The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.

  10. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  11. Green valley galaxies as a transition population in different environments

    NASA Astrophysics Data System (ADS)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  12. A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies

    NASA Astrophysics Data System (ADS)

    Sandstrom, Karin

    CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D < 50 Mpc) galaxy population is the definitive resource on dust at z=0 for the foreseeable future. Such observations allow us to understand the behavior of the IR SED and so inform observations from the major new facilities ALMA and JWST, which have amazing sensitivity and resolution but limited wavelength coverage. OBJECTIVES: We will create a library of matched resolution, uniformly processed IR SEDs for all 532 local galaxies with resolved mapping in the Herschel, Spitzer, and WISE archives. We will associate the SED measurements with rich "value added" data, including fits of physical models to the IR SED (yielding small grain fractions, temperature, and dust masses), host galaxy properties (e.g., stellar mass, SFR, morphology, inclination), and local conditions in the galaxy (SFR and stellar surface density, ISM gas mass and metallicity where available). The library will be created for a range of spatial and angular scales and served through IRSA/MAST, providing a major high level legacy resource that will be useful to a wide community. We will exploit this database to address three major

  13. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. I. The Case of Pure Self-gravity

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2015-12-01

    The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.

  14. Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Malespina, Alysa

    2017-01-01

    Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.

  15. The Evolution of Galaxies Through the Spatial Distribution of Their Globular Clusters: the Brightest Galaxies in Fornax

    NASA Astrophysics Data System (ADS)

    Zegeye, David W.

    2018-01-01

    We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  16. The Smallest Galaxies in the Universe: Investigating the Origins of Ultra-faint Galaxies

    NASA Astrophysics Data System (ADS)

    Qi, Yuewen; Graus, Andrew; Bullock, James

    2018-01-01

    One outstanding question in cosmology is, what are the smallest galaxies that can form? The answer to this question can tell us much about galaxy formation, and even of the properties of dark matter itself. A candidate for the smallest galaxies that can form are the ultrafaint galaxies. The star formation of ultrafaints appears to have been shut off during the epoch of reionization, when radiation from the first stars ionized all the free hydrogen in the universe. This would imply ultrafaints should exist everywhere in the universe. However, we can only observe ultrafaints as satellites of the Milky Way, due to their low brightness. This will change with the next generation of telescopes such as the Large Synoptic Survey Telescope (LSST). The focus of this work is to predict the number of ultrafaints that should be seen with future surveys. To that end, we use the ELVIS suite, which contains 14 dark matter only simulations of Local Group like systems containing a Milky Way and Andromeda-like galaxy and the substructure out to around 1 Mpc of the barycenter. We mock observe the simulations in order to mimic current surveys such as the Sloan Digital Sky Survey (SDSS), and the Dark Energy Survey (DES), and use the population of galaxies found by those surveys to project the population of dwarf galaxies out beyond the virial radius of either galaxy. This number will depend sensitively on the formation mechanism of ultrafaint dwarfs, and comparisons of future surveys to this work could help rule out certain formation scenarios.

  17. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  18. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  19. HST/WFC3 near-infrared spectroscopy of quenched galaxies at z ∼ 1.5 from the WISP survey: Stellar population properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are wellmore » fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.« less

  20. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  1. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  2. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode

    NASA Astrophysics Data System (ADS)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing

    2017-08-01

    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  3. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Guo, Qi; Gao, Liang; Liao, Shihong; Xie, Lizhi; Puzia, Thomas H.; Sun, Shuangpeng; Pan, Jun

    2017-10-01

    A particular population of galaxies have drawn much interest recently, which are as faint as typical dwarf galaxies but have the sizes as large as L* galaxies, the so called ultradiffuse galaxies (UDGs). The lack of tidal features of UDGs in dense environments suggests that their host haloes are perhaps as massive as that of the Milky Way. On the other hand, galaxy formation efficiency should be much higher in the haloes of such masses. Here, we use the model galaxy catalogue generated by populating two large simulations: the Millennium-II cosmological simulation and Phoenix simulations of nine big clusters with the semi-analytic galaxy formation model. This model reproduces remarkably well the observed properties of UDGs in the nearby clusters, including the abundance, profile, colour and morphology, etc. We search for UDG candidates using the public data and find two UDG candidates in our Local Group and 23 in our Local Volume, in excellent agreement with the model predictions. We demonstrate that UDGs are genuine dwarf galaxies, formed in the haloes of ˜1010 M⊙. It is the combination of the late formation time and high spins of the host haloes that results in the spatially extended feature of this particular population. The lack of tidal disruption features of UDGs in clusters can also be explained by their late infall-time.

  4. Outskirts of Local Group Dwarf Galaxies Revealed by Subaru Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka

    2017-03-01

    Local Group galaxies are important targets since their stellar populations can be resolved, and their properties can be investigated in detail with the help of stellar evolutionary models. The newly-built instrument for the 8.2m Subaru Telescope, Hyper Suprime-Cam (HSC), which has a 1 Giga pixel CCD camera with 1.5 degrees field of view, is the best instrument for observing Local Group galaxies. We have carried out a survey for Local Group dwarf galaxies using HSC aiming to shed light on the outskirts of these galaxies. The survey covers target galaxies out beyond the tidal radii down to a depth unexplored by previous surveys. Thanks to the high spatial resolution and high sensitivity provided by the Subaru Telescope, we are able to investigate properties such as spatial distribution and stellar population from the very center of galaxies to the outskirts. In this article, I will show results for the dwarf irregular galaxy NGC 6822 and the dwarf spheroidal galaxy Ursa Minor.

  5. Ten billion years of brightest cluster galaxy alignments

    NASA Astrophysics Data System (ADS)

    West, Michael J.; de Propris, Roberto; Bremer, Malcolm N.; Phillipps, Steven

    2017-07-01

    A galaxy's orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space; however, it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centres of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales1,2,3,4,5,6. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show that similar alignments are seen at earlier epochs when the Universe was only one-third of its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.

  6. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  7. Stellar populations in local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, P. G.

    2003-11-01

    The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)

  8. 3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2011-12-01

    Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation

  9. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  10. Infall of Associations of Dwarf Galaxies into the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Benavides, J.; Casas-Miranda, R. A.

    2018-01-01

    The origin of the satellite disc of the Milky Way (DoS or VPOS) and M31 (GPoA) remains an open problem in astrophysics (Klypling, Kravtsov, & Valenzuela, 1999; Pawlowski, Kroupa, & Jerjen, 2013). This paper presents a study on the possible formation of the Milky Way satellite disc from an association of dwarf galaxies that infall into the Milky Way dark matter halo in parabolic orbits. For this, we performed Newtonian numerical simulations of N-bodies taking values for the initial distances of 4, 2 and 1 Mpc. Morphological properties of dwarfs were analyzed after a simulation time of 10 Gy, proposed for the interaction with the Milky Way, taking into account: the distributions obtained around the plane of the host galaxy, the distances to which the dwarfs are located, their density profiles and their velocity dispersion. One results is that, after 10 Gy of fall, the structures remain compact maintaining their morphological properties, with better results when the halo of dark matter that envelops them is included. Only associations of dwarf galaxies located at distances of 1 Mpc these manage to enter the halo of the galaxy. This is supported by the fact that these closest associations are those that have fallen in towards the halo of the galaxy, which is why no associations of dwarfs are observed at these distances in the Local Group, the closet association being 14+12 at a distance of 1.37 Mpc from the Milky Way (Tully, 2006).

  11. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    of galaxy clusters will be at locations of the peaks in the true underlying (mostly) dark matter density field. Kaiser (1984) [19] called this the high-peak model, which we demonstrate in Figure 16.1. We show a two-dimensional representation of a density field created by summing plane-waves with a predetermined power and with random wave-vector directions. In the left panel, we plot only the largest modes, where we see the density peaks (black) and valleys (white) in the combined field. In the right panel, we allow for smaller modes. You can see that the highest density peaks in the left panel contain smaller-scale, but still high-density peaks. These are the locations of future galaxy clusters. The bottom panel shows just these cluster-scale peaks. As you can see, the peaks themselves are clustered, and instead of just one large high-density peak in the original density field (see the left panel), the smaller modes show that six peaks are "born" within the broader, underlying large-scale density modes. This exemplifies the "bias" or amplified structure that is traced by galaxy clusters [19]. Clusters are rare, easy to find, and their member galaxies provide good distance estimates. In combination with their amplified clustering signal described above, galaxy clusters are considered an efficient and precise tracer of the large-scale matter density field in the Universe. Galaxy clusters can also be used to measure the baryon content of the Universe [43]. They can be used to identify gravitational lenses [38] and map the distribution of matter in clusters. The number and spatial distribution of galaxy clusters can be used to constrain cosmological parameters, like the fraction of the energy density in the Universe due to matter (Omega_matter) or the variation in the density field on fixed physical scales (sigma_8) [26,33]. The individual clusters act as “Island Universes” and as such are laboratories here we can study the evolution of the properties of the cluster

  12. Tidal dwarf galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher

    2018-02-01

    The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.

  13. Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel

    NASA Astrophysics Data System (ADS)

    Rémy-Ruyer, A.; Madden, S. C.; Galliano, F.; Hony, S.; Sauvage, M.; Bendo, G. J.; Roussel, H.; Pohlen, M.; Smith, M. W. L.; Galametz, M.; Cormier, D.; Lebouteiller, V.; Wu, R.; Baes, M.; Barlow, M. J.; Boquien, M.; Boselli, A.; Ciesla, L.; De Looze, I.; Karczewski, O. Ł.; Panuzzo, P.; Spinoglio, L.; Vaccari, M.; Wilson, C. D.

    2013-09-01

    Context. We present new photometric data from our Herschel guaranteed time key programme, the Dwarf Galaxy Survey (DGS), dedicated to the observation of the gas and dust in low-metallicity environments. A total of 48 dwarf galaxies were observed with the PACS and SPIRE instruments onboard the Herschel Space Observatory at 70, 100, 160, 250, 350, and 500 μm. Aims: The goal of this paper is to provide reliable far-infrared (FIR) photometry for the DGS sample and to analyse the FIR/submillimetre (submm) behaviour of the DGS galaxies. We focus on a systematic comparison of the derived FIR properties (FIR luminosity, LFIR, dust mass, Mdust, dust temperature, T, emissivity index, β) with more metal-rich galaxies and investigate the detection of a potential submm excess. Methods: The data reduction method is adapted for each galaxy in order to derive the most reliable photometry from the final maps. The derived PACS flux densities are compared with the Spitzer MIPS 70 and 160 μm bands. We use colour-colour diagrams to analyse the FIR/submm behaviour of the DGS galaxies and modified blackbody fitting procedures to determine their dust properties. To study the variation in these dust properties with metallicity, we also include galaxies from the Herschel KINGFISH sample, which contains more metal-rich environments, totalling 109 galaxies. Results: The location of the DGS galaxies on Herschel colour-colour diagrams highlights the differences in dust grain properties and/or global environments of low-metallicity dwarf galaxies. The dust in DGS galaxies is generally warmer than in KINGFISH galaxies (TDGS ~ 32 K and TKINGFISH ~ 23 K). The emissivity index, β, is ~1.7 in the DGS, however metallicity does not make a strong effect on β. The proportion of dust mass relative to stellar mass is lower in low-metallicity galaxies: Mdust/Mstar ~ 0.02% for the DGS versus 0.1% for KINGFISH. However, per unit dust mass, dwarf galaxies emit about six times more in the FIR/submm than

  14. A new 3-D View of Ionized Gas Conditions in Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie

    2018-01-01

    We present a 3D version of common emission line diagnostic diagrams used to identify the source of ionization in galaxies, and highlight interesting features in this new 3D space, which are associated with global galaxy properties. Namely, we combine the BPT and Mass-Excitation (MEx) diagrams, and apply it to a set of >300,000 galaxies from the SDSS survey. Among other features, we show that the usual “branch” of star-forming galaxies becomes a curved surface in the new 3D space. Understanding the underlying reasons can shed light on the nearby galaxy population but also aid our interpretation of high-redshift surveys, which indicate a strong evolution of emission line ratios. Despite efforts to explain the origin of this strong evolution, a consensus has not yet been reached. Yet, the implications are crucial to our understanding of galaxy growth across cosmic time, and in particular to assess how star forming regions differed at earlier times (gas properties? stellar properties? a combination?). We perform this analysis within the framework of the NOAO Data Lab (datalab.noao.edu) jointly with public visualization tools. The final workflow will be released publicly.

  15. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipino, A.; Cibinel, A.; Tacchella, S.

    2014-12-20

    We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction Γ and merging galaxy properties in a sample of ∼1300 group galaxies with M > 10{sup 9.2} M {sub ☉} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that Γ decreases by a factor of ∼2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ☉} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measuremore » a variation of ΔΓ/Δlog (M {sub HALO}) ∼ –0.07 dex{sup –1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ☉}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ☉} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ∼2 × enhanced (specific) star formation rates and ∼1.5 × larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.« less

  16. Mapping the properties of blue compact dwarf galaxies: integral field spectroscopy with PMAS

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Zurita, C.; Kehrig, C.; Roth, M.; Weilbacher, P.

    2010-09-01

    Context. Blue compact dwarf (BCD) galaxies are low-luminosity, low-metal content dwarf systems undergoing violent bursts of star formation. They present a unique opportunity to probe galaxy formation and evolution and to investigate the process of star formation in a relatively simple scenario. Spectrophotometric studies of BCDs are essential to disentangle and characterize their stellar populations. Aims: We perform integral field spectroscopy of a sample of BCDs with the aim of analyzing their morphology, the spatial distribution of some of their physical properties (excitation, extinction, and electron density) and their relationship with the distribution and evolutionary state of the stellar populations. Methods: Integral field spectroscopy observations of the sample galaxies were carried out with the Potsdam Multi-Aperture Spectrophotometer (PMAS) at the 3.5 m telescope at Calar Alto Observatory. An area 16 arcsec × 16 arcsec in size was mapped with a spatial sampling of 1 arcsec × 1 arcsec. We obtained data in the 3590-6996 Å spectral range, with a linear dispersion of 3.2 Å per pixel. From these data we built two-dimensional maps of the flux of the most prominent emission lines, of two continuum bands, of the most relevant line ratios, and of the gas velocity field. Integrated spectra of the most prominent star-forming regions and of whole objects within the FOV were used to derive their physical parameters and the gas metal abundances. Results: Six galaxies display the same morphology both in emission line and in continuum maps; only in two objects, Mrk 32 and Tololo 1434+032, the distributions of the ionized gas and of the stars differ considerably. In general the different excitation maps for a same object display the same pattern and trace the star-forming regions, as expected for objects ionized by hot stars; only the outer regions of Mrk 32, I Zw 123 and I Zw 159 display higher [S II]/Hα values, suggestive of shocks. Six galaxies display an

  17. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  18. A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the integrated luminosity, shape, and potential depth of the Einstein sample of early-type galaxies (presented by Fabbiano et al. 1992). We find significant correlations between the X-ray properties and the axial ratios (a/b) of our sample, such that the roundest systems tend to have the highest L(sub x) and L(sub x)/L(sub B). The most radio-loud objects are also the roundest. We confirm the assertion of Bender et al. (1989) that galaxies with high L(sub x) are boxy (have negative a(sub 4)). Both a/b and a(sub 4) are correlated with L(sub B), but not with IRAS 12 um and 100 um luminosities. There are strong correlations between L(sub x), Mg(sub 2), and sigma(sub nu) in the sense that those systems with the deepest potential wells have the highest L(sub x) and Mg(sub 2). Thus the depth of the potential well appears to govern both the ability to reatin an ISM at the present epoch and to retain the enriched ejecta of early star formation bursts. Both L(sub x)/L(sub B) and L(sub 6) (the 6 cm radio luminosity) show threshold effects with sigma(sub nu) exhibiting sharp increases at log sigma(sub nu) approximately = 2.2. Finally, there is clearly an interrelationship between the various stellar and structural parameters: The scatter in the bivariate relationships between the shape parameters (a/b and a(sub 4)) and the depth parameter sigma(sub nu) is a function of abundance in the sense that, for a given a(sub 4) or a/b, the systems with the highest sigma(sub nu) also have the highest Mg(sub 2). Furthermore, for a constant sigma(sun nu), disky galaxies tend to have higher Mg(sub 2) than boxy ones. Alternatively, for a given abundance, boxy ellipticals tend to be more massive than disky ellipticals. One possibility is that early-type galaxies of a given mass, originating from mergers (boxy ellipticals), have lower abundances than 'primordial' (disky) early-type galaxies. Another is that

  19. Cold gas properties of the Herschel Reference Survey. III. Molecular gas stripping in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cortese, L.; Boquien, M.; Boissier, S.; Catinella, B.; Gavazzi, G.; Lagos, C.; Saintonge, A.

    2014-04-01

    The Herschel Reference Survey is a complete volume-limited, K-band-selected sample of nearby objects including Virgo cluster and isolated objects. Using a recent compilation of Hi and CO data for this sample we study the effects of the cluster environment on the molecular gas content of spiral galaxies. With the subsample of unperturbed field galaxies, we first identify the stellar mass as the scaling variable that traces the total molecular gas mass of galaxies better. We show that, on average, Hi-deficient galaxies are significantly offset (4σ) from the M(H2) vs. Mstar relation for Hi-normal galaxies. We use the M(H2) vs. Mstar scaling relation to define the H2-deficiency parameter as the difference, on logarithmic scale, between the expected and observed molecular gas mass for a galaxy of given stellar mass. The H2-deficiency parameter shows a weak and scattered relation with the Hi-deficiency parameter, here taken as a proxy for galaxy interactions with the surrounding cluster environment. We also show that, as for the atomic gas, the extent of the molecular disc decreases with increasing Hi-deficiency. All together, these results show that cluster galaxies have, on average, a lower molecular gas content than similar objects in the field. Our analysis indicates that ram pressure stripping is the physical process responsible for this molecular gas deficiency. The slope of the H2 - def vs. Hi - def relation is less than unity, while the D(Hi)/D(i) vs. Hi - def relation is steeper than the D(CO)/D(i) vs. Hi - def relation, thereby indicating that the molecular gas is removed less efficiently than the atomic gas. This result can be understood if the atomic gas is distributed on a relatively flat disc that is more extended than the stellar disc. It is thus less anchored to the gravitational potential well of the galaxy than the molecular gas phase, which is distributed on an exponential disc with a scalelength rCO ≃ 0.2r24.5(g). There is a clear trend between the

  20. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  1. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  2. The connection between the host halo and the satellite galaxies of the Milky Way

    DOE PAGES

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; ...

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less

  3. Morphology and luminosity segregation of galaxies in nearby loose groups

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.

    2003-08-01

    We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.

  4. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  5. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.; Krause, E.; Dodelson, S.

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  6. Gas inflow patterns and nuclear rings in barred galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhi

    2017-06-01

    Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.

  7. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  8. Infalling groups and galaxy transformations in the cluster A2142

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan

    2018-03-01

    Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately

  9. High-redshift galaxy populations and their descendants

    NASA Astrophysics Data System (ADS)

    Guo, Qi; White, Simon D. M.

    2009-06-01

    We study predictions in the concordance Λ cold dark matter cosmology for the abundance and clustering of high-redshift galaxies and for the properties of their descendants. We focus on three high-redshift populations: Lyman break galaxies (LBGs) at z ~ 3, optically selected star-forming galaxies at z ~ 2 (BXs) and distant red galaxies (DRGs) at z ~ 2. We select galaxies from mock catalogues based on the Millennium Simulation using the observational colour and apparent magnitude criteria. With plausible dust assumptions, our galaxy formation model can simultaneously reproduce the abundances, redshift distributions and clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting differing initial mass functions and scatter in model dust properties. About 85 per cent of model galaxies selected as DRGs are star forming, with SFRs in the range 1 to ~100Msolaryr-1. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5 < z < 3.2; many massive, star-forming galaxies are predicted to be too heavily obscured to appear in these populations. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal poor, in disagreement with recent observational results. The model galaxies are predominantly disc dominated. Stellar masses for LBGs and BXs are ~109.9Msolar, and for DRGs are ~1010.7Msolar. Only about 30 per cent of model galaxies with M* > 1011Msolar are classified as LBGs or BXs at the relevant redshifts, while 65 per cent are classified as DRGs. Almost all model LBGs and BXs are the central galaxies of their dark haloes, but fewer than half of the haloes of any given mass have an LBG or BX central galaxy. Half of all LBG descendants at z = 2 would be identified as BXs, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations

  10. Panchromatic SED modelling of spatially resolved galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  11. PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Y. Q.; Xia, X. Y.; Hao, C. N.

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSSmore » Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.« less

  12. Near-Field Cosmology with Low-Mass Galaxies: Constraining the Escape of Radiation from the UV-slopes of Local Galaxies

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Rosenberg, Jessica L.; Salzer, John Joseph; Gronke, Max; Cannon, John M.; Miller, Christopher J.; Dijkstra, Mark

    2018-06-01

    Low-mass galaxies are thought to play a large role in reionizing the Universe at redshifts, z > 6. However, due to limited UV data on low-mass galaxies, the models used to estimate the escape of radiation are poorly constrained. Using theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of a sample of low-mass low-z KISSR galaxies to their escape fraction values in Ly-alpha radiation, fesc (LyA), and in the Ly-continuum, fesc (LyC). These low-mass starforming systems have potentially steep UV slopes, and could provide a much-needed relation between easily measured spectral properties such as UV slope or LyA line properties, and the escape of LyA/LyC radiation. Such a relation could advance studies of primordial star clusters and the underlying physical conditions characterizing early galaxies, one of the target observation goals of the soon to-be-launched James Webb Space Telescope. This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  13. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  14. Star Formation Rates of dS galaxies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Vega-Acevedo, I.; Magaña-Serrano, M. A.

    2014-10-01

    The Star Formation Rate of a sample of nine dwarf spiral galaxies and ten late-type Sm is determined from the Hα luminosity. The main interest was to check if these two kind of late-type galaxies have similar SFR or not. The images were acquired at the 1.5m telescope of the SPM-OAN and they were reduced with the software MIDAS. The values of the SFR are very similar for both type of galaxies and also similar to other Sm galaxies. The main result is that the dwarf spiral galaxies are more efficient when forming stars than the Sm galaxies because the SFR per are are lower for the latter with the same gas density than for dwarf spirals. However, the SFRs are larger in the Sm galaxies. In addition, the SFR per area were compared with global properties of the galaxies. There is only a relationship between the SFR and the surface brightness as well as with the absolute blue magnitude, but no relationship with the optical radius. A larger sample is needed in order to obtain a more conclusive answer.

  15. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the

  16. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.

  17. Undergraduate ALFALFA Team: Star Formation in the NGC 5846 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Viani, Lucas; Koopmann, R. A.; Darling, H.; ALFALFA Team

    2013-01-01

    We examine gas and star formation properties of galaxies in the NGC 5846 group. Narrowband Halpha and broadband R images for a sample of galaxies were obtained at the KPNO WIYN 0.9m with MOSAIC and the SMARTS 0.9m telescope at CTIO. Neutral hydrogen data from the Arecibo Legacy Fast ALFA (ALFALFA) survey trace the cold neutral gas content. The amounts and extents of star formation in a subsample of galaxies are compared as a function of cold gas content and position in the group. The typical star formation rates and extents of NGC 5846 galaxies are less than those of isolated galaxies and similar to those of galaxies located in the Virgo Cluster and other group environments. This work is part of the Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project, a collaborative undertaking of faculty and undergraduates at 11 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey.

  18. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  19. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel

    2016-08-01

    We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.

  20. Isolated Early-type Galaxies in the 2dFGRS

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Lamir, C.

    2014-01-01

    Isolated galaxies are systems that have experienced limited external perturbations, thus the properties of these galaxies are largely due to internal processes. The features of isolated early-type galaxies (IEGs) provide a baseline from which to compare early-type systems residing in higher-density environments. We use the Two-Degree Field Galaxy Redshift Survey (2dFGRS) and the NASA Extragalactic Database (NED) to identify IEGs in the nearby universe. Search criteria in the 2dFGRS were chosen to insure that the IEGs have remained separated from neighboring galaxies for the majority of their lifetimes. Isolated galaxies are chosen utilizing a minimum projected physical separation of 1 Mpc from any neighboring non-dwarf galaxy brighter than Mb = -16.5 mags. A minimum redshift separation of 350 km/s between a candidate galaxy and a neighboring was imposed to further insure the candidate’s isolation. Early results of the search for isolated early-type galaxies in the southern sky are presented.

  1. How well does the Friends-of-Friends algorithm recover group properties from galaxy catalogues limited in both distance and luminosity?

    NASA Astrophysics Data System (ADS)

    Duarte, Manuel; Mamon, Gary A.

    2014-05-01

    The specific star formation rates of galaxies are influenced both by their mass and by their environment. Moreover, the mass function of groups and clusters serves as a powerful cosmological tool. It is thus important to quantify the accuracy to which group properties are extracted from redshift surveys. We test here the Friends-of-Friends (FoF) grouping algorithm, which depends on two linking lengths (LLs), plane-of-sky and line-of-sight (LOS), normalized to the mean nearest neighbour separation of field galaxies. We argue, on theoretical grounds, that LLs should be b⊥ ≃ 0.11, and b∥ ≈ 1.3 to recover 95 per cent of all galaxies with projected radii within the virial radius r200 and 95 per cent of the galaxies along the LOS. We then predict that 80 to 90 per cent of the galaxies in FoF groups should lie within their parent real-space groups (RSGs), defined within their virial spheres. We test the FoF extraction for 16 × 16 pairs of LLs, using subsamples of galaxies, doubly complete in distance and luminosity, of a flux-limited mock Sloan Digital Sky Survey (SDSS) galaxy catalogue. We find that massive RSGs are more prone to fragmentation, while the fragments typically have low estimated mass, with typically 30 per cent of groups of low and intermediate estimated mass being fragments. Group merging rises drastically with estimated mass. For groups of three or more galaxies, galaxy completeness and reliability are both typically better than 80 per cent (after discarding the fragments). Estimated masses of extracted groups are biased low, by up to a factor 4 at low richness, while the inefficiency of mass estimation improves from 0.85 dex to 0.2 dex when moving from low to high multiplicity groups. The optimal LLs depend on the scientific goal for the group catalogue. We propose b⊥ ≃ 0.07, with b∥ ≃ 1.1 for studies of environmental effects, b∥ ≃ 2.5 for cosmographic studies and b∥ ≃ 5 for followups of individual groups.

  2. Soft X-ray properties of Seyfert galaxies. I - Spectra

    NASA Technical Reports Server (NTRS)

    Kruper, J. S.; Canizares, C. R.; Urry, C. M.

    1990-01-01

    Results are presented from a study of soft X-ray spectra of 75 Seyfert galaxies observed by the Einstein Observatory IPC. The spectra in this sample (mostly high-luminosity Seyfert type 1s) are found to be consistent with a single power-law index alpha = 81. The AGN spectra observed with the IPC are compared with those from higher energy experiments, where AGN spectra have power law indices alpha = 0.7. It is found that the IPC spectra are systematically steeper than the HEAO 1 A-2 spectra of the same Seyfert galaxies, indicating a flattening toward higher energies.

  3. Auto-consistent test of Galaxy star formation histories derived from resolved stellar population and integral spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.

    We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/

  4. NIHAO VI. The hidden discs of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Stinson, Gregory S.; Dutton, Aaron A.; Macciò, Andrea V.; Wang, Liang; Kang, Xi

    2016-06-01

    Detailed studies of galaxy formation require clear definitions of the structural components of galaxies. Precisely defined components also enable better comparisons between observations and simulations. We use a subsample of 18 cosmological zoom-in simulations from the Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) project to derive a robust method for defining stellar kinematic discs in galaxies. Our method uses Gaussian Mixture Models in a 3D space of dynamical variables. The NIHAO galaxies have the right stellar mass for their halo mass, and their angular momenta and Sérsic indices match observations. While the photometric disc-to-total ratios are close to 1 for all the simulated galaxies, the kinematic ratios are around ˜0.5. Thus, exponential structure does not imply a cold kinematic disc. Above M* ˜ 109.5 M⊙, the decomposition leads to thin discs and spheroids that have clearly different properties, in terms of angular momentum, rotational support, ellipticity, [Fe/H] and [O/Fe]. At M* ≲ 109.5 M⊙, the decomposition selects discs and spheroids with less distinct properties. At these low masses, both the discs and spheroids have exponential profiles with high minor-to-major axes ratios, I.e. thickened discs.

  5. The Porosity of the neutral ISM in 20 THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Bagetakos, I.; Brinks, E.; Walter, F.; de Blok, W. J. G.; Usero, A.; Leroy, A. K.; Rich, J. W.; Kennicutt, R. C.

    2011-11-01

    We present an analysis of the properties of H i holes detected in 20 galaxies that are part of "The H i Nearby Galaxy Survey". We detected more than 1000 holes in total in the sampled galaxies. The holes are found throughout the disks of the galaxies, out to the edge of the H i disk. We find that shear limits the age of holes in spirals. Shear is less important in dwarf galaxies which explains why H i holes in dwarfs are rounder, on average than in spirals. Shear is particularly strong in the inner part of spiral galaxies, limiting the lifespan of holes there and explaining why we find that holes outside R25 are larger and older. We proceed to derive the surface and volume porosity and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of aν ~ -2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that H i holes result from star formation.

  6. The properties and evolution of a K-band selected sample of massive galaxies at z ~ 0.4-2 in the Palomar/DEEP2 survey

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Bundy, K.; Trujillo, I.; Coil, A.; Eisenhardt, P.; Ellis, R. S.; Georgakakis, A.; Huang, J.; Lotz, J.; Nandra, K.; Newman, J.; Papovich, C.; Weiner, B.; Willmer, C.

    2007-11-01

    We present the results of a study on the properties and evolution of massive (M* > 1011Msolar) galaxies at z ~ 0.4-2 utilizing Keck spectroscopy, near-infrared Palomar imaging, and Hubble, Chandra and Spitzer data covering fields targeted by the DEEP2 galaxy spectroscopic survey. Our sample is K-band selected and stellar mass limited, based on wide-area near-infrared imaging from the Palomar Observatory Wide-Field Infrared Survey, which covers 1.53 deg2 to a 5σ depth of Ks,vega ~ 20.5. Our primary goal is to obtain a broad census of massive galaxies through measuring how their number and mass densities, morphology, as well as their star formation and active galactic nucleus content evolve from z ~ 0.4-2. Our major findings include: (i) statistically the mass and number densities of M* > 1011Msolar galaxies show little evolution between z = 0 and 1 and from z ~ 0 to 2 for M* > 1011.5Msolar galaxies. We however find significant evolution within 1 < z < 1.5 for 1011 Msolar < M* < 1011.5Msolar galaxies. (ii) After examining the structures of our galaxies using Hubble ACS imaging, we find that M* > 1011Msolar selected galaxies show a nearly constant elliptical fraction of ~70-90 per cent at all redshifts. The remaining objects tend to be peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. A significant fraction (~25 per cent) of these early-types contain minor structural anomalies. (iii) We find that only a fraction (~60 per cent) of massive galaxies with M* > 1011Msolar are on the red sequence at z ~ 1.4, while nearly 100 per cent evolve on to it by z ~ 0.4. (iv) By utilizing Spitzer MIPS imaging and [OII] line fluxes we argue that M* > 1011.5Msolar galaxies have a steeply declining star formation rate (SFR) density ~ (1 + z)6. By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M* > 1011Msolar galaxies

  7. Identification and properties of host galaxies of RCR radio sources

    NASA Astrophysics Data System (ADS)

    Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.

    2013-01-01

    FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the "Cold" survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects ( L ≲ 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies ( L ≳ 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.

  8. Quantifying Bursty Star Formation and Dust Extinction in Dwarf Galaxies at 0.75 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Siana, Brian

    2014-10-01

    Using the magnification provided by gravitational lensing, our team has recently uncovered an important population of star-forming dwarf galaxies at 1properties in these galaxies are claimed to be significantly different from their more massive counterparts, but uncertainties remain. First, the star formation rates of these dwarf galaxies are expected to vary by an order of magnitude on short, 10-30 Myr, time scales unlike the more massive galaxies. Second, the dust extinction is claimed to be very low, but these claims have not considered that the intrinsic colors of these galaxies are likely very different than more massive galaxies.In cycle 21, we were awarded 48 orbits of near-UV imaging of the three best Frontier Field cluster lenses to measure the ultraviolet properties of a large number of star-forming dwarf galaxies. Also in cycle 21, the GLASS survey was allocated 140 orbits of WFC3/IR grism spectroscopy of 10 lensing clusters, including 42 orbits of spectroscopy in the Frontier Fields for which we have near-UV imaging. We propose for archival funding to incorporate the WFC3/IR grism spectroscopy of a sample of 70 dwarf galaxies at 0.75galaxies. Furthermore, both the UV spectral slope and the Balmer decrement {Halpha/Hbeta ratio} will allow independent measures of dust extinction, to better quantify the intrinsic star formation rates in these galaxies.

  9. What the UV SED Tells us About Stellar Populations and Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    The UV SED parameter b as in f(sub 1) 1(sup b), is commonly used to estimate fundamental properties of high-redshift galaxies including age and metallicity. However, sources and processes other than age and metallicity can influence the value of b. We use the local starforming dwarf galaxy, I Zw 18, in a case study to investigate uncertainties in age and metallicity inferred from b due errors or uncertainties in: mode of star formation (instantaneous starburst vs. continuous SF), dust extinction, nebular continuous emission (2-photon emission, Balmer continuum flux), and presence of older stars.

  10. Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering

    NASA Astrophysics Data System (ADS)

    Ford, Jes; VanderPlas, Jake

    2016-12-01

    We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.

  11. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  12. Blue compact dwarfs - Extreme dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Observational data on the most extreme members of the irregular dwarf (dI) galaxy class, the blue compact dwarfs (BCDs), are characterized, reviewing the results of recent investigations. The properties of the young stellar population, the ionized gas, the older star population, and the gas and dust of BCDs are contrasted with those of other dIs; BCD morphology is illustrated with sample images; and the value of BCDs (as nearby 'young' chemically unevolved galaxies) for studies of galaxy formation, galactic evolution, and starburst triggering mechanisms is indicated.

  13. Mapping Dark Matter in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  14. The ultraviolet attenuation law in backlit spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the targetmore » galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  15. Galaxy Evolution Across The Redshift Desert

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2010-01-01

    GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.

  16. The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster

    NASA Astrophysics Data System (ADS)

    Rex, M.; Rawle, T. D.; Egami, E.; Pérez-González, P. G.; Zemcov, M.; Aretxaga, I.; Chung, S. M.; Fadda, D.; Gonzalez, A. H.; Hughes, D. H.; Horellou, C.; Johansson, D.; Kneib, J.-P.; Richard, J.; Altieri, B.; Fiedler, A. K.; Pereira, M. J.; Rieke, G. H.; Smail, I.; Valtchanov, I.; Blain, A. W.; Bock, J. J.; Boone, F.; Bridge, C. R.; Clement, B.; Combes, F.; Dowell, C. D.; Dessauges-Zavadsky, M.; Ilbert, O.; Ivison, R. J.; Jauzac, M.; Lutz, D.; Omont, A.; Pelló, R.; Rodighiero, G.; Schaerer, D.; Smith, G. P.; Walth, G. L.; van der Werf, P.; Werner, M. W.; Austermann, J. E.; Ezawa, H.; Kawabe, R.; Kohno, K.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Yun, M. S.

    2010-07-01

    The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Data presented in this paper were analyzed using “The Herschel interactive processing environment (HIPE)”, a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia.Table 1 and Figs. 3, 4 are only available in electronic form at http://www.aanda.org

  17. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with themore » values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for

  18. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  19. The EAGLE simulations: atomic hydrogen associated with galaxies

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; Bahé, Yannick M.; Lagos, Claudia del P.; Rahmati, Alireza; Schaye, Joop; McCarthy, Ian G.; Marasco, Antonino; Bower, Richard G.; Schaller, Matthieu; Theuns, Tom; van der Hulst, Thijs

    2017-02-01

    We examine the properties of atomic hydrogen (H I) associated with galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations of galaxy formation. EAGLE's feedback parameters were calibrated to reproduce the stellar mass function and galaxy sizes at z = 0.1, and we assess whether this calibration also yields realistic H I properties. We estimate the self-shielding density with a fitting function calibrated using radiation transport simulations, and correct for molecular hydrogen with empirical or theoretical relations. The `standard-resolution' simulations systematically underestimate H I column densities, leading to an H I deficiency in low-mass (M⋆ < 1010 M⊙) galaxies and poor reproduction of the observed H I mass function. These shortcomings are largely absent from EAGLE simulations featuring a factor of 8 (2) better mass (spatial) resolution, within which the H I mass of galaxies evolves more mildly from z = 1 to 0 than in the standard-resolution simulations. The largest volume simulation reproduces the observed clustering of H I systems, and its dependence on H I richness. At fixed M⋆, galaxies acquire more H I in simulations with stronger feedback, as they become associated with more massive haloes and higher infall rates. They acquire less H I in simulations with a greater star formation efficiency, since the star formation and feedback necessary to balance the infall rate is produced by smaller gas reservoirs. The simulations indicate that the H I of present-day galaxies was acquired primarily by the smooth accretion of ionized, intergalactic gas at z ≃ 1, which later self-shields, and that only a small fraction is contributed by the reincorporation of gas previously heated strongly by feedback. H I reservoirs are highly dynamic: over 40 per cent of H I associated with z = 0.1 galaxies is converted to stars or ejected by z = 0.

  20. Supermassive Black Hole Fueling and Feedback in Galaxies

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.

    2018-06-01

    Over the last few decades, observations have revealed surprisingly tight correlations between the properties of galaxies and their supermassive black holes. Active galactic nuclei (AGN) have emerged as key drivers of this coevolution of galaxies and supermassive black holes, by two primary mechanisms: AGN fueling and AGN feedback. Supermassive black holes build up mass by accreting gas during AGN fueling, while AGN feedback is a crucial regulator of star formation that controls the mass growth of the galaxies. In this talk, I will present multiwavelength studies of both AGN fueling and feedback. I will discuss results that address AGN fueling in galaxy mergers, the connection between AGN and star formation, and the effect of AGN outflows on their host galaxies.