Sample records for galaxy redshift distribution

  1. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  2. Spatial Distribution of Star Formation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cunnyngham, Ian; Takamiya, M.; Willmer, C.; Chun, M.; Young, M.

    2011-01-01

    Integral field unit spectroscopy taken of galaxies with redshifts between 0.6 and 0.8 utilizing Gemini Observatory’s GMOS instrument were used to investigate the spatial distribution of star-forming regions by measuring the Hβ and [OII]λ3727 emission line fluxes. These galaxies were selected based on the strength of Hβ and [OII]λ3727 as measured from slit LRIS/Keck spectra. The process of calibrating and reducing data into cubes -- possessing two spatial dimensions, and one for wavelength -- was automated via a custom batch script using the Gemini IRAF routines. Among these galaxies only the bluest sources clearly show [OII] in the IFU regardless of total galaxy luminosity. The brightest galaxies lack [OII] emission and it is posited that two different modes of star formation exist among this seemingly homogeneous group of z=0.7 star-forming galaxies. In order to increase the galaxy sample to include redshifts from 0.3 to 0.9, public Gemini IFU data are being sought. Python scripts were written to mine the Gemini Science Archive for candidate observations, cross-reference the target of these observations with information from the NASA Extragalactic Database, and then present the resultant database in sortable, searchable, cross-linked web-interface using Django to facilitate navigation. By increasing the sample, we expect to characterize these two different modes of star formation which could be high-redshift counterparts of the U/LIRGs and dwarf starburst galaxies like NGC 1569/NGC 4449. The authors acknowledge funds provided by the National Science Foundation (AST 0909240).

  3. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a singlemore » line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.« less

  4. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.

    2016-05-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C I], [N II], H2O and NH3. We further present Atacama Pathfinder Experiment [C II] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  5. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  6. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE PAGES

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; ...

    2018-04-18

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  7. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  8. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.

    2018-07-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak-lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni, but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the Cosmic Evolution Survey (COSMOS) field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ_{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z procedure instead using the Directional Neighbourhood Fitting algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  9. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.; DES Collaboration

    2018-04-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ _{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z proceedure instead using the Directional Neighborhood Fitting (DNF) algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  10. A Catalog of Photometric Redshift and the Distribution of Broad Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Virag, Nicholas; Shamir, Lior

    2018-06-01

    We created a catalog of photometric redshift of ~3,000,000 SDSS galaxies annotated by their broad morphology. The photometric redshift was optimized by testing and comparing several pattern recognition algorithms and variable selection strategies, trained and tested on a subset of the galaxies in the catalog that had spectra. The galaxies in the catalog have i magnitude brighter than 18 and Petrosian radius greater than 5.5''. The majority of these objects are not included in previous SDSS photometric redshift catalogs such as the photoz table of SDSS DR12. Analysis of the catalog shows that the number of galaxies in the catalog that are visually spiral increases until redshift of ~0.085, where it peaks and starts to decrease. It also shows that the number of spiral galaxies compared to elliptical galaxies drops as the redshift increases. The catalog is publicly available at https://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593

  11. Morpho-z: improving photometric redshifts with galaxy morphology

    NASA Astrophysics Data System (ADS)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  12. The Redshift Completeness of Local Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Perley, D. A.; Miller, A. A.

    2018-06-01

    There is considerable interest in understanding the demographics of galaxies within the local universe (defined, for our purposes, as the volume within a radius of 200 Mpc or z ≤ 0.05). In this pilot paper, using supernovae (SNe) as signposts to galaxies, we investigate the redshift completeness of catalogs of nearby galaxies. In particular, type Ia SNe are bright and are good tracers of the bulk of the galaxy population, as they arise in both old and young stellar populations. Our input sample consists of SNe with redshift ≤0.05, discovered by the flux-limited ASAS-SN survey. We define the redshift completeness fraction (RCF) as the number of SN host galaxies with known redshift prior to SN discovery, determined, in this case, via the NASA Extragalactic Database, divided by the total number of newly discovered SNe. Using SNe Ia, we find {RCF}=78{+/- }76% (90% confidence interval) for z < 0.03. We examine the distribution of host galaxies with and without cataloged redshifts as a function of absolute magnitude and redshift, and, unsurprisingly, find that higher-z and fainter hosts are less likely to have a known redshift prior to the detection of the SN. However, surprisingly, some {L}* galaxies are also missing. We conclude with thoughts on the future improvement of RCF measurements that will be made possible from large SN samples resulting from ongoing and especially upcoming time-domain surveys.

  13. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less

  14. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less

  15. A redshift survey of IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-05-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L-2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  16. Measuring our Universe from Galaxy Redshift Surveys.

    PubMed

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  17. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A., E-mail: crawford@saao.ac.za, E-mail: wirth@keck.hawaii.edu, E-mail: mab@astro.wisc.edu

    2014-05-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters havemore » similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.« less

  18. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  19. Analytic halo approach to the bispectrum of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki

    2017-02-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  20. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  1. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  2. Galaxy luminosity function: evolution at high redshift

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  3. Angular power spectrum of galaxies in the 2MASS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro

    2018-02-01

    We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.

  4. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  5. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  6. Dusty Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Su, Ting

    2017-02-01

    Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter

  7. High-redshift galaxy populations and their descendants

    NASA Astrophysics Data System (ADS)

    Guo, Qi; White, Simon D. M.

    2009-06-01

    We study predictions in the concordance Λ cold dark matter cosmology for the abundance and clustering of high-redshift galaxies and for the properties of their descendants. We focus on three high-redshift populations: Lyman break galaxies (LBGs) at z ~ 3, optically selected star-forming galaxies at z ~ 2 (BXs) and distant red galaxies (DRGs) at z ~ 2. We select galaxies from mock catalogues based on the Millennium Simulation using the observational colour and apparent magnitude criteria. With plausible dust assumptions, our galaxy formation model can simultaneously reproduce the abundances, redshift distributions and clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting differing initial mass functions and scatter in model dust properties. About 85 per cent of model galaxies selected as DRGs are star forming, with SFRs in the range 1 to ~100Msolaryr-1. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5 < z < 3.2; many massive, star-forming galaxies are predicted to be too heavily obscured to appear in these populations. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal poor, in disagreement with recent observational results. The model galaxies are predominantly disc dominated. Stellar masses for LBGs and BXs are ~109.9Msolar, and for DRGs are ~1010.7Msolar. Only about 30 per cent of model galaxies with M* > 1011Msolar are classified as LBGs or BXs at the relevant redshifts, while 65 per cent are classified as DRGs. Almost all model LBGs and BXs are the central galaxies of their dark haloes, but fewer than half of the haloes of any given mass have an LBG or BX central galaxy. Half of all LBG descendants at z = 2 would be identified as BXs, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations

  8. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.« less

  9. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Technical Reports Server (NTRS)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  10. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; et al.

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy ofmore » $$\\sim0.02$$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $$\\texttt{COSMOS}$$ 30-band photometry and find that our two very different methods produce consistent constraints.« less

  11. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  12. A catalog of galaxy morphology and photometric redshift

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Shamir, Lior

    2018-01-01

    Morphology carries important information about the physical characteristics of a galaxy. Here we used machine learning to produce a catalog of ~3,000,000 SDSS galaxies classified by their broad morphology into spiral and elliptical galaxies. Comparison of the catalog to Galaxy Zooshows that the catalog contains a subset of 1.7*10^6 galaxies classified with the same level of consistency as the debiased “superclean” sub-sample. In addition to the morphology, we also computed the photometric redshifts of the galaxies. Several pattern recognition algorithms and variable selection strategies were tested, and the best accuracy of mean absolute error of ~0.0062 was achieved by using random forest with a combination of manually and automatically selected variables. The catalog shows that for redshift lower than 0.085 galaxies that visually look spiral become more prevalent as the redshift gets higher. For redshift greater than 0.085 galaxies thatvisually look elliptical become more prevalent. The catalog as well as the source code used to produce it is publicly available athttps://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593 .

  13. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  14. A faint field-galaxy redshift survey in quasar fields

    NASA Technical Reports Server (NTRS)

    Yee, Howard K. C.; Ellingson, Erica

    1993-01-01

    Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.

  15. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  16. The Durham/UKST Galaxy Redshift Survey - VII. Redshift-space distortions in the power spectrum

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Hoyle, Fiona; Shanks, T.

    2001-03-01

    We investigate the effect of redshift-space distortions in the power spectrum parallel and perpendicular to the line of sight of the observer, PS(k∥,k⊥), using the optically selected Durham/UKST Galaxy Redshift Survey. On small, non-linear scales anisotropy in the power spectrum is dominated by the galaxy velocity dispersion; the `Finger of God' effect. On larger, linear scales coherent peculiar velocities caused by the infall of galaxies into overdense regions are the main cause of anisotropy. According to gravitational instability theory these distortions depend only on the density and bias parameters via β~Ωm0.6b. Geometrical distortions also occur if the wrong cosmology is assumed, although these would be relatively small given the low redshift of the survey. To quantify these effects, we assume the real-space power spectrum of the APM Galaxy Survey, and fit a simple model for the redshift-space and geometrical distortions. Assuming a flat Ωm=1 universe, we find values for the one-dimensional pairwise velocity dispersion of σp=410+/-170kms-1, and β=0.38+/-0.17. An open Ωm=0.3, and a flat Ωm=0.3, ΩΛ=0.7 universe yield σp=420kms-1, β=0.40, and σp=440kms-1, β=0.45, respectively, with comparable errors. These results are consistent with estimates using the two-point galaxy correlation function, ξ(σ,π), and favour either a low-density universe with Ωm~0.3 if galaxies trace the underlying mass distribution, or a bias factor of b~2.5 if Ωm=1.

  17. Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

    NASA Astrophysics Data System (ADS)

    Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-09-01

    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.

  18. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-findingmore » success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.« less

  19. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  20. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-10-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million `clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 `anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed `anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80 per cent when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.

  1. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  2. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.ed, E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alonemore » Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys

  3. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  4. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  5. On the recovery of the local group motion from galaxy redshift surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusser, Adi; Davis, Marc; Branchini, Enzo, E-mail: adi@physics.technion.ac.il, E-mail: mdavis@berkeley.edu, E-mail: branchin@fis.uniroma3.it

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s}more » = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.« less

  6. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  7. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  8. Pairs of galaxies in low density regions of a combined redshift catalog

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.

    1990-01-01

    The distributions of projected separations and radial velocity differences of pairs of galaxies in the CfA and Southern Sky Redshift Survey (SSRS) redshift catalogs are examined. The authors focus on pairs that fall in low density environments rather than in clusters or large groups. The projected separation distribution is nearly flat, while uncorrelated galaxies would have given one linearly rising with r sub p. There is no break in this curve even below 50 kpc, the minimum halo size consistent with measured galaxy rotation curves. The significant number of pairs at small separations is inconsistent with the N-body result that galaxies with overlapping halos will rapidly merge, unless there are significant amounts of matter distributed out to a few hundred kpc of the galaxies. This dark matter may either be in distinct halos or more loosely distributed. Large halos would allow pairs at initially large separations to head toward merger, replenishing the distribution at small separations. In the context of this model, the authors estimate that roughly 10 to 25 percent of these low density galaxies are the product of a merger, compared with the elliptical/SO fraction of 18 percent, observed in low density regions of the sample.

  9. The redshift distribution of cosmological samples: a forward modeling approach

    NASA Astrophysics Data System (ADS)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-08-01

    Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  10. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  11. Dust in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max; King, David L.; Smith, Linda J.; Hunstead, Richard W.

    1997-03-01

    Measurements of Zn and Cr abundances in 18 damped Lyα systems (DLAs) at absorption redshifts zabs = 0.692-3.390 (but mostly between zabs ~= 2 and 3) show that metals and dust are much less abundant in high-redshift galaxies than in the Milky Way today. Typically, [Zn/H] ~= -1.2 as Zn tracks Fe closely in Galactic stars of all metallicities and is only lightly depleted onto interstellar grains, we conclude that the overall degree of metal enrichment of damped Lyα galaxies ~13.5 Gyr ago (H0 = 50 km s-1 Mpc-1, q0 = 0.05) was ~1/15 solar. Values of [Cr/Zn] span the range from ~=0 to <~ - 0.65 which we interpret as evidence for selective depletion of Cr onto dust in some DLAs. On average Cr and other refractory elements are depleted by only a factor of ~2, significantly less than in local interstellar clouds. We propose that this reflects an overall lower abundance of dust--which may be related to the lower metallicities, likely higher temperature of the ISM and higher supernova rates in these young galaxies--rather than an ``exotic'' composition of dust grains. Combining a metallicity ZDLA ~= 1/15 Z⊙ with a dust-to-metals ratio ~1/2 of that in local interstellar clouds, we deduce that the ``typical'' dust-to-gas ratio in damped Lyα galaxies is ~1/30 of the Milky Way value. This amount of dust will introduce an extinction at 1500 Å of only A1500 ~ 0.1 in the spectra of background QSOs. Similarly, we expect little reddening of the broad spectral energy distribution of the high-z field galaxies now being found routinely by deep imaging surveys. Even such trace amounts of dust, however, can explain the weakness of Lyα emission from star-forming regions. We stress the approximate nature of such general statements; in reality, the range of metallicities and dust depletions encountered indicates that some sight lines through high-redshift galaxies may be essentially dust-free, while others could suffer detectable extinction. Finally, we show that, despite claims to the

  12. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

  13. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  14. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  15. The inevitable youthfulness of known high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Blundell, Katherine M.; Rawlings, Steve

    1999-05-01

    Some galaxies are very luminous in the radio part of the spectrum. These `radio galaxies' have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole. Some radio galaxies can be seen at very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift, without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.

  16. Extent of warm haloes around medium-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.

    1989-01-01

    The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.

  17. The redshift distribution of cosmological samples: a forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizesmore » and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.« less

  18. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the

  19. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; ...

    2015-11-19

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the

  20. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  1. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  2. The accelerated build-up of the red sequence in high-redshift galaxy clusters

    NASA Astrophysics Data System (ADS)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.

    2016-04-01

    We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.

  3. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  4. Redshifts of twenty radio galaxies.

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Strittmatter, P. A.

    1972-01-01

    Spectroscopic observations and redshifts of 20 radio galaxies obtained with the Lick 120-inch telescope are presented. Ten of the radio galaxies are from the 3C R catalog, and the remainder are from the 4C, 5C, Ohio, and Parkes catalogs. The reported results represent a continuation of Burbidge's (1970) previously published data.

  5. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  6. Redshifts for 2410 Galaxies in the Century Survey Region

    NASA Astrophysics Data System (ADS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Brown, Warren R.; Fabricant, Daniel G.; Geller, Margaret J.; Huchra, John P.; Marzke, Ronald O.; Sakai, Shoko

    2001-12-01

    The Century Survey strip covers 102 deg2 within the limits 8h5<=α<=16h5, 29.0d<=δ<=30.0d, equinox B1950.0. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts that constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins Rph<=16.13 covering the entire strip, (2) 507 galaxies with Rph<=16.4 in right ascension range 8h32m<=α<=10 h45m, equinox B1950.0, (3) 1251 galaxies with absorption- and K-corrected RCCDc<=16.2 (where ``c'' indicates ``corrected'') covering the right ascension range 8h5<=α<=13h5, equinox B1950.0, and (4) 1255 galaxies with absorption- and K-corrected VCCDc<=16.7 also covering the right ascension range 8h5<=α<=13h5, equinox B1950.0. All these redshift samples are more than 98% complete to the specified magnitude limit. We derived samples 1 and 2 from scans of the POSS1 red (E) plates calibrated with CCD photometry. We derived samples 3 and 4 from deep V and R CCD images covering the entire region. We include coarse morphological types for all the galaxies in sample 1. The distribution of (V-R)CCD for each type corresponds appropriately with the classification. Work reported here is based partly on observations obtained at the Michigan-Dartmouth-MIT Observatory.

  7. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  8. “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.

    2018-06-01

    We study the direct gas-phase oxygen abundance using the well-detected auroral line [O III]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O III]λ5007/Hβ versus [N II]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances (7.8< 12+{log}({{O}}/{{H}})< 8.4) and the N2 (log([N II]λ6584/Hα))/O3N2 (log(([O III]λ5007/Hβ)/([N II]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H II regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O III]λλ4959,5007+[O II]λλ3726,3729)/Hβ)), O32(log([O III]λλ4959,5007/[O II]λλ3726,3729)), {log}([O III]λ5007/Hβ), and log([Ne III]λ3869/[O II]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure

  9. N-point correlation functions in the CfA and SSRS redshift distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Gaztanaga, Enrique

    1992-01-01

    Using counts in cells, we estimate the volume-average N-point galaxy correlation functions for N = 2, 3, and 4, in redshift samples of the CfA and SSRS catalogs. Volume-limited samples of different sizes are used to study the uncertainties at different scales, the shot noise, and the problem with the boundaries. The hierarchical constants S3 and S4 agree well in all samples in CfA and SSRS, with average S3 = 194 +/- 0.07 and S4 = 4.56 +/- 0.53. We compare these results with estimates obtained from angular catalogs and recent analysis over IRAS samples. The amplitudes SJ seem larger in real space than in redshift space, although the values from the angular analysis correspond to smaller scales, where we might expect larger nonperturbative effects. It is also found that S3 and S4 are smaller for IRAS than for optical galaxies. This, together with the fact that IRAS galaxies have smaller amplitude for the above correlation functions, indicates that the density fluctuations of IRAS galaxies cannot be simply proportional to the density fluctuations of optical galaxies, i.e., biasing has to be nonlinear between them.

  10. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  11. Probability of lensing magnification by cosmologically distributed galaxies

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1993-01-01

    We present the analytical formulae for computing the magnification probability caused by cosmologically distributed galaxies. The galaxies are assumed to be singular, truncated-isothermal spheres without both evolution and clustering in redshift. We find that, for a fixed total mass, extended galaxies produce a broader shape in the magnification probability distribution and hence are less efficient as gravitational lenses than compact galaxies. The high-magnification tail caused by large galaxies is well approximated by an A exp -3 form, while the tail by small galaxies is slightly shallower. The mean magnification as a function of redshift is, however, found to be independent of the size of the lensing galaxies. In terms of the flux conservation, our formulae for the isothermal galaxy model predict a mean magnification to within a few percent with the Dyer-Roeder model of a clumpy universe.

  12. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  13. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    NASA Technical Reports Server (NTRS)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 < z < 1:4 from the All-Wavelength Extended Groth Strip International Survey (AEGIS). This consists in the Bayesian analysis of the observed galaxy spectral ' energy distributions with a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R,l and K(sub s) bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFH on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  14. Multiple Regression Redshift Calibration for Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kalinkov, M.; Kuneva, I.; Valtchanov, I.

    A new procedure for calibration of distances to ACO (Abell et al.1989) clusters of galaxies has been developed. In the previous version of the Reference Catalog of ACO Clusters of Galaxies (Kalinkov & Kuneva 1992) an attempt has been made to compare various calibration schemes. For the Version 93 we have made some refinements. Many improvements from the early days of the photometric calibration have been made --- from Rowan-Robinson (1972), Corwin (1974), Kalinkov & Kuneva (1975), Mills Hoskins (1977) to more complicated --- Leir & van den Bergh (1977), Postman et al.(1985), Kalinkov Kuneva (1985, 1986, 1990), Scaramella et al.(1991), Zucca et al. (1993). It was shown that it is impossible to use the same calibration relation for northern (A) and southern (ACO) clusters of galaxies. Therefore the calibration have to be made separately for both catalogs. Moreover it is better if one could find relations for the 274 A-clusters, studied by the authors of ACO. We use the luminosity distance for H0=100km/s/Mpc and q0 = 0.5 and we have 1200 clusters with measured redshifts. The first step is to fit log(z) on m10 (magnitude of the tenth rank galaxy) for A-clusters and on m1, m3 and m10 for ACO clusters. The second step is to take into account the K-correction and the Scott effect (Postman et al.1985) with iterative process. To avoid the initial errors of the redshift estimates in A- and ACO catalogs we adopt Hubble's law for the apparent radial distribution of galaxies in clusters. This enable us to calculate a new cluster richness from preliminary redshift estimate. This is the third step. Further continues the study of the correlation matrix between log(z) and prospective predictors --- new richness groups, BM, RS and A types, radio and X-ray fluxes, apparent separations between the first three brightest galaxies, mean population (gal/sq.deg), Multiple linear as well as nonlinear regression estimators are found. Many clusters that deviate by more than 2.5 sigmas are

  15. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 < z < 1.4 from the All-Wavelength Extended Groth Strip International Survey. This consists in the Bayesian analysis of the observed galaxy spectral energy distributions with a comprehensive library of synthetic spectra assembled using realistic, hierarchical star formation, and chemical enrichment histories from cosmological simulations. We constrain the SFH of each galaxy in our samplemore » by comparing the observed fluxes in the B, R, I, and K{sub s} bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.« less

  16. Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution

    NASA Astrophysics Data System (ADS)

    Mancuso, Claudia

    2016-10-01

    We have exploited the continuity equation approach and the star-formation timescales derived from the observed 'main sequence' relation (Star Formation Rate vs Stellar Mass), to show that the observed high abundance of galaxies with stellar masses ≥ a few 10^10 M⊙ at redshift z ≥ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≥ 10^2 M⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≤ 3 in the Far-InfraRed (FIR) band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼10, elucidating that the number density at z ≤ 8 for SFRs ψ ≥ 30 M⊙ yr^-1 cannot be estimated relying on the UltraViolet (UV) luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ≤ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2. The same could be done with radio observations by SKA and its precursors. In particular we have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. To do that we

  17. Extremely red objects in the fields of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith

    1993-01-01

    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.

  18. A distortion of very-high-redshift galaxy number counts by gravitational lensing.

    PubMed

    Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude

    2011-01-13

    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

  19. On the formation redshift of Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Barro, Guillermo; Gomez-Guijarro, Carlos; Villar, Víctor

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present constraints on the star formation histories (SFHs) of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFHs were obtained through the analysis of their spectral energy distributions using a novel approach (Pacifici et al. 2012) that (1) consistently combines photometric (HST and ground-based multi-broadband) and spectroscopic (equivalent widths of emission lines from VLT and GTC spectroscopy) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time.The median SFH of our LMSFGs appears to form 90% of the median stellar mass inferred for the sample in the ˜0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for dwarf SFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for a slightly more massive secondary sample 8.0 < log M∗/Mo < 9.1).This is a pilot study for future surveys on dwarf galaxies at high redshift.

  20. Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher J.; Chapman, Scott C.; Windhorst, Rogier A.

    2003-10-01

    Submillimeter-detected galaxies located at redshifts z>1 host a major fraction of the bolometric luminosity at high redshifts due to thermal emission from heated dust grains, yet the nature of these objects remains a mystery. The major problem in understanding their origin is whether the dust-heating mechanism is predominantly caused by star formation or active galactic nuclei and what triggered this activity. We address this issue by examining the structures of 11 submillimeter galaxies imaged with STIS on the Hubble Space Telescope. We argue that ~61%+/-21% of these submillimeter sources are undergoing an active major merger using the CAS (concentration, asymmetry, clumpiness) quantitative morphological system. We rule out at ~5 σ confidence that these submillimeter galaxies are normal Hubble types at high redshift. This merger fraction appears to be higher than for Lyman break galaxies undergoing mergers at similar redshifts. Using reasonable constraints on the stellar masses of Lyman break galaxies and these submillimeter sources, we further argue that at redshifts z~2-3, systems with high stellar masses are more likely than lower mass galaxies to be involved in major mergers.

  1. Nep-Akari Evolution with Redshift of Dust Attenuation in 8 ㎛ Selected Galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Oi, N.; Burgarella, D.; Malek, K.; Matsuhara, H.; Murata, K.; Serjeant, S.; Takeuchi, T. T.; Malkan, M.; Pearson, C.; Wada, T.

    2017-03-01

    We built a 8um selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15distributions using the physically motivated code CIGALE to extract the star formation rate, stellar mass, dust attenuation and the AGN contribution to the total infrared luminosity (L_{IR}). We discuss the impact of the adopted attenuation curve and that of the wavelength coverage to estimate these physical parameters. We focus on galaxies with a luminosity close the characteristic L_{IR}^* in the different redshift bins to study the evolution with redshift of the dust attenuation in these galaxies.

  2. Galaxy growth from redshift 5 to 0 at fixed comoving number density

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke

    2016-10-01

    Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.

  3. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  4. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durret, F.; Adami, C.; Bertin, E.

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  5. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; hide

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  6. Predicting the High Redshift Galaxy Population for JWST

    NASA Astrophysics Data System (ADS)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  7. Designing a space-based galaxy redshift survey to probe dark energy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni

    2010-12-01

    A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

  8. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less

  9. Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan

    2015-01-01

    Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  10. Galaxy Tagging: photometric redshift refinement and group richness enhancement

    NASA Astrophysics Data System (ADS)

    Kafle, P. R.; Robotham, A. S. G.; Driver, S. P.; Deeley, S.; Norberg, P.; Drinkwater, M. J.; Davies, L. J.

    2018-06-01

    We present a new scheme, galtag, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-band<22) and an accompanying group catalogue to r-band<19.8. We demonstrate that even with some trade-off in sample size, an order of magnitude improvement on the accuracy of photometric redshifts is achievable when using galtag. This approach provides both refined photometric redshift measurements and group richness enhancement. In combination these products will hugely improve the scientific potential of both photometric and spectroscopic datasets. The galtag software will be made publicly available at https://github.com/pkaf/galtag.git.

  11. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnett, C.; Troxel, M. A.; Hartley, W.

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SVmore » shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ z ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ 8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ crit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  12. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  13. High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara

    Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity

  14. The distribution of galaxies within the 'Great Wall'

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The galaxy distribution within the 'Great Wall', the most striking feature in the first three 'slices' of the CfA redshift survey extension is examined. The Great Wall is extracted from the sample and is analyzed by counting galaxies in cells. The 'local' two-point correlation function within the Great Wall is computed and the local correlation length, is estimated 15/h Mpc, about 3 times larger than the correlation length for the entire sample. The redshift distribution of galaxies in the pencil-beam survey by Broadhurst et al. (1990) shows peaks separated about by large 'voids', at least to a redshift of about 0.3. The peaks might represent the intersections of their about 5/h Mpc pencil beams with structures similar to the Great Wall. Under this hypothesis, sampling of the Great Walls shows that l approximately 12/h Mpc is the minimum projected beam size required to detect all the 'walls' at redshifts between the peak of the selection function and the effective depth of the survey.

  15. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  16. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1redshift of z=4. In this poster, I will present the results of this study and compare our results to various results in the literature.

  17. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  18. Evolution of star formation conditions from high-redshift to low-redshift

    NASA Astrophysics Data System (ADS)

    Shirazi, Maryam

    2015-08-01

    There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.

  19. Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Ze-sen, Lin; Xu, Kong

    2018-01-01

    Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).

  20. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 distribution and additional cuts that ensured high quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 < z < 1.0 and stellar mass range 10 < log (Mstar/M⊙) < 12, the D4000 index increases with redshift, while HδA gets lower. This implies that the stellar populations are getting older with increasing stellar mass. Comparison to the spectra of passive red galaxies in the SDSS survey (z 0.2) shows that the shape of the relations of D4000 and HδA with stellar mass has not changed significantly with redshift. Assuming a single burst formation, this implies that high-mass passive red galaxies formed their stars at zform 1.7, while low-mass galaxies formed their main stellar populations

  1. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  2. Spectrophotometric Redshifts in the Faint Infrared Grism Survey: Finding Overdensities of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James; Ryan, Russell; Tilvi, Vithal; Pirzkal, Norbert; Finkelstein, Steven; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Zheng, Zhenya; Hathi, Nimish; Kim, Keunho; Joshi, Bhavin; Yang, Huan; Christensen, Lise; Cimatti, Andrea; Gardner, Jonathan P.; Zakamska, Nadia; Ferreras, Ignacio; Hibon, Pascale; Pasquali, Anna

    2018-04-01

    We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope (HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.

  3. How Accurately Can We Measure Galaxy Environment at High Redshift Using Only Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Jogee, Shardha; Sherman, Sydney; Papovich, Casey J.; Finkelstein, Steven L.; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Ciardullo, Robin; Gronwall, Caryl; SHELA/HETDEX

    2017-06-01

    We use a powerful synergy of six deep photometric surveys (Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray) and a future optical spectroscopic survey (HETDEX) in the Stripe 82 field to study galaxy evolution during the 1.9 < z < 3.5 epoch when cosmic star formation and black hole activity peaked, and protoclusters began to collapse. With an area of 24 sq. degrees, a sample size of ~ 0.8 million galaxies complete in stellar mass above M* ~ 10^10 solar masses, and a comoving volume of ~ 0.45 Gpc^3, our study will allow us to make significant advancements in understanding the connection between galaxies and their respective dark matter components. In this poster, we characterize how robustly we can measure environment using only our photometric redshifts. We compare both local and large-scale measures of environment (e.g., projected two-point correlation function, projected nearest neighbor densities, and galaxy counts within some projected aperture) at different photometric redshifts to cosmological simulations in order to quantify the uncertainty in our estimates of environment. We also explore how robustly one can recover the variation of galaxy properties with environment, when using only photometric redshifts. In the era of large photometric surveys, this work has broad implications for studies addressing the impact of environment on galaxy evolution at early cosmic epochs. We acknowledge support from NSF grants AST-1614798, AST-1413652 and NSF GRFP grant DGE-1610403.

  4. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less

  5. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error formore » luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.« less

  6. A massive, quiescent galaxy at a redshift of 3.717.

    PubMed

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G; Oesch, Pascal A; Papovich, Casey; Spitler, Lee R; Straatman, Caroline M S; Tran, Kim-Vy H; Yuan, Tiantian

    2017-04-05

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 10 11 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  7. A massive, quiescent galaxy at a redshift of 3.717

    NASA Astrophysics Data System (ADS)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  8. Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.

    2002-05-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.

  9. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  10. Properties of low-redshift QSO absorption systems - QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The chance proximity of QSOs and galaxies provides unique opportunities to probe the extent and content of gas in the foreground galaxies through evaluation of the incidence and strength of absorption lines in the spectra of the background QSOs. Recent results on the observed properties of these low-redshift, heavy-element absorption systems are summarized. These results are discussed in the context of the galaxy morphologies and environments and are briefly compared with Galactic absorption and with the inferred properties of higher-redshift QSO absorption systems.

  11. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawthon, R.; et al.

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins:more » $$z \\in[0.15,0.3]$$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $$|\\Delta z|<0.01$$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $$|\\Delta z|<0.01$$. We compare our results to other analyses of redMaGiC photometric redshifts.« less

  12. Steep radio spectra in high-redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Chen, Wan

    1991-01-01

    The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.

  13. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The coevolution of galaxy morphology and colour to z 1

    NASA Astrophysics Data System (ADS)

    Krywult, J.; Tasca, L. A. M.; Pollo, A.; Vergani, D.; Bolzonella, M.; Davidzon, I.; Iovino, A.; Gargiulo, A.; Haines, C. P.; Scodeggio, M.; Guzzo, L.; Zamorani, G.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Tojeiro, R.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.; Takeuchi, T. T.

    2017-02-01

    Context. The study of the separation of galaxy types into different classes that share the same characteristics, and of the evolution of the specific parameters used in the classification are fundamental for understanding galaxy evolution. Aims: We explore the evolution of the statistical distribution of galaxy morphological properties and colours combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Methods: Galaxy structural parameters were combined with absolute magnitudes, colours and redshifts in order to trace evolution in a multi-parameter space. Using a new method we analysed the combination of colours and structural parameters of early- and late-type galaxies in luminosity-redshift space. Results: We find that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sérsic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift (0.5 < z < 1) and luminosity (-1.5 < B-B∗ < 1.0) ranges. The combination of the rest-frame colour and Sérsic index as a function of redshift and luminosity allows us to present the structure of both galaxy types and their evolution. We find that early-type galaxies display only a slow change in their concentrations after z = 1. Their high concentrations were already established at z 1 and depend much more strongly on their luminosity than redshift. In contrast, late-type galaxies clearly become more concentrated with cosmic time with only little evolution in colour, which remains dependent mainly on their luminosity. Conclusions: The combination of rest-frame colours and Sérsic index as a function of redshift and luminosity leads to a precise statistical description of the structure of galaxies and their evolution. Additionally, the proposed method provides a robust way to split galaxies into early

  14. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  15. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  16. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  17. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. Pixel-by-Pixel SED Fitting of Intermediate Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cohen, Seth H.; Kim, Hwihyun; Petty, Sara M.; Farrah, Duncan

    2015-01-01

    We select intermediate redshift galaxies from the Hubble Space Telescope CANDELS and GOODS surveys to study their stellar populations on sub-kilo-parsec scales by fitting SED models on a pixel-by-pixel basis. Galaxies are chosen to have measured spectroscopic redshifts (z<1.5), to be bright (H_AB<21 mag), to be relatively face-on (b/a > 0.6), and have a minimum of ten individual resolution elements across the face of the galaxy, as defined by the broadest PSF (F160W-band) in the data. The sample contains ~200 galaxies with BViz(Y)JH band HST photometry. The main goal of the study is to better understand the effects of population blending when using a pixel-by-pixel SED fitting (pSED) approach. We outline our pSED fitting method which gives maps of stellar mass, age, star-formation rate, etc. Several examples of individual pSED-fit maps are presented in detail, as well as some preliminary results on the full sample. The pSED method is necessarily biased by the brightest population in a given pixel outshining the rest of the stars, and, therefore, we intend to study this apparent population blending in a set of artificially redshifted images of nearby galaxies, for which we have star-by-star measurements of their stellar populations. This local sample will be used to better interpret the measurements for the higher redshift galaxies.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This archival research is associated with program #13241.

  19. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee etmore » al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.« less

  20. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  1. A faint galaxy redshift survey behind massive clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Brenda Louise

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. Themore » gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.« less

  2. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less

  3. A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John P.; Davis, Marc; Yahil, Amos; Fisher, Karl B.; Tonry, John

    1992-01-01

    We present the data for a redshift survey of galaxies selected from the database of the Infrared Astronomical Satellite (IRAS). The sample is flux limited to 1.936 Jy at 60 microns and covers 11.01 sr of the sky. It consists of 5014 objects, of which 2658 are galaxies. The remaining 2356 sources are listed in a separate table with identifications. Redshift data are also given for 212 IRAS galaxies which are not part of the complete sample, but were measured in conjunction with this project.

  4. Spectroscopic confirmation of a galaxy at redshift z = 8.6.

    PubMed

    Lehnert, M D; Nesvadba, N P H; Cuby, J-G; Swinbank, A M; Morris, S; Clément, B; Evans, C J; Bremer, M N; Basa, S

    2010-10-21

    Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.

  5. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  6. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE PAGES

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.; ...

    2016-12-02

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  7. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  8. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  9. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  10. Galaxy Groups in the 2Mass Redshift Survey

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shi, Feng; Mo, H. J.; Tweed, Dylan; Wang, Huiyuan; Zhang, Youcai; Li, Shijie; Lim, S. H.

    2016-11-01

    A galaxy group catalog is constructed from the 2MASS Redshift Survey (2MRS) with the use of a halo-based group finder. The halo mass associated with a group is estimated using a “GAP” method based on the luminosity of the central galaxy and its gap with other member galaxies. Tests using mock samples show that this method is reliable, particularly for poor systems containing only a few members. On average, 80% of all the groups have completeness \\gt 0.8, and about 65% of the groups have zero contamination. Halo masses are estimated with a typical uncertainty of ∼ 0.35 {dex}. The application of the group finder to the 2MRS gives 29,904 groups from a total of 43,246 galaxies at z≤slant 0.08, with 5286 groups having two or more members. Some basic properties of this group catalog is presented, and comparisons are made with other group catalogs in overlap regions. With a depth to z∼ 0.08 and uniformly covering about 91% of the whole sky, this group catalog provides a useful database to study galaxies in the local cosmic web, and to reconstruct the mass distribution in the local universe.

  11. The kinematic dipole in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Clarkson, Chris; Chen, Song

    2018-01-01

    In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.

  12. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  13. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large

  14. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Capak, Peter L.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.; Masters, Daniel C.

    2017-09-01

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope (β UV) and the infrared excess (IRX; L IR/L UV) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX-β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX-β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX-β diagram.

  15. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C.

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β {sub UV}) and the infrared excess (IRX; L {sub IR}/ L {sub UV}) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. Themore » trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.« less

  16. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  17. Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Lowenthal, James D.; Koo, David C.; Guzmán, Rafael; Gallego, Jesús; Phillips, Andrew C.; Faber, S. M.; Vogt, Nicole P.; Illingworth, Garth D.; Gronwall, Caryl

    1997-05-01

    We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 <~ z <~ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n >= 2.4 × 10-4 h350 Mpc-3 for q0 = 0.05, or n >= 1.1 × 10-3 h350 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h-150 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h-250 Msolar yr-1 for q

  18. Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.

    1993-12-01

    Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  19. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  20. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  1. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  2. Photometric redshifts as a tool for studying the Coma cluster galaxy populations

    NASA Astrophysics Data System (ADS)

    Adami, C.; Ilbert, O.; Pelló, R.; Cuillandre, J. C.; Durret, F.; Mazure, A.; Picat, J. P.; Ulmer, M. P.

    2008-12-01

    Aims: We apply photometric redshift techniques to an investigation of the Coma cluster galaxy luminosity function (GLF) at faint magnitudes, in particular in the u* band where basically no studies are presently available at these magnitudes. Methods: Cluster members were selected based on probability distribution function from photometric redshift calculations applied to deep u^*, B, V, R, I images covering a region of almost 1 deg2 (completeness limit R ~ 24). In the area covered only by the u* image, the GLF was also derived after a statistical background subtraction. Results: Global and local GLFs in the B, V, R, and I bands obtained with photometric redshift selection are consistent with our previous results based on a statistical background subtraction. The GLF in the u* band shows an increase in the faint end slope towards the outer regions of the cluster. The analysis of the multicolor type spatial distribution reveals that late type galaxies are distributed in clumps in the cluster outskirts, where X-ray substructures are also detected and where the GLF in the u* band is steeper. Conclusions: We can reproduce the GLFs computed with classical statistical subtraction methods by applying a photometric redshift technique. The u* GLF slope is steeper in the cluster outskirts, varying from α ~ -1 in the cluster center to α ~ -2 in the cluster periphery. The concentrations of faint late type galaxies in the cluster outskirts could explain these very steep slopes, assuming a short burst of star formation in these galaxies when entering the cluster. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is also partly based on data products produced at

  3. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE PAGES

    Jouvel, S.; Delubac, T.; Comparat, J.; ...

    2017-03-24

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  4. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouvel, S.; Delubac, T.; Comparat, J.

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  5. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  6. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  7. Optical Identifications of High-Redshift Galaxy Clusters from the Planck Sunyaev-Zeldovich Survey

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Bikmaev, I. F.; Khamitov, I. M.; Zaznobin, I. A.; Khorunzhev, G. A.; Eselevich, M. V.; Afanasiev, V. L.; Dodonov, S. N.; Rubiño-Martín, J.-A.; Aghanim, N.; Sunyaev, R. A.

    2018-05-01

    We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev-Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7-0.9. We used the data of optical observations with the Russian-Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, z ≈ 0.8.

  8. The redshift-space neighborhoods of 36 loose groups of galaxies. 1: The data

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We have selected 36 loose groups of galaxies (RGH89) with at least five members, and with mean redshift average value of CZ is greater than 3200 km/s. These groups all lie within the first two slices of the CfA redshift survey 8(sup h) less than or equal to alpha less than or equal to 17(sup h) and 26.5 deg less than or equal to delta less than or equal to 38.5 deg). For each of these groups, we define the redshift-space neighborhood as a region centered on the group coordinates and delimited by a circle of projected radius R(sub cir) = 1.5/h Mpc on the sky, and by a velocity interval delta (sub cz) = 3000 km/s. Here we give the redshifts of 334 galaxies in these redshift-space neighborhoods. For completeness, we also give the redshifts of the 232 original members. These data include 199 new redshifts. We demonstrate that these samples of fainter galaxies significantly increase the number of members.

  9. CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal

    2014-11-20

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time inmore » this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.« less

  10. On the Kennicutt-Schmidt Relation of Low-Metallicity High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2010-05-01

    We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z ~ 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H2 formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H2 by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z ≈ 3 is substantially steeper and has a lower amplitude than the z = 0 relation at ΣH <~ 100 M odot pc-2. The predicted relation, however, is consistent with existing observational constraints for the z ≈ 3 damped Lyα and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help explain the prevalence of the thin stellar disks in the local

  11. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  12. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  13. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  14. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  15. Modeling the Redshift Evolution of the Normal Galaxy X-Ray Luminosity Function

    NASA Technical Reports Server (NTRS)

    Tremmel, M.; Fragos, T.; Lehmer, B. D.; Tzanavaris, P.; Belczynski, K.; Kalogera, V.; Basu-Zych, A. R.; Farr, W. M.; Hornschemeier, A.; Jenkins, L.; hide

    2013-01-01

    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high-redshift galaxies allow us to probe the formation and evolution of XRBs on very long timescales (approximately 10 Gyr). In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to approximately 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low common envelope efficiencies, a 50% twins mass ratio distribution, a steeper initial mass function exponent, and high stellar wind mass-loss rates best match observational results from Tzanavaris & Georgantopoulos, though they significantly underproduce bright early-type and very bright (L(sub x) greater than 10(exp 41)) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, active galactic nucleus contamination, and a lack of dynamically formed low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10(exp 40) and 10(exp 41) erg s(exp -1).

  16. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  17. Is There a Maximum Star Formation Rate in High-redshift Galaxies?

    NASA Astrophysics Data System (ADS)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.

    2014-03-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific

  18. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  19. Three-dimensional Identification and Reconstruction of Galaxy Systems within Flux-limited Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Marinoni, Christian; Davis, Marc; Newman, Jeffrey A.; Coil, Alison L.

    2002-11-01

    We have developed a new geometrical method for identifying and reconstructing a homogeneous and highly complete set of galaxy groups within flux-limited redshift surveys. Our method combines information from the three-dimensional Voronoi diagram and its dual, the Delaunay triangulation, to obtain group and cluster catalogs that are remarkably robust over wide ranges in redshift and degree of density enhancement. As free by-products, this Voronoi-Delaunay method (VDM) provides a nonparametric measurement of the galaxy density around each object observed and a quantitative measure of the distribution of cosmological voids in the survey volume. In this paper, we describe the VDM algorithm in detail and test its effectiveness using a family of mock catalogs that simulate the Deep Extragalactic Evolutionary Probe (DEEP2) Redshift Survey, which should present at least as much challenge to cluster reconstruction methods as any other near-future survey that is capable of resolving their velocity dispersions. Using these mock DEEP2 catalogs, we demonstrate that the VDM algorithm can be used to identify a homogeneous set of groups in a magnitude-limited sample throughout the survey redshift window 0.7redshift space environment for systems with line-of-sight velocity dispersion σlos greater than ~200 km s-1. By applying the sampling rate and the instrument-imposed target selection biases expected for DEEP2, we show that even in a worst-case scenario our VDM method can construct a homogeneous sample of systems that reproduces major properties of the ``real'' cluster parent population down to ~200 km s-1 for systems with at least five members (and down to ~400 km s-1 for clusters as a whole). In a Λ cold dark matter cosmology, that limit translates into an identification rate of ~270 systems per square degree with 0.7

  20. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  1. Galaxy Evolution Across The Redshift Desert

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2010-01-01

    GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.

  2. Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Driver, S. P.

    2009-01-01

    Aims: We explore the use of the color-log(n) (where n is the global Sérsic index) plane as a tool for subdividing the galaxy population in a physically-motivated manner out to redshift unity. We thereby aim to quantify surface brightness evolution by color-log(n) type, accounting separately for the specific selection and measurement biases against each. Methods: We construct (u-r) color-log(n) diagrams for distant galaxies in the Hubble Ultra Deep Field (UDF) within a series of volume-limited samples to z=1.5. The color-log(n) distributions of these high redshift galaxies are compared against that measured for nearby galaxies in the Millennium Galaxy Catalogue (MGC), as well as to the results of visual morphological classification. Based on this analysis we divide our sample into three color-structure classes. Namely, “red, compact”, “blue, diffuse” and “blue, compact”. Luminosity-size diagrams are constructed for members of the two largest classes (“red, compact” and “blue, diffuse”), both in the UDF and the MGC. Artificial galaxy simulations (for systems with exponential and de Vaucouleurs profile shapes alternately) are used to identify “bias-free” regions of the luminosity-size plane in which galaxies are detected with high completeness, and their fluxes and sizes recovered with minimal surface brightness-dependent biases. Galaxy evolution is quantified via comparison of the low and high redshift luminosity-size relations within these “bias-free” regions. Results: We confirm the correlation between color-log(n) plane position and visual morphological type observed locally and in other high redshift studies in the color and/or structure domain. The combined effects of observational uncertainties, the morphological K-correction and cosmic variance preclude a robust statistical comparison of the shape of the MGC and UDF color-log(n) distributions. However, in the interval 0.75 < z <1.0 where the UDF i-band samples close to rest-frame B

  3. Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3*

    NASA Technical Reports Server (NTRS)

    Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Francoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2017-01-01

    We observed the [C II] line in 15 lensed galaxies at redshifts 1 less than z less than 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3sigma or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 10(exp 7) solar luminosity to 3.7 × 10(exp 9) solar luminosity (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  4. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  5. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  6. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the

  7. Detection and Characterization of Galaxy Systems at Intermediate Redshift.

    NASA Astrophysics Data System (ADS)

    Barrena, Rafael

    2004-11-01

    This thesis is divided into two very related parts. In the first part we implement and apply a galaxy cluster detection method, based on multiband observations in visible. For this purpose, we use a new algorithm, the Voronoi Galaxy Cluster Finder, which identifies overdensities over a Poissonian field of objects. By applying this algorithm over four photometric bands (B, V, R and I) we reduce the possibility of detecting galaxy projection effects and spurious detections instead of real galaxy clusters. The B, V, R and I photometry allows a good characterization of galaxy systems. Therefore, we analyze the colour and early-type sequences in the colour-magnitude diagrams of the detected clusters. This analysis helps us to confirm the selected candidates as actual galaxy systems. In addition, by comparing observational early-type sequences with a semiempirical model we can estimate a photometric redshift for the detected clusters. We will apply this detection method on four 0.5x0.5 square degrees areas, that partially overlap the Postman Distant Cluster Survey (PDCS). The observations were performed as part of the International Time Programme 1999-B using the Wide Field Camera mounted at Isaac Newton Telescope (Roque de los Muchachos Observatory, La Palma island, Spain). The B and R data obtained were completed with V and I photometry performed by Marc Postman. The comparison of our cluster catalogue with that of PDCS reveals that our work is a clear improvement in the cluster detection techniques. Our method efficiently selects galaxy clusters, in particular low mass galaxy systems, even at relative high redshift, and estimate a precise photometric redshift. The validation of our method comes by observing spectroscopically several selected candidates. By comparing photometric and spectroscopic redshifts we conclude: 1) our photometric estimation method gives an precision lower than 0.1; 2) our detection technique is even able to detect galaxy systems at z~0.7 using

  8. Large-scale clustering of galaxies in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The power spectrum of the galaxy distribution in the Center for Astrophysics Redshift Survey (de Lapparent et al., 1986; Geller and Huchra, 1989; and Huchra et al., 1992) is measured up to wavelengths of 200/h Mpc. Results are compared with several cosmological simulations with Gaussian initial conditions. It is shown that the power spectrum of the standard CDM model is inconsistent with the observed power spectrum at the 99 percent confidence level.

  9. the-wizz: clustering redshift estimation for everyone

    NASA Astrophysics Data System (ADS)

    Morrison, C. B.; Hildebrandt, H.; Schmidt, S. J.; Baldry, I. K.; Bilicki, M.; Choi, A.; Erben, T.; Schneider, P.

    2017-05-01

    We present the-wizz, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of the-wizz is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an 'expert'. It allows the end user of a given survey to select any subsample of photometric galaxies with unknown redshifts, match this sample's catalogue indices into a value-added data file and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly survey and the Sloan Digital Sky Survey. The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. the-wizz can be downloaded at http://github.com/morriscb/The-wiZZ/.

  10. VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5 < z < 5.5 and the colour selection of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-01-01

    The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 < z < 5.5 in the VIMOS Ultra Deep Survey (VUDS). We fitted model spectra combined with a range of IGM transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad

  11. Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Alpaslan, M.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Cluver, M. E.; Croom, S. M.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Hopkins, A. M.; Kelvin, L. S.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Norberg, P.; Peacock, J.; Robotham, A. S. G.; Taylor, E. N.

    2014-07-01

    The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33 km s-1.

  12. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, C.; Lapi, A.; Shi, J.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the correspondingmore » stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.« less

  13. Recovering the systemic redshift of galaxies from their Lyman alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-07-01

    The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.

  14. Recovering the systemic redshift of galaxies from their Lyman-alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-04-01

    The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.

  15. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; hide

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  16. Groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.

  17. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE PAGES

    Bonnett, C.; Troxel, M. A.; Hartley, W.; ...

    2016-08-30

    Here we present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have meanmore » redshift 0.72±0.01 over the range 0.38 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σ crit, finding levels of bias safely less than the statistical power of DES SV data. In conclusion, we recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  18. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnett, C.; Troxel, M. A.; Hartley, W.

    Here we present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have meanmore » redshift 0.72±0.01 over the range 0.38 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σ crit, finding levels of bias safely less than the statistical power of DES SV data. In conclusion, we recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  19. Multi-level structure in the large scale distribution of optically luminous galaxies

    NASA Astrophysics Data System (ADS)

    Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen

    1992-04-01

    Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.

  20. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  1. Redshift-space distortions with the halo occupation distribution - II. Analytic model

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2007-01-01

    We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at

  2. Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Françoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C II] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 107 L⊙ to 3.7 × 109 L⊙ (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.

    2014-08-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a viewmore » of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2« less

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift 0.6 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Rota, S.; Granett, B. R.; Bel, J.; Guzzo, L.; Peacock, J. A.; Wilson, M. J.; Pezzotta, A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Percival, W. J.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Moutard, T.

    2017-05-01

    We use the final catalogue of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to measure the power spectrum of the galaxy distribution at high redshift, presenting results that extend beyond z = 1 for the first time. We apply a fast Fourier transform technique to four independent subvolumes comprising a total of 51 728 galaxies at 0.6 < z < 1.1 (out of the nearly 90 000 included in the whole survey). We concentrate here on the shape of the direction-averaged power spectrum in redshift space, explaining the level of modelling of redshift-space anisotropies and the anisotropic survey window function that are needed to deduce this in a robust fashion. We then use covariance matrices derived from a large ensemble of mock datasets in order to fit the spectral data. The results are well matched by a standard ΛCDM model, with density parameter ΩM h = 0.227+0.063-0.050 and baryon fraction fB=ΩB/ΩM=0.220+0.058-0.072. These inferences from the high-z galaxy distribution are consistent with results from local galaxy surveys, and also with the cosmic microwave background. Thus the ΛCDM model gives a good match to cosmic structure at all redshifts currently accessible to observational study. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly under programme 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  5. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    NASA Astrophysics Data System (ADS)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  6. [Using neural networks based template matching method to obtain redshifts of normal galaxies].

    PubMed

    Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng

    2005-06-01

    Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.

  7. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-06-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  8. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  9. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    NASA Astrophysics Data System (ADS)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  10. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission

    NASA Astrophysics Data System (ADS)

    Capak, P. L.; Carilli, C.; Jones, G.; Casey, C. M.; Riechers, D.; Sheth, K.; Carollo, C. M.; Ilbert, O.; Karim, A.; Lefevre, O.; Lilly, S.; Scoville, N.; Smolcic, V.; Yan, L.

    2015-06-01

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C II emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ~ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  11. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  12. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectramore » in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.« less

  13. Calibrating the Galaxy Color-Redshift Relation: A Critical Foundation for Weak Lensing Cosmology with WFIRST and Euclid

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2016-08-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. We propose a 4-semester, 20-night Key Strategic Mission Support program, supporting both the NASA PCOS and COR science goals, to obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation. Combined with a coordinated, similarly sized Caltech Keck proposal, the proposed program will achieve the photometric redshift calibration requirements for Euclid, and make significant progress towards the WFIRST requirements. [2016B is the 2nd semester of our 4-semester request.

  14. Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey

    NASA Astrophysics Data System (ADS)

    Xi, ChengYu; Taylor, James E.; Massey, Richard J.; Rhodes, Jason; Koekemoer, Anton; Salvato, Mara

    2018-06-01

    Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly characterized outside the Local Group, due to the difficulty of identifying them consistently at larger distances. We review a recently proposed method for estimating the average satellite population around a given sample of nearby bright galaxies, using a combination of size and magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements (to estimate the fraction of true satellites in the cut sample). We test this method using the high-precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts. These cuts are also fairly efficient, with more than one third of the selected objects being clustered satellites. We conclude that structural selection represents a useful tool in characterizing dwarf populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence of several dozen objects that appear resolved or partially resolved in the HST imaging, and are confirmed to be local (at distances of ˜250 Mpc or less) by their photometric or spectroscopic redshifts. This underlines the potential for future space-based surveys to reveal local populations of intrinsically faint galaxies through imaging alone.

  15. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less

  16. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolcic, V.; Navarrete, F.; Bertoldi, F.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify themore » correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.« less

  17. Photometric redshifts in the SWIRE Survey

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael; Babbedge, Tom; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; Ilbert, Olivier; Le Févre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Mari; Farrah, Duncan; Vaccari, Mattia

    2008-05-01

    We present the SWIRE Photometric Redshift Catalogue 1025119 redshifts of unprecedented reliability and of accuracy comparable with or better than previous work. Our methodology is based on fixed galaxy and quasi-stellar object templates applied to data at 0.36-4.5 μm, and on a set of four infrared emission templates fitted to infrared excess data at 3.6-170 μm. The galaxy templates are initially empirical, but are given greater physical validity by fitting star formation histories to them, which also allows us to estimate stellar masses. The code involves two passes through the data, to try to optimize recognition of active galactic nucleus (AGN) dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, AV, is allowed as a free parameter. The full reduced χ2ν (z) distribution is given for each source, so the full error distribution can be used, and aliases investigated. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyse the performance of our method as a function of the number of photometric bands used in the solution and the reduced χ2ν. For seven photometric bands (5 optical + 3.6, 4.5 μm), the rms value of (zphot - zspec)/(1 + zspec) is 3.5 per cent, and the percentage of catastrophic outliers [defined as >15 per cent error in (1 + z)], is ~1 per cent. These rms values are comparable with the best achieved in other studies, and the outlier fraction is significantly better. The inclusion of the 3.6- and 4.5-μm IRAC bands is crucial in supression of outliers. We discuss the redshift distributions at 3.6 and 24 μm. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution, so the photometric redshifts are a powerful tool for large-scale structure studies. 10 per cent of sources in the SWIRE photometric redshift catalogue have z > 2, and 4 per cent

  18. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  19. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9 redshifts to test continuum color selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with

  20. Galaxy power-spectrum responses and redshift-space super-sample effect

    NASA Astrophysics Data System (ADS)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  1. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  2. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.

  3. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to themore » total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.« less

  4. Redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, J. P.

    1991-01-01

    Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.

  5. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  6. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  7. Using r-process enhanced galaxies to estimate the neutron star merger rate at high redshift

    NASA Astrophysics Data System (ADS)

    Roederer, Ian

    2018-01-01

    The rapid neutron-capture process, or r-process, is one of the fundamental ways that stars produce heavy elements. I describe a new approach that uses the existence of r-process enhanced galaxies, like the recently discovered ultra-faint dwarf galaxy Reticulum II, to derive a rate for neutron star mergers at high redshift. This method relies on three assertions. First, several lines of reasoning point to neutron star mergers as a rare yet prolific producer of r-process elements, and one merger event is capable of enriching most of the stars in a low-mass dwarf galaxy. Second, the Local Group is cosmologically representative of the halo mass function at the mass scales of low-luminosity dwarf galaxies, and the volume that their progenitors spanned at high redshifts can be estimated from simulations. Third, many of these dwarf galaxies are extremely old, and the metals found in their stars today date from the earliest times at high redshift. These galaxies occupy a quantifiable volume of the Universe, from which the frequency of r-process enhanced galaxies can be estimated. This frequency may be interpreted as lower limit to the neutron star merger rate at a redshift (z ~ 5-10) that is much higher than is accessible to gravitational wave observatories. I will present a proof of concept demonstration using medium-resolution multi-object spectroscopy from the Michigan/Magellan Fiber System (M2FS) to recover the known r-process galaxy Reticulum II, and I will discuss future plans to apply this method to other Local Group dwarf galaxies.

  8. Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Rossi, Graziano; Sheth, Ravi K.

    2008-06-01

    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the colour-magnitude relation, the luminosity-size relation, the fundamental plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity) is often distance dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the Vmax method, and the other is a maximum-likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalogue, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation.

  9. The ESO Slice Project (ESP) galaxy redshift survey. VII. The redshift and real-space correlation functions

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Bartlett, J. G.; Cappi, A.; Maurogordato, S.; Zucca, E.; Zamorani, G.; Balkowski, C.; Blanchard, A.; Cayatte, V.; Chincarini, G.; Collins, C. A.; Maccagni, D.; MacGillivray, H.; Merighi, R.; Mignoli, M.; Proust, D.; Ramella, M.; Scaramella, R.; Stirpe, G. M.; Vettolani, G.

    2000-03-01

    We present analyses of the two-point correlation properties of the ESO Slice Project (ESP) galaxy redshift survey, both in redshift and real space. From the redshift-space correlation function $xi (r) i(s) we are able to trace positive clustering out to separations as large as 50 h^{-1} Mpc, after which xi (r) i(s) smoothly breaks down, crossing the zero value between 60 and 80 h^{-1} Mpc. This is best seen from the whole magnitude-limited redshift catalogue, using the J_3 miniμm-variance weighting estimator. xi (r) i(s) is reasonably well described by a shallow power law with \\gamma\\sim 1.5 between 3 and 50 h^{-1} Mpc, while on smaller scales (0.2-2 h^{-1} Mpc) it has a shallower slope (\\gamma\\sim 1). This flattening is shown to be mostly due to the redshift-space damping produced by virialized structures, and is less evident when volume-limited samples of the survey are analysed. We examine the full effect of redshift-space distortions by computing the two-dimensional correlation function xi (r) i(r_p,\\pi) , from which we project out the real-space xi (r) i(r) below 10 h^{-1} Mpc. This function is well described by a power-law model (r/r_o)^{-\\gamma}, with r_o=4.15^{+0.20}_{-0.21} h^{-1} Mpc and \\gamma=1.67^{+0.07}_{-0.09} for the whole magnitude-limited catalogue. Comparison to other redshift surveys shows a consistent picture in which galaxy clustering remains positive out to separations of 50 h^{-1} Mpc or larger, in substantial agreement with the results obtained from angular surveys like the APM and EDSGC. Also the shape of the two-point correlation function is remarkably unanimous among these data sets, in all cases requiring more power on scales larger than 5 h^{-1} Mpc (a `shoulder'), with respect to a simple extrapolation of the canonical xi (r) i(r) =(r/5)^{-1.8}. The analysis of xi (r) i(s) for volume-limited subsamples with different luminosity shows evidence of luminosity segregation only for the most luminous sample with Mb_J <= -20.5. For

  10. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  11. A massive core for a cluster of galaxies at a redshift of 4.3

    NASA Astrophysics Data System (ADS)

    Miller, T. B.; Chapman, S. C.; Aravena, M.; Ashby, M. L. N.; Hayward, C. C.; Vieira, J. D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Chen, Chian-Chou; Cunningham, D. J. M.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Harnett, J.; Hezaveh, Y.; Lacaille, K.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, D. P.; Morningstar, W.; Murphy, E. J.; Narayanan, D.; Pass, E.; Perry, R.; Phadke, K. A.; Rennehan, D.; Rotermund, K. M.; Simpson, J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M. L.; Strom, A. L.

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters—termed `protoclusters'—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  12. A massive core for a cluster of galaxies at a redshift of 4.3.

    PubMed

    Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs 1-3 . The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter 4-6 . Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts 8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  13. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    NASA Technical Reports Server (NTRS)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; hide

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  14. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  15. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  16. BLUETIDES simulation: establishing black hole-galaxy relations at high-redshift

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Wei; Di Matteo, Tiziana; Bhowmick, Aklant K.; Feng, Yu; Ma, Chung-Pei

    2018-05-01

    The scaling relations between the mass of supermassive black holes (M•) and host galaxy properties (stellar mass, M⋆, and velocity dispersion, σ), provide a link between the growth of black holes (BHs) and that of their hosts. Here we investigate if and how the BH-galaxy relations are established in the high-z universe using BLUETIDES, a high-resolution large volume cosmological hydrodynamic simulation. We find the M• - M⋆ and M• - σ relations at z = 8: log10(M•) = 8.25 + 1.10 log10(M⋆/1011M⊙) and log10(M•) = 8.35 + 5.31 log10(σ/200kms-1) at z = 8, both fully consistent with the local measurements. The slope of the M• - σ relation is slightly steeper for high star formation rate and M⋆ galaxies while it remains unchanged as a function of Eddington accretion rate onto the BH. The intrinsic scatter in M• - σ relation in all cases (ɛ ˜ 0.4) is larger at these redshifts than inferred from observations and larger than in M• - M⋆ relation (ɛ ˜ 0.14). We find the gas-to-stellar ratio f = Mgas/M⋆ in the host (which can be very high at these redshifts) to have the most significant impact setting the intrinsic scatter of M• - σ. The scatter is significantly reduced when galaxies with high gas fractions (ɛ = 0.28 as f < 10) are excluded (making the sample more comparable to low-z galaxies); these systems have the largest star formation rates and black hole accretion rates, indicating that these fast-growing systems are still moving toward the relation at these high redshifts. Examining the evolution (from z = 10 to 8) of high mass black holes in M• - σ plane confirms this trend.

  17. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  18. The matter distribution in z ~ 0.5 redshift clusters of galaxies. II. The link between dark and visible matter

    NASA Astrophysics Data System (ADS)

    Soucail, G.; Foëx, G.; Pointecouteau, E.; Arnaud, M.; Limousin, M.

    2015-09-01

    We present an optical analysis of a sample of 11 clusters built from the EXCPRES sample of X-ray selected clusters at intermediate redshift (z ~ 0.5). With a careful selection of the background galaxies, we provide the mass maps reconstructed from the weak lensing by the clusters. We compare them with the light distribution traced by the early-type galaxies selected along the red sequence for each cluster. The strong correlations between dark matter and galaxy distributions are confirmed, although some discrepancies arise, mostly for merging or perturbed clusters. The average M/L ratio of the clusters is found to be M/Lr = 160 ± 60 in solar units (with no evolutionary correction), in excellent agreement with similar previous studies. No strong evolutionary effects are identified, although the small sample size reduces the significance of the result. We also provide a individual analysis of each cluster in the sample with a comparison between the dark matter, the galaxies, and the gas distributions. Some of the clusters are studied in the optical for the first time. Appendix A is available in electronic form at http://www.aanda.orgBased on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This research also used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. Also based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  19. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 < z < 1 in the DEEP2 Galaxy Redshift Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  20. Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.

  1. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to

  2. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: tokumura@asiaa.sinica.edu.tw, E-mail: dns@astro.princeton.edu

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated betweenmore » the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τ{sub T} in the survey is known, we marginalize over τ{sub T}, to compute constraints on the growth rate f and the expansion rate H . For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ∼50-70% compared to the galaxy-only analysis.« less

  3. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τT in the survey is known, we marginalize over τT, to compute constraints on the growth rate f and the expansion rate H. For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ~50-70% compared to the galaxy-only analysis.

  4. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it hasmore » been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for

  5. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Capelato, H. V.; Lund, G.

    1988-04-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  6. Multiple object redshift determinations in clusters of galaxies using OCTOPUS

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Sodre, L.; Lund, G.; Capelato, H.

    1987-03-01

    The ESO multiobject facility, Octopus, was used to observe a sample of galaxy clusters such as SC2008-565 in an attempt to collect a large set of individual radial velocities. A dispersion of 114 A/mm was used, providing spectral coverage from 3800 to 5180 A. Octopus was found to be a well-adapted instrument for the rapid and simultaneous determination of redshifts in cataloged galaxy clusters.

  7. Imaging of High Redshift Starburst galaxies in the light of Lyman alpha

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    1997-07-01

    line. Most of the objects are a few seco nds of arc in extent suggesting th a t they are galaxies at the redshifts of the damped Lyman alpha absorbers. Two of these objects, Q1623+268A & Q1623+268B, were serendipitously observed by HST in an independent program to study quasars with absorption lines {by Steidel; we retrieved these images from the HST archive}. The HST images resolve the objects showing they are spiral galaxies. It is only with the HST images that a morphological identification can be made. {nB: I can make these images available as TIFF or GIF files, but I do not know how to do this via the web page for DDT}. Because our first survey targeted at the redshifts of quasars themselves uncovered only one emission- line galaxy in a larger volume, the results imply substantial clustering of young galaxies or formation within filaments or sheets whose locations are indicated by the redshifts of strong Lyman alpha line absorption along the lines of sight to more distant quasars. Our eighteen emission-line objects are unique in highlighti ng these sheets from an infrared-s elected sample. The proposed HST observations have two goals. The first is to resolve the objects that have not been observed with HST to determine the types of underlying galaxies. Our ground-based observations in the infrared and R band {WIYN telescope} are sufficient to show that most of these objects are between 1 and 3 seconds of arc across, large enough to be galaxies at high redshifts but too small to study the distribution of light from the ground. The two extent HST images of Q1623+268 A & B show clearly how HST uncovers the nature of these galaxies. The second goal is to measure the amount of Lyman alpha emission to compare the morphology of the regions producing Lyman alpha to the continuum. Such a comparison is important to understand what fraction of a young galaxy's light is produced in the starburst population, what fraction in the old population, and what fraction might be

  8. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  9. Atomic and molecular far-infrared lines from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.

    2015-03-01

    The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.

  10. Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE

    NASA Astrophysics Data System (ADS)

    Marino, Raffaella Anna; Cantalupo, Sebastiano; Lilly, Simon J.; Gallego, Sofia G.; Straka, Lorrie A.; Borisova, Elena; Pezzulli, Gabriele; Bacon, Roland; Brinchmann, Jarle; Carollo, C. Marcella; Caruana, Joseph; Conseil, Simon; Contini, Thierry; Diener, Catrina; Finley, Hayley; Inami, Hanae; Leclercq, Floriane; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Wendt, Martin; Wisotzki, Lutz

    2018-05-01

    Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a “dark galaxy” phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Lyα sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Lyα luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 Å that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z ≈ 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t = 60 Myr on the quasar lifetime. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 094.A-0396, 095.A-0708, 096.A-0345, 097.A-0251, 098.A-0678, 094.A-0131, 095.A-0200, 096.A-0222, 097.A-0089, 098.A-0216).

  11. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE PAGES

    Gatti, M.

    2018-02-22

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  12. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatti, M.

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  13. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux-redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the I-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  14. Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen

    2017-12-01

    We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.

  15. HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Ximena; Gim, Hansung B.; Yun, Min S.

    2016-06-10

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ∼ 0.5. Here, we report the highest redshift H i 21more » cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 10{sup 10} M {sub ⊙} and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8–9.9) × 10{sup 10} M {sub ⊙}. This is the first study of the H i and CO in emission for a single galaxy beyond z ∼ 0.2.« less

  16. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  17. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, P.; Suchyta, E.; Huff, E.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  18. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at 0.5 < z < 1.2

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Jullo, E.; Giocoli, C.; Pezzotta, A.; Bel, J.; Granett, B. R.; Guzzo, L.; Garilli, B.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.; Moscardini, L.; Peacock, J. A.; Metcalf, R. B.; Prada, F.; Yepes, G.

    2017-12-01

    We carry out a joint analysis of redshift-space distortions and galaxy-galaxy lensing, with the aim of measuring the growth rate of structure; this is a key quantity for understanding the nature of gravity on cosmological scales and late-time cosmic acceleration. We make use of the final VIPERS redshift survey dataset, which maps a portion of the Universe at a redshift of z ≃ 0.8, and the lensing data from the CFHTLenS survey over the same area of the sky. We build a consistent theoretical model that combines non-linear galaxy biasing and redshift-space distortion models, and confront it with observations. The two probes are combined in a Bayesian maximum likelihood analysis to determine the growth rate of structure at two redshifts z = 0.6 and z = 0.86. We obtain measurements of fσ8(0.6) = 0.48 ± 0.12 and fσ8(0.86) = 0.48 ± 0.10. The additional galaxy-galaxy lensing constraint alleviates galaxy bias and σ8 degeneracies, providing direct measurements of f and σ8: [f(0.6),σ8(0.6)] = [0.93 ± 0.22,0.52 ± 0.06] and [f(0.86),σ8(0.86)] = [0.99 ± 0.19,0.48 ± 0.04]. These measurements are statistically consistent with a Universe where the gravitational interactions can be described by General Relativity, although they are not yet accurate enough to rule out some commonly considered alternatives. Finally, as a complementary test we measure the gravitational slip parameter, EG, for the first time at z > 0.6. We find values of E̅G(0.6) = 0.16±0.09 and E̅G(0.86) = 0.09±0.07, when EG is averaged over scales above 3 h-1 Mpc. We find that our EG measurements exhibit slightly lower values than expected for standard relativistic gravity in a ΛCDM background, although the results are consistent within 1-2σ. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT

  20. Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8

    NASA Astrophysics Data System (ADS)

    Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei

    2018-01-01

    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation

  1. Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8.

    PubMed

    Smit, Renske; Bouwens, Rychard J; Carniani, Stefano; Oesch, Pascal A; Labbé, Ivo; Illingworth, Garth D; van der Werf, Paul; Bradley, Larry D; Gonzalez, Valentino; Hodge, Jacqueline A; Holwerda, Benne W; Maiolino, Roberto; Zheng, Wei

    2018-01-10

    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this 'epoch of reionization' involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C ii] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C ii] luminosities than would be expected from local scaling relations, and searches for the [C ii] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C ii] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C ii] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C ii] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks

  2. The Evolutionary History of Lyman Break Galaxies Between Redshift 4 and 6: Observing Successive Generations of Massive Galaxies in Formation

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Ellis, Richard S.; Bunker, Andrew; Bundy, Kevin; Targett, Tom; Benson, Andrew; Lacy, Mark

    2009-06-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z sime 4 and z sime 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ≈ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z gsim 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z sime 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 lsim z lsim 6. Given this rapid increase of UV luminous massive galaxies, we explore the possibility that a significant fraction of massive (1011 M sun) z sime 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 lsim z lsim 6 down to z sime 2, we find that z gsim 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs

  3. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

  4. Empirical Modeling of the Redshift Evolution of the [{\\rm{N}}\\,{\\rm{II}}]/Hα Ratio for Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Masters, Daniel; Wang, Yun; Merson, Alexander; Capak, Peter; Malhotra, Sangeeta; Rhoads, James E.

    2018-03-01

    We present an empirical parameterization of the [N II]/Hα flux ratio as a function of stellar mass and redshift valid at 0 < z < 2.7 and 8.5< {log}(M/{M}ȯ )< 11.0. This description can (i) easily be applied to simulations for modeling [N II]λ6584 line emission, (ii) deblend [N II] and Hα in current low-resolution grism and narrow-band observations to derive intrinsic Hα fluxes, and (iii) reliably forecast the number counts of Hα emission-line galaxies for future surveys, such as those planned for Euclid and the Wide Field Infrared Survey Telescope (WFIRST). Our model combines the evolution of the locus on the Baldwin, Phillips & Terlevich (BPT) diagram measured in spectroscopic data out to z ∼ 2.5 with the strong dependence of [N II]/Hα on stellar mass and [O III]/Hβ observed in local galaxy samples. We find large variations in the [N II]/Hα flux ratio at a fixed redshift due to its dependency on stellar mass; hence, the assumption of a constant [N II] flux contamination fraction can lead to a significant under- or overestimate of Hα luminosities. Specifically, measurements of the intrinsic Hα luminosity function derived from current low-resolution grism spectroscopy assuming a constant 29% contamination of [N II] can be overestimated by factors of ∼8 at {log}(L)> 43.0 for galaxies at redshifts z ∼ 1.5. This has implications for the prediction of Hα emitters for Euclid and WFIRST. We also study the impact of blended Hα and [N II] on the accuracy of measured spectroscopic redshifts.

  5. The [CII] 158 μm line emission in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the

  6. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  7. Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA

    NASA Astrophysics Data System (ADS)

    Adam, R.; Comis, B.; Macías-Pérez, J.-F.; Adane, A.; Ade, P.; André, P.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Blanquer, G.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Cruciani, A.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Tucker, C.; Zylka, R.

    2015-04-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-m telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster's radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02-0.79 × 1014M⊙ within the radius R500 = 930+50-43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster's redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs. The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A12

  8. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A.

    2016-10-01

    Following our first detection reported in Izotov et al., we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. These galaxies, at redshifts of z ˜ 0.3, are characterized by high emission-line flux ratios [O III] λ5007/[O II] λ3727 ≳ 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ˜6-13 per cent, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Ly α emission lines are detected in the spectra of all four galaxies, compatible with predictions for LyC leakers. We find escape fractions of Ly α, fesc(Ly α) ˜ 20-40 per cent, among the highest known for Ly α emitting galaxies. Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the centre and exponential discs in the outskirts with disc scalelengths α in the range ˜0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ˜1/8-1/5 solar, low stellar mass ˜(0.2-4) × 109 M⊙, high star formation rates, SFR ˜ 14-36 M⊙ yr-1, and high SFR densities, Σ ˜ 2-35 M⊙ yr-1 kpc-2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al., reveal that a selection for compact star-forming galaxies showing high [O III] λ5007/[O II] λ3727 ratios appears to pick up very efficiently sources with escaping LyC radiation: all five of our selected galaxies are LyC leakers.

  9. Redshift Space Distortion on the Small Scale Clustering of Structure

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Sabiu, Cristiano; Li, Xiao-dong; Park, Changbom; Kim, Juhan

    2018-01-01

    The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  10. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  11. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  12. A cross-correlation-based estimate of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    van Daalen, Marcel P.; White, Martin

    2018-06-01

    We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.

  13. Redshift-Independent Distances in the NASA/IPAC Extragalactic Database Surpass 166,000 Estimates for 77,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2017-01-01

    Redshift-independent extragalactic distance estimates are used by researchers to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006, the NASA/IPAC Extragalactic Database (NED) began providing users with a comprehensive tabulation of the redshift-independent extragalactic distance estimates published in the astronomical literature since 1980. A decade later, this compendium of distances (NED-D) surpassed 100,000 estimates for 28,000 galaxies, as reported in our recent journal article (Steer et al. 2016). Here, we are pleased to report NED-D has surpassed 166,000 distance estimates for 77,000 galaxies. Visualizations of the growth in data and of the statistical distributions of the most used distance indicators will be presented, along with an overview of the new data responsible for the most recent growth. We conclude with an outline of NED’s current plans to facilitate extragalactic research further by making greater use of redshift-independent distances. Additional information about other extensive updates to NED is presented at this meeting by Mazzarella et al. (2017). NED is operated by and this research is funded by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Maximal compression of the redshift-space galaxy power spectrum and bispectrum

    NASA Astrophysics Data System (ADS)

    Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer

    2018-05-01

    We explore two methods of compressing the redshift-space galaxy power spectrum and bispectrum with respect to a chosen set of cosmological parameters. Both methods involve reducing the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological parameters considered (e.g. seven ) using the Karhunen-Loève algorithm. In the first case, we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D posterior distributions. The second option, approximately 2000 times faster, works by orthogonalizing the parameter space through diagonalization of the Fisher information matrix before the compression, obtaining the posterior distributions without the need of MCMC sampling. Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS would drastically reduce the number of simulations needed to compute accurate covariance matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like experiment. Using the power spectrum combined with the bispectrum as a data vector, both compression methods on average recover the 68 {per cent} credible regions to within 0.7 {per cent} and 2 {per cent} of those resulting from standard MCMC sampling, respectively. These confidence intervals are also smaller than the ones obtained using only the power spectrum by 81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate f, and the scalar amplitude parameter As.

  15. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The

  16. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  17. Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe.

    PubMed

    Ibata, Neil G; Ibata, Rodrigo A; Famaey, Benoit; Lewis, Geraint F

    2014-07-31

    Recent work has shown that the Milky Way and the Andromeda galaxies both possess the unexpected property that their dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures. It is interesting to evaluate the incidence of such planar structures in the larger galactic population, because the Local Group may not be a representative environment. Here we report measurements of the velocities of pairs of diametrically opposed satellite galaxies. In the local Universe (redshift z < 0.05), we find that satellite pairs out to a distance of 150 kiloparsecs from the galactic centre are preferentially anti-correlated in their velocities (99.994 per cent confidence level), and that the distribution of galaxies in the larger-scale environment (out to distances of about 2 megaparsecs) is strongly clumped along the axis joining the inner satellite pair (>7σ confidence). This may indicate that planes of co-rotating satellites, similar to those seen around the Andromeda galaxy, are ubiquitous, and their coherent motion suggests that they represent a substantial repository of angular momentum on scales of about 100 kiloparsecs.

  18. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological

  19. The QDOT all-sky IRAS galaxy redshift survey

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Rowan-Robinson, M.; Ellis, R. S.; Frenk, C. S.; Efstathiou, G.; Kaiser, N.; Saunders, W.; Parry, I. R.; Xiaoyang, Xia; Crawford, J.

    1999-10-01

    We describe the construction of the QDOT survey, which is publicly available from an anonymous FTP account. The catalogue consists of infrared properties and redshifts of an all-sky sample of 2387 IRAS galaxies brighter than the IRAS PSC 60-μm completeness limit (S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10 deg, after removing a small number of Galactic sources, the redshift completeness is better than 98per cent (2086/2127). New redshifts for 1401 IRAS sources were obtained to complete the catalogue; the measurement and reduction of these are described, and the new redshifts tabulated here. We also tabulate all sources at |b|>10 deg with no redshift so far, and sources with conflicting alternative redshifts either from our own work, or from published velocities. A list of 95 ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is also provided. Of these, ~20per cent are AGN of some kind; the broad-line objects typically show strong Feii emission. Since the publication of the first QDOT papers, there have been several hundred velocity changes: some velocities are new, some QDOT velocities have been replaced by more accurate values, and some errors have been corrected. We also present a new analysis of the accuracy and linearity of IRAS 60-μm fluxes. We find that the flux uncertainties are well described by a combination of 0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty. This is not enough to cause the large Malmquist-type errors in the rate of evolution postulated by Fisher et al. We do, however, find marginal evidence for non-linearity in the PSC 60-μm flux scale, in the sense that faint sources may have fluxes overestimated by about 5per cent compared with bright sources. We update some of the previous scientific analyses to assess the changes. The main new results are as follows. (1) The luminosity function is very well determined overall but is uncertain by a factor of several at the very highest luminosities (L

  20. The most distant, luminous, dusty star-forming galaxies: redshifts from NOEMA and ALMA spectral scans

    NASA Astrophysics Data System (ADS)

    Fudamoto, Y.; Ivison, R. J.; Oteo, I.; Krips, M.; Zhang, Z.-Y.; Weiss, A.; Dannerbauer, H.; Omont, A.; Chapman, S. C.; Christensen, L.; Arumugam, V.; Bertoldi, F.; Bremer, M.; Clements, D. L.; Dunne, L.; Eales, S. A.; Greenslade, J.; Maddox, S.; Martinez-Navajas, P.; Michalowski, M.; Pérez-Fournon, I.; Riechers, D.; Simpson, J. M.; Stalder, B.; Valiante, E.; van der Werf, P.

    2017-12-01

    We present 1.3- and/or 3-mm continuum images and 3-mm spectral scans, obtained using Northern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter Array (ALMA), of 21 distant, dusty, star-forming galaxies. Our sample is a subset of the galaxies selected by Ivison et al. on the basis of their extremely red far-infrared (far-IR) colours and low Herschel flux densities; most are thus expected to be unlensed, extraordinarily luminous starbursts at z ≳ 4, modulo the considerable cross-section to gravitational lensing implied by their redshift. We observed 17 of these galaxies with NOEMA and four with ALMA, scanning through the 3-mm atmospheric window. We have obtained secure redshifts for seven galaxies via detection of multiple CO lines, one of them a lensed system at z = 6.027 (two others are also found to be lensed); a single emission line was detected in another four galaxies, one of which has been shown elsewhere to lie at z = 4.002. Where we find no spectroscopic redshifts, the galaxies are generally less luminous by 0.3-0.4 dex, which goes some way to explaining our failure to detect line emission. We show that this sample contains the most luminous known star-forming galaxies. Due to their extreme star-formation activity, these galaxies will consume their molecular gas in ≲ 100 Myr, despite their high molecular gas masses, and are therefore plausible progenitors of the massive, 'red-and-dead' elliptical galaxies at z ≈ 3.

  1. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2016-08-01

    The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C II] line and the far-infrared luminosity and find that the same correlation between the [C II]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C II] deficit.”

  2. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  3. Redshifts for fainter galaxies in the first CfA survey slice. II

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  4. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6

    PubMed Central

    Decarli, R.; Walter, F.; Venemans, B.P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M.A.; Wang, R.; Yang, Y.

    2017-01-01

    The existence of massive (1011 Msun) elliptical galaxies by redshift z~4[1,2,3] (when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star formation rates SFR>100 Msun/yr at z>6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star formation rates are more than an order of magnitude lower[4]. The only known examples of very high rate galaxies at z>6 are, with only one exception[5], quasar host galaxies[6,7,8,9], i.e. galaxies that host an accreting supermassive (~109 Msun) black hole that likely affects the host properties. Here we report observations of the [CII] 158 μm line in 4 galaxies that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. Based upon the [CII] measurements, we estimate star formation rates of >100 Msun/yr. These sources are similar to the quasar hosts in [CII] brightness, line width and implied dynamical masses, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift[10,11,12]. We find such close companions in 4 out of 25 z>6 quasars surveyed, a fraction that needs to be accounted for in simulations[13,14]. If representative of the bright end of the [CII] luminosity function, they can account for the population of massive elliptical galaxies at z~4 in terms of cosmic space density. PMID:28541326

  5. The Galaxy Count Correlation Function in Redshift Space Revisited

    NASA Astrophysics Data System (ADS)

    Campagne, J.-E.; Plaszczynski, S.; Neveu, J.

    2017-08-01

    In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.

  6. GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass

    2015-01-01

    The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.

  7. Galaxy Formation At Extreme Redshifts: Semi-Analytic Model Predictions And Challenges For Observations

    NASA Astrophysics Data System (ADS)

    Yung, L. Y. Aaron; Somerville, Rachel S.

    2017-06-01

    The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.

  8. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6

    NASA Astrophysics Data System (ADS)

    Decarli, R.; Walter, F.; Venemans, B. P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E. P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M. A.; Wang, R.; Yang, Y.

    2017-05-01

    The existence of massive (1011 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 109 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C II] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C II] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C II] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C II] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  9. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    PubMed

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  10. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P.

    2006-06-01

    Aims.We measure the redshift of the lensing galaxy in eight gravitationally lensed quasars in view of determining the Hubble parameter H0 from the time delay method. Methods.Deep VLT/FORS1 spectra of lensed quasars are spatially deconvolved in order to separate the spectrum of the lensing galaxies from the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy (MOS) which allows the simultaneous observation of the target and of several PSF and flux calibration stars. The advantage of this method over traditional long-slit observations is a much more reliable extraction and flux calibration of the spectra. Results.For the first time we measure the redshift of the lensing galaxy in three multiply-imaged quasars: SDSS J1138+0314 (z_lens = 0.445), SDSS J1226-0006 (z_lens = 0.517), SDSS J1335+0118 (z_lens = 0.440), and we give a tentative estimate of the redshift of the lensing galaxy in Q 1355-2257 (z_lens = 0.701). We confirm four previously measured redshifts: HE 0047-1756 (z_lens = 0.407), HE 0230-2130 (z_lens = 0.523), HE 0435-1223 (z_lens = 0.454) and WFI J2033-4723 (z_lens = 0.661). In addition, we determine the redshift of the second lensing galaxy in HE 0230-2130 (z_lens = 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in HE 0230-2130 which displays prominent [OII] emission.

  11. Linear clusters of galaxies - A194

    NASA Technical Reports Server (NTRS)

    Chapman, G. N. F.; Geller, M. J.; Huchra, J. P.

    1988-01-01

    New measurements for 160 redshifts and previous measurements for 108 other redshifts are presented for galaxies within 5 deg of A194. The galaxy distribution in A194 is shown to be inconsistent with a spherically symmetric King model. A mass-to-light ratio is derived using the virial theorem which is lower than the mean for the groups in the CfA redshift survey (Huchra and Geller, 1982; Geller, 1984). A nonparametric test for galaxy-cluster alignment and a Chi-squared test are used to search for alignment of galaxy major axes with the axis of A194. Evidence for neither luminosity segregation nor significant differences in the velocity or surface distributions of galaxies as a function of morphological type is found.

  12. The power spectrum of galaxies in the 2dF 100k redshift survey

    NASA Astrophysics Data System (ADS)

    Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong

    2002-10-01

    We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.

  13. Studying the Evolution of the Contamination of the Sunyaev-Zel'dovich effect due to High-redshift (sub-)mm Galaxies

    NASA Astrophysics Data System (ADS)

    Montana, Alfredo; Aretxaga, I.; Austermann, J.; Bock, J.; Chapin, E.; Gaztanaga, E.; Hughes, D.; Lowenthal, J.; Mauskopf, P.; Perera, T.; Scott, K.; Wilson, G.; Yun, M.

    2007-05-01

    We present simulations of the submillimetre/millimetre (sub-mm) sky to study the environment of luminous starburst galaxies, radio galaxies and AGN towards biased-regions (large-scale over-densities) in the high-redshift universe. Guided by recent results from AzTEC extragalactic surveys at 1.1mm, we describe the impact of this population of galaxies, that dominate the sub-mm extragalactic background, on the detectability of the Sunyaev-Zel'dovich effect (SZE) as a function of redshift. These results will be presented in the context of the next generation of wide-area surveys to identify high-redshift clusters via the SZE.

  14. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51.

    PubMed

    Finkelstein, S L; Papovich, C; Dickinson, M; Song, M; Tilvi, V; Koekemoer, A M; Finkelstein, K D; Mobasher, B; Ferguson, H C; Giavalisco, M; Reddy, N; Ashby, M L N; Dekel, A; Fazio, G G; Fontana, A; Grogin, N A; Huang, J-S; Kocevski, D; Rafelski, M; Weiner, B J; Willner, S P

    2013-10-24

    Of several dozen galaxies observed spectroscopically that are candidates for having a redshift (z) in excess of seven, only five have had their redshifts confirmed via Lyman α emission, at z = 7.008, 7.045, 7.109, 7.213 and 7.215 (refs 1-4). The small fraction of confirmed galaxies may indicate that the neutral fraction in the intergalactic medium rises quickly at z > 6.5, given that Lyman α is resonantly scattered by neutral gas. The small samples and limited depth of previous observations, however, makes these conclusions tentative. Here we report a deep near-infrared spectroscopic survey of 43 photometrically-selected galaxies with z > 6.5. We detect a near-infrared emission line from only a single galaxy, confirming that some process is making Lyman α difficult to detect. The detected emission line at a wavelength of 1.0343 micrometres is likely to be Lyman α emission, placing this galaxy at a redshift z = 7.51, an epoch 700 million years after the Big Bang. This galaxy's colours are consistent with significant metal content, implying that galaxies become enriched rapidly. We calculate a surprisingly high star-formation rate of about 330 solar masses per year, which is more than a factor of 100 greater than that seen in the Milky Way. Such a galaxy is unexpected in a survey of our size, suggesting that the early Universe may harbour a larger number of intense sites of star formation than expected.

  15. Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.

    2005-11-01

    The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0redshift depth of z¯=0.0845. SARS covers the region 0deg<δ<-65deg, α<5h,α>21h (while avoiding the LMC and SMC), with |b|>40°. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs, while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15<=bJ<19. SARS used the Las Campanas 2.5 m du Pont telescope, observing either 65 or 128 objects concurrently over a 1.5 deg2 field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.

  16. Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog

    NASA Astrophysics Data System (ADS)

    Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.

    We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups 1/2=250 ± 110 km/s. We find that UZC galaxy pairwise velocity dispersion is 1/2 = 460 ± 35 km/s. Such findings point towards a smoothly varying peculiar velocity field from galaxies to systems of galaxies, a expected in a hierarchical scenario of structure formation. We estimate the real-space correlation function in the power-law approximation ξ(r)=(r/r0)γ for groups and galaxies in UZC. We obtain the correlation length, r0, from the projected correlation function W(σ)=∫- ∞∞ξ(σ,π)dπ= 2 ∫0∞ ξ(σ,π) dπ using the values of γ derived from the correlation function in projected separations ω(σ). The best fitting parameters are γ=-1.89 ± 0.17 and r0=9.7 ± 4.5 Mpc h-1 for groups, and γ=-2.00 ± 0.03, r0=5.29 ± 0.21 Mpc h-1 for galaxies. We carried out an estimate of the parameter β= Ω0.6/b for groups and galaxies using the linear approximation regime relating the real and the redshift-space correlation functions. We find βgalaxies=0.51 ± 0.15 for galaxies, in agreement with previous works, while for groups we obtain a noisy estimate β < 1.5. We have tested our methods on mock UZC catalogs taken from N-body simulations. The results of these tests show that the

  17. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  18. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f {sub {nu}}(24 {mu}m)/f {sub {nu}}(R) {approx}> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z {approx} 2 {+-} 0.5. Extreme mid-IR luminosities (L {sub IR} > 10{sup 12-14}) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponentialmore » disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of {approx}1 kpc, circumstantial evidence for ongoing mergers.« less

  19. Clustering analysis of high-redshift luminous red galaxies in Stripe 82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.; Shanks, T.; Sawangwit, U.

    2013-03-01

    We present a clustering analysis of luminous red galaxies (LRGs) in Stripe 82 from the Sloan Digital Sky Survey (SDSS). We study the angular two-point autocorrelation function, w(θ), of a selected sample of over 130 000 LRG candidates via colour-cut selections in izK with the K-band coverage coming from UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We have used the cross-correlation technique of Newman to establish the redshift distribution of the LRGs. Cross-correlating them with SDSS quasi-stellar objects (QSOs), MegaZ-LRGs and DEEP Extragalactic Evolutionary Probe 2 (DEEP2) galaxies, implies an average redshift of the LRGs to be z ≈ 1 with space density, ng ≈ 3.20 ± 0.16 × 10-4 h3 Mpc-3. For θ ≤ 10 arcmin (corresponding to ≈10 h-1 Mpc), the LRG w(θ) significantly deviates from a conventional single power law as noted by previous clustering studies of highly biased and luminous galaxies. A double power law with a break at rb ≈ 2.4 h-1 Mpc fits the data better, with best-fitting scale length, r0, 1 = 7.63 ± 0.27 h-1 Mpc and slope γ1 = 2.01 ± 0.02 at small scales and r0, 2 = 9.92 ± 0.40 h-1 Mpc and γ2 = 1.64 ± 0.04 at large scales. Due to the flat slope at large scales, we find that a standard Λ cold dark matter (Λ CDM) linear model is accepted only at 2-3σ, with the best-fitting bias factor, b = 2.74 ± 0.07. We also fitted the halo occupation distribution (HOD) models to compare our measurements with the predictions of the dark matter clustering. The effective halo mass of Stripe 82 LRGs is estimated as Meff = 3.3 ± 0.6 × 1013 h-1 M⊙. But at large scales, the current HOD models did not help explain the power excess in the clustering signal. We then compare the w(θ) results to the results of Sawangwit et al. from three samples of photometrically selected LRGs at lower redshifts to measure clustering evolution. We find that a long-lived model may be a poorer fit than at lower

  20. The Metallicity Evolution of Low-mass Galaxies: New Constraints at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-06-01

    We present abundance measurements from 26 emission-line-selected galaxies at z ~ 0.6-0.7. By reaching stellar masses as low as 108 M ⊙, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 109 M ⊙. For the portion of our sample above M > 109 M ⊙ (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M * relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation. We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National

  1. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias andmore » scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).« less

  2. High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime

    2017-11-01

    The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

  3. X-Ray Properties of K-Selected Galaxies at 0.5 Less than z Less than 2.0: Investigating Trends with Stellar Mass, Redshift and Spectral Type

    NASA Technical Reports Server (NTRS)

    Jones, Therese M.; Kriek, Mariska; vanDokkum, Peter G.; Brammer, Gabriel; Franx, Marijn; Greene, Jenny E.; Labbe, Ivo; Whitaker, Katherine E.

    2014-01-01

    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.

  4. Improving Photometric Redshifts for Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Speagle, Josh S.; Leauthaud, Alexie; Eisenstein, Daniel; Bundy, Kevin; Capak, Peter L.; Leistedt, Boris; Masters, Daniel C.; Mortlock, Daniel; Peiris, Hiranya; HSC Photo-z Team; HSC Weak Lensing Team

    2017-01-01

    Deriving accurate photometric redshift (photo-z) probability distribution functions (PDFs) are crucial science components for current and upcoming large-scale surveys. We outline how rigorous Bayesian inference and machine learning can be combined to quickly derive joint photo-z PDFs to individual galaxies and their parent populations. Using the first 170 deg^2 of data from the ongoing Hyper Suprime-Cam survey, we demonstrate our method is able to generate accurate predictions and reliable credible intervals over ~370k high-quality redshifts. We then use galaxy-galaxy lensing to empirically validate our predicted photo-z's over ~14M objects, finding a robust signal.

  5. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi

    2017-12-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  6. The LABOCA/ACT Survey of Clusters at All Redshifts: Multiwavelength Analysis of Background Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Aguirre, Paula; Lindner, Robert R.; Baker, Andrew J.; Bond, J. Richard; Dünner, Rolando; Galaz, Gaspar; Gallardo, Patricio; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lima, Marcos; Menten, Karl M.; Sievers, Jonathan; Weiss, Axel; Wollack, Edward J.

    2018-03-01

    We present a multiwavelength analysis of 48 submillimeter galaxies (SMGs) detected in the Large APEX Bolometer Camera/Atacama Cosmology Telescope (ACT) Survey of Clusters at All Redshifts, LASCAR, which acquired new 870 μm and Australia Telescope Compact Array 2.1 GHz observations of 10 galaxy clusters detected through their Sunyaev–Zel’dovich effect (SZE) signal by the ACT. Far-infrared observations were also conducted with the Photodetector Array Camera and Spectrometer (100/160 μm) and SPIRE (250/350/500 μm) instruments on Herschel for sample subsets of five and six clusters. LASCAR 870 μm maps were reduced using a multiscale iterative pipeline that removes the SZE increment signal, yielding point-source sensitivities of σ ∼ 2 mJy beam‑1. We detect in total 49 sources at the 4σ level and conduct a detailed multiwavelength analysis considering our new radio and far-IR observations plus existing near-IR and optical data. One source is identified as a foreground galaxy, 28 SMGs are matched to single radio sources, four have double radio counterparts, and 16 are undetected at 2.1 GHz but tentatively associated in some cases to near-IR/optical sources. We estimate photometric redshifts for 34 sources with secure (25) and tentative (9) matches at different wavelengths, obtaining a median z={2.8}-1.7+2.1. Compared to previous results for single-dish surveys, our redshift distribution has a comparatively larger fraction of sources at z > 3, and the high-redshift tail is more extended. This is consistent with millimeter spectroscopic confirmation of a growing number of high-z SMGs and relevant for testing of cosmological models. Analytical lens modeling is applied to estimate magnification factors for 42 SMGs at clustercentric radii >1.‧2 with the demagnified flux densities and source-plane areas, we obtain integral number counts that agree with previous submillimeter surveys.

  7. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  8. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  9. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE PAGES

    Davis, C.; Rozo, E.; Roodman, A.; ...

    2018-03-26

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  10. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; Rozo, E.; Roodman, A.

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  11. Estimating Ω from Galaxy Redshifts: Linear Flow Distortions and Nonlinear Clustering

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.; Warren, M. S.; Zurek, W. H.

    1997-02-01

    We propose a method to determine the cosmic mass density Ω from redshift-space distortions induced by large-scale flows in the presence of nonlinear clustering. Nonlinear structures in redshift space, such as fingers of God, can contaminate distortions from linear flows on scales as large as several times the small-scale pairwise velocity dispersion σv. Following Peacock & Dodds, we work in the Fourier domain and propose a model to describe the anisotropy in the redshift-space power spectrum; tests with high-resolution numerical data demonstrate that the model is robust for both mass and biased galaxy halos on translinear scales and above. On the basis of this model, we propose an estimator of the linear growth parameter β = Ω0.6/b, where b measures bias, derived from sampling functions that are tuned to eliminate distortions from nonlinear clustering. The measure is tested on the numerical data and found to recover the true value of β to within ~10%. An analysis of IRAS 1.2 Jy galaxies yields β=0.8+0.4-0.3 at a scale of 1000 km s-1, which is close to optimal given the shot noise and finite size of the survey. This measurement is consistent with dynamical estimates of β derived from both real-space and redshift-space information. The importance of the method presented here is that nonlinear clustering effects are removed to enable linear correlation anisotropy measurements on scales approaching the translinear regime. We discuss implications for analyses of forthcoming optical redshift surveys in which the dispersion is more than a factor of 2 greater than in the IRAS data.

  12. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L. Felipe; Sharon, Keren; Rigby, Jane R.; Gladders, Michael D.; Bayliss, Matthew B.; Pessa, Ismael

    2018-02-01

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source—a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption—a standard tracer of enriched gas—in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  13. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography.

    PubMed

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L Felipe; Sharon, Keren; Rigby, Jane R; Gladders, Michael D; Bayliss, Matthew B; Pessa, Ismael

    2018-02-22

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source-a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption-a standard tracer of enriched gas-in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  14. Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong

    2008-03-15

    In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less

  15. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE PAGES

    Crocce, M.

    2015-12-09

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  16. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, M.

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  17. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  18. The Center for Astrophysics Redshift Survey - Recent results

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1989-01-01

    Six strips of the CfA redshift survey extension are now complete. The data continue to support a picture in which galaxies are on thin sheets which nearly surround vast low-density voids. The largest structures are comparable with the extent of the survey. Voids like the one in Bootes are a common feature of the large-scale distribution of galaxies. The issue of fair samples of the galaxy distribution is discussed, examining statistical measures of the galaxy distribution including the two-point correlation functions.

  19. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.

  20. Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennig, C.; Mohr, Joseph J.; Zenteno, A.

    We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ~ 1.1 with 4 × 10 14 M⊙ ≤ M200 ≤ 3 × 10 15M⊙. Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ~m* + 2, finding that: (1)The intrinsic rest frame g – r colour width of the red sequence (RS) population is ~0.03 out to z ~ 0.85 with a preference for an increase to ~0.07 at z = 1, and (2) the prominence of the RS declines beyond z ~ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of c g = 3.59more » $$+0.20\\atop{–0.18}$$, 5.37$$+0.27\\atop{-0.24}$$ and 1.38$$+0.21\\atop{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with ~40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ~55 per cent at z = 1 to ~80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ~14 per cent. Finally, we discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr.« less

  1. Galaxy populations in massive galaxy clusters to $z$ = 1.1: Color distribution, concentration, halo occupation number and red sequence fraction

    DOE PAGES

    Hennig, C.; Mohr, Joseph J.; Zenteno, A.; ...

    2017-01-23

    We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ~ 1.1 with 4 × 10 14 M⊙ ≤ M200 ≤ 3 × 10 15M⊙. Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ~m* + 2, finding that: (1)The intrinsic rest frame g – r colour width of the red sequence (RS) population is ~0.03 out to z ~ 0.85 with a preference for an increase to ~0.07 at z = 1, and (2) the prominence of the RS declines beyond z ~ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of c g = 3.59more » $$+0.20\\atop{–0.18}$$, 5.37$$+0.27\\atop{-0.24}$$ and 1.38$$+0.21\\atop{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with ~40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ~55 per cent at z = 1 to ~80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ~14 per cent. Finally, we discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr.« less

  2. Confusion-limited galaxy fields. I - Simulated optical and near-infrared images

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1988-01-01

    Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.

  3. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future

  4. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna

    1989-09-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  5. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.

    1989-01-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  6. (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. I. Multiwavelength identifications and redshift distribution

    NASA Astrophysics Data System (ADS)

    Miettinen, O.; Smolčić, V.; Novak, M.; Aravena, M.; Karim, A.; Masters, D.; Riechers, D. A.; Bussmann, R. S.; McCracken, H. J.; Ilbert, O.; Bertoldi, F.; Capak, P.; Feruglio, C.; Halliday, C.; Kartaltepe, J. S.; Navarrete, F.; Salvato, M.; Sanders, D.; Schinnerer, E.; Sheth, K.

    2015-05-01

    We used the Plateau de Bure Interferometer (PdBI) to map a sample of 15 submillimetre galaxies (SMGs) in the COSMOS field at the wavelength of 1.3 mm. The target SMGs were originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey at S/N1.1 mm = 4-4.5. This paper presents, for the first time, interferometric millimetre-wavelength observations of these sources. The angular resolution of our observations, 1''&dotbelow;8, allowed us to accurately determine the positions of the target SMGs. Using a detection threshold of S/N1.3 mm> 4.5 regardless of multiwavelength counterpart association, and 4 redshifts, available spectroscopic redshifts, and redshifts estimated from the radio-to-submm spectral index we infer a median redshift of tilde{z}= 3.20 ± 0.25 for our sample. To study the overall multiplicity and redshift distribution of flux-limited samples of SMGs we combined these sources with the 15 brightest JCMT/AzTEC SMGs detected at 1.1 mm, AzTEC1-15, and studied previously. This constitutes a complete, flux- and S/N-limited 1.1-mm selected sample. We find that the median redshift for the 15 brightest JCMT/AzTEC SMGs (tilde{z}= 3.05 ± 0.44) is consistent with that for AzTEC16-30. This conforms to recent observational findings that SMGs do not exhibit any significant trend between the redshift and (sub)mm flux density. For the combined AzTEC1-30 sample we derive a median redshift of tilde{z}= 3.17 ± 0.27, consistent with previous results based on mm

  7. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less

  8. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  9. Massive Structures of Galaxies at High Redshifts in the Great Observatories Origins Deep Survey Fields

    NASA Astrophysics Data System (ADS)

    Kang, Eugene; Im, Myungshin

    2015-02-01

    If the Universe is dominated by cold dark matter and dark energy as in the currently popular ΛCDM cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass M & 1014M? appearing at around 6 Gy rs after the Big Bang (z ? 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few times 1013M? at redshifts between z = 0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the ΛCDM cosmology. We find that there are too many massive structures (M > 7?1013M?) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the observed data being consistent with the simulation. Our result suggests that massive structures have emerged early, but the reason for the discrepancy with the simulation is unclear. It could be due to the limitation of the simulation such as the lack of key, unrecognized ingredients (strong non-Gaussianity or other baryonic physics), or simply a difficulty in the halo mass estimation from observation, or a fundamental problem of the ΛCDM cosmology. On the other hand, the over-abundance of massive structures at high redshifts does not favor heavy neutrino mass of ? 0.3 eV or larger, as heavy neutrinos make the discrepancy between the observation and the simulation more pronounced by a factor of 3 or more.

  10. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  11. Recovering a redshift-extended varying speed of light signal from galaxy surveys

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo

    2017-04-01

    We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114, 101304 (2015), 10.1103/PhysRevLett.114.101304; Phys. Rev. D 93, 063521 (2016), 10.1103/PhysRevD.93.063521], where it was argued that such a signal could be detected at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ˜1 % VSL signal can be detected at 3 σ confidence level in the redshift interval z ∈[0. ,1.55 ]. Smaller signals (˜0.1 % ) will be hardly detected (even if some lower possibility for a 1 σ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a 0.01-order curvature in the same redshift range with a very high confidence.

  12. Panchromatic spectral energy distributions of simulated galaxies: results at redshift z = 0

    NASA Astrophysics Data System (ADS)

    Goz, David; Monaco, Pierluigi; Granato, Gian Luigi; Murante, Giuseppe; Domínguez-Tenreiro, Rosa; Obreja, Aura; Annunziatella, Marianna; Tescari, Edoardo

    2017-08-01

    We present predictions of spectral energy distributions (SEDs), from the UV to the FIR, of simulated galaxies at z = 0. These were obtained by post-processing the results of an N-body+hydro simulation of a cosmological box of side 25 Mpc, which uses the Multi-Phase Particle Integrator (MUPPI) for star formation and stellar feedback, with the grasil-3d radiative transfer code that includes reprocessing of UV light by dust. Physical properties of our sample of ˜500 galaxies resemble observed ones, though with some tension at small and large stellar masses. Comparing predicted SEDs of simulated galaxies with different samples of local galaxies, we find that these resemble observed ones, when normalized at 3.6 μm. A comparison with the Herschel Reference Survey shows that the average SEDs of galaxies, divided in bins of star formation rate (SFR), are reproduced in shape and absolute normalization to within a factor of ˜2, while average SEDs of galaxies divided in bins of stellar mass show tensions that are an effect of the difference of simulated and observed galaxies in the stellar mass-SFR plane. We use our sample to investigate the correlation of IR luminosity in Spitzer and Herschel bands with several galaxy properties. SFR is the quantity that best correlates with IR light up to 160 μm, while at longer wavelengths better correlations are found with molecular mass and, at 500 μm, with dust mass. However, using the position of the FIR peak as a proxy for cold dust temperature, we assess that heating of cold dust is mostly determined by SFR, with stellar mass giving only a minor contribution. We finally show how our sample of simulated galaxies can be used as a guide to understand the physical properties and selection biases of observed samples.

  13. Non-equilibrium populations of hydrogen in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pomerantz, Brian B.; Redmond, Kayla; Strelnitski, Vladimir

    2014-07-01

    We investigate the possibility of maser amplification in hydrogen recombination lines from the galaxies of first generation, at z≲ 30. Combining analytical and computational approaches, we show that the transitions between the hydrogen Rydberg energy levels induced by the radiation from the ionizing star and by the (warmer than currently) cosmic microwave background can produce noticeable differences in the population distribution, as compared with previous computations for contemporary H+ regions, most of which ignored the processes induced by the ionizing star's radiation. In particular, the low (n≲ 30) α-transitions show an increased tendency towards population inversion, when ionization of the H+ region is caused by a very hot star at high redshift. The resulting maser/laser amplification can increase the brightness of the emitted lines and make them detectable. However, the limiting effects of maser saturation will probably not allow maser gains to exceed one or two orders of magnitude.

  14. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first

  15. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  16. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  17. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less

  18. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  19. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.

    2009-04-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that

  20. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesci, R.; Perola, G.C.; Gioia, I.M.

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of themore » most distant cooling flow clusters known to date. 28 refs.« less

  1. Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE - II. Redshift distribution and nature of the submillimetre galaxy population

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Scott, K. S.; Guo, Yicheng; Aretxaga, I.; Giavalisco, M.; Austermann, J. E.; Capak, P.; Chen, Yuxi; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Iono, D.; Johnson, S.; Kawabe, R.; Kohno, K.; Lowenthal, J.; Miller, N.; Morrison, G.; Oshima, T.; Perera, T. A.; Salvato, M.; Silverman, J.; Tamura, Y.; Williams, C. C.; Wilson, G. W.

    2012-02-01

    We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1-mm wavelength imaging survey of the Great Observatories Origins Deep Survey-South (GOODS-S) field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment. One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera, and Large APEX Bolometer Camera 870 μm data. Five of the sources (10 per cent) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analysing ultraviolet(UV)-to-optical and infrared(IR)-to-radio spectral energy distributions (SEDs). The median redshift of zmed˜ 2.6 is similar to other earlier estimates, but we show that 80 per cent of the AzTEC-GOODS sources are at z≥ 2, with a significant high-redshift tail (20 per cent at z≥ 3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 mag in the i- and K-band photometry (a factor of 104 in flux density) with median values of i= 25.3 and K= 22.6 and a broad range of red colour (i-K= 0-6) with an average value of i-K≈ 3. These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z≥ 2, with inferred stellar masses M*= (1-30) × 1010 M⊙ and UV-derived SFRs of SFRUV≳ 101-3 M⊙ yr-1. The IR-derived SFR, 200-2000 M⊙ yr-1, is independent of z or M*. The resulting specific star formation rates, SSFR ≈ 1-100 Gyr-1, are 10-100 times higher than similar mass galaxies at z= 0, and they extend the previously observed rapid rise in the SSFR with redshift to z= 2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time

  2. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-01-01

    We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.

  3. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  4. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    NASA Astrophysics Data System (ADS)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  5. The line-locking hypothesis, absorption by intervening galaxies, and the z = 1.95 peak in redshifts

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1978-01-01

    The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.

  6. Cosmic velocity-gravity relation in redshift space

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain

    2007-02-01

    We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.

  7. A massive, quiescent, population II galaxy at a redshift of 2.1.

    PubMed

    Kriek, Mariska; Conroy, Charlie; van Dokkum, Pieter G; Shapley, Alice E; Choi, Jieun; Reddy, Naveen A; Siana, Brian; van de Voort, Freeke; Coil, Alison L; Mobasher, Bahram

    2016-12-07

    Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years-characteristics that are similar to population II stars in the Milky Way. With an average past star

  8. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less

  9. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE PAGES

    Clampitt, J.; S?nchez, C.; Kwan, J.; ...

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  10. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2017-03-01

    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  11. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, J.; S?nchez, C.; Kwan, J.

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  12. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  13. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  14. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  15. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s < 25.3-25.9 AB. We use 5 near-IR medium-bandwidth filters (J 1, J 2, J 3, H s , H l ) as well as broad-band K s at 1.05-2.16 μm to 25-26 AB at a seeing of ˜0.″5. Each field has ancillary imaging in 26-40 filters at 0.3-8 μm. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z,pairs = 0.01-0.02 at 1 < z < 2.5. We quantify how σ z,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer/MIPS and Herschel/PACS data. We derive rest-frame U - V and V - J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ˜ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  16. The Complete Calibration of the Color-Redshift Relation (C3R2) survey for Euclid

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Masters, Daniel; C3R2 Team

    2018-06-01

    The complete calibration of the color-redshift relation (C3R2) survey is a multi-institution, mutli-instrument survey with the Keck telescopes that aims to map out the empirical galaxy color-redshift relation in preparation for the Stage IV dark energy missions Euclid and WFIRST. A key challenge for weak lensing cosmology with these missions will be measuring highly accurate redshift distributions for billions of faint galaxies using only broad-band photometric observations. Well-calibrated photometric redshifts will thus be critical to their success. C3R2 uses an innovative technique that maps the color distribution of galaxies in the high-dimensional color space (u-g, ..., J-H) expected for Euclid and WFIRST, allowng us to focus spectroscopic effort on those regions of galaxy color space which are currently unexplored. C3R2 is a joint effort involving all of the Keck partners, with 44.5 nights allocated thus far. DR1 is published (Masters, Stern, Cohen et al, ApJ, 841, 111), and DR2, with > 3000 new redshifts, will be submitted in mid 2018.

  17. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  18. Cosmology with XMM galaxy clusters: the X-CLASS/GROND catalogue and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Ridl, J.; Clerc, N.; Sadibekova, T.; Faccioli, L.; Pacaud, F.; Greiner, J.; Krühler, T.; Rau, A.; Salvato, M.; Menzel, M.-L.; Steinle, H.; Wiseman, P.; Nandra, K.; Sanders, J.

    2017-06-01

    The XMM Cluster Archive Super Survey (X-CLASS) is a serendipitously detected X-ray-selected sample of 845 galaxy clusters based on 2774 XMM archival observations and covering an approximately 90 deg2 spread across the high-Galactic latitude (|b| > 20°) sky. The primary goal of this survey is to produce a well-selected sample of galaxy clusters on which cosmological analyses can be performed. This paper presents the photometric redshift follow-up of a high signal-to-noise ratio subset of 265 of these clusters with declination δ < +20° with Gamma-Ray Burst Optical and Near-Infrared Detector (GROND), a 7-channel (grizJHK) simultaneous imager on the MPG 2.2-m telescope at the ESO La Silla Observatory. We use a newly developed technique based on the red sequence colour-redshift relation, enhanced with information coming from the X-ray detection to provide photometric redshifts for this sample. We determine photometric redshifts for 232 clusters, finding a median redshift of z = 0.39 with an accuracy of Δz = 0.02(1 + z) when compared to a sample of 76 spectroscopically confirmed clusters. We also compute X-ray luminosities for the entire sample and find a median bolometric luminosity of 7.2 × 1043 erg s-1 and a median temperature of 2.9 keV. We compare our results to those of the XMM-XCS and XMM-XXL surveys, finding good agreement in both samples. The X-CLASS catalogue is available online at http://xmm-lss.in2p3.fr:8080/l4sdb/.

  19. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emissionmore » line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous

  20. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  1. Cosmological constraints with clustering-based redshifts

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  2. The spectral energy distribution of galaxies at z > 2.5: Implication from the Herschel/SPIRE color-color diagram

    NASA Astrophysics Data System (ADS)

    Yuan, Fangting; Buat, Veronique; Burgarella, Denis; Ciesla, Laure; Heinis, Sebastien; Shen, Shiyin; Shao, Zhengyi; Hou, Jinliang

    2015-08-01

    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We collect a sample of 57 galaxies with spectroscopically confirmed redshifts and reliable flux measurements at redshift z=2.5-6.4, and compare their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. For the libraries of Chary & Elbaz (2001) and Dale & Helou (2002), the local calibrations of the parameters LIR and alpha need to be adjusted to around 1011Lsun and 1.5 to describe the average colors given by the observations. For high-z libraries, the templates of Magdis et al. (2012) can well describe the average colors of the observations at high redshift, justifying their assumption of an evolution of SED from z=0 to 3. Using the templates of Magdis et al. (2012), we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods 500 micron risers and the method of Amblard et al. (2010) using a large sample of 786 Herschel-selected galaxies, and find that these color cut methods can separate the sample into populations with different mean redshifts, although the dispersion of redshifts in each population is quite large.

  3. High-redshift radio galaxies and divergence from the CMB dipole

    NASA Astrophysics Data System (ADS)

    Colin, Jacques; Mohayaee, Roya; Rameez, Mohamed; Sarkar, Subir

    2017-10-01

    Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be much larger than that inferred from the dipole anisotropy of the cosmic microwave background. We construct a full sky catalogue, NVSUMSS, by merging the NRAO VLA Sky Survey and the Sydney University Molonglo Sky Survey catalogues and removing local sources by various means including cross-correlating with the 2MASS Redshift Survey catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispheric number count asymmetry, as well as via a three-dimensional linear estimator. Both its magnitude and direction depend on cuts made to the catalogue, e.g. on the lowest source flux; however these effects are small. From the hemispheric number count asymmetry we obtain a velocity of 1729 ± 187 km s-1, I.e. about four times larger than that obtained from the cosmic microwave background dipole, but close in direction, towards RA=149° ± 2°, Dec. = -17° ± 12°. With the three-dimensional estimator, the derived velocity is 1355 ± 174 km s-1 towards RA = 141° ± 11°, Dec. = -9° ± 10°. We assess the statistical significance of these results by comparison with catalogues of random distributions, finding it to be 2.81σ (99.75 per cent confidence).

  4. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; von Ferber, C.; Holovatch, Yu; Novosyadlyj, B.

    2018-07-01

    The galaxy data provided by COSMOS survey for 1°×1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94, and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments, we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differs from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realizes somewhat different behaviour.

  5. Network analysis of the COSMOS galaxy field

    NASA Astrophysics Data System (ADS)

    de Regt, R.; Apunevych, S.; Ferber, C. von; Holovatch, Yu; Novosyadlyj, B.

    2018-03-01

    The galaxy data provided by COSMOS survey for 1° × 1° field of sky are analysed by methods of complex networks. Three galaxy samples (slices) with redshifts ranging within intervals 0.88÷0.91, 0.91÷0.94 and 0.94÷0.97 are studied as two-dimensional projections for the spatial distributions of galaxies. We construct networks and calculate network measures for each sample, in order to analyse the network similarity of different samples, distinguish various topological environments, and find associations between galaxy properties (colour index and stellar mass) and their topological environments. Results indicate a high level of similarity between geometry and topology for different galaxy samples and no clear evidence of evolutionary trends in network measures. The distribution of local clustering coefficient C manifests three modes which allow for discrimination between stand-alone singlets and dumbbells (0 ≤ C ≤ 0.1), intermediately packed (0.1 < C < 0.9) and clique (0.9 ≤ C ≤ 1) like galaxies. Analysing astrophysical properties of galaxies (colour index and stellar masses), we show that distributions are similar in all slices, however weak evolutionary trends can also be seen across redshift slices. To specify different topological environments we have extracted selections of galaxies from each sample according to different modes of C distribution. We have found statistically significant associations between evolutionary parameters of galaxies and selections of C: the distribution of stellar mass for galaxies with interim C differ from the corresponding distributions for stand-alone and clique galaxies, and this difference holds for all redshift slices. The colour index realises somewhat different behaviour.

  6. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less

  7. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Guzzo, L.; Peacock, J. A.; Branchini, E.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Moscardini, L.; Paioro, L.; Percival, W. J.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Monaco, P.; Nichol, R. C.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    We present the general real- and redshift-space clustering properties of galaxies as measured in the first data release of the VIPERS survey. VIPERS is a large redshift survey designed to probe in detail the distant Universe and its large-scale structure at 0.5 < z < 1.2. We describe in this analysis the global properties of the sample and discuss the survey completeness and associated corrections. This sample allows us to measure the galaxy clustering with an unprecedented accuracy at these redshifts. From the redshift-space distortions observed in the galaxy clustering pattern we provide a first measurement of the growth rate of structure at z = 0.8: fσ8 = 0.47 ± 0.08. This is completely consistent with the predictions of standard cosmological models based on Einstein gravity, although this measurement alone does not discriminate between different gravity models. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  8. Multipole analysis of redshift-space distortions around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  9. COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

    NASA Astrophysics Data System (ADS)

    Laigle, C.; Pichon, C.; Arnouts, S.; McCracken, H. J.; Dubois, Y.; Devriendt, J.; Slyz, A.; Le Borgne, D.; Benoit-Lévy, A.; Hwang, Ho Seong; Ilbert, O.; Kraljic, K.; Malavasi, N.; Park, Changbom; Vibert, D.

    2018-03-01

    The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation HORIZON-AGN. They show that the photometric redshift accuracy of the observed catalogue (σz < 0.015 at M* > 1010M⊙ and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the HORIZON-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties.

  10. Spectroscopic redshifts and age dating of a first statistical sample of passive galaxies at z 3

    NASA Astrophysics Data System (ADS)

    Daddi, Emanuele

    2017-08-01

    Ultradeep WFC3/G141 observations from one of our past HST programs allowed us to confirm the redshift and measure the age of a quiescent galaxy at z=3. This unique object was found inside a single WFC3 pointing (4 sq. arcmin) suggesting that massive old galaxies even at z 3 are more common than previously thought. The strong correlation observed between evolved stellar populations and a bulge-dominated morphology at least up to z 2 may also imply that the Hubble sequence comes into place at very early times. Guided by the properties of this spectroscopically confirmed z=3 passive galaxy, we have identified a substantial sample of 2.5redshifts, confirming their identification as distant, quiescent systems (as opposed to dusty star-forming sources), and measuring their stellar ages as well as sizes from the WFC3/F140 ancillary imaging. We have verified that no object of this kind, bright enough to be confirmed spectroscopically, can be found inside existing WFC3 spectroscopy in the CANDELS fields, and that this science cannot be competitively done from the ground. These new observations will push the constraints on the evolution, nature and abundance of passive galaxies to the highest redshifts, and will allow a first detailed picture of the early assembly of the Hubble sequence.

  11. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    NASA Astrophysics Data System (ADS)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  12. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  13. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less

  14. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE PAGES

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...

    2017-10-14

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  15. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  16. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; et al.

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less

  17. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  18. GLACiAR: GaLAxy survey Completeness AlgoRithm

    NASA Astrophysics Data System (ADS)

    Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal

    2018-05-01

    GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

  19. KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.

    2012-01-10

    Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Lowmore » Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more

  20. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less

  1. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  2. Emission line galaxies at high redshift and analogs of the sources of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Schaerer, D.

    2017-11-01

    We present recent work on emission line galaxies at high redshift and searches for analogs of the sources of cosmic reionization at low redshift. The VIMOS Ultra-Deep Survey (VUDS) carried out at the VLT has assembled more than 7000 spectra of galaxies from z 1.5 to 6 allowing us to address a wide diversity of questions with statistically meaningful samples. From VUDS we have recently identified a sample of CIII] and CIV] emitters at z 2-4 whose properties we present and discuss here (cf. Nakajima et al. 2017; Le Fevre et al. 2017). These objects provide interesting insight into the C/O ratio at high-z, the nature and hardness of their ionizing source, the ionizing photon production, and others. Targeting compact strong emission line galaxies with high [OIII]/[OII] ratios with the COS spectrograph on-board HST, we have recently been able to find several relatively strong Lyman continuum emitters at z 0.3 (Izotov et al. 2016ab). We describe the physical properties of these unique, rare low-z sources, which are found to be comparable to those of typical z>6 galaxies and thus currently the best analogs for the sources of cosmic reionization (cf. Schaerer et al. 2016). We also briefly discuss open questions and future steps.

  3. An Overdensity of Massive, Dusty Starbursts Associated with the High-Redshift Radio Galaxy MRC1138-262 at z = 2.16

    NASA Astrophysics Data System (ADS)

    Altieri, Bruno; Dannerbauer, Helmut

    We present Herschel and APEX LABOCA 870 μm imaging of the field of the high-redshift radio galaxy MRC1138 at z = 2.16. We detect 16 submillimeter galaxies in this ˜140 arcmin2 large bolometer map, with flux densities in the range 3-11 mJy. The pure number counts indicate an overdensity of SMGs by a factor of five compared to blank field surveys. Based on an exquisite multi-wavelength database including VLA 1.4 GHz radio and infrared observations, we verifiy whether these sources are members of the proto-cluster structure at z = 2.2 or not. Based on Herschel PACS+ SPIRE and Spitzer MIPS photometry, we derived reliable far-infrared photometric redshifts for all of our sources. VLT-ISAAC near-infrared spectroscopic observations confirmed redshifts of z ≈ 2.2 for four of these SMGs. We conclude that in total at least seven sources are part of this proto-cluster at z = 2.16. We measure a star formation rate density S FRD ˜ 1500 M⊙ yr-1 Mpc-3, four magntiudes higher compared to the global SFRD at this redshift. Striklingly, these seven sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are not distributed in the filaments as predicted by theories and traced by the Hα emitters at z ≈ 2.2. This concentration of massive, dusty starbursts is not centered on the radio galaxy which is submm bright. A significant fraction, six out of 11 SMGs with z ≈ 2.2 Hα imaging coverage are associated with Hα emitters, demonstrating the potential of tracing SMG counterparts with this source population. Our results demonstrate that indeed submm observations enable us to reveal clusters of massive, dusty starbursts and will pave the road for systematic and detailed investigations with this technique in the future.

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Measuring non-linear galaxy bias at z ~ 0.8

    NASA Astrophysics Data System (ADS)

    Di Porto, C.; Branchini, E.; Bel, J.; Marulli, F.; Bolzonella, M.; Cucciati, O.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Marinoni, C.; Moscardini, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Martizzi, D.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Viel, M.; Wolk, M.; Zamorani, G.

    2016-10-01

    Aims: We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ~50 000 objects to measure the biasing relation between galaxies and mass in the redshift range z = [ 0.5,1.1 ]. Methods: We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF, we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise, redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from linearity down to scales as small as 4 h-1 Mpc and out to z = 1.1. Results: We detect small (up to 2%) but statistically significant (up to 3σ) deviations from linear bias. The mean biasing function is close to linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z> 0.9, which is in agreement with some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h-1 Mpc , now seen for the first time out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ~ 1 from zCOSMOS and VVDS-Deep galaxy samples is fully accounted for by cosmic variance. Conclusions: The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS. Based on observations collected at the European Southern Observatory, Paranal, Chile

  5. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  6. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  7. Bright Galaxies at Hubble’s Redshift Detection Frontier: Preliminary Results and Design from the Redshift z ~ 9-10 BoRG Pure-Parallel HST Survey

    NASA Astrophysics Data System (ADS)

    Calvi, V.; Trenti, M.; Stiavelli, M.; Oesch, P.; Bradley, L. D.; Schmidt, K. B.; Coe, D.; Brammer, G.; Bernard, S.; Bouwens, R. J.; Carrasco, D.; Carollo, C. M.; Holwerda, B. W.; MacKenty, J. W.; Mason, C. A.; Shull, J. M.; Treu, T.

    2016-02-01

    We present the first results and design from the redshift z ˜ 9-10 Brightest of the Reionizing Galaxies Hubble Space Telescope survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from λ = 0.35 μm to λ = 1.7 μm. We analyze the initial ˜130 arcmin2 of area over 28 independent lines of sight (˜25% of the total planned) to search for z\\gt 7 galaxies using a combination of Lyman-break and photometric redshift selections. From an effective comoving volume of (5-25) × 105 Mpc3 for magnitudes brighter than {m}{AB}=26.5{{{--}}}24.0 in the {H}{{160}}-band respectively, we find five galaxy candidates at z\\quad ˜ 8.3-10 detected at high confidence ({{S}}/{{N}}\\gt 8), including a source at z\\quad ˜ 8.4 with {m}{AB}=24.5 ({{S}}/{{N}} ˜ 22), which, if confirmed, would be the brightest galaxy identified at such early times (z\\gt 8). In addition, BoRG[z9-10] data yield four galaxies with 7.3≲ z≲ 8. These new Lyman-break galaxies with m≲ 26.5 are ideal targets for follow-up observations from ground and space-based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.

  8. The AzTEC/SMA Interferometric Imaging Survey of Submillimeter-selected High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.

    2009-10-01

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology—including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared—of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation—which struggle to account for such objects even under liberal assumptions—and dust production models given the limited time since the big bang.

  9. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-includingmore » the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.« less

  10. The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disc turbulence in z ≈ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Harrison, C. M.; Swinbank, A. M.; Tiley, A. L.; Stott, J. P.; Bower, R. G.; Smail, Ian; Bunker, A. J.; Sobral, D.; Turner, O. J.; Best, P.; Bureau, M.; Cirasuolo, M.; Jarvis, M. J.; Magdis, G.; Sharples, R. M.; Bland-Hawthorn, J.; Catinella, B.; Cortese, L.; Croom, S. M.; Federrath, C.; Glazebrook, K.; Sweet, S. M.; Bryant, J. J.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; Medling, A. M.; Owers, M. S.; Richards, S.

    2018-03-01

    We analyse the velocity dispersion properties of 472 z ˜ 0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 ± 5 per cent with vC/σ0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is σ0 = 43.2 ± 0.8 km s-1 with a rotational velocity to dispersion ratio of vC/σ0 = 2.6 ± 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate, and redshift, we combine KROSS with data from the SAMI survey (z ˜ 0.05) and an intermediate redshift MUSE sample (z ˜ 0.5). Whilst there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by discs that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.

  11. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  12. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.

    PubMed

    Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-12-02

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift. Copyright © 2016, American Association for the Advancement of Science.

  13. THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY AT z = 4.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolcic, V.; Capak, P.; Blain, A. W.

    2011-04-20

    Based on broadband/narrowband photometry and Keck DEIMOS spectroscopy, we report a redshift of z = 4.64{sup +0.06}{sub -0.08} for AzTEC/COSMOS 1, the brightest submillimeter galaxy (SMG) in the AzTEC/COSMOS field. In addition to the COSMOS-survey X-ray to radio data, we report observations of the source with Herschel/PACS (100, 160 {mu}m), CSO/SHARC II (350 {mu}m), and CARMA and PdBI (3 mm). We do not detect CO(5 {yields} 4) line emission in the covered redshift ranges, 4.56-4.76 (PdBI/CARMA) and 4.94-5.02 (CARMA). If the line is within this bandwidth, this sets 3{sigma} upper limits on the gas mass to {approx}<8 x 10{sup 9}more » M{sub sun} and {approx}<5 x 10{sup 10} M{sub sun}, respectively (assuming similar conditions as observed in z {approx} 2 SMGs). This could be explained by a low CO-excitation in the source. Our analysis of the UV-IR spectral energy distribution of AzTEC 1 shows that it is an extremely young ({approx}<50 Myr), massive (M{sub *} {approx} 10{sup 11} M{sub sun}), but compact ({approx}<2 kpc) galaxy, forming stars at a rate of {approx}1300 M{sub sun} yr{sup -1}. Our results imply that AzTEC 1 is forming stars in a 'gravitationally bound' regime in which gravity prohibits the formation of a superwind, leading to matter accumulation within the galaxy and further generations of star formation.« less

  14. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max

    2018-06-01

    We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.

  15. Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian Markwart

    We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the

  16. Multipole analysis of redshift-space distortions around cosmic voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrainmore » the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.« less

  17. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  18. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts andmore » a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.« less

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS):. A quiescent formation of massive red-sequence galaxies over the past 9 Gyr

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-03-01

    We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 < z < 1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45 000 galaxies with precise spectroscopic redshifts down to i'AB < 22.5 over ~10.32 deg2 in two fields. From z = 0.5 to z = 1.3 the LF and CMR are well defined for different galaxy populations and M*B evolves by ~1.04(1.09) ± 0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies: (1) a fixed cut in rest-frame (U - V) colours, (2) an evolving cut in (U - V) colours, (3) a rest-frame (NUV - r') - (r' - K) colour selection, and (4) a spectral-energy-distribution classification. The completeness and contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 < z < 1.3 we find a moderate evolution of the RS intercept of Δ(U - V) = 0.28 ± 0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7 ≤ z ≤ 2.3. Together with the rise in the number density of red galaxies by 0.64 dex since z = 1, this suggests a rapid build-up of massive galaxies (M⋆ > 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 < z < 1.0, in contrast with the quiescent red stellar populations of early-type galaxies at 0.5 < z < 0.6. There is an increase in the observed CMR scatter with redshift, which is two times larger than observed in galaxy clusters and at variance with theoretical model predictions. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z ~ 1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF

  20. The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Frith, W. J.; Outram, P. J.; Shanks, T.

    2005-06-01

    We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey

  1. A search for faint high-redshift radio galaxy candidates at 150 MHz

    NASA Astrophysics Data System (ADS)

    Saxena, A.; Jagannathan, P.; Röttgering, H. J. A.; Best, P. N.; Intema, H. T.; Zhang, M.; Duncan, K. J.; Carilli, C. L.; Miley, G. K.

    2018-04-01

    Ultrasteep spectrum (USS) radio sources are good tracers of powerful radio galaxies at z > 2. Identification of even a single bright radio galaxy at z > 6 can be used to detect redshifted 21 cm absorption due to neutral hydrogen in the intervening intergalactic medium. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TIFR GMRT Sky Survey First Alternative Data Release survey at 150 MHz. We employ USS selection (α ≤ -1.3) in ˜10 000 deg2, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density (50 mJy < S150 < 200 mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of 1.3 arcsec revealed ˜ 48 per cent of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for 10 sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multiwavelength photometry and ancillary radio data are available and for one of these we find a best-fitting photo-z of 4.8 ± 2.0. The other source has zphot = 1.4 ± 0.1 and a small angular size (3.7 arcsec), which could be associated with an obscured star-forming galaxy or with a `dead' elliptical. One USS radio source not part of the HzRG sample but observed with the VLA none the less is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of 1.8 ± 0.5, indicating a size of 875 kpc.

  2. Redshifts for a sample of fainter galaxies in the first CfA survey slice

    NASA Technical Reports Server (NTRS)

    Thorstensen, J. R.; Wegner, G. A.; Hamwey, R.; Boley, F.; Geller, M. J.

    1989-01-01

    Redshifts were measured for 93 of the 94 galaxies in the Zwicky-Nilson merged catalog with the value of m(B/01) between 15.5 and 15.7 and with right ascension alpha between 8(h) and 17(h) and declination delta between 29 and 30 deg. This region is within the one covered by the first slice of the CfA (Center for Astrophysics) survey. The galaxies reinforce features already visible in the earlier survey.

  3. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.

    2010-08-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our

  4. Herschel And Alma Observations Of The Ism In Massive High-Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Aguirre, Paula; Baker, Andrew J.; Devlin, Mark J.; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lindner, Robert R.; Sifón, Cristóbal

    2017-06-01

    The Sunyaev-Zel'dovich effect (SZE) can be used to select samples of galaxy clusters that are essentially mass-limited out to arbitrarily high redshifts. I will present results from an investigation of the star formation properties of galaxies in four massive clusters, extending to z 1, which were selected on the basis of their SZE decrements in the Atacama Cosmology Telescope (ACT) survey. All four clusters have been imaged with Herschel/PACS (tracing star formation rate) and two with ALMA (tracing dust and cold gas mass); newly discovered ALMA CO(4-3) and [CI] line detections expand an already large sample of spectroscopically confirmed cluster members. Star formation rate appears to anti-correlate with environmental density, but this trend vanishes after controlling for stellar mass. Elevated star formation and higher CO excitation are seen in "El Gordo," a violent cluster merger, relative to a virialized cluster at a similar high (z 1) redshift. Also exploiting ATCA 2.1 GHz observations to identify radio-loud active galactic nuclei (AGN) in our sample, I will use these data to develop a coherent picture of how environment influences galaxies' ISM properties and evolution in the most massive clusters at early cosmic times.

  5. THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.

    2016-04-20

    We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less

  6. Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.

    2006-06-01

    We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.5redshifts. We demonstrate, using stacked X-ray observations and a subset of galaxies with Hα measurements, that L5-8.5μm provides a reliable estimate of LIR for most star-forming galaxies at z~2. We show that the range of LIR in the optical/near-IR-selected samples considered extends from ~=1010 to >1012 Lsolar, with a mean ~=2×1011 Lsolar. Using 24 μm observations as an independent probe of dust extinction, we find that, as in the local universe, the obscuration LIR/L1600 is strongly dependent on Lbol and ranges in value from <1 to ~1000 within the sample considered. However, the obscuration is generally ~10 times smaller at a given Lbol at z~2 than at z~0. We show that the values of LIR and obscuration inferred from the UV spectral slope β generally agree well with the values inferred from L5-8.5μm for Lbol<1012 Lsolar. Using the specific SFRs of galaxies as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from galaxies that have just begun to form stars to those that have already accumulated most of their stellar mass and are about to become, or already are, passively evolving. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous

  7. Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Wolfe, Arthur M.; Hernquist, Lars

    2006-08-01

    We discuss the detectability of high-redshift galaxies via [C II] 158 μm line emission by coupling an analytic model with cosmological smoothed particle hydrodynamics (SPH) simulations that are based on the concordance Λ cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium (ISM) irradiated by the far-ultraviolet (FUV) radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [C II] luminosity from high-redshift galaxies that can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [C II] emission depends significantly on the amount of neutral gas, which is highly uncertain. Our calculations suggest that, in a CDM universe, most [C II] sources at z=3 are faint objects with Sν<0.01 mJy. Lyman break galaxies (LBGs) brighter than RAB=23.5 mag are expected to have flux densities Sν=1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.

  8. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-03-01

    Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42

  9. correlcalc: Two-point correlation function from redshift surveys

    NASA Astrophysics Data System (ADS)

    Rohin, Yeluripati

    2017-11-01

    correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

  10. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent

  11. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  12. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  13. Galaxy redshift surveys with sparse sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should bemore » chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.« less

  14. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  15. Reconstructing the galaxy density field with photometric redshifts - II. Environment-dependent galaxy evolution since z ≃ 3

    NASA Astrophysics Data System (ADS)

    Malavasi, Nicola; Pozzetti, Lucia; Cucciati, Olga; Bardelli, Sandro; Ilbert, Olivier; Cimatti, Andrea

    2017-09-01

    Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the galaxy stellar mass function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z ˜ 3, on physical scales from 0.3 to 2 Mpc, down to masses of M ˜ 1010 M⊙. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z ˜ 2 with the high-mass end (M ≳ 1011 M⊙) being enhanced in high-density environments. On the contrary, for star-forming galaxies, a difference between the GSMF in high- and low-density environments is present for masses M ≲ 1011 M⊙. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z < 1.5. Differences in the shape of the GSMF are not visible anymore at z > 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes that are preferentially in high-density environments.

  16. The Detection and Photometric Redshift Determination of Distant Galaxies using SIRTF's Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Simpson, C.; Eisenhardt, P.

    1998-01-01

    We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z3) galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.

  17. The dark side of galaxy colour

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.

    2013-10-01

    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin

  18. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  19. Disk galaxy scaling relations at intermediate redshifts. I. The Tully-Fisher and velocity-size relations

    NASA Astrophysics Data System (ADS)

    Böhm, Asmus; Ziegler, Bodo L.

    2016-07-01

    Aims: Galaxy scaling relations such as the Tully-Fisher relation (between the maximum rotation velocity Vmax and luminosity) and the velocity-size relation (between Vmax and the disk scale length) are powerful tools to quantify the evolution of disk galaxies with cosmic time. Methods: We took spatially resolved slit spectra of 261 field disk galaxies at redshifts up to z ≈ 1 using the FORS instruments of the ESO Very Large Telescope. The targets were selected from the FORS Deep Field and William Herschel Deep Field. Our spectroscopy was complemented with HST/ACS imaging in the F814W filter. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, these rotation curves were used to derive the intrinsic Vmax. Results: Neglecting galaxies with disturbed kinematics or insufficient spatial rotation curve extent, Vmax was reliably determined for 124 galaxies covering redshifts 0.05 < z < 0.97. This is one of the largest kinematic samples of distant disk galaxies to date. We compared this data set to the local B-band Tully-Fisher relation and the local velocity-size relation. The scatter in both scaling relations is a factor of ~2 larger at z ≈ 0.5 than at z ≈ 0. The deviations of individual distant galaxies from the local Tully-Fisher relation are systematic in the sense that the galaxies are increasingly overluminous toward higher redshifts, corresponding to an overluminosity ΔMB = -(1.2 ± 0.5) mag at z = 1. This luminosity evolution at given Vmax is probably driven by younger stellar populations of distant galaxies with respect to their local counterparts, potentially combined with modest changes in dark matter mass fractions. The analysis of the velocity-size relation reveals that disk galaxies of a given Vmax have grown in size by a factor of ~1.5 over the past ~8 Gyr, most likely through accretion of cold gas and/or small satellites

  20. The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Singal, J.; Shmakova, M.; Gerke, B.; Griffith, R. L.; Lotz, J.

    2011-05-01

    We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey (AEGIS). It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a tradeoff between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.

  1. ETHOS - an effective theory of structure formation: predictions for the high-redshift Universe - abundance of galaxies and reionization

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa

    2018-07-01

    We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.

  2. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    NASA Astrophysics Data System (ADS)

    Tendulkar, S. P.; Bassa, C. G.; Cordes, J. M.; Bower, G. C.; Law, C. J.; Chatterjee, S.; Adams, E. A. K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Hessels, J. W. T.; Kaspi, V. M.; Lazio, T. J. W.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Spitler, L. G.; van Langevelde, H. J.; Wharton, R. S.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10-4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6-0.″8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r‧ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M * ˜ (4-7) × 107 M ⊙, assuming a mass-to-light ratio between 2 to 3 M ⊙ L ⊙ -1. Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M ⊙ yr-1 and a substantial host dispersion measure (DM) depth ≲324 pc cm-3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ˜200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  3. Photon underproduction crisis and the redshift evolution of escape fraction of hydrogen ionizing photons from galaxies

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan

    2016-01-01

    In the standard picture, the only sources of cosmic UV background are the quasars and the star forming galaxies. The hydrogen ionizing emissivity from galaxies depends on a parameter known as escape fraction (fesc). It is the ratio of the escaping hydrogen ionizing photons from galaxies to the total produced by their stellar population. Using available multi-wavelength and multi-epoch galaxy luminosity function measurements, we update the galaxy emissivity by estimating a self-consistent combination of the star formation rate density and dust attenuation. Using the recent quasar luminosity function measurements, we present an updated hydrogen ionizing emissivity from quasars which shows a factor of ~2 increase as compared to the previous estimates at z<2. We use these in a cosmological radiative transfer code developed by us to generate the UV background and show that the recently inferred high values of hydrogen photoionization rates at low redshifts can be easily obtained with reasonable values of fesc. This resolves the problem of 'photon underproduction crisis' and shows that there is no need to invoke non-standard sources of the UV background such as decaying dark matter particles. We will present the implications of this updated quasar and galaxy emissivity on the values of fesc at high redshifts and on the cosmic reionization. We will also present the effect of the updated UV background on the inferred properties of the intergalactic medium, especially on the Lyman alpha forest and the metal line absorption systems.

  4. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ <ρgal> on ρtot/<ρtot>. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity

  5. The Coevolution of Supermassive Black Holes and Massive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Negrello, M.; Celotti, A.; De Zotti, G.; Danese, L.

    2014-02-01

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z >~ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale <~ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L Edd <~ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  6. Star Formation in High Redshift Galaxies with Cluster Lenses as Cosmic Telescopes

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa

    2014-07-01

    In the recent years HST enabled us to detect galaxies as far as z~11. They are likely beacons of the epoch of reionization, which marked the end of the so-called ``Dark Ages'' and signified the transformation of the universe from opaque to transparent. However very little is known about those galaxies, and a confirmation of their redshift is still out of our hands. TMT will be a major powerhorse in this endeavor in the future. In addition, clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding highest-z galaxies. With a massive cluster one can gain several magnitudes of magnification over a typical observing field, enabling imaging and spectroscopic studies of intrinsically lower-luminosity galaxies than would otherwise be observable, even with the largest telescopes. We are involved and leading several large surveys (SURFS UP for Spitzer imaging, GLASS for HST spectrscopy, and Frontier Field initiative for ultra deep HST imaging) with the main goal of identifying and studying star formation of galaxies at z=1-11. I will present first results from these surveys, show successful measurements of SFR at z~7 and beyond, and discuss the role TMT will be playing in exploring epoch of reionization.

  7. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuang-Han; Fall, S. Michael; Ferguson, Henry C.

    2017-03-20

    We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions asmore » for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.« less

  8. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  9. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  10. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  11. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on

  12. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  13. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    NASA Astrophysics Data System (ADS)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 < z < 0.5, were proposed. Since these active galactic nuclei (AGNs) are hosted, typically, in early-type galaxies that are members of groups or clusters, we have analysed spectro-photometrically the environment of 3C 66A, with the goal of finding the galaxy group hosting this blazar. This study was made using optical images of a 5.5 × 5.5 arcmin2 field centred on the blazar, and spectra of 24 sources obtained with Gemini/GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  14. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-07-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAOs). Using analytic expressions and results from 1000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAOs, and the cosmological information in them. We find that (a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; (b) photo-z errors decrease the smearing of BAOs due to non-linear redshift-space distortions (RSDs) by giving less weight to line-of-sight modes; and (c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  15. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-04-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAO). Using analytic expressions and results from 1 000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAO, and the cosmological information in them. We find that: a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; b) photo-z errors decrease the smearing of BAO due to non-linear redshift-space distortions (RSD) by giving less weight to line-of-sight modes; and c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  16. A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta

    2012-06-20

    Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify themore » situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.« less

  17. Galaxy formation in Lambda greater than 0 Friedmann models: Consequences for the number counts versus redshift test

    NASA Technical Reports Server (NTRS)

    Martel, Hugo

    1994-01-01

    We study the effect of the cosmological constant Lambda on galaxy formation using a simple spherical top-hat overdensity model. We consider models with Omega(sub 0) = 0.2, lambda(sub 0) = 0, and Omega(sub 0) = 0.2, lambda(sub 0) = 0.8 (where Omega(sub 0) is the density parameter, and lambda(sub 0) identically equal Lambda/3 H(sub 0 exp 2) where H(sub 0) is the Hubble constant). We adjust the initial power spectrum amplitude so that both models reproduce the same large-scale structures. The galaxy formation era in the lambda(sub 0) = 0 model occurs early (z approximately 6) and is very short, whereas in the lambda(sub 0) = 0.8 model the galaxy formation era starts later (z approximately 4), and last much longer, possibly all the way to the present. Consequently, galaxies at low redshift (z less than 1) are significantly more evolved in the lambda(sub 0) = 0 model than in the lambda(sub 0) = 0.8 model. This result implies that previous attempts to determine Lambda using the number counts versus redshift test are probably unreliable.

  18. A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.

    2017-04-01

    Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), I.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (I) three different empirical methods based on supervised machine learning; (II) the Bayesian photometric redshift model (or BPZ); and (III) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.

  19. A new method to search for high-redshift clusters using photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castignani, G.; Celotti, A.; Chiaberge, M.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) Wemore » use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.« less

  20. The Las Campanas Infrared Survey - II. Photometric redshifts, comparison with models and clustering evolution

    NASA Astrophysics Data System (ADS)

    Firth, A. E.; Somerville, R. S.; McMahon, R. G.; Lahav, O.; Ellis, R. S.; Sabbey, C. N.; McCarthy, P. J.; Chen, H.-W.; Marzke, R. O.; Wilson, J.; Abraham, R. G.; Beckett, M. G.; Carlberg, R. G.; Lewis, J. R.; Mackay, C. D.; Murphy, D. C.; Oemler, A. E.; Persson, S. E.

    2002-05-01

    The Las Campanas Infrared (LCIR) Survey, using the Cambridge Infra-Red Survey Instrument (CIRSI), reaches H ~21 over nearly 1deg2 . In this paper we present results from 744arcmin2 centred on the Hubble Deep Field South for which UBVRI optical data are publicly available. Making conservative magnitude cuts to ensure spatial uniformity, we detect 3177 galaxies to H =20.0 in 744arcmin2 and a further 842 to H =20.5 in a deeper subregion of 407arcmin2 . We compare the observed optical-infrared (IR) colour distributions with the predictions of semi-analytic hierarchical models and find reasonable agreement. We also determine photometric redshifts, finding a median redshift of ~0.55. We compare the redshift distributions N (z ) of E, Sbc, Scd and Im spectral types with models, showing that the observations are inconsistent with simple passive-evolution models while semi-analytic models provide a reasonable fit to the total N (z ) but underestimate the number of z ~1 red spectral types relative to bluer spectral types. We also present N (z ) for samples of extremely red objects (EROs) defined by optical-IR colours. We find that EROs with R -H >4 and H <20.5 have a median redshift z m ~1 while redder colour cuts have slightly higher z m . In the magnitude range 194 comprise ~18 per cent of the observed galaxy population, while in semi-analytic models they contribute only ~4 per cent. We also determine the angular correlation function w (θ ) for magnitude, colour, spectral type and photometric redshift-selected subsamples of the data and use the photometric redshift distributions to derive the spatial clustering statistic ξ (r ) as a function of spectral type and redshift out to z ~1.2. Parametrizing ξ (r ) by ξ (r c ,z )=[r c /r *(z )]-1.8 , where r c is in comoving coordinates, we find that r *(z ) increases by a factor of 1.5-2 from z =0 to z ~1.2. We interpret this as a selection effect - the galaxies selected at z ~1.2 are

  1. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  2. Clustering in the SDSS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration

    2002-05-01

    We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The distinct build-up of dense and normal massive passive galaxies

    NASA Astrophysics Data System (ADS)

    Gargiulo, A.; Bolzonella, M.; Scodeggio, M.; Krywult, J.; De Lucia, G.; Guzzo, L.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Haines, C.; Hawken, A. J.; Iovino, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.

    2017-10-01

    We have used the final data from the VIPERS redshift survey to extract an unparalleled sample of more than 2000 massive ℳ≥1011 M⊙ passive galaxies (MPGs) at redshift 0.5≤z≤1.0, based on their NUVrK colours. This has enabled us to investigate how the population of these objects was built up over cosmic time. We find that the evolution of the number density depends on the galaxy mean surface stellar mass density, Σ. In particular, dense (Σ≥2000 M⊙ pc-2) MPGs show a constant comoving number density over this redshift range, whilst this increases by a factor of approximately four for the least dense objects, defined as having Σ < 1000 M⊙ pc-2. We estimated stellar ages for the MPG population both fitting the spectral energy distribution (SED) and through the D4000n index, obtaining results in good agreement. Our findings are consistent with passive ageing of the stellar content of dense MPGs. We show that at any redshift the less dense MPGs are younger than dense ones and that their stellar populations evolve at a slower rate than predicted by passive evolution. This points to a scenario in which the overall population of MPGs was built up over the cosmic time by continuous addition of less dense galaxies: on top of an initial population of dense objects that passively evolves, new, larger, and younger MPGs continuously join the population at later epochs. Finally, we demonstrate that the observed increase in the number density of MPGs is totally accounted for by the observed decrease in the number density of correspondingly massive star forming galaxies (I.e. all the non-passive ℳ≥1011 M⊙ objects). Such systems observed at z ≃ 1 in VIPERS, therefore, represent the most plausible progenitors of the subsequent emerging class of larger MPGs. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations

  4. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z {approx} 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel

    2010-08-20

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10{sup 11} M{sub sun}) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, {sigma} {sub z}/(1 + z) {approx} 2%, and rest-frame colors, {sigma}{sub U-V} {approx} 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread inmore » ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z {approx}< 1, and a frosting of relatively young stars from star formation at later times.« less

  5. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  6. Going beyond the Kaiser redshift-space distortion formula: A full general relativistic account of the effects and their detectability in galaxy clustering

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Hamaus, Nico; Seljak, Uroš; Zaldarriaga, Matias

    2012-09-01

    Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M≥1012h-1M⊙ (this can increase to 10-σ or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.

  7. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  8. The Hubble Space Telescope Cluster Supernova Survey. II. The Type la Supernova rate in high-redshift galaxy clusters

    DOE PAGES

    Barbary, K.; Aldering, G.; Amanullah, R.; ...

    2011-12-28

    Here we report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50 +0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10 -12 SNe L -1 ⊙,B yr -1). In units of stellar mass, this translates to 0.36 + 0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuMmore » (SNuM ≡ 10 -12 SNe M –1 ⊙ yr –1). This represents a factor of ≈ 5 ± 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Ψ(t)∝t s . Under the approximation of a single-burst cluster formation redshift of zf = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = –1.41 +0.47 –0.40, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.« less

  9. HST Grism Observations of a Gravitationally Lensed Redshift 9.5 Galaxy

    NASA Astrophysics Data System (ADS)

    Hoag, A.; Bradač, M.; Brammer, G.; Huang, K.-H.; Treu, T.; Mason, C. A.; Castellano, M.; Di Criscienzo, M.; Jones, T.; Kelly, P.; Pentericci, L.; Ryan, R.; Schmidt, K.; Trenti, M.

    2018-02-01

    We present deep spectroscopic observations of a Lyman break galaxy (LBG) candidate (hereafter MACS1149-JD) at z ∼ 9.5 with the Hubble Space Telescope (HST) WFC3/IR grisms. The grism observations were taken at four distinct position angles, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a three-parameter (z, F160W mag, and Lyα equivalent width [EW]) LBG template to the three least contaminated grism position angles using a Markov chain Monte Carlo approach. The grism data alone are best fit with a redshift of {z}{grism}={9.53}-0.60+0.39 (68% confidence), in good agreement with our photometric estimate of {z}{phot}={9.51}-0.12+0.06 (68% confidence). Our analysis rules out Lyα emission from MACS1149-JD above a 3σ EW of 21 Å, consistent with a highly neutral IGM. We explore a scenario where the red Spitzer/IRAC [3.6]–[4.5] color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 Å break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift (z ≲ 9.1), which is less preferred by the HST imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 Å break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicates that a {340}-35+29 Myr stellar population is already present in this galaxy only ∼500 Myr after the big bang.

  10. Towards a census of high-redshift dusty galaxies with Herschel. A selection of "500 μm-risers"

    NASA Astrophysics Data System (ADS)

    Donevski, D.; Buat, V.; Boone, F.; Pappalardo, C.; Bethermin, M.; Schreiber, C.; Mazyed, F.; Alvarez-Marquez, J.; Duivenvoorden, S.

    2018-06-01

    Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 - 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called "500 μm-risers"). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims: We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods: We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results: We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions: We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.

  11. J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J.

    2018-03-01

    We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O32 = [O III] λ5007/[O II] λ3727 = 11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly α emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km s-1, one of the lowest known for Ly α-emitting galaxies, implying a high fesc(Ly α). Comparing the extinction-corrected Ly α/H β flux ratio with the case B value, we find fesc(Ly α) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length α = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 ± 0.01, the lowest stellar mass M⋆ = 108.20 M⊙, a similar star formation rate SFR = 18.9 M⊙ yr-1, and a high specific SFR of 1.2 × 10-7 yr-1.

  12. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  13. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  14. The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa

    2018-01-01

    The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.

  15. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  16. A Study of Nine High-Redshift Clusters of Galaxies. II. Photometry, Spectra, and Ages of Clusters 0023+0423 and 1604+4304

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Lubin, Lori M.; Oke, J. B.

    1998-08-01

    We present an extensive photometric and spectroscopic study of two high-redshift clusters of galaxies based on data obtained from the Keck 10 m telescopes and the Hubble Space Telescope. The clusters Cl 0023+0423 (z = 0.84) and Cl 1604+4304 (z = 0.90) are part of a multiwavelength program of Oke, Postman & Lubin to study nine candidate clusters at z >~ 0.6. Based on these observations, we study in detail both the field and cluster populations. From the confirmed cluster members, we find that Cl 0023+0423 actually consists of two components separated by ~2900 km s^-1. A kinematic analysis indicates that the two components are a poor cluster with ~3 x 10^14 M_⊙ and a less massive group with ~10^13 M_⊙. Cl 1604+4304 is a centrally concentrated, rich cluster at z = 0.8967 with a velocity dispersion of 1226 km s^-1 and a mass of ~3 x 10^15 M_⊙. A large percentage of the cluster members show high levels of star formation activity. Approximately 57% and 50% of the galaxies are active in Cl 0023+0423 and Cl 1604+4304, respectively. These numbers are significantly larger than those found in intermediate-redshift clusters. We also observe many old, red galaxies. Found mainly in Cl 1604+4304, they have spectra consistent with passive stellar evolution, typical of the populations of early-type galaxies in low- and intermediate-redshift clusters. We have calculated their ages by comparing their spectral energy distributions to standard Bruzual & Charlot evolutionary models. We find that their colors are consistent with models having an exponentially decreasing star formation rate with a time constant of 0.6 Gyr. We also observe a significant luminosity brightening in our brightest cluster galaxies. Compared with brightest cluster galaxies at z ~ 0.1, we find a luminosity increase of ~1 mag in the rest M_B and ~0.8 mag in the rest M_V. In the field, we find that ~76% of the galaxies with z > 0.4 show emission-line activity. These numbers are consistent with previous

  17. AEGIS: The Diversity of Bright Near-IR-selected Distant Red Galaxies

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Newman, J. A.; Georgakakis, A.; Almaini, O.; Coil, A. L.; Cooper, M. C.; Eisenhardt, P.; Foucaud, S.; Koekemoer, A.; Lotz, J.; Noeske, K.; Weiner, B.; Willmer, C. N. A.

    2007-05-01

    We use deep and wide near-infrared (NIR) imaging from the Palomar telescope combined with DEEP2 spectroscopy and HST and Chandra imaging to investigate the nature of galaxies that are red in NIR colors. We locate these ``distant red galaxies'' (DRGs) through the color cut (J-K)Vega>2.3 over 0.7 deg2, where we find 1010 DRG candidates down to Ks=20.5. We combine 95 high-quality spectroscopic redshifts with photometric redshifts from BRIJK photometry to determine the redshift and stellar mass distributions for these systems, and the morphological/structural and X-ray properties for 107 DRGs in the Extended Groth Strip. We find that many bright (J-K)Vega>2.3 galaxies with Ks<20.5 are at redshifts z<2, with 64% in the range 1distributions for these galaxies are broad, ranging from 109 to 1012 Msolar, but with most z>2 systems being massive with M*>1011 Msolar. HST imaging shows that the structural properties and morphologies of DRGs are also diverse, with the majority elliptical/compact (57%) and the remainder edge-on spiral (7%) and peculiar (29%). The DRGs at z<1.4 with high-quality spectroscopic redshifts are generally compact, with small half-light radii, and span a range in rest-frame optical properties. The spectral energy distribution for the DRGs at z<1.4 differs from higher redshift DRGs: they are bluer by 1 mag in observed (I-J) color. A pure IR color selection of high-redshift populations is not sufficient to identify unique populations, and other colors or spectroscopic redshifts are needed to produce homogeneous samples.

  18. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  19. The many flavours of photometric redshifts

    NASA Astrophysics Data System (ADS)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  20. Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng

    2018-06-01

    A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

  1. First light: exploring the spectra of high-redshift galaxies in the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Barrow, Kirk S. S.; Wise, John H.; Norman, Michael L.; O'Shea, Brian W.; Xu, Hao

    2017-08-01

    We present synthetic observations for the first generations of galaxies in the Universe and make predictions for future deep field observations for redshifts greater than 6. Due to the strong impact of nebular emission lines and the relatively compact scale of H II regions, high-resolution cosmological simulations and a robust suite of analysis tools are required to properly simulate spectra. We created a software pipeline consisting of fsps, hyperion, cloudy and our own tools to generate synthetic IR observations from a fully three-dimensional arrangement of gas, dust, and stars. Our prescription allows us to include emission lines for a complete chemical network and tackle the effect of dust extinction and scattering in the various lines of sight. We provide spectra, 2D binned photon imagery for both HST and JWST IR filters, luminosity relationships, and emission-line strengths for a large sample of high-redshift galaxies in the Renaissance Simulations. Our resulting synthetic spectra show high variability between galactic haloes with a strong dependence on stellar mass, metallicity, gas mass fraction, and formation history. Haloes with the lowest stellar mass have the greatest variability in [O III]/Hβ, [O III], and C III], while haloes with higher masses are seen to show consistency in their spectra and [O III] equivalent widths between 1 and 10 Å. Viewing angle accounted for threefold difference in flux due to the presence of ionized gas channels in a halo. Furthermore, JWST colour plots show a discernible relationship between redshift, colour, and mean stellar age.

  2. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance ofmore » 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.« less

  3. Shocks and Cool Cores: An ALMA View of Massive Galaxy Cluster Formation at High Redshifts

    NASA Astrophysics Data System (ADS)

    Basu, Kaustuv

    2017-07-01

    These slides present some recent results on the Sunyaev-Zel'dovich (SZ) effect imaging of galaxy cluster substructures. The advantage of SZ imaging at high redshifts or in the low density cluster outskirts is already well-known. Now with ALMA a combination of superior angular resolution and high sensitivity is available. One example is the first ALMA measurement of a merger shock at z=0.9 in the famous El Gordo galaxy cluster. Here comparison between SZ, X-ray and radio data enabled us to put constraints on the shock Mach number and magnetic field strength for a high-z radio relic. Second example is the ALMA SZ imaging of the core region of z=1.4 galaxy cluster XMMU J2235.2-2557. Here ALMA data provide an accurate measurement of the thermal pressure near the cluster center, and from a joint SZ/X-ray analysis we find clear evidence for a reduced core temperature. This result indicate that a cool core establishes itself early enough in the cluster formation history while the gas accumulation is still continuing. The above two ALMA measurements are among several other recent SZ results that shed light on the formation process of massive clusters at high redshifts.

  4. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  5. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  6. Photometric redshifts for the CFHTLS T0004 deep and wide fields

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.

    2009-06-01

    Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is

  7. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  8. Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO

    NASA Astrophysics Data System (ADS)

    Avila, S.; Crocce, M.; Ross, A. J.; García-Bellido, J.; Percival, W. J.; Banik, N.; Camacho, H.; Kokron, N.; Chan, K. C.; Andrade-Oliveira, F.; Gomes, R.; Gomes, D.; Lima, M.; Rosenfeld, R.; Salvador, A. I.; Friedrich, O.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Davis, C.; De Vicente, J.; Doel, P.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hartley, W. G.; Hollowood, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Dark Energy Survey Collaboration

    2018-05-01

    Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a 2LPT density field with an empirical halo bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range 0.45 < z < 1.4. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a double-skewed-Gaussian curve fitted to the data. We populate halos with galaxies by introducing a hybrid Halo Occupation Distribution - Halo Abundance Matching model with two free parameters. These are adjusted to achieve a galaxy bias evolution b(zph) that matches the data at the 1-σ level in the range 0.6 < zph < 1.0. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function w(θ), the comoving transverse separation clustering ξμ < 0.8(s⊥) and the angular power spectrum Cℓ, finding them in agreement. This is the first large set of three-dimensional {ra,dec,z} galaxy mock catalogues able to simultaneously accurately reproduce the photometric redshift uncertainties and the galaxy clustering.

  9. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  10. Modelling the large-scale redshift-space 3-point correlation function of galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2017-08-01

    We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.

  11. A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Schinnerer, E.; Scodeggio, M.; Franzetti, P.; Aussel, H.; Bondi, M.; Brusa, M.; Carilli, C. L.; Capak, P.; Charlot, S.; Ciliegi, P.; Ilbert, O.; Ivezić, Ž.; Jahnke, K.; McCracken, H. J.; Obrić, M.; Salvato, M.; Sanders, D. B.; Scoville, N.; Trump, J. R.; Tremonti, C.; Tasca, L.; Walcher, C. J.; Zamorani, G.

    2008-07-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star-forming (SF) from active galactic nucleus (AGN) galaxies at intermediate redshifts (zlesssim 1.3). Although optical rest-frame colors are used, our separation method is shown to be efficient and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio-selected optical sample. Given accurate multiband photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey; 90% of these have submillijansky flux densities. We classify the objects into (1) star candidates, (2) quasi-stellar objects, (3) AGN, (4) SF, and (5) high-redshift (z > 1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30%-40% in the flux density range of ~50 μJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30%-40% of SF and 50%-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  12. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.

    2013-03-01

    We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0

  13. A massive protocluster of galaxies at a redshift of z ≈ 5.3.

    PubMed

    Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G

    2011-02-10

    Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.

  14. Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z ≈ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.

    2014-10-01

    We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.

  15. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    NASA Astrophysics Data System (ADS)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  16. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  17. Spitzer observations of red galaxies: Implication for high-redshift star formation

    NASA Astrophysics Data System (ADS)

    Papovich, Casey

    2006-03-01

    My colleagues and I identified distant red galaxies (DRGs) with J - Ks > 2.3 in the southern Great Observatories Origins Deep Surveys (GOODS-S) field. These galaxies reside at z ˜ 1-3.5, (< z> ≃ 2.2) and based on their ACS (0.4-1 μm), ISAAC (1-2.2 μm), and IRAC (3-8 μm) photometry, they typically have stellar masses M ⩾ 10 11 M⊙. Interestingly, more than 50% of these objects have 24 μm flux densities ⩾50 μJy. Attributing the IR emission to star-formation implies star-formation rates (SFRs) of ≃100-1000 M⊙ yr -1. As a result, galaxies with M ⩾ 10 11 M⊙ have specific SFRs equal to or exceeding the global value at z ˜ 1.5-3. In contrast, galaxies with M ⩾ 10 11 M⊙ at z ˜ 0.3-0.75 have specific SFRs less than the global average, and more than an order of magnitude lower than that for massive DRGs at z ˜ 1.5-3. Thus, the bulk of star formation in massive galaxies is largely complete by z ˜ 1.5. The red colors and large inferred stellar masses in the DRGs suggest that much of the star formation in these galaxies occurred at redshifts z ≳ 5-6. Using model star-formation histories that match the DRG colors and stellar masses at z ˜ 2-3, and measurements of the UV luminosity density at z ≳ 5-6, we consider what constraints exist on the stellar initial mass function in the progenitors of the massive DRGs at z ˜ 2-3.

  18. zCOSMOS - 10k-bright spectroscopic sample. The bimodality in the galaxy stellar mass function: exploring its evolution with redshift

    NASA Astrophysics Data System (ADS)

    Pozzetti, L.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Lilly, S.; Renzini, A.; Moresco, M.; Mignoli, M.; Cassata, P.; Tasca, L.; Lamareille, F.; Maier, C.; Meneux, B.; Halliday, C.; Oesch, P.; Vergani, D.; Caputi, K.; Kovač, K.; Cimatti, A.; Cucciati, O.; Iovino, A.; Peng, Y.; Carollo, M.; Contini, T.; Kneib, J.-P.; Le Févre, O.; Mainieri, V.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Kampczyk, P.; Knobel, C.; Le Borgne, J.-F.; Le Brun, V.; Pellò, R.; Perez Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Abbas, U.; Bottini, D.; Cappi, A.; Guzzo, L.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Porciani, C.; Scaramella, R.; Scarlata, C.; Scoville, N.

    2010-11-01

    We present the galaxy stellar mass function (GSMF) to redshift z ≃ 1, based on the analysis of about 8500 galaxies with I < 22.5 (AB mag) over 1.4 deg2, which are part of the zCOSMOS-bright 10k spectroscopic sample. We investigate the total GSMF, as well as the contributions of early- and late-type galaxies (ETGs and LTGs, respectively), defined by different criteria (broad-band spectral energy distribution, morphology, spectral properties, or star formation activities). We unveil a galaxy bimodality in the global GSMF, whose shape is more accurately represented by 2 Schechter functions, one linked to the ETG and the other to the LTG populations. For the global population, we confirm a mass-dependent evolution (“mass-assembly downsizing”), i.e., galaxy number density increases with cosmic time by a factor of two between z = 1 and z = 0 for intermediate-to-low mass (log (ℳ/ℳ⊙) ~ 10.5) galaxies but less than 15% for log(ℳ/ℳ⊙) > 11. We find that the GSMF evolution at intermediate-to-low values of ℳ (log (ℳ/ℳ⊙) < 10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities, despite the redder colours predicted in particular at low redshift. The low residual evolution is consistent, on average, with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major), with a hint of a decrease with cosmic time but not a clear dependence on the mass. From the analysis of different galaxy types, we find that ETGs, regardless of the classification method, increase in number density with cosmic time more rapidly with decreasing M, i.e., follow a top-down building history, with a median “building redshift” increasing with mass (z > 1 for log(ℳ/ℳ⊙) > 11), in contrast to hierarchical model predictions. For LTGs, we find that the number density of blue or spiral galaxies with log(ℳ/ℳ⊙) > 10 remains almost constant with cosmic time from z ~ 1. Instead, the most extreme population of star

  19. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  20. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.

  1. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  2. The kinematic component of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Chodorowski, Michał J.

    2011-05-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.

  3. Supernovae - A new selection effect. [statistical distribution in and radial distance from center of parent galaxy

    NASA Technical Reports Server (NTRS)

    Shaw, R. L.

    1979-01-01

    A sample of 228 supernovae that occurred in galaxies with known redshifts is used to show that the mean projected linear supernova distance from the center of the parent galaxy increases with increasing redshift. This effect is interpreted as an observational bias: the discovery rate of supernovae is reduced in the inner parts of distant, poorly resolved galaxies. Even under the optimistic assumption that no selection effects work in galaxies closer than 33 Mpc, about 50% of all supernovae are lost in the inner regions of galaxies beyond 150 Mpc. This observational bias must be taken into account in the derivation of statistical properties of supernovae.

  4. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  5. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE PAGES

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  6. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    NASA Astrophysics Data System (ADS)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.

  7. Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Lavery, Russell J.; Remijan, Anthony J.

    We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.

  8. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel C.; Stern, Daniel K.; Rhodes, Jason D.

    A key goal of the Stage IV dark energy experiments Euclid , LSST, and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo- z ) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color–Redshift Relation (C3R2) survey, which is designed specifically to calibratemore » the empirical galaxy color–redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST . The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies that are most important for the redshift calibration. We focus spectroscopic efforts on undersampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color–redshift relation to the required accuracy. We present the C3R2 survey strategy and initial results, including the 1283 high-confidence redshifts obtained in the 2016A semester and released as Data Release 1.« less

  9. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  10. EVOLUTION OF THE VELOCITY-DISPERSION FUNCTION OF LUMINOUS RED GALAXIES: A HIERARCHICAL BAYESIAN MEASUREMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Yiping; Bolton, Adam S.; Dawson, Kyle S.

    2012-04-15

    We present a hierarchical Bayesian determination of the velocity-dispersion function of approximately 430,000 massive luminous red galaxies observed at relatively low spectroscopic signal-to-noise ratio (S/N {approx} 3-5 per 69 km s{sup -1}) by the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. We marginalize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood function for each galaxy to make a self-consistent determination of the velocity-dispersion distribution parameters as a function of absolute magnitude and redshift, correcting as well for the effects of broadband magnitude errors on our binning. Parameterizing the distribution at each point inmore » the luminosity-redshift plane with a log-normal form, we detect significant evolution in the width of the distribution toward higher intrinsic scatter at higher redshifts. Using a subset of deep re-observations of BOSS galaxies, we demonstrate that our distribution-parameter estimates are unbiased regardless of spectroscopic S/N. We also show through simulation that our method introduces no systematic parameter bias with redshift. We highlight the advantage of the hierarchical Bayesian method over frequentist 'stacking' of spectra, and illustrate how our measured distribution parameters can be adopted as informative priors for velocity-dispersion measurements from individual noisy spectra.« less

  11. Planck intermediate results: XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel -SPIRE

    DOE PAGES

    Aghanim, N.; Altieri, B.; Arnaud, M.; ...

    2015-09-30

    We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These “cold” Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a 4'.5 beam atmore » the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. In this paper, we perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of T d = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 10 12L ⊙, yielding star formation rates of typically 700 M ⊙ yr -1. If the observed overdensities are actual

  12. Planck intermediate results: XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel -SPIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Altieri, B.; Arnaud, M.

    We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These “cold” Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a 4'.5 beam atmore » the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. In this paper, we perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of T d = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 10 12L ⊙, yielding star formation rates of typically 700 M ⊙ yr -1. If the observed overdensities are actual

  13. Planck intermediate results. XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Altieri, B.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beelen, A.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Canameras, R.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Crill, B. P.; Curto, A.; Danese, L.; Dassas, K.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Falgarone, E.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frye, B.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guéry, D.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Floc'h, E.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacKenzie, T.; Maffei, B.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martinache, C.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Novikov, D.; Novikov, I.; Omont, A.; Pagano, L.; Pajot, F.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Valtchanov, I.; Van Tent, B.; Vieira, J. D.; Vielva, P.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Zacchei, A.; Zonca, A.

    2015-10-01

    We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These "cold" Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353-857 GHz. This colour-selection favours galaxies in the redshift range z = 2-4, which we consider as cold peaks in the cosmic infrared background. With a 4.´5 beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of Td = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 1012L⊙, yielding star formation rates of typically 700 M⊙ yr-1. If the observed overdensities are actual gravitationally-bound structures

  14. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter; Gawiser, Eric; Franx, Marijn; Lira, Paulina; Rudnick, Gregory; Urry, C. Megan; Maza, José; Kriek, Mariska; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Christlein, Daniel; Coppi, Paolo S.; Hall, Patrick B.; Herrera, David; Infante, Leopoldo; Taylor, Edward N.; Treister, Ezequiel; Willis, Jon P.

    2007-09-01

    We present deep near-infrared JHK imaging of four 10' × 10' fields. The observations were carried out as part of the Multiwavelength Survey by Yale-Chile (MUSYC) with ISPI on the CTIO 4 m telescope. The typical point-source limiting depths are J ~ 22.5, H ~ 21.5, and K ~ 21 (5 σ Vega). The effective seeing in the final images is ~1.0″. We combine these data with MUSYC UBVRIz imaging to create K-selected catalogs that are unique for their uniform size, depth, filter coverage, and image quality. We investigate the rest-frame optical colors and photometric redshifts of galaxies that are selected using common color selection techniques, including distant red galaxies (DRGs), star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman break galaxies (LBGs). These techniques are effective at isolating large samples of high-redshift galaxies, but none provide complete or uniform samples across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify populations of red and blue galaxies, respectively, as they were designed to do. The star-forming BzKs have a very wide redshift distribution, extending down to z ~ 1, a wide range of colors, and may include galaxies with very low specific star formation rates. In comparison, the passive BzKs are fewer in number, have a different distribution of K magnitudes, and have a somewhat different redshift distribution. By combining either the DRG and BM/BX/LBG criteria, or the star-forming and passive BzK criteria, it appears possible to define a reasonably complete sample of galaxies to our flux limit over specific redshift ranges. However, the redshift dependence of both the completeness and sampled range of rest-frame colors poses an ultimate limit to the usefulness of these techniques.

  15. Degradation analysis in the estimation of photometric redshifts from non-representative training sets

    NASA Astrophysics Data System (ADS)

    Rivera, J. D.; Moraes, B.; Merson, A. I.; Jouvel, S.; Abdalla, F. B.; Abdalla, M. C. B.

    2018-07-01

    We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.

  16. Average radio spectral energy distribution of highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tisanić, K.; Smolčić, V.; Delhaize, J.; Novak, M.; Intema, H.; Delvecchio, I.; Schinnerer, E.; Zamorani, G.

    2018-05-01

    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR > 100 M⊙/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of α1 = 0.51+/-0.04 below 4.5 GHz to α2 = 0.98+/-0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend.

  17. Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capasso, R.; et al.

    The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less

  18. Photometric Redshift Calibration Strategy for WFIRST Cosmology

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY

    2018-01-01

    In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.

  19. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.

    2012-04-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.

  20. Testing star formation laws in a starburst galaxy at redshift 3 resolved with ALMA

    NASA Astrophysics Data System (ADS)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-07-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyse the star formation rate (SFR), gas content, and kinematics in SDP 81, a gravitationally lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} M_{⊙} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane of the sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight. Our measurements of the gas surface density, freefall time, and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt-Schmidt (KS) relation predicts an SFR surface density of ΣSFR, KS = 52 ± 17 M⊙ yr-1 kpc-2, the single-freefall model by Krumholz, Dekel, and McKee (KDM) predicts ΣSFR, KDM = 106 ± 37 M⊙ yr-1 kpc-2. In contrast, the multifreefall (turbulence) model by Salim, Federrath, and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} M_{⊙} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  1. Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA

    NASA Astrophysics Data System (ADS)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-04-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  2. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  3. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies ofmore » these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.« less

  4. The optical and near-infrared colors of galaxies, 1: The photometric data

    NASA Technical Reports Server (NTRS)

    Bershady, Matthew A.; Hereld, Mark; Kron, Richard G.; Koo, David C.; Munn, Jeffrey A.; Majewski, Steven R.

    1994-01-01

    We present optical and near-infrared photometry and spectroscopic redshifts of a well defined sample of 171 field galaxies selected from three high galactic latitude fields. This data set forms the basis for subsequent studies to characterize the trends, dispersion, and evolution of rest-frame colors and image structure. A subset of 143 galaxies constitutes a magnitude-limited sample to B approx. 19.9-20.75 (depending on field), with a median redshift of 0.14, and a maximum redshift of 0.54. This subset is statistically representative in its sampling of the apparent color distribution of galaxies. Thirty six galaxies were selected to have the reddest red-optical colors in two redshift intervals between 0.2 less than z less than 0.3. Photometric passbands are similar to U, B, V, I, and K, and sample galaxy spectral energy distributions between 0.37 and 2.2 micrometers in the observed frame, or down to 0.26 micrometers in the rest frame for the most distant galaxies. B and K images of the entire sample are assembled to form the first optical and near-infrared atlas of a statistically-representative sample of field galaxies. We discuss techniques for faint field-galaxy photometry, including a working definition of a total magnitude, and a method for matching magnitudes in different passbands and different seeing conditions to ensure reliable, integrated colors. Photographic saturation, which substantially affects the brightest 12% of our sample in the optical bands, is corrected with a model employing measured plate-density distributions for each galaxy, calibrated via similar measurements for stars as a function of known saturation level. Both the relative and absolute calibration of our photometry are demonstrated.

  5. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Shafer, Daniel L.; Scolnic, Daniel M.

    2017-05-01

    Peculiar velocities of objects in the nearby universe are correlated due to the gravitational pull of large-scale structure. By measuring these velocities, we have a unique opportunity to test the cosmological model at the lowest redshifts. We perform this test, using current data to constrain the amplitude of the ''signal'' covariance matrix describing the velocities and their correlations. We consider a new, well-calibrated ''Supercal'' set of low-redshift SNe Ia as well as a set of distances derived from the fundamental plane relation of 6dFGS galaxies. Analyzing the SN and galaxy data separately, both results are consistent with the peculiar velocitymore » signal of our fiducial ΛCDM model, ruling out the noise-only model with zero peculiar velocities at greater than 7σ (SNe) and 8σ (galaxies). When the two data sets are combined appropriately, the precision of the test increases slightly, resulting in a constraint on the signal amplitude of A = 1.05{sub −0.21}{sup +0.25}, where A = 1 corresponds to our fiducial model. Equivalently, we report an 11% measurement of the product of the growth rate and amplitude of mass fluctuations evaluated at z {sub eff} = 0.02, f σ{sub 8} = 0.428{sub −0.045}{sup +0.048}, valid for our fiducial ΛCDM model. We explore the robustness of the results to a number of conceivable variations in the analysis and find that individual variations shift the preferred signal amplitude by less than ∼0.5σ. We briefly discuss our Supercal SN Ia results in comparison with our previous results using the JLA compilation.« less

  6. Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin

    2017-04-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.

  7. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  8. Distribution and kinematics of H I in the active elliptical galaxy NGC 1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gorkom, J.H.; Knapp, G.R.; Raimond, E.

    The H I distribution in the active elliptical galaxy NGC 1052 has been mapped at a resolution of 1 arcmin with the VLA. The H I structure is about three times the size of the optical galaxy and is roughly perpendicular to its major axis. The H I has a circular velocity of approx.200 km/s, roughly constant with radius; the mass of the galaxy is 1.5 x 10/sup 11/ M/sub sun/ at a radius of 16 kpc (D = 13.4 Mpc), and the mass to blue luminosity ratio at this radius is M/L/sub B/ approx.15 M/sub sun//L/sub sun/. H Imore » absorption is seen against the central radio continuum source, at both the systemic velocity and at redshifted velocities. The gas in NGC 1052, as in other ellipticals, has a rotation axis that is not aligned with the stellar rotation axis (the difference is 63/sup 0/) and a mean specific angular momentum that is considerably larger than that of the stars. The H I distribution is unusually irregular. In the southwest region of the galaxy, the distribution shows what appears to be a tidal tail, suggesting that the H I may have been acquired about 10/sup 9/ years ago. The presence of dust associated with the H I and the distribution and kinematics of the H I are consistent with capture of gas from a gas-rich dwarf or spiral. In the inner regions of the galaxy (r<5 kpc) the H I velocity field shows evidence of noncircular orbits and therefore possibly of a triaxial mass distribution for the galaxy. Alternatively the gas could be falling in toward the center.« less

  9. The star formation history of the Hubble sequence: spatially resolved colour distributions of intermediate-redshift galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Abraham, R. G.; Ellis, R. S.; Fabian, A. C.; Tanvir, N. R.; Glazebrook, K.

    1999-03-01

    We analyse the spatially resolved colours of distant galaxies of known redshift in the Hubble Deep Field, using a new technique based on matching resolved four-band colour data to the predictions of evolutionary synthesis models. Given some simplifying assumptions, we demonstrate how our technique is capable of probing the evolutionary history of high-redshift systems, noting the specific advantage of observing galaxies at an epoch closer to the time of their formation. We quantify the relative age, dispersion in age, on-going star formation rate and star formation history of distinct components. We explicitly test for the presence of dust and quantify its effect on our conclusions. To demonstrate the potential of the method, we study the spirals and ellipticals in the near-complete sample of 32 I_814<21.9 mag galaxies with z~0.5 studied by Bouwens, Broadhurst & Silk. The dispersion of the internal colours of a sample of 0.4galaxies in the HDF indicates that ~ 40 per cent (4/11) show evidence of star formation which must have occurred within the past third of their ages at the epoch of observation. This result contrasts with that derived for HST-selected ellipticals in distant rich clusters, and is largely independent of assumptions with regard to metallicity. For a sample of well-defined spirals, we similarly exploit the dispersion in colour to analyse the relative histories of bulge and disc stars, in order to resolve the current controversy regarding the ages of galactic bulges. Dust and metallicity gradients are ruled out as major contributors to the colour dispersions that we observe in these systems. The median ages of bulge stars are found to be significantly higher than those in galactic discs, and they exhibit markedly different star formation histories. This result is inconsistent with a secular growth of bulges from disc instabilities, but is consistent with gradual disc formation by accretion of gas on to bulges, as predicted by

  10. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guennou, L.; et al.

    2014-01-17

    Context. The DAFT/FADA survey is based on the study of ~90 rich(masses found in the literature >2 x 10^14 M_⊙)and moderately distant clusters (redshifts 0.4 < z < 0.9), all withHST imaging data available. This survey has two main objectives: to constrain dark energy(DE) using weak lensing tomography on galaxy clusters and to build a database (deepmulti-band imaging allowing photometric redshift estimates, spectroscopic data, X-raydata) of rich distant clusters to study their properties.

  11. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  12. Color-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng

    2014-05-20

    We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enoughmore » to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.« less

  13. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA.

    PubMed

    Scargle, Jeffrey D; Way, M J; Gazis, P R

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  14. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA

    PubMed Central

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519

  15. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less

  16. Structure in the 3D Galaxy Distribution: III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  17. Surface Brightness Test and Plasma Redshift

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2006-03-01

    The plasma redshift of photons in a hot sparse plasma follows from basic axioms of physics. It has no adjustable parameters (arXiv:astro-ph/0406437). Both the distance-redshift relation and the magnitude-redshift relation for supernovae and galaxies are well-defined functions of the average electron densities in intergalactic space. We have previously shown that the predictions of the magnitude-redshift relation in plasma- redshift cosmology match well the observed relations for the type Ia supernovae (SNe). No adjustable parameters such as the time variable ``dark energy'' and ``dark matter'' are needed. We have also shown that plasma redshift cosmology predicts well the intensity and black body spectrum of the cosmic microwave background (CMB). Plasma redshift explains also the spectrum below and above the 2.73 K black body CMB, and the X-ray background. In the following, we will show that the good observations and analyses of the relation between surface brightness and redshift for galaxies, as determined by Allan Sandage and Lori M. Lubin in 2001, are well predicted by the plasma redshift. All these relations are inconsistent with cosmic time dilation and the contemporary big-bang cosmology.

  18. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  19. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05,more » independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.« less

  20. EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, N.; Benson, A.; Fu, Hai

    2013-05-01

    Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less