Sample records for galaxy scaling relations

  1. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  2. Identifying Nearby Galaxy Outliers Using Neutral Hydrogen Scaling Relations

    NASA Astrophysics Data System (ADS)

    Mohammed, Steven; Schiminovich, D.

    2013-01-01

    Galaxies appear to be divided into two distinct families: blue, star-forming, gas-rich, spiral galaxies and red, gas-deficient, elliptical galaxies. However, the transition between these two families is not well understood. A galaxy's gas content could be a good indicator of processes that affect this transition. We assembled a catalog of physical properties for 535 nearby massive galaxies (redshifts 0.025 < z < 0.05; stellar masses M* > 108 solar masses) from various existing surveys to examine their neutral hydrogen (HI) gas content. We obtained HI data (e.g., HI masses and HI radii) from several surveys; other properties (e.g., stellar masses, light radii and star formation rates) were derived from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX). Our goal is to identify any outliers from scaling relations derived from galaxies in the GALEX Arecibo SDSS Survey (GASS) in hope that these outliers can provide us with insight into processes relevant to the blue-to-red-galaxy transition. Results indicate that our heterogeneous selection yields a sample that shows similar scaling relations as the GASS galaxies. For example, the atomic HI gas fraction (MHI/M*) decreases strongly as both stellar mass and stellar mass surface density increase. Here, we show recent work that investigates the HI distribution maps of our galaxies to identify environmental effects that might cause outliers to exist.

  3. DOES THE MILKY WAY OBEY SPIRAL GALAXY SCALING RELATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licquia, Timothy C.; Newman, Jeffrey A.; Bershady, Matthew A., E-mail: tcl15@pitt.edu, E-mail: janewman@pitt.edu, E-mail: mab@astro.wisc.edu

    2016-12-20

    It is crucial to understand how the Milky Way (MW), the galaxy we can study in the most intimate detail, fits in among other galaxies. Key considerations include the Tully–Fisher relation (TFR)—i.e., the tight correlation between luminosity ( L ) and rotational velocity ( V {sub rot})—and the three-dimensional luminosity–velocity–radius ( LVR ) scaling relation. Several past studies have characterized the MW as a 1–1.5 σ outlier to the TFR. This study re-examines such comparisons using new estimates of MW properties that are robust to many of the systematic uncertainties that have been a problem in the past and aremore » based on assumptions consistent with those used for other spiral galaxies. Comparing to scaling relations derived from modern extragalactic data, we find that our Galaxy’s properties are in excellent agreement with TFRs defined using any Sloan Digital Sky Survey-filter absolute magnitude, stellar mass, or baryonic mass as the L proxy. We next utilize disk scale length ( R {sub d}) measurements to extend this investigation to the LVR relation. Here we find that our Galaxy lies farther from the relation than ∼90% of other spiral galaxies, yielding ∼9.5 σ evidence that it is unusually compact for its L and V {sub rot} (based on MW errors alone), a result that holds for all of the L proxies considered. The expected R {sub d} for the MW from the LVR relation is ∼5 kpc, nearly twice as large as the observed value, with error estimates placing the two in tension at the ∼1.4 σ level. The compact scale length of the Galactic disk could be related to other ways in which the MW has been found to be anomalous.« less

  4. Does the Milky Way Obey Spiral Galaxy Scaling Relations?

    NASA Astrophysics Data System (ADS)

    Licquia, Timothy C.; Newman, Jeffrey A.; Bershady, Matthew A.

    2016-12-01

    It is crucial to understand how the Milky Way (MW), the galaxy we can study in the most intimate detail, fits in among other galaxies. Key considerations include the Tully-Fisher relation (TFR)—I.e., the tight correlation between luminosity (L) and rotational velocity (V rot)—and the three-dimensional luminosity-velocity-radius (LVR) scaling relation. Several past studies have characterized the MW as a 1-1.5σ outlier to the TFR. This study re-examines such comparisons using new estimates of MW properties that are robust to many of the systematic uncertainties that have been a problem in the past and are based on assumptions consistent with those used for other spiral galaxies. Comparing to scaling relations derived from modern extragalactic data, we find that our Galaxy’s properties are in excellent agreement with TFRs defined using any Sloan Digital Sky Survey-filter absolute magnitude, stellar mass, or baryonic mass as the L proxy. We next utilize disk scale length (R d) measurements to extend this investigation to the LVR relation. Here we find that our Galaxy lies farther from the relation than ˜90% of other spiral galaxies, yielding ˜9.5σ evidence that it is unusually compact for its L and V rot (based on MW errors alone), a result that holds for all of the L proxies considered. The expected R d for the MW from the LVR relation is ˜5 kpc, nearly twice as large as the observed value, with error estimates placing the two in tension at the ˜1.4σ level. The compact scale length of the Galactic disk could be related to other ways in which the MW has been found to be anomalous.

  5. X-ray Scaling Relations of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo

    2015-08-01

    We will review recent results of the X-ray scaling relations of early type galaxies. With high quality Chandra X-ray data, the properties (Lx and T) of hot ISM are accurately measured from gas-poor to gas-rich galaxies. We found a strong correlation between Lx(gas) and M(total) among ETGs with independently measured M(total), indicating that the total mass is the primary factor in regulating the amount of hot gas. We found a tight correlation between Lx(gas) and T(gas) among normal (non-cD), genuine (passively evolving, sigma-supported) ellipticals. This relation holds in a large range of Lx (several 1038 - a few 1041 erg/s). While this relation can be understood among gas-rich galaxies (Lx > 1040 erg/s) as a consequence of virialized gaseous halos in the dark matter potentials, the same tight relation is unexpected among gas-poor galaxies where the hot gas is in a wind/outflow state. We also found an interesting difference between cDs and giant Es, the former having an order of magnitude higher Lx(gas) with a similar T(gas). We will discuss the implications of our results by comparing with other observations of galaxies/groups and recent simulations.

  6. Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence.

    NASA Astrophysics Data System (ADS)

    Aquino-Ortíz, E.; Valenzuela, O.; Sánchez, S. F.; Hernández-Toledo, H.; Ávila-Reese, V.; van de Ven, G.; Rodríguez-Puebla, A.; Zhu, L.; Mancillas, B.; Cano-Díaz, M.; García-Benito, R.

    2018-06-01

    We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) 3rd Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ, and also a combination of Vrot and σ through the SK parameter defined as SK^2 = KV_{rot}^2 + σ ^2 with constant K. Late-type and early-type galaxies reproduce the TF and FJ relations. Some early-type galaxies also follow the TF relation and some late-type galaxies the FJ relation, but always with larger scatter. On the contrary, when we use the SK parameter, all galaxies, regardless of the morphological type, lie on the same scaling relation, showing a tight correlation with the total stellar mass, M⋆. Indeed, we find that the scatter in this relation is smaller or equal to that of the TF and FJ relations. We explore different values of the K parameter without significant differences (slope and scatter) in our final results with respect the case K = 0.5 besides than a small change in the zero point. We calibrate the kinematic SK^2 dynamical mass proxy in order to make it consistent with sophisticated published dynamical models within 0.15 dex. We show that the SK proxy is able to reproduce the relation between the dynamical mass and the stellar mass in the inner regions of galaxies. Our result may be useful in order to produce fast estimations of the central dynamical mass in galaxies and to study correlations in large galaxy surveys.

  7. Disk galaxy scaling relations at intermediate redshifts. I. The Tully-Fisher and velocity-size relations

    NASA Astrophysics Data System (ADS)

    Böhm, Asmus; Ziegler, Bodo L.

    2016-07-01

    Aims: Galaxy scaling relations such as the Tully-Fisher relation (between the maximum rotation velocity Vmax and luminosity) and the velocity-size relation (between Vmax and the disk scale length) are powerful tools to quantify the evolution of disk galaxies with cosmic time. Methods: We took spatially resolved slit spectra of 261 field disk galaxies at redshifts up to z ≈ 1 using the FORS instruments of the ESO Very Large Telescope. The targets were selected from the FORS Deep Field and William Herschel Deep Field. Our spectroscopy was complemented with HST/ACS imaging in the F814W filter. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, these rotation curves were used to derive the intrinsic Vmax. Results: Neglecting galaxies with disturbed kinematics or insufficient spatial rotation curve extent, Vmax was reliably determined for 124 galaxies covering redshifts 0.05 < z < 0.97. This is one of the largest kinematic samples of distant disk galaxies to date. We compared this data set to the local B-band Tully-Fisher relation and the local velocity-size relation. The scatter in both scaling relations is a factor of ~2 larger at z ≈ 0.5 than at z ≈ 0. The deviations of individual distant galaxies from the local Tully-Fisher relation are systematic in the sense that the galaxies are increasingly overluminous toward higher redshifts, corresponding to an overluminosity ΔMB = -(1.2 ± 0.5) mag at z = 1. This luminosity evolution at given Vmax is probably driven by younger stellar populations of distant galaxies with respect to their local counterparts, potentially combined with modest changes in dark matter mass fractions. The analysis of the velocity-size relation reveals that disk galaxies of a given Vmax have grown in size by a factor of ~1.5 over the past ~8 Gyr, most likely through accretion of cold gas and/or small satellites

  8. Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Rossi, Graziano; Sheth, Ravi K.

    2008-06-01

    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the colour-magnitude relation, the luminosity-size relation, the fundamental plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity) is often distance dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the Vmax method, and the other is a maximum-likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalogue, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation.

  9. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  10. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  11. BULGES OF NEARBY GALAXIES WITH SPITZER: SCALING RELATIONS IN PSEUDOBULGES AND CLASSICAL BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.as.utexas.ed

    2010-06-20

    We investigate scaling relations of bulges using bulge-disk decompositions at 3.6 {mu}m and present bulge classifications for 173 E-Sd galaxies within 20 Mpc. Pseudobulges and classical bulges are identified using Sersic index, Hubble Space Telescope morphology, and star formation activity (traced by 8 {mu}m emission). In the near-IR pseudobulges have n{sub b} < 2 and classical bulges have n{sub b} >2, as found in the optical. Sersic index and morphology are essentially equivalent properties for bulge classification purposes. We confirm, using a much more robust sample, that the Sersic index of pseudobulges is uncorrelated with other bulge structural properties, unlikemore » for classical bulges and elliptical galaxies. Also, the half-light radius of pseudobulges is not correlated with any other bulge property. We also find a new correlation between surface brightness and pseudobulge luminosity; pseudobulges become more luminous as they become more dense. Classical bulges follow the well-known scaling relations between surface brightness, luminosity, and half-light radius that are established by elliptical galaxies. We show that those pseudobulges (as indicated by Sersic index and nuclear morphology) that have low specific star formation rates are very similar to models of galaxies in which both a pseudobulge and classical bulge exist. Therefore, pseudobulge identification that relies only on structural indicators is incomplete. Our results, especially those on scaling relations, imply that pseudobulges are very different types of objects than elliptical galaxies.« less

  12. Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt

    2015-10-01

    We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.

  13. X-Ray Scaling Relations of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.

    2018-04-01

    X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.

  14. THE SAMI GALAXY SURVEY: TOWARD A UNIFIED DYNAMICAL SCALING RELATION FOR GALAXIES OF ALL TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, L.; Glazebrook, K.; Mould, J.

    2014-11-10

    We take advantage of the first data from the Sydney-AAO Multi-object Integral field Galaxy Survey to investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies. We find that all 235 objects in our sample, regardless of their morphology, lie on a tight relation linking stellar mass (M {sub *}) to internal velocity quantified by the S {sub 0.5} parameter, which combines the contribution of both dispersion (σ) and rotational velocity (V {sub rot}) to the dynamical support of a galaxy (S{sub 0.5}=√(0.5 V{sub rot}{sup 2}+σ{sup 2})). Our results aremore » independent of the baryonic component from which σ and V {sub rot} are estimated, as the S {sub 0.5} of stars and gas agree remarkably well. This represents a significant improvement compared to the canonical M {sub *} versus V {sub rot} and M {sub *} versus σ relations. Not only is no sample pruning necessary, but also stellar and gas kinematics can be used simultaneously, as the effect of asymmetric drift is taken into account once V {sub rot} and σ are combined. Our findings illustrate how the combination of dispersion and rotational velocities for both gas and stars can provide us with a single dynamical scaling relation valid for galaxies of all morphologies across at least the stellar mass range 8.5 « less

  15. Weighing the giants- V. Galaxy cluster scaling relations

    NASA Astrophysics Data System (ADS)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja; Applegate, Douglas E.; Kelly, Patrick L.; Burke, David L.; Donovan, David; Ebeling, Harald

    2016-12-01

    We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness-mass relation is in excellent agreement with recent work, the measured Y-mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.

  16. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  17. A scaling relation between merger rate of galaxies and their close pair count

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. Y.; Jing, Y. P.; Han, Jiaxin, E-mail: ypjing@sjtu.edu.cn

    We study how to measure the galaxy merger rate from the observed close pair count. Using a high-resolution N-body/SPH cosmological simulation, we find an accurate scaling relation between galaxy pair counts and merger rates down to a stellar mass ratio of about 1:30. The relation explicitly accounts for the dependence on redshift (or time), on pair separation, and on mass of the two galaxies in a pair. With this relation, one can easily obtain the mean merger timescale for a close pair of galaxies. The use of virial masses, instead of the stellar mass, is motivated by the fact thatmore » the dynamical friction timescale is mainly determined by the dark matter surrounding central and satellite galaxies. This fact can also minimize the error induced by uncertainties in modeling star formation in the simulation. Since the virial mass can be determined from the well-established relation between the virial masses and the stellar masses in observations, our scaling relation can easily be applied to observations to obtain the merger rate and merger timescale. For major merger pairs (1:1-1:4) of galaxies above a stellar mass of 4 × 10{sup 10} h {sup –1} M{sub ☉} at z = 0.1, it takes about 0.31 Gyr to merge for pairs within a projected distance of 20 h {sup –1} kpc with a stellar mass ratio of 1:1, while the time goes up to 1.6 Gyr for mergers with stellar mass ratio of 1:4. Our results indicate that a single timescale usually used in the literature is not accurate to describe mergers with a stellar mass ratio spanning even a narrow range from 1:1 to 1:4.« less

  18. Weighing the giants– V. Galaxy cluster scaling relations

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2016-09-07

    Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data aremore » beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.« less

  19. Confirmation of general relativity on large scales from weak lensing and galaxy velocities.

    PubMed

    Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E; Lombriser, Lucas; Smith, Robert E

    2010-03-11

    Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, E(G), that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of E(G) different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that E(G) = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of E(G) approximately 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.

  20. Confirmation of general relativity on large scales from weak lensing and galaxy velocities

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E.; Lombriser, Lucas; Smith, Robert E.

    2010-03-01

    Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to `galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of EG different from the general relativistic prediction because, in these theories, the `gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that EG = 0.39+/-0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of EG~0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f() theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.

  1. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  2. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettula, K.; Finoguenov, A.; Massey, R.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation anmore » order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.« less

  3. Erratum: Weighing the giants – V. Galaxy cluster scaling relations

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2017-02-21

    We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginningmore » to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness{mass relation is in excellent agreement with recent work, the measured Y {mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.« less

  4. Precision Scaling Relations for Disk Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  5. Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng

    2018-06-01

    A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

  6. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  7. The MUSIC of Galaxy Clusters - III. Properties, evolution and Y-M scaling relation of protoclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan

    2014-06-01

    In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.

  8. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  9. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing

    2018-05-01

    We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.

  10. A Unified Scaling Law in Spiral Galaxies.

    PubMed

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega0<1) and high-expansion (h>0.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  11. Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Lima Neto, G. B.; Capelato, H.; Durret, F.; Lanzoni, B.; Gerbal, D.

    2001-12-01

    In the present paper, we show that elliptical galaxies (Es) obey a scaling relation between potential energy and mass. Since they are relaxed systems in a post violent-relaxation stage, they are quasi-equilibrium gravitational systems and therefore they also have a quasi-constant specific entropy. Assuming that light traces mass, these two laws imply that in the space defined by the three Sérsic law parameters (intensity Sigma0 , scale a and shape nu ), elliptical galaxies are distributed on two intersecting 2-manifolds: the Entropic Surface and the Energy-Mass Surface. Using a sample of 132 galaxies belonging to three nearby clusters, we have verified that ellipticals indeed follow these laws. This also implies that they are distributed along the intersection line (the Energy-Entropy line), thus they constitute a one-parameter family. These two physical laws (separately or combined), allow to find the theoretical origin of several observed photometrical relations, such as the correlation between absolute magnitude and effective surface brightness, and the fact that ellipticals are located on a surface in the [log Reff, -2.5 log Sigma0, log nu ] space. The fact that elliptical galaxies are a one-parameter family has important implications for cosmology and galaxy formation and evolution models. Moreover, the Energy-Entropy line could be used as a distance indicator.

  12. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    NASA Technical Reports Server (NTRS)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  13. A New Scaling Relation for H II Regions in Spiral Galaxies: Unveiling the True Nature of the Mass-Metallicity Relation

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Sánchez, S. F.; Iglesias-Páramo, J.; Díaz, A. I.; Vílchez, J. M.; Bland-Hawthorn, J.; Husemann, B.; Mast, D.

    2012-09-01

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution—the local mass-metallicity relation—extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce—with a noticeable agreement—the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  14. Scaling relations and the fundamental line of the local group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Woo, Joanna; Courteau, Stéphane; Dekel, Avishai

    2008-11-01

    We study the scaling relations between global properties of dwarf galaxies in the local group. In addition to quantifying the correlations between pairs of variables, we explore the `shape' of the distribution of galaxies in log parameter space using standardized principal component analysis, the analysis is performed first in the 3D structural parameter space of stellar mass M*, internal velocity V and characteristic radius R* (or surface brightness μ*). It is then extended to a 4D space that includes a stellar population parameter such as metallicity Z or star formation rate . We find that the local group dwarfs basically define a one-parameter `fundamental line' (FL), primarily driven by stellar mass, M*. A more detailed inspection reveals differences between the star formation properties of dwarf irregulars (dI's) and dwarf ellipticals (dE's), beyond the tendency of the latter to be more massive. In particular, the metallicities of dI's are typically lower by a factor of 3 at a given M* and they grow faster with increasing M*, showing a tighter FL in the 4D space for the dE's. The structural scaling relations of dI's resemble those of the more massive spirals, but the dI's have lower star formation rates for a given M* which also grow faster with increasing M*. On the other hand, the FL of the dE's departs from the fundamental plane of bigger ellipticals. While the one-parameter nature of the FL and the associated slopes of the scaling relations are consistent with the general predictions of supernova feedback from Dekel & Woo, the differences between the FL's of the dE's and the dI's remain a challenge and should serve as a guide for the secondary physical processes responsible for these two types.

  15. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  16. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. Galaxy gas as obscurer - II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Bauer, Franz E.

    2017-03-01

    The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.

  18. Absence of a fundamental acceleration scale in galaxies

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi C.; Marra, Valerio; del Popolo, Antonino; Davari, Zahra

    2018-06-01

    Dark matter is currently one of the main mysteries of the Universe. There is much strong indirect evidence that supports its existence, but there is yet no sign of a direct detection1-3. Moreover, at the scale of galaxies, there is tension between the theoretically expected dark matter distribution and its indirectly observed distribution4-7. Therefore, phenomena associated with dark matter have a chance of serving as a window towards new physics. The radial acceleration relation8,9 confirms that a non-trivial acceleration scale a0 can be found from the internal dynamics of several galaxies. The existence of such a scale is not obvious as far as the standard cosmological model is concerned10,11, and it has been interpreted as a possible sign of modified gravity12,13. Here, we consider 193 high-quality disk galaxies and, using Bayesian inference, show that the probability of existence of a fundamental acceleration is essentially 0: the null hypothesis is rejected at more than 10σ. We conclude that a0 is of emergent nature. In particular, the modified Newtonian dynamics theory14-17—a well-known alternative to dark matter based on the existence of a fundamental acceleration scale—or any other theory that behaves like it at galactic scales, is ruled out as a fundamental theory for galaxies at more than 10σ.

  19. Constraining the baryon-dark matter relative velocity with the large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.

    We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less

  20. Constraining the baryon-dark matter relative velocity with the large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    DOE PAGES

    Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...

    2017-10-24

    We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less

  1. Constraining the baryon-dark matter relative velocity with the large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Blazek, Jonathan A.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E.; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana

    2018-02-01

    We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv < 0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of baryon acoustic oscillation (BAO) method measurements of the cosmic distance scale using the two-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3 per cent rms in the distance scale inferred from the BAO feature in the BOSS two-point clustering, well below the 1 per cent statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument (DESI) to self-protect against the relative velocity as a possible systematic.

  2. Probing galaxy growth through metallicity scaling relations over the past 12 Gyr of cosmic history

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan; MOSDEF team

    2018-01-01

    A primary goal of galaxy evolution studies is to understand the processes governing the growth of the baryonic content of galaxies over cosmic history. Observations of galaxy metallicity scaling relations and their evolution with redshift, in combination with chemical evolution models, provide unique insight into the interplay between star formation, gas accretion, and feedback/outflows. I present measurements of the stellar mass-gas phase metallicity relation and its evolution over the past 12 Gyr from z~0 to z~3.5, utilizing data from the Mosfire Deep Evolution Field survey that uniquely provides rest-frame optical spectra of >1000 uniformly-selected galaxies at z=1.3-3.8. We find evolution towards lower metallicity at fixed stellar mass with increasing redshift that is consistent with current cosmological simulations including chemical evolution, with a large evolution of ~0.3 dex from z~0 to z~2.5 and minor evolution of <0.1 dex from z~2.5 to z~3.5. We unambiguously confirm the existence of star-formation rate dependence of the mass-metallicity relation at high redshift for the first time. A clear view of cosmic chemical evolution requires accounting for systematic biases in galaxy metallicity measurements at both low and high redshifts. We use a set of empirically-based models to correct for diffuse ionized gas contamination that biases metallicity estimates from z~0 global galaxy spectra. Evolving properties of ionized gas such as electron density, ionization parameter, hardness of the ionizing spectrum, and chemical abundance patterns may render locally-calibrated metallicity estimators unreliable at high redshifts. Using strong-line ratios alone, it is extremely difficult to break degenerate solutions between pure metallicity evolution and additional evolution of the ionization parameter and/or shape of the ionizing spectrum. Temperature-sensitive auroral-line measurements provide a way to directly and independently measure metallicities, breaking these

  3. Sunyaev-Zel'dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, J.P.; et al.

    Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less

  4. The Physical Origin of Galaxy Morphologies and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Steinmetz, Matthias; Navarro, Julio F.

    2002-01-01

    We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

  5. Small-scale Conformity of the Virgo Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Ran; Lee, Joon Hyeop; Jeong, Hyunjin; Park, Byeong-Gon

    2016-06-01

    We investigate the small-scale conformity in color between bright galaxies and their faint companions in the Virgo Cluster. Cluster member galaxies are spectroscopically determined using the Extended Virgo Cluster Catalog and the Sloan Digital Sky Survey Data Release 12. We find that the luminosity-weighted mean color of faint galaxies depends on the color of adjacent bright galaxy as well as on the cluster-scale environment (gravitational potential index). From this result for the entire area of the Virgo Cluster, it is not distinguishable whether the small-scale conformity is genuine or if it is artificially produced due to cluster-scale variation of galaxy color. To disentangle this degeneracy, we divide the Virgo Cluster area into three sub-areas so that the cluster-scale environmental dependence is minimized: A1 (central), A2 (intermediate), and A3 (outermost). We find conformity in color between bright galaxies and their faint companions (color-color slope significance S ˜ 2.73σ and correlation coefficient {cc}˜ 0.50) in A2, where the cluster-scale environmental dependence is almost negligible. On the other hand, the conformity is not significant or very marginal (S ˜ 1.75σ and {cc}˜ 0.27) in A1. The conformity is not significant either in A3 (S ˜ 1.59σ and {cc}˜ 0.44), but the sample size is too small in this area. These results are consistent with a scenario in which the small-scale conformity in a cluster is a vestige of infallen groups and these groups lose conformity as they come closer to the cluster center.

  6. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  7. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    NASA Astrophysics Data System (ADS)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  8. A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Hughes, Annie; Schruba, Andreas

    2016-11-01

    The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue thatmore » our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.« less

  9. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    NASA Astrophysics Data System (ADS)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  10. On the Kennicutt-Schmidt Relation of Low-Metallicity High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2010-05-01

    We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z ~ 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H2 formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H2 by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z ≈ 3 is substantially steeper and has a lower amplitude than the z = 0 relation at ΣH <~ 100 M odot pc-2. The predicted relation, however, is consistent with existing observational constraints for the z ≈ 3 damped Lyα and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help explain the prevalence of the thin stellar disks in the local

  11. Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf

    2001-04-01

    Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and

  12. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  13. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  14. Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.

    2018-01-01

    Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.

  15. Statistics of galaxy orientations - Morphology and large-scale structure

    NASA Technical Reports Server (NTRS)

    Lambas, Diego G.; Groth, Edward J.; Peebles, P. J. E.

    1988-01-01

    Using the Uppsala General Catalog of bright galaxies and the northern and southern maps of the Lick counts of galaxies, statistical evidence of a morphology-orientation effect is found. Major axes of elliptical galaxies are preferentially oriented along the large-scale features of the Lick maps. However, the orientations of the major axes of spiral and lenticular galaxies show no clear signs of significant nonrandom behavior at a level of less than about one-fifth of the effect seen for ellipticals. The angular scale of the detected alignment effect for Uppsala ellipticals extends to at least theta of about 2 deg, which at a redshift of z of about 0.02 corresponds to a linear scale of about 2/h Mpc.

  16. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Fieldsstarf

    NASA Astrophysics Data System (ADS)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48^{+0.13}_{-0.09}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which

  17. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ < Mvir < 2 × 1015 h-1 M⊙, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  18. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  19. Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale

    NASA Technical Reports Server (NTRS)

    Sandage, Allan; Bedke, John

    1988-01-01

    A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.

  20. Large scale structures around radio galaxies at z ~ 1.5

    NASA Astrophysics Data System (ADS)

    Galametz, A.; De Breuck, C.; Vernet, J.; Stern, D.; Rettura, A.; Marmo, C.; Omont, A.; Allen, M.; Seymour, N.

    2009-11-01

    We explore the environments of two radio galaxies at z ~ 1.5, 7C 1751+6809 and 7C 1756+6520, using deep optical and near-infrared imaging. Our data cover 15×15 arcmin2 fields around the radio galaxies. We develop and apply BzK color criteria to select cluster member candidates around the radio galaxies and find no evidence of an overdensity of red galaxies within 2 Mpc of 7C 1751+6809. In contrast, 7C 1756+6520 shows a significant overdensity of red galaxies within 2 Mpc of the radio galaxy, by a factor of 3.1±0.8 relative to the four MUSYC fields. At small separation (r < 6 arcsec), this radio galaxy also has one z > 1.4 evolved galaxy candidate, one z > 1.4 star-forming galaxy candidate, and an AGN candidate (at indeterminate redshift). This is suggestive of several close-by companions. Several concentrations of red galaxies are also noticed in the full 7C 1756+6520 field, forming a possible large-scale structure of evolved galaxies with a NW-SE orientation. We construct the color-magnitude diagram of red galaxies found near 7C 1756+6520 (r < 2 Mpc), and find a clear red sequence that is truncated at Ks ~ 21.5 (AB). We also find an overdensity of mid-infrared selected AGN in the surroundings of 7C 1756+6520. These results are suggestive of a proto-cluster at high redshift. Tables 2-6 are only available in electronic form at http://www.aanda.org

  1. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  2. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-01-01

    We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.

  3. Scale dependence of galaxy biasing investigated by weak gravitational lensing: An assessment using semi-analytic galaxies and simulated lensing data

    NASA Astrophysics Data System (ADS)

    Simon, Patrick; Hilbert, Stefan

    2018-05-01

    Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scale k with weak gravitational lensing. This method enables us to reconstruct the galaxy bias factor b(k) as well as the galaxy-matter correlation r(k) on spatial scales between 0.01 h Mpc-1 ≲ k ≲ 10 h Mpc-1 for redshift-binned lens galaxies below redshift z ≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructed r(k). For simulated data, the reconstructions achieve an accuracy of 3-7% (68% confidence level) over the above k-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10-15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates for b(k) and r(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.

  4. Constraints on a scale-dependent bias from galaxy clustering

    NASA Astrophysics Data System (ADS)

    Amendola, L.; Menegoni, E.; Di Porto, C.; Corsi, M.; Branchini, E.

    2017-01-01

    We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as the baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis, and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using mock catalogs of H α emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8 , and the growth index γ , whose uncertainties increase by a factor up to 2, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0 can be estimated to within 1%-2% at various redshifts regardless of the fiducial model. The nonlinear bias parameters have significantly large errors that depend on the model adopted. Despite this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ˜2 σ significance at each redshift explored. Finally, we use the Fisher matrix formalism to assess the impact od assuming an incorrect bias model and find that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.

  5. DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT M{sub BH}-{sigma}{sub *} RELATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Jong-Hak; Park, Daeseong; Kang, Wol-Rang

    To investigate the validity of the assumption that quiescent galaxies and active galaxies follow the same black hole mass (M{sub BH})-stellar velocity dispersion ({sigma}{sub *}) relation, as required for the calibration of M{sub BH} estimators for broad line active galactic nuclei (AGNs), we determine and compare the M{sub BH}-{sigma}{sub *} relations, respectively, for quiescent and active galaxies. For the quiescent galaxy sample, composed of 72 dynamical M{sub BH} measurements, we update {sigma}{sub *} for 28 galaxies using homogeneous H-band measurements that are corrected for galaxy rotation. For active galaxies, we collect 25 reverberation-mapped AGNs and improve {sigma}{sub *} measurement formore » two objects. Combining the two samples, we determine the virial factor f, first by scaling the active galaxy sample to the M{sub BH}-{sigma}{sub *} relation of quiescent galaxies, and second by simultaneously fitting the quiescent and active galaxy samples, as f=5.1{sub -1.1}{sup +1.5} and f=5.9{sub -1.5}{sup +2.1}, respectively. The M{sub BH}-{sigma}{sub *} relation of active galaxies appears to be shallower than that of quiescent galaxies. However, the discrepancy is caused by a difference in the accessible M{sub BH} distribution at given {sigma}{sub *}, primarily due to the difficulty of measuring reliable stellar velocity dispersion for the host galaxies of luminous AGNs. Accounting for the selection effects, we find that active and quiescent galaxies are consistent with following intrinsically the same M{sub BH}-{sigma}{sub *} relation.« less

  6. Probing small-scale structure in galaxies with strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur Benjamin

    We use gravitational lensing to study the small-scale distribution of matter in galaxies. First, we examine galaxies and their dark matter halos. Roughly half of all observed four-image quasar lenses have image flux ratios that differ from the values predicted by simple lens potentials. We show that smooth departures from elliptical symmetry fail to explain anomalous radio fluxes, strengthening the case for dark matter substructure. Our results have important implications for the "missing satellites'' problem. We then consider how time delays between lensed images can be used to identify lens galaxies containing small-scale structure. We derive an analytic relation for the time delay between the close pair of images in a "fold'' lens, and perform Monte Carlo simulations to investigate the utility of time delays for probing small- scale structure in realistic lens populations. We compare our numerical predictions with systems that have measured time delays and discover two anomalous lenses. Next, we consider microlensing, where stars in the lens galaxy perturb image magnifications. This is relevant at optical wavelengths, where the size of the lensed source is comparable to the Einstein radius of a typical star. Our simulations of negative-parity images show that raising the fraction of dark matter relative to stars increases image flux variability for small sources, and decreases it for large sources. This suggests that quasar accretion disks and broad-emission-line regions may respond differently to microlensing. We also consider extended sources with a range of ellipticities, which has relevance to a population of inclined accretion disks. Depending on their orientation, more elongated sources lead to more rapid variability, which may complicate the interpretation of microlensing light curves. Finally, we consider prospects for observing strong lensing by the supermassive black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the million

  7. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  8. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  9. Depleted cores, multicomponent fits, and structural parameter relations for luminous early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2014-11-01

    New surface brightness profiles from 26 early-type galaxies with suspected partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sérsic model whereas for the lenticular galaxies a core-Sérsic bulge plus an exponential disc model gives the best representation. We additionally caution about the use of excessive multiple Sérsic functions for decomposing galaxies and compare with past fits in the literature. The structural parameters obtained from our fitted models are, in general, in good agreement with our initial study using radially limited (R ≲ 10 arcsec) profiles, and are used here to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius Rb and the spheroid luminosity L such that Rb ∝ L1.13±0.13, and with the supermassive black hole mass MBH such that R_b∝ M_BH^{0.83 ± 0.21}. This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass in equal proportion, i.e. MBH ∝ L. In addition, we observe a linear relation R_b∝ R_e^{0.98 ± 0.15} for the core-Sérsic elliptical galaxies - where Re is the galaxies' effective half-light radii - which is collectively consistent with the approximately linear, bright-end of the curved L-Re relation. Finally, we measure accurate stellar mass deficits Mdef that are in general 0.5-4 MBH, and we identify two galaxies (NGC 1399, NGC 5061) that, due to their high Mdef/MBH ratio, may have experienced oscillatory core-passage by a (gravitational radiation)-kicked black hole. The galaxy scaling relations and stellar mass deficits favour core-Sérsic galaxy formation through a few `dry' major merger events involving supermassive black holes such that M_def ∝ M_BH^{3.70 ± 0.76}, for MBH ≳ 2 × 108 M⊙.

  10. New calibration and some predictions of the scaling relations between the mass of supermassive black holes and the properties of the host galaxies

    NASA Astrophysics Data System (ADS)

    Benedetto, E.; Fallarino, M. T.; Feoli, A.

    2013-10-01

    We present a new determination of the slope and normalization of three popular scaling laws between the mass of supermassive black holes and stellar velocity dispersion, bulge mass and kinetic energy of the host galaxies. To this aim we have collected 72 objects taken from three different samples and we have used three fitting methods applying the statistical analysis also to the subset of early type galaxies and spirals separately. We find that the relation involving kinetic energy has a slightly better χ2 and linear correlation coefficient than the other two laws. Furthermore, its Hertzsprung-Russell-like behavior is confirmed by the location of young and old galaxies in two different parts of the diagram. A test of its predictive power with the two giant galaxies NGC 3842 and NGC 4889 shows that the mass of the black hole inferred using the kinetic energy law is the closest to the experimental value. The subset of early type galaxies satisfies the theoretical models regarding the black hole mass vs stellar velocity dispersion relation, better than the full sample. Tables 1 and 7 are available in electronic form at http://www.aanda.org

  11. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  12. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  13. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  14. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  15. LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-Y.; Finoguenov, A.; Böhringer, H.; Kneib, J.-P.; Smith, G. P.; Kneissl, R.; Okabe, N.; Dahle, H.

    2008-05-01

    The Local Cluster Substructure Survey (LoCuSS, Smith et al.) is a systematic multi-wavelength survey of more than 100 X-ray luminous galaxy clusters in the redshift range 0.14-0.3 selected from the ROSAT All Sky Survey. We used data on 37 LoCuSS clusters from the XMM-Newton archive to investigate the global scaling relations of galaxy clusters. The scaling relations based solely on the X-ray data (S-T, S-Y_X, P-Y_X, M-T, M-Y_X, M-M_gas, M_gas-T, L-T, L-Y_X, and L-M) obey empirical self-similarity and reveal no additional evolution beyond the large-scale structure growth. They also reveal up to 17 per cent segregation between all 37 clusters and non-cool core clusters. Weak lensing mass measurements are also available in the literature for 19 of the clusters with XMM-Newton data. The average of the weak lensing mass to X-ray based mass ratio is 1.09± 0.08, setting the limit of the non-thermal pressure support to 9 ± 8 per cent. The mean of the weak lensing mass to X-ray based mass ratio of these clusters is ~1, indicating good agreement between X-ray and weak lensing masses for most clusters, although with 31-51 per cent scatter. The scatter in the mass-observable relations (M-Y_X, M-M_gas, and M-T) is smaller using X-ray based masses than using weak lensing masses by a factor of 2. With the scaled radius defined by the YX profile - r500 Y_X,X, r500YX,wl, and r500Y_X,si, we obtain lower scatter in the weak lensing mass based mass-observable relations, which means the origin of the scatter is M^wl and MX instead of Y_X. The normalization of the M-YX relation using X-ray mass estimates is lower than the one from simulations by up to 18-24 per cent at 3σ significance. This agrees with the M-YX relation based on weak lensing masses, the normalization of the latter being ~20 per cent lower than the one from simulations at ~2σ significance. This difference between observations and simulations is also indicated in the M-M_gas and M-T relations. Despite the large

  16. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    NASA Astrophysics Data System (ADS)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  17. VizieR Online Data Catalog: Tully-Fisher relation for SDSS galaxies (Reyes+, 2011)

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.

    2012-05-01

    In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z<0.1 with long-slit Hα spectroscopy from Pizagno et al. (2007, Cat. J/AJ/134/945) and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ~170000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). (4 data files).

  18. Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos.

    PubMed

    Ludlow, Aaron D; Benítez-Llambay, Alejandro; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A

    2017-04-21

    We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the eagle suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and active galactic nuclei feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: Different feedback implementations-which produce different galaxy populations-mainly shift galaxies along the relation rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration g_{†}, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.

  19. Total magnitudes of Virgo galaxies - III. Scale errors in the Reference Catalogue of Bright Galaxies T system and light-profile distortion by resolution-degrading and differential-distance effects

    NASA Astrophysics Data System (ADS)

    Young, Christopher Ke-shih

    2004-11-01

    We investigate the BT magnitude scales of the Second and Third Reference Catalogues of Bright Galaxies, finding both scales to be reasonably reliable for 11.5 <~Bt<~ 14.0. However, large-scale errors of 0.26 and 0.24mag per unit mag interval respectively are uncovered for early-type galaxies at the bright ends, whilst even larger ones of 0.74 and 0.36mag per unit mag interval are found for galaxies of all morphological types at the faint ends. We attribute this situation to several effects already discussed by Young et al. and Young (Paper I), including the application of relatively inflexible growth-curve models that are only in a few specific cases appropriate to the galaxies concerned. Of particular interest to this study though, we find that the apparent profile shapes of giant galaxies in the Virgo direction of cz < 15000 km s-1 tend to be less centrally concentrated the greater their distance. This demonstrates that even for relatively nearby galaxies, the distortion of the overall shapes of light profiles by resolution-degrading effects such as seeing and data smoothing, as originally predicted and modelled by Young & Currie and Young et al., is a significant effect. It is, therefore, not good practice simply to extrapolate the profiles of galaxies of identical intrinsic size and intrinsic profile shape (i.e. identical morphology) by means of the same growth-curve model, unless the galaxies are known a priori to be at the same distance and unless their photometry is of the same angular resolution. We also investigate the total-magnitude scale of the catalogue of photometric types of Prugniel & Héraudeau, finding it to be much more reliable than the BT one. However, we argue that photometric type is really a measure of apparent profile shape (i.e. intrinsic profile shape after scale reduction on account of distance followed by convolution with a seeing disc and often a smoothing function as well). Strictly, it should therefore only be applicable to

  20. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  1. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  2. NGC 1275: an outlier of the black hole-host scaling relations

    NASA Astrophysics Data System (ADS)

    Sani, Eleonora; Ricci, Federica; La Franca, Fabio; Bianchi, Stefano; Bongiorno, Angela; Brusa, Marcella; Marconi, Alessandro; Onori, Francesca; Shankar, Francesco; Vignali, Cristian

    2018-02-01

    The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the M_{BH}-host scaling relations obtained for quiescent galaxies. Since it harbours an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the M_{BH}-σ_\\star and M_{BH}-L_{bul} planes. Starting from our previous work tep{ricci17b}, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the M_{BH}-σ_\\star plane being 1.2 dex (in black hole mass) displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the M_{BH}-L_{bul,3.6} plane with respect to the scaling relation is as high as observed in the M_{BH}-σ_\\star. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  3. Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an NH3∝ M_{star} relation

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-02-01

    An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular, at the peak of star formation z = 1-3. We attempt a novel approach by letting long-duration gamma ray bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density NH. To derive the population properties, we propagate all uncertainties in a consistent Bayesian methodology. The NH distribution covers the 1020-23 cm-2 range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The NH distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis {N^{major}H }=10^{23}cm^{-2} with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities NH. We find a well-constrained power-law relation of NH = 1021.7 cm-2 × (M⋆/109.5 M⊙)1/3, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies, we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalization, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.

  4. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  5. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  6. Probing Inflation Using Galaxy Clustering On Ultra-Large Scales

    NASA Astrophysics Data System (ADS)

    Dalal, Roohi; de Putter, Roland; Dore, Olivier

    2018-01-01

    A detailed understanding of curvature perturbations in the universe is necessary to constrain theories of inflation. In particular, measurements of the local non-gaussianity parameter, flocNL, enable us to distinguish between two broad classes of inflationary theories, single-field and multi-field inflation. While most single-field theories predict flocNL ≈ ‑5/12 (ns -1), in multi-field theories, flocNL is not constrained to this value and is allowed to be observably large. Achieving σ(flocNL) = 1 would give us discovery potential for detecting multi-field inflation, while finding flocNL=0 would rule out a good fraction of interesting multi-field models. We study the use of galaxy clustering on ultra-large scales to achieve this level of constraint on flocNL. Upcoming surveys such as Euclid and LSST will give us galaxy catalogs from which we can construct the galaxy power spectrum and hence infer a value of flocNL. We consider two possible methods of determining the galaxy power spectrum from a catalog of galaxy positions: the traditional Feldman Kaiser Peacock (FKP) Power Spectrum Estimator, and an Optimal Quadratic Estimator (OQE). We implemented and tested each method using mock galaxy catalogs, and compared the resulting constraints on flocNL. We find that the FKP estimator can measure flocNL in an unbiased way, but there remains room for improvement in its precision. We also find that the OQE is not computationally fast, but remains a promising option due to its ability to isolate the power spectrum at large scales. We plan to extend this research to study alternative methods, such as pixel-based likelihood functions. We also plan to study the impact of general relativistic effects at these scales on our ability to measure flocNL.

  7. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  8. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  9. BLUETIDES simulation: establishing black hole-galaxy relations at high-redshift

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Wei; Di Matteo, Tiziana; Bhowmick, Aklant K.; Feng, Yu; Ma, Chung-Pei

    2018-05-01

    The scaling relations between the mass of supermassive black holes (M•) and host galaxy properties (stellar mass, M⋆, and velocity dispersion, σ), provide a link between the growth of black holes (BHs) and that of their hosts. Here we investigate if and how the BH-galaxy relations are established in the high-z universe using BLUETIDES, a high-resolution large volume cosmological hydrodynamic simulation. We find the M• - M⋆ and M• - σ relations at z = 8: log10(M•) = 8.25 + 1.10 log10(M⋆/1011M⊙) and log10(M•) = 8.35 + 5.31 log10(σ/200kms-1) at z = 8, both fully consistent with the local measurements. The slope of the M• - σ relation is slightly steeper for high star formation rate and M⋆ galaxies while it remains unchanged as a function of Eddington accretion rate onto the BH. The intrinsic scatter in M• - σ relation in all cases (ɛ ˜ 0.4) is larger at these redshifts than inferred from observations and larger than in M• - M⋆ relation (ɛ ˜ 0.14). We find the gas-to-stellar ratio f = Mgas/M⋆ in the host (which can be very high at these redshifts) to have the most significant impact setting the intrinsic scatter of M• - σ. The scatter is significantly reduced when galaxies with high gas fractions (ɛ = 0.28 as f < 10) are excluded (making the sample more comparable to low-z galaxies); these systems have the largest star formation rates and black hole accretion rates, indicating that these fast-growing systems are still moving toward the relation at these high redshifts. Examining the evolution (from z = 10 to 8) of high mass black holes in M• - σ plane confirms this trend.

  10. KPC-SCALE STUDY OF SUBSTRUCTURES INSIDE GALAXIES out to z ~ 1.3

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, B.; Miller, S.; Nayyeri, H.

    2014-01-01

    Studying the resolved properties of galaxies in kpc scale has the capability to address major questions in galaxy structure formation and stellar properties evolution. We use a unique sample of 129 morphologically inclusive disk-like galaxies in the redshift range 0.2galaxy. We take advantage of Hubble Space Telescope (HST) ACS and WFC3 mosaics from the CANDELS program, to perform SED modeling per resolution element in each galaxy and produce resolved rest-frame (U-V) color, stellar mass, star formation rate, age and extinction map for each galaxy. We analyze the effect of changing the Metallicity from solar to sub-solar on all our measurements. We identify red and blue regions inside galaxies based on their rest-frame (U-V) color maps with an innovative method. We show that red regions have higher stellar masses and older ages compared to the blue regions in galaxies. We also demonstrate that red regions are on average closer to the center of the galaxy than the blue regions and their spatial distance does not show a significant evolution with redshift and stellar mass of the host galaxy. Investigating the specific star formation rate evolution with redshift and dynamical mass, we notice that the evolutions in the whole galaxies are in perfect agreement with predictions from theory and previous observations. Blue regions show significantly higher sSFR and also higher slopes with redshift and dynamical mass compared to the whole galaxies and red regions are below the well-defined relation for the main sequence of star forming galaxies.

  11. HICOSMO - cosmology with a complete sample of galaxy clusters - I. Data analysis, sample selection and luminosity-mass scaling relation

    NASA Astrophysics Data System (ADS)

    Schellenberger, G.; Reiprich, T. H.

    2017-08-01

    The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).

  12. The Tully-Fisher relation for flat galaxies

    NASA Astrophysics Data System (ADS)

    Makarov, D. I.; Zaitseva, N. A.; Bizyaev, D. V.

    2018-06-01

    We construct a multiparametric Tully-Fisher (TF) relation for a large sample of edge-on galaxies from the Revised Flat Galaxy Catalog using H I data from the EDD database and parameters from the EGIS catalog. We incorporate a variety of additional parameters including structural parameters of edge-on galaxies in different bandpasses. Besides the rotation curve maximum, only the H I-to-optical luminosity ratio and optical colours play a statistically significant role in the multiparametric TF relation. We are able to decrease the standard deviation of the multiparametric TF relation down to 0.32 mag, which is at the level of best modern samples of galaxies used for studies of the matter motion in the Universe via the TF-relation.

  13. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  14. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  15. Cosmology and astrophysics from relaxed galaxy clusters - III. Thermodynamic profiles and scaling relations

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.

    2016-03-01

    This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (I.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.

  16. Searching for Constraints on Starobinsky's Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

    NASA Astrophysics Data System (ADS)

    Alexeyev, S. O.; Latosh, B. N.; Echeistov, V. A.

    2017-12-01

    Predictions of the f( R)-gravity model with a disappearing cosmological constant (Starobinsky's model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky's model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109 M Sun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015 M Sun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

  17. Molecular clouds and the large-scale structure of the galaxy

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick; Stacy, J. Gregory

    1990-01-01

    The application of molecular radio astronomy to the study of the large-scale structure of the Galaxy is reviewed and the distribution and characteristic properties of the Galactic population of Giant Molecular Clouds (GMCs), derived primarily from analysis of the Columbia CO survey, and their relation to tracers of Population 1 and major spiral features are described. The properties of the local molecular interstellar gas are summarized. The CO observing programs currently underway with the Center for Astrophysics 1.2 m radio telescope are described, with an emphasis on projects relevant to future comparison with high-energy gamma-ray observations. Several areas are discussed in which high-energy gamma-ray observations by the EGRET (Energetic Gamma-Ray Experiment Telescope) experiment aboard the Gamma Ray Observatory will directly complement radio studies of the Milky Way, with the prospect of significant progress on fundamental issues related to the structure and content of the Galaxy.

  18. Scaling Relations from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High-Redshift Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall; LaRoque, Samuel J.; Carlstrom, John E.; Nagai, Daisuke; Marrone, Dan

    2007-01-01

    We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.

  19. Imprint of thawing scalar fields on the large scale galaxy overdensity

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  20. The MUSIC of galaxy clusters - I. Baryon properties and scaling relations of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara

    2013-02-01

    We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) data set. It constitutes one of the largest samples of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using smoothed particle hydrodynamics (SPH) together with relevant physical processes that include cooling, UV photoionization, star formation and different feedback processes associated with supernovae explosions. In this first paper we focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC data set as a function of both aperture radius and redshift. The results from our simulations are compared with a compilation of the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. We confirm, as in previous simulations, that the gas fraction is overestimated if radiative physics are not properly taken into account. On the other hand, when the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. However, we do not find a significant evolution with redshift of the gas fractions at aperture radius corresponding to overdensities smaller than 1500 with respect to critical density. At smaller radii, the gas fraction does exhibit a decrease with redshift that is related to the gas depletion due to star formation in the central region of the clusters. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested. The standard, widely used definition of radius at a fixed overdensity with respect to critical density is compared with a definition of aperture radius based on the redshift dependent overdensity with respect to

  1. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    NASA Astrophysics Data System (ADS)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  2. Finite length-scale anti-gravity and observations of mass discrepancies in galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, R. H.

    1986-01-01

    The modification of Newtonian attraction suggested by Sanders (1984) contains a repulsive Yukawa component which is characterised by two physical parameters: a coupling constant, α, and a length scale, r0. Although this form of the gravitational potential can result in flat rotation curves for a galaxy (or a point mass) it is not obvious that any modification of gravity associated with a definite length scale can reproduce the observed rotation curves of galaxies covering a wide range of mass and size. Here it is shown that the rotation curves of galaxies ranging in size from 5 to 40 kpc can be reproduced by this modified potential. Moreover, the implied mass-to-light ratios for a larger sample of galaxies are reasonable (one to three) and show no systematic trend with the size of the galaxy. The observed infrared Tully-Fisher law is shown to be consistent with the prediction of this revised gravity. The modified potential permits the X-ray emitting halos observed around elliptical galaxies to be bound without the addition of dark matter.

  3. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-07-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.

  4. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  5. Giant molecular cloud scaling relations: the role of the cloud definition

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  6. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W.

    2013-02-15

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less

  7. Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2015-01-01

    Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.

  8. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  9. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obreschkow, D.; Meyer, M.

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using anymore » inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.« less

  10. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  11. Test of Parameterized Post-Newtonian Gravity with Galaxy-scale Strong Lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Li, Xiaolei; Biesiada, Marek; Xu, Tengpeng; Cai, Yongzhi; Zhu, Zong-Hong

    2017-01-01

    Based on a mass-selected sample of galaxy-scale strong gravitational lenses from the SLACS, BELLS, LSD, and SL2S surveys and using a well-motivated fiducial set of lens-galaxy parameters, we tested the weak-field metric on kiloparsec scales and found a constraint on the post-Newtonian parameter γ ={0.995}-0.047+0.037 under the assumption of a flat ΛCDM universe with parameters taken from Planck observations. General relativity (GR) predicts exactly γ = 1. Uncertainties concerning the total mass density profile, anisotropy of the velocity dispersion, and the shape of the light profile combine to systematic uncertainties of ˜25%. By applying a cosmological model-independent method to the simulated future LSST data, we found a significant degeneracy between the PPN γ parameter and the spatial curvature of the universe. Setting a prior on the cosmic curvature parameter -0.007 < Ωk < 0.006, we obtained the constraint on the PPN parameter that γ ={1.000}-0.0025+0.0023. We conclude that strong lensing systems with measured stellar velocity dispersions may serve as another important probe to investigate validity of the GR, if the mass-dynamical structure of the lensing galaxies is accurately constrained in future lens surveys.

  12. Galaxy Mergers from the Largest to the Smallest Scales: Introduction and Overview

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    Galaxy mergers encompass a wide range of astrophysical phenomena, including cosmological considerations, gas and stellar dynamics, AGN evolution, and mergers of the central SMBHs. Astrophysical signatures of galaxy mergers can be observed across most of the electromagnetic spectrum and through gravitational radiation. This talk provides an introduction and overview of the meeting, highlighting the key aspects of galaxy mergers from large to small scales.

  13. The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Stanek, Rebecca; Evrard, A.; Boehringer, H.; Schuecker, P.; Nord, B.

    2006-12-01

    My thesis is centered on investigating scaling relations of galaxy clusters. Focusing on the relationship between soft X-ray luminosity and mass (L-M) for low-redshift clusters of galaxies, I have determined the mean parameters to 5%, and calculated a formal measure of the scatter in the L-M relation. I model the L-M relation with a conditional probability function including a mean power-law scaling relation, L Mpρsc(z), and log-normal scatter in mass at fixed luminosity, σlnM. Convolving with the halo mass function, I compute expected counts in redshift and flux that, after appropriate survey effects are included, are compared to REFLEX survey data. Combining the likelihood analysis with the measured variance in L-T relation from HIFLUGCS, I obtain fit parameters p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution (s = 7/6) in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. I find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. I accommodate the new WMAP constraints with a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25. I will also present work in progress from galaxy cluster population statistics in the Millennium Simulation with Gas (MSG), specifically focusing on the scatter and covariance between cluster properties at a fixed epoch.

  14. Color-size Relations of Disc Galaxies with Similar Stellar Masses

    NASA Astrophysics Data System (ADS)

    Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.

    2011-01-01

    To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.

  15. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  16. Extragalactic SETI: The Tully-Fisher Relation as a Probe of Dysonian Astroengineering in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Zackrisson, Erik; Calissendorff, Per; Asadi, Saghar; Nyholm, Anders

    2015-09-01

    If advanced extraterrestrial civilizations choose to construct vast numbers of Dyson spheres to harvest radiation energy, this could affect the characteristics of their host galaxies. Potential signatures of such astroengineering projects include reduced optical luminosity, boosted infrared luminosity, and morphological anomalies. Here, we apply a technique pioneered by Annis to search for Kardashev type III civilizations in disk galaxies, based on the predicted offset of these galaxies from the optical Tully-Fisher (TF) relation. By analyzing a sample of 1359 disk galaxies, we are able to set a conservative upper limit of ≲ 3% on the fraction of local disks subject to Dysonian astroengineering on galaxy-wide scales. However, the available data suggests that a small subset of disk galaxies actually may be underluminous with respect to the TF relation in the way expected for Kardashev type III objects. Based on the optical morphologies and infrared-to-optical luminosity ratios of such galaxies in our sample, we conclude that none of them stand out as strong Kardashev type III candidates and that their inferred properties likely have mundane explanations. This allows us to set a tentative upper limit at ≲ 0.3% on the fraction of Karashev type III disk galaxies in the local universe.

  17. Similar Scaling Relations for the Gas Content of Galaxies Across Environments to z ∼ 3.5

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Scoville, Nick Z.; Martin, Christopher; Mobasher, Bahram; Diaz-Santos, Tanio; Shen, Lu

    2018-06-01

    We study the effects of the local environment on the molecular gas content of a large sample of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies with specific star formation rates (sSFRs) on and above the main sequence (MS) to z ∼ 3.5. ALMA observations of the dust continuum in the COSMOS field are used to estimate molecular gas masses at z ≈ 0.5–3.5. We also use a local universe sample from the ALFALFA H I survey after converting it into molecular masses. The molecular mass (M ISM) scaling relation shows a dependence on z, M *, and sSFR relative to the MS, but no dependence on environmental overdensity Δ(M ISM ∝ Δ0.03). Similarly, gas mass fraction (f gas) and depletion timescale (τ) show no environmental dependence to z ∼ 3.5. At < z> ∼ 1.8, the average < {M}ISM}> , < {f}gas}> , and < τ > in densest regions is (1.6 ± 0.2) × 1011 M ⊙, 55 ± 2%, and 0.8 ± 0.1 Gyr, respectively, similar to those in the lowest density bin. Independent of the environment, f gas decreases and τ increases with increasing cosmic time. Cosmic molecular mass density (ρ) in the lowest density bins peaks at z ∼ 1–2, and this peak happens at z < 1 in densest bins. This differential evolution of ρ across environments is likely due to the growth of the large-scale structure with cosmic time. Our results suggest that the molecular gas content and the subsequent star formation activity of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies is primarily driven by internal processes, and not by their local environment since z ∼ 3.5.

  18. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    NASA Astrophysics Data System (ADS)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  19. The spatially resolved star formation history of CALIFA galaxies. Cosmic time scales

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Cortijo-Ferrero, C.; López Fernández, R.; de Amorim, A. L.; Lacerda, E. A. D.; Vale Asari, N.; Sánchez, S. F.

    2017-12-01

    This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5 m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4 to 1012M⊙ and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology (E, S0, Sa, Sb, Sc, and Sd) and six bins of stellar mass and stellar mass surface density. We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, stellar mass surface density, and morphology. Our main results are as follows: (a) the innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given stellar mass (M⋆), stellar mass surface density (Σ⋆), or Hubble type, including the lowest mass systems in our sample. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ⋆ and Hubble type in the lower-mass range (108.4 to 1010.4), but a very mild dependence in higher-mass bins. (c) The lowest half mass radius (HMR) to half light radius (HLR) ratio is found for galaxies between 1010.4 and 1011.1M⊙, where galaxies are 25% smaller in mass than in light. Low-mass galaxies show the largest ratio with HMR/HLR 0.89. Sb and Sbc galaxies present the lowest HMR/HLR ratio (0.74). The ratio HMR/HLR is always, on average, below 1, indicating that galaxies grow faster in mass than in light

  20. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  1. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  2. The Tully-Fisher relation of the IRAS minisurvey galaxies

    NASA Technical Reports Server (NTRS)

    Van Driel, W.; Van Den Broek, A. C.; Baan, W. A.

    1995-01-01

    We investigated the possible influence on the Tully-Fisher relation of active massive star formation in IRAS galaxies, in order to estimate the contribution of star formation to their near-infrared luminosity. We observed 60 galaxies from the infrared complete so-called IRAS Minisurvey sample in the 21 cm H1 line at Arecibo, determined the near-infrared (H-band) Tully-Fisher relation for the 36 objects in the sample we judged to be usable for this purpose, and compared this relation with that of optically selected normal galaxies. The results show no significant enhancement of the near-infrared luminosities of the IRAS Minisurvey galaxies compared to those of the optically selected normal glaxies. From these results we inferred that in the minisurvey galaxies the average contribution of the active massive star formation to the total near-infrared luminosity is less and that exponential decay times for the starbursts occurring in the Minisurvey galaxies are of the order of 10 Myr. The Tully-Fisher relation shows one exceptional galaxy (IRAS 03565+2139) with an about 25 times higher luminosity than average for its rotational velocity.

  3. Stellar-to-halo mass relation of cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  4. Stellar-to-halo mass relation of cluster galaxies

    DOE PAGES

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...

    2017-07-04

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  5. A scaling law of radial gas distribution in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1990-01-01

    Based on the idea that local conditions within a galactic disk largely determine the region's evolution time scale, researchers built a theoretical model to take into account molecular cloud and star formations in the disk evolution process. Despite some variations that may be caused by spiral arms and central bulge masses, they found that many late-type galaxies show consistency with the model in their radial atomic and molecular gas profiles. In particular, researchers propose that a scaling law be used to generalize the gas distribution characteristics. This scaling law may be useful in helping to understand the observed gas contents in many galaxies. Their model assumes an exponential mass distribution with disk radius. Most of the mass are in atomic gas state at the beginning of the evolution. Molecular clouds form through a modified Schmidt Law which takes into account gravitational instabilities in a possible three-phase structure of diffuse interstellar medium (McKee and Ostriker, 1977; Balbus and Cowie, 1985); whereas star formation proceeds presumably unaffected by the environmental conditions outside of molecular clouds (Young, 1987). In such a model both atomic and molecular gas profiles in a typical galactic disk (as a result of the evolution) can be fitted simultaneously by adjusting the efficiency constants. Galaxies of different sizes and masses, on the other hand, can be compared with the model by simply scaling their characteristic length scales and shifting their radial ranges to match the assumed disk total mass profile sigma tot(r).

  6. A dark matter scaling relation from mirror dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2014-12-01

    Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos around spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, RSN ∝ρ0r02 (RSN is the supernova rate and ρ0 ,r0 the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than 3 ×1011M⊙. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

  7. LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mulroy, Sarah L.; Smith, Graham P.; Haines, Chris P.; Marrone, Daniel P.; Okabe, Nobuhiro; Pereira, Maria J.; Egami, Eiichi; Babul, Arif; Finoguenov, Alexis; Martino, Rossella

    2014-10-01

    We present the first scaling relation between weak-lensing galaxy cluster mass, MWL, and near-infrared luminosity, LK. Our results are based on 17 clusters observed with wide-field instruments on Subaru, the United Kingdom Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the relation between projected 2D weak-lensing mass and spectroscopically confirmed luminosity within 1 Mpc, modelled as M_WL ∝ LK^b, obtaining a power-law slope of b=0.83^{+0.27}_{-0.24} and an intrinsic scatter of σ _{lnM_WL|LK}=10^{+8}_{-5} per cent. Intrinsic scatter of ˜10 per cent is a consistent feature of our results regardless of how we modify our approach to measuring the relationship between mass and light. For example, deprojecting the mass and measuring both quantities within r500, that is itself obtained from the lensing analysis, yields σ _{lnM_WL|LK}=10^{+7}_{-5} per cent and b=0.97^{+0.17}_{-0.17}. We also find that selecting members based on their (J - K) colours instead of spectroscopic redshifts neither increases the scatter nor modifies the slope. Overall our results indicate that near-infrared luminosity measured on scales comparable with r500 (typically 1 Mpc for our sample) is a low scatter and relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity may therefore be a useful mass proxy for cluster cosmology experiments.

  8. The IRX-β dust attenuation relation in cosmological galaxy formation simulations

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James

    2018-02-01

    We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.

  9. Galaxy formation and physical bias

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  10. Dissecting the IRX-β dust attenuation relation: exploring the physical origin of observed variations in galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Puglisi, Annagrazia; Norman, Colin A.

    2017-12-01

    The use of ultraviolet (UV) emission as a tracer of galaxy star formation rate (SFR) is hampered by dust obscuration. The empirical relationship between UV-slope, β, and the ratio between far-infrared and UV luminosity, IRX, is commonly employed to account for obscured UV emission. We present a simple model that explores the physical origin of variations in the IRX-β dust attenuation relation. A relative increase in FUV compared to NUV attenuation and an increasing stellar population age cause variations towards red UV-slopes for a fixed IRX. Dust geometry effects (turbulence, dust screen with holes, mixing of stars within the dust screen, two-component dust model) cause variations towards blue UV-slopes. Poor photometric sampling of the UV spectrum causes additional observational variations. We provide an analytic approximation for the IRX-β relation invoking a subset of the explored physical processes (dust type, stellar population age, turbulence). We discuss observed variations in the IRX-β relation for local (sub-galactic scales) and high-redshift (normal and dusty star-forming galaxies, galaxies during the epoch of reionization) galaxies in the context of the physical processes explored in our model. High spatial resolution imaging of the UV and sub-mm emission of galaxies can constrain the IRX-β dust attenuation relation for different galaxy types at different epochs, where different processes causing variations may dominate. These constraints will allow the use of the IRX-β relation to estimate intrinsic SFRs of galaxies, despite the lack of a universal relation.

  11. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  12. THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.

    2012-04-10

    We investigate the radial distribution of galaxies within their host dark matter halos as measured in the Sloan Digital Sky Survey by modeling their small-scale clustering. Specifically, we model the Jiang et al. measurements of the galaxy two-point correlation function down to very small projected separations (10 h{sup -1} kpc {<=} r {<=} 400 h{sup -1} kpc), in a wide range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation distribution framework with free parameters that specify both the number and spatial distribution of galaxies within their host dark matter halos. Wemore » assume one galaxy resides in the halo center and additional galaxies are considered satellites that follow a radial density profile similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the concentration and inner slope are allowed to vary. We find that in low luminosity samples (M{sub r} < -19.5 and lower), satellite galaxies have radial profiles that are consistent with NFW. M{sub r} < -20 and brighter satellite galaxies have radial profiles with significantly steeper inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to -2.1, as opposed to -1 for NFW). We define a useful metric of concentration, M{sub 1/10}, which is the fraction of satellite galaxies (or mass) that are enclosed within one-tenth of the virial radius of a halo. We find that M{sub 1/10} for low-luminosity satellite galaxies agrees with NFW, whereas for luminous galaxies it is 2.5-4 times higher, demonstrating that these galaxies are substantially more centrally concentrated within their dark matter halos than the dark matter itself. Our results therefore suggest that the processes that govern the spatial distribution of galaxies, once they have merged into larger halos, must be luminosity dependent, such that luminous galaxies become poor tracers of the underlying dark matter.« less

  13. Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman

    2015-01-01

    The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.

  14. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  15. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  16. Cluster galaxy dynamics and the effects of large-scale environment

    NASA Astrophysics Data System (ADS)

    White, Martin; Cohn, J. D.; Smit, Renske

    2010-11-01

    Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations

  17. THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SERSIC AND CORE-SERSIC GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W; Schombert, James

    2013-05-01

    We have examined the relationship between supermassive black hole mass (M{sub BH}) and the stellar mass of the host spheroid (M{sub sph,*}) for a sample of 75 nearby galaxies. To derive the spheroid stellar masses we used improved Two Micron All Sky Survey K{sub s}-band photometry from the ARCHANGEL photometry pipeline. Dividing our sample into core-Sersic and Sersic galaxies, we find that they are described by very different M{sub BH}-M{sub sph,*} relations. For core-Sersic galaxies-which are typically massive and luminous, with M{sub BH} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }-we find M{sub BH}{proportional_to} M{sub sph,*}{sup 0.97{+-}0.14}, consistent with othermore » literature relations. However, for the Sersic galaxies-with typically lower masses, M{sub sph,*} {approx}< 3 Multiplication-Sign 10{sup 10} M{sub Sun }-we find M{sub BH}{proportional_to}M{sub sph,*}{sup 2.22{+-}0.58}, a dramatically steeper slope that differs by more than 2 standard deviations. This relation confirms that, for Sersic galaxies, M{sub BH} is not a constant fraction of M{sub sph,*}. Sersic galaxies can grow via the accretion of gas which fuels both star formation and the central black hole, as well as through merging. Their black hole grows significantly more rapidly than their host spheroid, prior to growth by dry merging events that produce core-Sersic galaxies, where the black hole and spheroid grow in lockstep. We have additionally compared our Sersic M{sub BH}-M{sub sph,*} relation with the corresponding relation for nuclear star clusters, confirming that the two classes of central massive object follow significantly different scaling relations.« less

  18. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  19. Fundamental Properties of the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  20. Multi-level structure in the large scale distribution of optically luminous galaxies

    NASA Astrophysics Data System (ADS)

    Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen

    1992-04-01

    Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.

  1. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with themore » values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for

  2. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  3. Galaxies in ΛCDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.

    2011-11-01

    It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s-1 calculated at a radius of ~10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ~50 km s-1 to ~500 km s-1, with a bend below ~80 km s-1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM "Bolshoi" simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from Mr = -14 to Mr = -22. We also compare our predictions for the "cold" baryon mass (i.e., stars and cold gas) of

  4. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  5. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  6. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-01-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, elliptical galaxies are often found at the centers of groups, and so are likely to have undergone several significant mergers. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using a novel sample of hundreds of N-body simulations of mergers in groups of three to twenty-five spiral galaxies.Realistic mock observations of the simulated central merger remnants show that they have comparable surface brightness profiles to observed ellipticals from SDSS and ATLAS3D - so long as the progenitor spirals begin with concentrated bulges. The remnants follow tight size-luminosity and velocity dispersion-luminosity relations (<0.12 dex scatter), with similar slopes as observed. Stochastic merging can produce tight scaling relations if the merging galaxies follow tight scaling relations themselves. However, the remnants are too large and have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σaμb, with small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex), as well as a tilt in the correct sense - albeit weaker than observed. This tilt is mainly driven by variable dark matter fractions within Reff, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts.These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers. However, significant gas dissipation may be needed to produce lower-mass, rapidly

  7. New lessons from the H I size-mass relation of galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Koribalski, Bärbel S.; Serra, Paolo; van der Hulst, Thijs; Roychowdhury, Sambit; Kamphuis, Peter; Chengalur, Jayaram N.

    2016-08-01

    We revisit the H I size-mass (D_{H I}-MH I) relation of galaxies with a sample of more than 500 nearby galaxies covering over five orders of magnitude in H I mass and more than 10 B-band magnitudes. The relation is remarkably tight with a scatter σ ˜ 0.06 dex, or 14 per cent. The scatter does not change as a function of galaxy luminosity, H I richness or morphological type. The relation is linked to the fact that dwarf and spiral galaxies have a homogeneous radial profile of H I surface density in the outer regions when the radius is normalized by DH I. The early-type disc galaxies typically have shallower H I radial profiles, indicating a different gas accretion history. We argue that the process of atomic-to-molecular gas conversion or star formation cannot explain the tightness of the DH I-MH I relation. This simple relation puts strong constraints on simulation models for galaxy formation.

  8. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  9. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  10. A Simple Non-equilibrium Model of Star Formation and Scatter in the Kennicutt-Schmidt Relation and Star Formation Efficiencies in Galaxies

    NASA Astrophysics Data System (ADS)

    Orr, Matthew; Hopkins, Philip F.

    2018-06-01

    I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.

  11. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    NASA Astrophysics Data System (ADS)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  12. Alignment of galaxies relative to their local environment in SDSS-DR8

    NASA Astrophysics Data System (ADS)

    Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.

    2017-03-01

    Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.

  13. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  14. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the

  15. Modelling the large-scale redshift-space 3-point correlation function of galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2017-08-01

    We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.

  16. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  17. Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah

    2015-11-01

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  18. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed

  19. Origin of the Galaxy Mass-Metallicity-Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Harwit, Martin; Brisbin, Drew

    2015-02-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 <= z <= 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 109 to 6 × 1010 M ⊙. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  20. Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Kim, Han-Seek; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-09-01

    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300 Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high-redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high-redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.

  1. Metal Abundances of KISS Galaxies. VI. New Metallicity Relations for the KISS Sample of Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.; Janowiecki, Steven; Wegner, Gary A.

    2018-02-01

    We present updated metallicity relations for the spectral database of star-forming galaxies (SFGs) found in the KPNO International Spectroscopic Survey (KISS). New spectral observations of emission-line galaxies obtained from a variety of telescope facilities provide oxygen abundance information. A nearly fourfold increase in the number of KISS objects with robust metallicities relative to our previous analysis provides for an empirical abundance calibration to compute self-consistent metallicity estimates for all SFGs in the sample with adequate spectral data. In addition, a sophisticated spectral energy distribution fitting routine has provided robust calculations of stellar mass. With these new and/or improved galaxy characteristics, we have developed luminosity–metallicity (L–Z) relations, mass–metallicity (M *–Z) relations, and the so-called fundamental metallicity relation (FMR) for over 1450 galaxies from the KISS sample. This KISS M *–Z relation is presented for the first time and demonstrates markedly lower scatter than the KISS L–Z relation. We find that our relations agree reasonably well with previous publications, modulo modest offsets due to differences in the strong emission line metallicity calibrations used. We illustrate an important bias present in previous L–Z and M *–Z studies involving direct-method (T e ) abundances that may result in systematically lower slopes in these relations. Our KISS FMR shows consistency with those found in the literature, albeit with a larger scatter. This is likely a consequence of the KISS sample being biased toward galaxies with high levels of activity.

  2. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor aremore » positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.« less

  3. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16galaxy peculiar velocities, and galaxy clustering-- that can discriminate between different theories of gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  4. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  5. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  6. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  7. Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Smith, Beverly J.; Rosado, Margarita; Beckman, John E.; Bitsakis, Theodoros; Camps-Fariña, Artemi; Font, Joan; Cox, Isaiah S.

    2018-02-01

    We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.

  8. Massive Galaxies Are Larger in Dense Environments: Environmental Dependence of Mass-Size Relation of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Kim, Jae-Woo

    2017-01-01

    Under the Λ cold dark matter (ΛCDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at 0.1 ≤ z < 0.15, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than 1011.2 M⊙ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20%-40% larger in the densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the ΛCDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.

  9. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  10. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  11. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  12. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglass, Kelly A.; Vogeley, Michael S., E-mail: kelly.a.douglass@drexel.edu

    2017-01-10

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T{sub e}  method. We estimate the metallicity of 42 blue, star-forming voidmore » dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.« less

  13. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  14. Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sun孙, Jiayi嘉懿; Leroy, Adam K.; Schruba, Andreas; Rosolowsky, Erik; Hughes, Annie; Kruijssen, J. M. Diederik; Meidt, Sharon; Schinnerer, Eva; Blanc, Guillermo A.; Bigiel, Frank; Bolatto, Alberto D.; Chevance, Mélanie; Groves, Brent; Herrera, Cinthya N.; Hygate, Alexander P. S.; Pety, Jérôme; Querejeta, Miguel; Usero, Antonio; Utomo, Dyas

    2018-06-01

    We measure the velocity dispersion, σ, and surface density, Σ, of the molecular gas in nearby galaxies from CO spectral line cubes with spatial resolution 45–120 pc, matched to the size of individual giant molecular clouds. Combining 11 galaxies from the PHANGS-ALMA survey with four targets from the literature, we characterize ∼30,000 independent sightlines where CO is detected at good significance. Σ and σ show a strong positive correlation, with the best-fit power-law slope close to the expected value for resolved, self-gravitating clouds. This indicates only a weak variation in the virial parameter α vir ∝ σ 2/Σ, which is ∼1.5–3.0 for most galaxies. We do, however, observe enormous variation in the internal turbulent pressure P turb ∝ Σσ 2, which spans ∼5 dex across our sample. We find Σ, σ, and P turb to be systematically larger in more massive galaxies. The same quantities appear enhanced in the central kiloparsec of strongly barred galaxies relative to their disks. Based on sensitive maps of M31 and M33, the slope of the σ–Σ relation flattens at Σ ≲ 10 M ⊙ pc‑2, leading to high σ for a given Σ and high apparent α vir. This echoes results found in the Milky Way and likely originates from a combination of lower beam-filling factors and a stronger influence of local environment on the dynamical state of molecular gas in the low-density regime.

  15. The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies

    NASA Astrophysics Data System (ADS)

    Nagao, Tohru

    2014-01-01

    It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.

  16. DISCOVERY OF A LARGE NUMBER OF CANDIDATE PROTOCLUSTERS TRACED BY ∼15 Mpc-SCALE GALAXY OVERDENSITIES IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yi-Kuan; Gebhardt, Karl; Overzier, Roderik

    2014-02-10

    To demonstrate the feasibility of studying the epoch of massive galaxy cluster formation in a more systematic manner using current and future galaxy surveys, we report the discovery of a large sample of protocluster candidates in the 1.62 deg{sup 2} COSMOS/UltraVISTA field traced by optical/infrared selected galaxies using photometric redshifts. By comparing properly smoothed three-dimensional galaxy density maps of the observations and a set of matched simulations incorporating the dominant observational effects (galaxy selection and photometric redshift uncertainties), we first confirm that the observed ∼15 comoving Mpc-scale galaxy clustering is consistent with ΛCDM models. Using further the relation between high-z overdensitymore » and the present day cluster mass calibrated in these matched simulations, we found 36 candidate structures at 1.6 < z < 3.1, showing overdensities consistent with the progenitors of M{sub z} {sub =} {sub 0} ∼ 10{sup 15} M {sub ☉} clusters. Taking into account the significant upward scattering of lower mass structures, the probabilities for the candidates to have at least M{sub z=} {sub 0} ∼ 10{sup 14} M {sub ☉} are ∼70%. For each structure, about 15%-40% of photometric galaxy candidates are expected to be true protocluster members that will merge into a cluster-scale halo by z = 0. With solely photometric redshifts, we successfully rediscover two spectroscopically confirmed structures in this field, suggesting that our algorithm is robust. This work generates a large sample of uniformly selected protocluster candidates, providing rich targets for spectroscopic follow-up and subsequent studies of cluster formation. Meanwhile, it demonstrates the potential for probing early cluster formation with upcoming redshift surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and the Subaru Prime Focus Spectrograph survey.« less

  17. LoCuSS: THE SUNYAEV-ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Daniel P.; Carlstrom, John E.; Gralla, Megan

    2012-08-01

    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M{sub WL}, and integrated Compton parameter Y{sub sph}. Observations of 18 galaxy clusters at z {approx_equal} 0.2 were obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich Array. The M{sub WL}-Y{sub sph} scaling relations, measured at {Delta} = 500, 1000, and 2500 {rho}{sub c}, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M{sub WL} at fixed Y{sub sph} of 20%, larger than both previous measurements of M{sub HSE}-Y{sub sph} scatter as well asmore » the scatter in true mass at fixed Y{sub sph} found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30%-40% larger M{sub WL} for undisturbed compared to disturbed clusters at the same Y{sub sph} at r{sub 500}. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line of sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.« less

  18. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    PubMed

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  19. Mass-metallicity relation for AKARI-FMOS infrared luminous galaxies at z ~ 0.9

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Matsuhara, Hideo; Goto, Tomotsugu; Pearson, Chris; Buat, Véronique; Malkan, Matthew A.

    We study the mass-metallicity relation and fundamental relation (FMR) for infrared bright galaxies (IR galaxies) at z ~ 0.9 discovered by AKARI NEP-Deep survey. The main result of this work is that metallicity of IR galaxies surprisingly match optical selected galaxies at a given mass even their star formation rates are different, which may imply that optical and IR selected galaxies follow similar star formation histories, and the starbursts in the IR galaxies do not give a strong impact in changing metallicity because of the short duration time.

  20. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  1. The Mpc-scale radio source associated with the GPS galaxy B1144+352

    NASA Astrophysics Data System (ADS)

    Schoenmakers, A. P.; de Bruyn, A. G.; Röttgering, H. J. A.; van der Laan, H.

    1999-01-01

    We present the results of new observations of the enigmatic radio source B1144+352 with the WSRT at 1.4 GHz. This source is hosted by an m_r = 14.3 +/- 0.1 galaxy at a redshift of z=0.063 +/- 0.002 and is one of the lowest redshift Gigahertz Peaked Spectrum (GPS) sources known. It has been known to show radio structure on pc-scale in the radio core and on 20-60 kpc-scale in two jet-like radio structures. The WENSS and NVSS surveys have now revealed faint extended radio structures on an even much larger scale. We have investiga ted these large-scale radio components with new 1.4-GHz WSRT observations. Our radio data indicate that the eastern radio structure has a leading hotspot and we conclude that this structure is a radio lobe originating in the galaxy hosting the GPS source. The western radio structure contains two separate radio sources which are superposed on the sky. The first is a low-power radio source, hosted by a m_R = 15.3 +/- 0.5 galaxy at a similar redshift (z=0.065+/-0.001) to the GPS host galaxy; the second is an extended radio lobe, which we believe is associated with the GPS host galaxy and which contains an elongated tail. The total projected linear size of the extended radio structure associated with B1144+352 is ~ 1.2 Mpc. The core of B1144+353 is a known variable radio source: its flux density at 1.4 GHz has increased continuously between 1974 and 1994. We have measured the flux density of the core in our WSRT observations (epoch 1997.7) and find a value of 541+/-10 mJy This implies that its flux density has decreased by ~ 70 mJy between 1994 and 1997. Further, we have retrieved unpublished archival ROSAT HRI data of B1144+352. The source has been detected and appears to be slightly extended in X-rays. We find a luminosity of (1.26 +/- 0.15)*E(43) erg s(-1) between 0.1 and 2.4 keV, assumin that the X-ray emission is due to an AGN with a powerlaw spectrum with photon index 1.8, or (0.95 +/- 0.11) *E(43) erg s(-1) if it is due to thermal

  2. Alignment between Satellite and Central Galaxies in the SDSS DR7: Dependence on Large-scale Environment

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Luo, Yu; Kang, Xi; Libeskind, Noam I.; Wang, Lei; Zhang, Youcai; Tempel, Elmo; Guo, Quan

    2018-06-01

    The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environmental dependence of this alignment are still unknown. In an attempt to determine these variables, we use data constructed from Sloan Digital Sky Survey DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignment’s dependence on the color of the central galaxy. We find a very strong large-scale environmental dependence of the satellite–central alignment (SCA) in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axes of the centrals, and the alignment angle decreases with environment, namely, when going from knots to voids. The alignment angle strongly depends on the {}0.1(g-r) color of centrals. We suggest that the SCA is the result of a competition between satellite accretion within large-scale structure (LSS) and galaxy evolution inside host halos. For groups containing red central galaxies, the SCA is mainly determined by the evolution effect, while for blue central dominated groups, the effect of the LSS plays a more important role, especially in knots. Our results provide an explanation for how the SCA forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements, such as the formation of the Milky Way and Centaurus A’s satellite system.

  3. Creating lenticular galaxies with mergers

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    2017-03-01

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  4. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.

    2017-04-01

    Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.

  5. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    NASA Astrophysics Data System (ADS)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  6. The structure of first-ranked cluster galaxies and the radius-magnitude relation

    NASA Astrophysics Data System (ADS)

    Lugger, P. M.

    1984-11-01

    To investigate theoretical predictions for the dynamical evolution of first-ranked galaxies, a quantitative study of their properties, as a function of cluster morphology, has been carried out using photographic plates obtained with the Palomar 48 inch (1.2 m) Schmidt telescope. Surface brightness profiles to radii of several hundred kpc for 35 first-ranked cluster galaxies have been analyzed. The dispersion in the metric magnitudes of first-ranked galaxies is quite small (about 0.4 mag), which is consistent with the results of Kristian, Sandage, and Westphal (1978) as well as those of Hoessel, Gunn, and Thuan (1980) and the recent work of Schneider, Gunn, and Hoessel (1983). For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is about 0.5 mag brighter than for the non-cD galaxies. The mean de Vaucouleurs effective radius for the cD galaxy sample is 80 percent larger than that of the non-cD sample. The relation between de Vaucouleurs effective radius and magnitude determined in the present study for first-ranked galaxies, log r(e) equal to about -0.26 M + constant is consistent with the relations found for fainter galaxies by Strom and Strom (1978) as well as Wirth (1982). The residuals in radius from the mean radius-magnitude relation for first-ranked galaxies do not correlate with the Bautz-Morgan (1970) type of the cluster.

  7. Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data

    DOE PAGES

    Kwan, J.; Sánchez, C.; Clampitt, J.; ...

    2016-10-05

    We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe asmore » $$\\Omega_m = 0.31 \\pm 0.09$$ and the clustering amplitude of the matter power spectrum as $$\\sigma_8 = 0.74 +\\pm 0.13$$ after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into $$S_8$$ = $$\\sigma_8(\\Omega_m/0.3)^{0.16} = 0.74 \\pm 0.12$$ for our fiducial lens redshift bin at 0.35 < z < 0.5, while $$S_8 = 0.78 \\pm 0.09$$ using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.« less

  8. Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, J.; Sánchez, C.; Clampitt, J.

    We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe asmore » $$\\Omega_m = 0.31 \\pm 0.09$$ and the clustering amplitude of the matter power spectrum as $$\\sigma_8 = 0.74 +\\pm 0.13$$ after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into $$S_8$$ = $$\\sigma_8(\\Omega_m/0.3)^{0.16} = 0.74 \\pm 0.12$$ for our fiducial lens redshift bin at 0.35 < z < 0.5, while $$S_8 = 0.78 \\pm 0.09$$ using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.« less

  9. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  10. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-05-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically-confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically-motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  11. Detectability of large-scale power suppression in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Gibelyou, Cameron; Huterer, Dragan; Fang, Wenjuan

    2010-12-01

    Suppression in primordial power on the Universe’s largest observable scales has been invoked as a possible explanation for large-angle observations in the cosmic microwave background, and is allowed or predicted by some inflationary models. Here we investigate the extent to which such a suppression could be confirmed by the upcoming large-volume redshift surveys. For definiteness, we study a simple parametric model of suppression that improves the fit of the vanilla ΛCDM model to the angular correlation function measured by WMAP in cut-sky maps, and at the same time improves the fit to the angular power spectrum inferred from the maximum likelihood analysis presented by the WMAP team. We find that the missing power at large scales, favored by WMAP observations within the context of this model, will be difficult but not impossible to rule out with a galaxy redshift survey with large-volume (˜100Gpc3). A key requirement for success in ruling out power suppression will be having redshifts of most galaxies detected in the imaging survey.

  12. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  13. Galaxy And Mass Assembly (GAMA): the connection between metals, specific SFR and H I gas in galaxies: the Z-SSFR relation

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; López-Sánchez, A. R.; Brough, S.; Colless, M.; Bland-Hawthorn, J.; Driver, S.; Foster, C.; Liske, J.; Loveday, J.; Robotham, A. S. G.; Sharp, R. G.; Steele, O.; Taylor, E. N.

    2013-06-01

    We study the interplay between gas phase metallicity (Z), specific star formation rate (SSFR) and neutral hydrogen gas (H I) for galaxies of different stellar masses. Our study uses spectroscopic data from Galaxy and Mass Assembly and Sloan Digital Sky Survey (SDSS) star-forming galaxies, as well as H I detection from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) and Galex Arecibo SDSS Survey (GASS) public catalogues. We present a model based on the Z-SSFR relation that shows that at a given stellar mass, depending on the amount of gas, galaxies will follow opposite behaviours. Low-mass galaxies with a large amount of gas will show high SSFR and low metallicities, while low-mass galaxies with small amounts of gas will show lower SSFR and high metallicities. In contrast, massive galaxies with a large amount of gas will show moderate SSFR and high metallicities, while massive galaxies with small amounts of gas will show low SSFR and low metallicities. Using ALFALFA and GASS counterparts, we find that the amount of gas is related to those drastic differences in Z and SSFR for galaxies of a similar stellar mass.

  14. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  15. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future

  16. Diverse Formation Mechanisms for Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  17. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, G.; Vrtilek, J. M.; David, L.

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, amore » 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.« less

  18. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Viola, Massimo; Bremer, Malcolm N.; Brough, Sarah; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Klaes, Dominik; Kuijken, Konrad; McGee, Sean; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Taylor, Edward N.; Valentijn, Edwin

    2017-11-01

    In recent years, many studies have reported substantial populations of large galaxies with low surface brightness in local galaxy clusters. Various theories that aim to explain the presence of such ultra-diffuse galaxies (UDGs) have since been proposed. A key question that will help to distinguish between models is whether UDGs have counterparts in host haloes with lower masses, and if so, what their abundance as a function of halo mass is. We here extend our previous study of UDGs in galaxy clusters to galaxy groups. We measure the abundance of UDGs in 325 spectroscopically selected groups from the Galaxy And Mass Assembly (GAMA) survey. We make use of the overlapping imaging from the ESO Kilo-Degree Survey (KiDS), from which we can identify galaxies with mean surface brightnesses within their effective radii down to 25.5 mag arcsec-2 in the r band. We are able to measure a significant overdensity of UDGs (with sizes reff ≥ 1.5 kpc) in galaxy groups down to M200 = 1012 M⊙, a regime where approximately only one in ten groups contains a UDG that we can detect. We combine measurements of the abundance of UDGs in haloes that cover three orders of magnitude in halo mass, finding that their numbers scale quite steeply with halo mass: NUDG(R < R200) ∝ M2001.11±0.07. To better interpret this, we also measure the mass-richness relation for brighter galaxies down to Mr* + 2.5 in the same GAMA groups, and find a much shallower relation of NBright(R < R200) ∝ M2000.78±0.05. This shows that compared to bright galaxies, UDGs are relatively more abundant in massive clusters than in groups. We discuss the implications, but it is still unclear whether this difference is related to a higher destruction rate of UDGs in groups or if massive haloes have a positive effect on UDG formation.

  19. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  20. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less

  1. Lyα-emitting galaxies as a probe of reionization: large-scale bubble morphology and small-scale absorbers

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Dijkstra, Mark; Ciardi, Benedetta; Graziani, Luca

    2016-12-01

    The visibility of Lyα-emitting galaxies during the Epoch of Reionization is controlled by both diffuse H I patches in large-scale bubble morphology and small-scale absorbers. To investigate their impacts on Lyα transfer, we apply a novel combination of analytic modelling and cosmological hydrodynamical, radiative transfer simulations to three reionization models: (I) the `bubble' model, where only diffuse H I outside ionized bubbles is present; (II) the `web' model, where H I exists only in overdense self-shielded gas; and (III) the hybrid `web-bubble' model. The three models can explain the observed Lyα luminosity function equally well, but with very different H I fractions. This confirms a degeneracy between the ionization topology of the intergalactic medium (IGM) and the H I fraction inferred from Lyα surveys. We highlight the importance of the clustering of small-scale absorbers around galaxies. A combined analysis of the Lyα luminosity function and the Lyα fraction can break this degeneracy and provide constraints on the reionization history and its topology. Constraints can be improved by analysing the full MUV-dependent redshift evolution of the Lyα fraction of Lyman break galaxies. We find that the IGM-transmission probability distribution function is unimodal for bubble models and bimodal in web models. Comparing our models to observations, we infer that the neutral fraction at z ˜ 7 is likely to be of the order of tens of per cent when interpreted with bubble or web-bubble models, with a conservative lower limit ˜1 per cent when interpreted with web models.

  2. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  3. (Almost) Dark Galaxies in the ALFALFA Survey: HI-bearing Ultra-Diffuse Galaxies, and Beyond

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2017-01-01

    Scaling relations between HI and stars in galaxies suggest strong ties between their atomic gas content and star formation laws. The Arecibo Legacy Fast ALFA (ALFALFA) blind extragalactic HI survey is well positioned to locate very low surface brightness sources that lie off these relations, the most extreme of which may fall below optical detection limits. Thus, the ALFALFA (Almost) Darks Project has been investigating extreme outliers from these relations by studying the ~1% of ALFALFA sources without apparent stellar counterparts in major optical surveys. We have obtained deep HI and optical imaging of 25 of these candidate "dark" sources. We find that most "dark" sources are not extreme "(almost) dark" galaxies. A few are rare OH Megamasers, redshifted into the ALFALFA bandpass, and many are part of large galactic plumes, stretching as far as 600 kpc from their host galaxy. However, a small handful of sources appear to be galaxies with extreme stellar systems. We find multiple systems with HI mass to stellar mass ratios an order of magnitude larger than typical gas rich dwarfs. Further, we find an isolated population of HI-bearing "ultra diffuse" galaxies (UDGs), with stellar masses of dwarfs, but HI and optical radii of L* galaxies. We suggest that these sources may be related to recently reported gas poor, quiescent UDGs.

  4. The HI Content of Galaxies as a Function of Local Density and Large-Scale Environment

    NASA Astrophysics Data System (ADS)

    Thoreen, Henry; Cantwell, Kelly; Maloney, Erin; Cane, Thomas; Brough Morris, Theodore; Flory, Oscar; Raskin, Mark; Crone-Odekon, Mary; ALFALFA Team

    2017-01-01

    We examine the HI content of galaxies as a function of environment, based on a catalogue of 41527 galaxies that are part of the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey. We use nearest-neighbor methods to characterize local environment, and a modified version of the algorithm developed for the Galaxy and Mass Assembly (GAMA) survey to classify large-scale environment as group, filament, tendril, or void. We compare the HI content in these environments using statistics that include both HI detections and the upper limits on detections from ALFALFA. The large size of the sample allows to statistically compare the HI content in different environments for early-type galaxies as well as late-type galaxies. This work is supported by NSF grants AST-1211005 and AST-1637339, the Skidmore Faculty-Student Summer Research program, and the Schupf Scholars program.

  5. Kiloparsec-scale Dust Disks in High-redshift Luminous Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, J. A.; Swinbank, A. M.; Simpson, J. M.; Smail, I.; Walter, F.; Alexander, D. M.; Bertoldi, F.; Biggs, A. D.; Brandt, W. N.; Chapman, S. C.; Chen, C. C.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Edge, A. C.; Greve, T. R.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Menten, K. M.; Rix, H.-W.; Schinnerer, E.; Wardlow, J. L.; Weiss, A.; van der Werf, P.

    2016-12-01

    We present high-resolution (0.″16) 870 μm Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous ({L}{IR}˜ 4× {10}12 {L}⊙ ) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imaging traces the dust-obscured star formation in these z˜ 2.5 galaxies on ˜1.3 kpc scales. The emission has a median effective radius of R e = 0.″24 ± 0.″02, corresponding to a typical physical size of {R}e= 1.8 ± 0.2 kpc. We derive a median Sérsic index of n = 0.9 ± 0.2, implying that the dust emission is remarkably disk-like at the current resolution and sensitivity. We use different weighting schemes with the visibilities to search for clumps on 0.″12 (˜1.0 kpc) scales, but we find no significant evidence for clumping in the majority of cases. Indeed, we demonstrate using simulations that the observed morphologies are generally consistent with smooth exponential disks, suggesting that caution should be exercised when identifying candidate clumps in even moderate signal-to-noise ratio interferometric data. We compare our maps to comparable-resolution Hubble Space Telescope {H}160-band images, finding that the stellar morphologies appear significantly more extended and disturbed, and suggesting that major mergers may be responsible for driving the formation of the compact dust disks we observe. The stark contrast between the obscured and unobscured morphologies may also have implications for SED fitting routines that assume the dust is co-located with the optical/near-IR continuum emission. Finally, we discuss the potential of the current bursts of star formation to transform the observed galaxy sizes and light profiles, showing that the z˜ 0 descendants of these SMGs are expected to have stellar masses, effective radii, and gas surface densities consistent with the most compact massive ({M}* ˜ 1-2 × 1011 {M}⊙ ) early-type galaxies observed locally.

  6. The Mass-Size Relation of Quenched, Quiescent Galaxies in the WISP Survey

    NASA Astrophysics Data System (ADS)

    Pahl, Anthony; Scarlata, Claudia; Rutkowski, Michael J.; Zanella, Anita; Bagley, Micaela B.; Colbert, James W.; Baronchelli, Ivano; Henry, Alaina L.; Hathi, Nimish P.; Teplitz, Harry I.; Rafelski, Marc; Dai, Yu Sophia; Malkan, Matthew Arnold; Mehta, Vihang; Beck, Melanie

    2016-01-01

    The relation between the stellar mass and size, if measured for galaxies of similar types, can be a useful tool for studying galactic evolution. We study the mass-size relation of quenched, quiescent galaxies to determine the effect of star-formation history on the growth of these objects over time. The WFC3 Infrared Spectroscopic Parallels (WISP) survey is a large HST IR grism survey of over 385 fields of ~4 arcmin2 each, and it is ideal for studying the star-formation rate with its broad spectral coverage. Using a subset of these fields with deep IR data and measurements across both filters (28 fields), we perform a color selection and identify 83 quenched galaxies with a median z~1.6. With GALFIT, we measure their effective radius and sersic index on the 2-D surface brightness distribution in the F110W band. We perform fitting of grism spectra of the observed galaxies to derive redshift, stellar mass and age for all galaxies. We combine the size, stellar mass, and stellar age determinations to investigate whether the evolution of the mass-size relation over time is primarily driven by the entrance of newly quenched galaxies or by processes affecting the individual quenched galaxies.

  7. Basic Equations Interrelate Atomic and Nuclear Properties to Patterns at the Size Scales of the Cosmos, Extended Clusters of Galaxies, Galaxies, and Nebulae

    NASA Astrophysics Data System (ADS)

    Allen, Rob

    2016-09-01

    Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.

  8. On the [CII]-SFR Relation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Gallerani, S.; Ferrara, A.; Pallottini, A.; Yue, B.

    2015-11-01

    After two Atacama Large Millimeter/submillimeter Array (ALMA) observing cycles, only a handful of [C ii] 158 μm emission line searches in z > 6 galaxies have reported a positive detection, questioning the applicability of the local [C ii]-star formation rate (SFR) relation to high-z systems. To investigate this issue we use the Vallini et al. (V13) model,based on high-resolution, radiative transfer cosmological simulations to predict the [C ii] emission from the interstellar medium of a z ≈ 7 (halo mass Mh = 1.17 × 1011 M⊙) galaxy. We improve the V13 model by including (a) a physically motivated metallicity (Z) distribution of the gas, (b) the contribution of photodissociation regions (PDRs), and (c) the effects of cosmic microwave background (CMB) on the [C ii] line luminosity. We study the relative contribution of diffuse neutral gas to the total [C ii] emission (Fdiff/Ftot) for different SFR and Z values. We find that the [C ii] emission arises predominantly from PDRs: regardless of the galaxy properties, Fdiff/Ftot ≤ 10%, since at these early epochs the CMB temperature approaches the spin temperature of the [C ii] transition in the cold neutral medium (TCMB ˜ {T}s{{CNM}} ˜ 20 K). Our model predicts a high-z [C ii]-SFR relation, consistent with observations of local dwarf galaxies (0.02 < Z/Z⊙ < 0.5). The [C ii] deficit suggested by actual data (LCii < 2.0 × 107 L⊙ in BDF3299 at z ≈ 7.1) if confirmed by deeper ALMA observations, can be ascribed to negative stellar feedback disrupting molecular clouds around star formation sites. The deviation from the local [C ii]-SFR would then imply a modified Kennicutt-Schmidt relation in z > 6 galaxies. Alternatively/in addition, the deficit might be explained by low gas metallicities (Z < 0.1 Z⊙).

  9. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil, E-mail: andrea.cattaneo@oamp.fr, E-mail: salucci@sissa.it, E-mail: papastergis@astro.cornell.edu

    2014-03-10

    The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fullymore » account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.« less

  10. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.

    2017-07-01

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.

  11. On the Supermassive Black Hole-Galaxy Coevolution

    NASA Astrophysics Data System (ADS)

    Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.

    2017-01-01

    In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  12. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  13. Towards Accurate Modelling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-04-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  14. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  15. Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.

    2017-10-01

    We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.

  16. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  17. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.; Krause, E.; Dodelson, S.

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  18. THE (BLACK HOLE)-BULGE MASS SCALING RELATION AT LOW MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Alister W.; Scott, Nicholas

    2015-01-01

    Several recent papers have reported on the occurrence of active galactic nuclei (AGNs) containing undermassive black holes relative to a linear scaling relation between black hole mass (M {sub bh}) and host spheroid stellar mass (M {sub sph,} {sub *}). However, dramatic revisions to the M {sub bh}-M {sub sph,} {sub *} and M {sub bh}-L {sub sph} relations, based on samples containing predominantly inactive galaxies, have recently identified a new steeper relation at M {sub bh} ≲ (2-10) × 10{sup 8} M {sub ☉}, roughly corresponding to M {sub sph,} {sub *} ≲ (0.3-1) × 10{sup 11} M {submore » ☉}. We show that this steeper, quadratic-like M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies, i.e., galaxies without partially depleted cores, roughly tracks the apparent offset of the AGN having 10{sup 5} ≲ M {sub bh}/M {sub ☉} ≲ 0.5 × 10{sup 8}. That is, these AGNs are not randomly offset with low black hole masses, but also follow a steeper (nonlinear) relation. As noted by Busch et al., confirmation or rejection of a possible AGN offset from the steeper M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies will benefit from improved stellar mass-to-light ratios for the spheroids hosting these AGNs. Several implications for formation theories are noted. Furthermore, reasons for possible under- and overmassive black holes, the potential existence of intermediate mass black holes (<10{sup 5} M {sub ☉}), and the new steep (black hole)-(nuclear star cluster) relation, M{sub bh}∝M{sub nc}{sup 2.7±0.7}, are also discussed.« less

  19. What made discy galaxies giant?

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.

    2018-01-01

    I studied giant discy galaxies with optical radii more than 30 kpc. The comparison of these systems with discy galaxies of moderate sizes revealed that they tend to have higher rotation velocities, B-band luminosities, H I masses and dark-to-luminous mass ratios. The giant discs follow the trend log (M_{H I})(R_{25}) found for normal sized galaxies. It indicates the absence of the peculiarities of evolution of star formation in these galaxies. The H I mass-to-luminosity ratio of giant galaxies appears not to differ from that of normal-sized galaxies, giving evidence in favour of similar star formation efficiency. I also found that the bars and rings occur more frequently among giant discs. I performed mass modelling of the subsample of 18 giant galaxies with available rotation curves and surface photometry data and constructed χ2 maps for the parameters of their dark matter haloes. These estimates indicate that giant discs tend to be formed in larger more massive and rarified dark haloes in comparison to moderate-sized galaxies. However, giant galaxies do not deviate significantly from the relations between the optical sizes and dark halo parameters for moderate-sized galaxies. These findings can rule out the catastrophic scenario of the formation of at least most of giant discs, since they follow the same relations as normal discy galaxies. The giant sizes of the discs can be due to the high radial scale of the dark matter haloes in which they were formed.

  20. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  1. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R {sub eff}) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondarymore » relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.« less

  2. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  3. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  4. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  5. Dynamical Constraints On The Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Desmond, Harry

    2017-07-01

    Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As

  6. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGES

    Gruen, D.; Friedrich, O.; Amara, A.; ...

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  7. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  8. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves inmore » the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.« less

  9. Large-scale 3D galaxy correlation function and non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele

    We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less

  10. Topology of Large-Scale Structures of Galaxies in two Dimensions—Systematic Effects

    NASA Astrophysics Data System (ADS)

    Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan

    2017-02-01

    We study the two-dimensional topology of galactic distribution when projected onto two-dimensional spherical shells. Using the latest Horizon Run 4 simulation data, we construct the genus of the two-dimensional field and consider how this statistic is affected by late-time nonlinear effects—principally gravitational collapse and redshift space distortion (RSD). We also consider systematic and numerical artifacts, such as shot noise, galaxy bias, and finite pixel effects. We model the systematics using a Hermite polynomial expansion and perform a comprehensive analysis of known effects on the two-dimensional genus, with a view toward using the statistic for cosmological parameter estimation. We find that the finite pixel effect is dominated by an amplitude drop and can be made less than 1% by adopting pixels smaller than 1/3 of the angular smoothing length. Nonlinear gravitational evolution introduces time-dependent coefficients of the zeroth, first, and second Hermite polynomials, but the genus amplitude changes by less than 1% between z = 1 and z = 0 for smoothing scales {R}{{G}}> 9 {Mpc}/{{h}}. Non-zero terms are measured up to third order in the Hermite polynomial expansion when studying RSD. Differences in the shapes of the genus curves in real and redshift space are small when we adopt thick redshift shells, but the amplitude change remains a significant ˜ { O }(10 % ) effect. The combined effects of galaxy biasing and shot noise produce systematic effects up to the second Hermite polynomial. It is shown that, when sampling, the use of galaxy mass cuts significantly reduces the effect of shot noise relative to random sampling.

  11. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  12. Towards accurate modelling of galaxy clustering on small scales: testing the standard ΛCDM + halo model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-07-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter haloes. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the `accurate' regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard Λ cold dark matter (ΛCDM) + halo model against the clustering of Sloan Digital Sky Survey (SDSS) seventh data release (DR7) galaxies. Specifically, we use the projected correlation function, group multiplicity function, and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir haloes) matches the clustering of low-luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the `standard' halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  13. Galaxy bias and primordial non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin ofmore » any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.« less

  14. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  15. The relation between magnetic and material arms in models for spiral galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Beck, R.; Sokoloff, D.; Stepanov, R.; Krause, M.; Arshakian, T. G.

    2013-08-01

    Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not fully axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims: The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) calls for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods: We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results: A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and α-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. These are rather variable entities and their shape changes significantly on timescales of a few 100 Myr. Properties of magnetic arms can be controlled by changing the model parameters. In particular, a lower injection rate of small-scale field makes the magnetic configuration smoother and eliminates distinct magnetic arms. Conclusions: We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and

  16. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  17. A Theoretical Study of the Luminosity-Temperature Relation for Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Hiotelis, N.; Peñarrubia, J.

    2005-07-01

    A luminosity-temperature relation is derived for clusters of galaxies. The two models used take into account the angular momentum acquisition by the protostructures during their expansion and collapse. The first model is a modification of the self-similar model, while the second is a modification of the punctuated equilibria model of Cavaliere et al. In both models the mass-temperature relation (M-T) used is based on previous calculations of Del Popolo. We show that the above models lead, in X-rays, to a luminosity-temperature relation that scales as L~T5 at the scale of groups, flattening to L~T3 for rich clusters and converging to L~T2 at higher temperatures. However, a fundamental result of our paper is that the nonsimilarity in the L-T relation can be explained by a simple model that takes into account the amount of angular momentum of a protostructure. This result is in disagreement with the widely accepted idea that the nonsimilarity is due to nongravitating processes, such as heating and/or cooling.

  18. Modelling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2017-01-01

    We present a new approach to measuring cosmic expansion history and growth rate of large-scale structure using the anisotropic two-dimensional galaxy correlation function (2DCF) measured from data; it makes use of the empirical modelling of small-scale galaxy clustering derived from numerical simulations by Zheng et al. We validate this method using mock catalogues, before applying it to the analysis of the CMASS sample from the Sloan Digital Sky Survey Data Release 10 of the Baryon Oscillation Spectroscopic Survey. We find that this method enables accurate and precise measurements of cosmic expansion history and growth rate of large-scale structure. Modelling the 2DCF fully including non-linear effects and redshift space distortions in the scale range of 16-144 h-1 Mpc, we find H(0.57)rs(zd)/c = 0.0459 ± 0.0006, DA(0.57)/rs(zd) = 9.011 ± 0.073, and fg(0.57)σ8(0.57) = 0.476 ± 0.050, which correspond to precisions of 1.3 per cent, 0.8 per cent, and 10.5 per cent, respectively. We have defined rs(zd) to be the sound horizon at the drag epoch computed using a simple integral, fg(z) as the growth rate at redshift z, and σ8(z) as the matter power spectrum normalization on 8 h-1 Mpc scale at z. We find that neglecting the small-scale information significantly weakens the constraints on H(z) and DA(z), and leads to a biased estimate of fg(z). Our results indicate that we can significantly tighten constraints on dark energy and modified gravity by reliably modelling small-scale galaxy clustering.

  19. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.

    2017-02-01

    We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W < 23.5, but goes as faint as mI814W < 26.8 for deep images combined over five epochs. The median redshift of the combined samples is = 0.9 ± 0.6, with a tail extending out to z ≃ 4. The GZH morphological data include measurements of both bulge- and disc-dominated galaxies, details on spiral disc structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119 849 galaxies, providing the largest data set to date suitable for large-scale studies of galaxy evolution out to z ˜ 1.

  20. The influence of environment on the properties of galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yasuhiro

    1999-11-01

    I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star

  1. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  2. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  3. Joint scaling properties of Sunyaev-Zel'dovich and optical richness observables in an optically-selected galaxy cluster sample

    NASA Astrophysics Data System (ADS)

    Greer, Christopher Holland

    Galaxy cluster abundance measurements are an important tool used to study the universe as a whole. The advent of multiple large-area galaxy cluster surveys across multiple ensures that cluster measurements will play a key role in understanding the dark energy currently thought to be accelerating the universe. The main systematic limitation at the moment is the understanding of the observable-mass relation. Recent theoretical work has shown that combining samples of clusters from surveys at different wavelengths can mitigate this systematic limitation. Precise measurements of the scatter in the observable-mass relation can lead to further improvements. We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the Sunyaev-Zel'dovich (SZ) signal for 28 galaxy clusters selected from the Sloan Digital Sky Survey (SDSS) maxBCG catalog. This cluster sample represents a complete, volume-limited sample of the richest galaxy clusters in the SDSS between redshifts 0.2 ≥ z ≥ 0.3, as measured by the RedMaPPer algorithm being developed for the Dark Energy Survey (DES; Rykoff et al. 2012). We develop a formalism that uses the cluster abundance in tandem with the galaxy richness measurements from SDSS and the SZ signal measurements from CARMA to calibrate the SZ and optical observable-mass relations. We find that the scatter in richness at fixed mass is σlog λ| M = 0.24+0.09-0.07 using SZ signal calculated by integrating a cluster pressure profile to a radius of 1 Mpc at the redshift of the cluster. We also calculate the SZ signal at R500 and find that the choice of scaling relation used to determined R500 has a non-trivial effect on the constraints of the observable-mass relationship. Finally, we investigate the source of disagreement between the positions of the SZ signal and SDSS Brightest Cluster Galaxies (BCGs). Improvements to the richness calculator that account for blue BCGs in the cores of cool-core X-ray clusters, as well as

  4. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  5. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  6. Lack of small-scale clustering in 21-cm intensity maps crossed with 2dF galaxy densities at z ~ 0.08

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher; Luciw, Nicholas; Li, Yi-Chao; Kuo, Cheng-Yu; Yadav, Jaswant; Masui, Kiyoshi; Chang, Tzu-Ching; Chen, Xuelei; Oppermann, Niels; Pen, Ue-Li; Timbie, Peter T.

    2017-06-01

    I report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057scales, around k~1.0 hMpc^-1, compared to the 2dF auto-power spectrum and the theoretical dark matter power spectrum. This indicates either a lack of clustering of neutral hydrogen (HI) at small scales or a small correlation coefficient between optical galaxies and HI, or some combination of the two. A lack of small scale HI clustering would be qualitatively similar to measurements of HI-selected galaxy clustering from the HIPASS and ALFALFA surveys at slightly lower redshifts.

  7. UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Sarah H.; Sullivan, Mark; Ellis, Richard S., E-mail: smiller@astro.caltech.edu

    2013-01-01

    In order to determine what processes govern the assembly history of galaxies with rotating disks, we examine the stellar mass Tully-Fisher (TF) relation over a wide range in redshift partitioned according to whether or not galaxies contain a prominent bulge. Using our earlier Keck spectroscopic sample, for which bulge/total parameters are available from analyses of Hubble Space Telescope images, we find that bulgeless disk galaxies with z > 0.8 present a significant offset from the local (TF) relation whereas, at all redshifts probed, those with significant bulges fall along the local relation. Our results support the suggestion that bulge growthmore » may somehow expedite the maturing of disk galaxies onto the (TF) relation. We discuss a variety of physical hypotheses that may explain this result in the context of kinematic observations of star-forming galaxies at redshifts z = 0 and z > 2.« less

  8. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  9. Non-Gaussian shape discrimination with spectroscopic galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Joyce; Bean, Rachel, E-mail: byun@astro.cornell.edu, E-mail: rbean@astro.cornell.edu

    2015-03-01

    We consider how galaxy clustering data, from Mpc to Gpc scales, from upcoming large scale structure surveys, such as Euclid and DESI, can provide discriminating information about the bispectrum shape arising from a variety of inflationary scenarios. Through exploring in detail the weighting of shape properties in the calculation of the halo bias and halo mass function we show how they probe a broad range of configurations, beyond those in the squeezed limit, that can help distinguish between shapes with similar large scale bias behaviors. We assess the impact, on constraints for a diverse set of non-Gaussian shapes, of galaxymore » clustering information in the mildly non-linear regime, and surveys that span multiple redshifts and employ different galactic tracers of the dark matter distribution. Fisher forecasts are presented for a Euclid-like spectroscopic survey of Hα-selected emission line galaxies (ELGs), and a DESI-like survey, of luminous red galaxies (LRGs) and [O-II] doublet-selected ELGs, in combination with Planck-like CMB temperature and polarization data.While ELG samples provide better probes of shapes that are divergent in the squeezed limit, LRG constraints, centered below z<1, yield stronger constraints on shapes with scale-independent large-scale halo biases, such as the equilateral template. The ELG and LRG samples provide complementary degeneracy directions for distinguishing between different shapes. For Hα-selected galaxies, we note that recent revisions of the expected Hα luminosity function reduce the halo bias constraints on the local shape, relative to the CMB. For galaxy clustering constraints to be comparable to those from the CMB, additional information about the Gaussian galaxy bias is needed, such as can be determined from the galaxy clustering bispectrum or probing the halo power spectrum directly through weak lensing. If the Gaussian galaxy bias is constrained to better than a percent level then the LSS and CMB data could

  10. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less

  11. The colour-magnitude relation as a constraint on the formation of rich cluster galaxies

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale

    1998-10-01

    The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour

  12. Hierarchical Galaxy Growth and Scatter in the Stellar Mass-Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Conroy, Charlie; Behroozi, Peter

    2016-12-01

    The relation between galaxies and dark matter halos reflects the combined effects of many distinct physical processes. Observations indicate that the z = 0 stellar mass-halo mass (SMHM) relation has remarkably small scatter in stellar mass at fixed halo mass (≲0.2 dex), with little dependence on halo mass. We investigate the origins of this scatter by combining N-body simulations with observational constraints on the SMHM relation. We find that at the group and cluster scale ({M}{vir}\\gt {10}14 {M}⊙ ) the scatter due purely to hierarchical assembly is ≈ 0.16 dex, which is comparable to recent direct observational estimates. At lower masses, mass buildup since z≈ 2 is driven largely by in situ growth. We include a model for the in situ buildup of stellar mass and find that an intrinsic scatter in this growth channel of 0.2 dex produces a relation between scatter and halo mass that is consistent with observations from {10}12 {M}⊙ \\lt {M}{vir}\\lt {10}14.75 {M}⊙ . The approximately constant scatter across a wide range of halo masses at z = 0 thus appears to be a coincidence, as it is determined largely by in situ growth at low masses and by hierarchical assembly at high masses. These results indicate that the scatter in the SMHM relation can provide unique insight into the regularity of the galaxy formation process.

  13. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  14. Gravitational redshift of galaxies in clusters as predicted by general relativity.

    PubMed

    Wojtak, Radosław; Hansen, Steen H; Hjorth, Jens

    2011-09-28

    The theoretical framework of cosmology is mainly defined by gravity, of which general relativity is the current model. Recent tests of general relativity within the Lambda Cold Dark Matter (ΛCDM) model have found a concordance between predictions and the observations of the growth rate and clustering of the cosmic web. General relativity has not hitherto been tested on cosmological scales independently of the assumptions of the ΛCDM model. Here we report an observation of the gravitational redshift of light coming from galaxies in clusters at the 99 per cent confidence level, based on archival data. Our measurement agrees with the predictions of general relativity and its modification created to explain cosmic acceleration without the need for dark energy (the f(R) theory), but is inconsistent with alternative models designed to avoid the presence of dark matter. © 2011 Macmillan Publishers Limited. All rights reserved

  15. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  16. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  17. Galaxy distances and deviations from universal expansion; Proceedings of the NATO Advanced Research Workshop, Kona, HI, Jan. 13-17, 1986

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.; Tully, R. Brent

    A collection of papers on galaxy distances and deviations from universal expansion is presented. Individual topics addressed include: new results on the distance scale and the Hubble constant, Magellanic Clouds and the distance scale, CCD observations of Cepheids in nearby galaxies, distances using A supergiant stars, infrared calibration of the Cepheid distance scale, two stepping stones to the Hubble constant, physical models of supernovae and the distance scale, 21 cm line widths and distances of spiral galaxies, infrared color-luminosity relations for field galaxies, minimizing the scatter in the Tully-Fisher relation, photometry of galaxies and the local peculiar motion, elliptical galaxies and nonuniformities in the Hubble flow, and large-scale anisotropy in the Hubble flow. Also discussed are: improved distance indicator for elliptical galaxies, anisotropy of galaxies detected by IRAS, the local gravitational field, measurements of the CBR, measure of cosmological times, ages from nuclear cosmochronology, extragalactic gas at high redshift, supercluster infall models, Virgo infall and the mass density of the universe, dynamics of superclusters and Omega(0), distribution of galaxies versus dark matter, peculiar velocities and galaxy formation, cosmological shells and blast waves.

  18. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  19. On the Scatter of the Present-day Stellar Metallicity–Mass Relation of Cluster Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Engler, Christoph; Lisker, Thorsten; Pillepich, Annalisa

    2018-04-01

    We examine the scatter of the relation between stellar mass and stellar metallicity for cluster dwarf galaxies in the cosmological simulation Illustris. The mass-metallicity relation exhibits the smallest intrinsic scatter at the galaxies' times of peak stellar mass, suggesting stellar mass stripping to be the primary effect responsible for the rather broad relation at present. However, for about 40% of galaxies in the high-metallicity tail of the relation, we find mass stripping to coincide with an increased enrichment of stellar metallicity, possibly caused by the stripping of low-metallicity stars in the galaxy outskirts.

  20. Groups of two galaxies in SDSS: implications of colours on star formation quenching time-scales

    NASA Astrophysics Data System (ADS)

    Trinh, Christopher Q.; Barton, Elizabeth J.; Bullock, James S.; Cooper, Michael C.; Zentner, Andrew R.; Wechsler, Risa H.

    2013-11-01

    We have devised a method to select galaxies that are isolated in their dark matter halo (N = 1 systems) and galaxies that reside in a group of exactly two (N = 2 systems). Our N = 2 systems are widely separated (up to ˜200 h-1 kpc), where close galaxy-galaxy interactions are not dominant. We apply our selection criteria to two volume-limited samples of galaxies from Sloan Digital Sky Survey Data Release 6 (SDSS DR6) with Mr - 5 log10 h ≤ -19 and -20 to study the effects of the environment of very sparse groups on galaxy colour. For satellite galaxies in a group of two, we find a red excess attributed to star formation quenching of 0.15 ± 0.01 and 0.14 ± 0.01 for the -19 and -20 samples, respectively, relative to isolated galaxies of the same stellar mass. Assuming N = 1 systems are the progenitors of N = 2 systems, an immediate-rapid star formation quenching scenario is inconsistent with these observations. A delayed-then-rapid star formation quenching scenario with a delay time of 3.3 and 3.7 Gyr for the -19 and -20 samples, respectively, yields a red excess prediction in agreement with the observations. The observations also reveal that central galaxies in a group of two have a slight blue excess of 0.06 ± 0.02 and 0.02 ± 0.01 for the -19 and -20 samples, respectively, relative to N = 1 populations of the same stellar mass. Our results demonstrate that even the environment of very sparse groups of luminous galaxies influence galaxy evolution and in-depth studies of these simple systems are an essential step towards understanding galaxy evolution in general.

  1. Large-scale galaxy flow from a non-gravitational impulse

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Kaiser, Nick

    1989-01-01

    A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.

  2. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less

  3. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna

    2013-12-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* \\propto M_*^{0.30+/- 0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M * = 1012 M ⊙. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. The formation of giant low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Hoffman, Yehuda; Silk, Joseph; Wyse, Rosemary F. G.

    1992-01-01

    It is demonstrated that the initial structure of galaxies can be strongly affected by their large-scale environments. In particular, rare (about 3 sigma) massive galaxies in voids will have normal bulges, but unevolved, extended disks; it is proposed that the low surface brightness objects Malin I and Malin II are prototypes of this class of object. The model predicts that searches for more examples of 'crouching giants' should be fruitful, but that such galaxies do not provide a substantial fraction of mass in the universe. The identification of dwarf galaxies is relatively unaffected by their environment.

  5. Bar-spheroid interaction in galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  6. Extended Source/Galaxy All Sky 1

    NASA Image and Video Library

    2003-03-27

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252

  7. The radio continuum-star formation rate relation in WSRT sings galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heesen, Volker; Brinks, Elias; Leroy, Adam K.

    2014-05-01

    We present a study of the spatially resolved radio continuum-star formation rate (RC-SFR) relation using state-of-the-art star formation tracers in a sample of 17 THINGS galaxies. We use SFR surface density (Σ{sub SFR}) maps created by a linear combination of GALEX far-UV (FUV) and Spitzer 24 μm maps. We use RC maps at λλ22 and 18 cm from the WSRT SINGS survey and Hα emission maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/mid-IR (MIR) based Σ{sub SFR} maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7more » kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R{sub int}=0.78±0.38, consistent with the relation by Condon. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Σ{sub SFR} for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Σ{sub SFR} agrees with the integrated ratio and has only quasi-random fluctuations with galactocentric radius that are relatively small (25%). Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Σ{sub SFR}, with a typical standard deviation of a factor of two. Averaged over our sample we find (Σ{sub SFR}){sub RC}∝(Σ{sub SFR}){sub hyb}{sup 0.63±0.25}, implying that data points with high Σ{sub SFR} are relatively radio dim, whereas the reverse is true for low Σ{sub SFR}. We interpret this as a result of spectral aging of cosmic-ray electrons (CREs), which are diffusing away from the star formation sites where they are injected into the interstellar medium. This is supported by our finding that the radio spectral index is a second parameter in pixel-by-pixel plots: those data points dominated by young CREs are relatively radio dim, while those dominated by old CREs are slightly more RC bright than what would be expected from a linear extrapolation. We studied the

  8. Scaling relations of halo cores for self-interacting dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Henry W.; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-03-01

    Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density ρ{sub c} and the core radius r{sub c} should obey ρ{sub c} r{sub c} ≈ 41 M{sub ⊙} pc{sup −2} with a weak mass dependence ∼ M{sup 0.2}. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observationalmore » data. By calibrating against numerical simulations, we predict the scatter in these relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.« less

  9. Large-scale Environment of a z = 6.61 Luminous Quasar Probed by Lyα Emitters and Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Venemans, Bram P.; Taniguchi, Yoshiaki; Kashikawa, Nobunari; Nakata, Fumiaki; Harikane, Yuichi; Bañados, Eduardo; Overzier, Roderik; Riechers, Dominik A.; Walter, Fabian; Toshikawa, Jun; Shibuya, Takatoshi; Jiang, Linhua

    2018-04-01

    Quasars (QSOs) hosting supermassive black holes are believed to reside in massive halos harboring galaxy overdensities. However, many observations revealed average or low galaxy densities around z ≳ 6 QSOs. This could be partly because they measured galaxy densities in only tens of arcmin2 around QSOs and might have overlooked potential larger-scale galaxy overdensities. Some previous studies also observed only Lyman break galaxies (LBGs; massive older galaxies) and missed low-mass young galaxies, like Lyα emitters (LAEs), around QSOs. Here we present observations of LAE and LBG candidates in ∼700 arcmin2 around a z = 6.61 luminous QSO using the Subaru Telescope Suprime-Cam with narrowband/broadband. We compare their sky distributions, number densities, and angular correlation functions with those of LAEs/LBGs detected in the same manner and comparable data quality in our control blank field. In the QSO field, LAEs and LBGs are clustering in 4–20 comoving Mpc angular scales, but LAEs show mostly underdensity over the field while LBGs are forming 30 × 60 comoving Mpc2 large-scale structure containing 3σ–7σ high-density clumps. The highest-density clump includes a bright (23.78 mag in the narrowband) extended (≳16 kpc) Lyα blob candidate, indicative of a dense environment. The QSO could be part of the structure but is not located exactly at any of the high-density peaks. Near the QSO, LAEs show underdensity while LBGs average to 4σ excess densities compared to the control field. If these environments reflect halo mass, the QSO may not be in the most massive halo but still in a moderately massive one. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. From Galaxies to the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.

    2010-07-01

    Deep in dark matter halos, galaxies are large factories that convert gas into stars. Gas is accreted from the expansive intergalactic medium (IGM); stars process this gas by fusing lighter elements into heavier ones. In this Dissertation, I combine both observations and theories from a variety of subfields of astrophysics with analytic and numerical models in an aim for a comprehensive understanding of the underlying physics of star formation feedback, galaxy chemical evolution, and the IGM. The mass-metallicity relation is an observed tight correlation between the stellar masses and gas-phase oxygen abundances of star-forming galaxies. I show that while the intrinsic scatter in this relation is small, extreme outliers do exist; I argue that these outliers have unusual metallicities for their masses because they have unusual gas fractions for their masses. The low-mass high-metallicity galaxies appear to be nearing the end of their star formation, and thus should have abnormally small gas reservoirs with which to dilute their metals. On the other hand, the high-mass low-metallicity galaxies appear to be undergoing gas-rich galaxy mergers, implying that they have larger-than-normal amounts of gas diluting their metals. I then show through analytic arguments that while gas fractions can have a large impact on observed metallicities, the low-redshift mass-metallicity relation is dominated by outflow properties because typical galaxies have relatively small gas fractions. Specifically, the mass-metallicity relation implies that the efficiency with which galaxies expel metals should scale steeply with galaxy mass. Combining this model with reasonable models for star formation feedback, I show that the outflow metallicity should likewise vary with galaxy mass; future measurements of wind metallicity can therefore inform models of the physics underlying galaxy winds. The high-redshift IGM is primarily observed through the Lyman-alpha absorption of neutral hydrogen along

  11. Galaxies Detected by the Dwingeloo Obscured Galaxies Survey

    NASA Astrophysics Data System (ADS)

    Rivers, A. J.; Henning, P. A.; Kraan-Korteweg, R. C.

    1999-04-01

    The Dwingeloo Obscured Galaxies Survey (DOGS) is a 21-cm blind survey for galaxies hidden in the northern `Zone of Avoidance' (ZOA): the portion of the optical extragalactic sky which is obscured by dust in the Milky Way. Like the Parkes southern hemisphere ZOA survey, the DOGS project is designed to reveal hidden dynamically important nearby galaxies and to help `fill in the blanks' in the local large scale structure. To date, 36 galaxies have been detected by the Dwingeloo survey; 23 of these were previously unknown [no corresponding sources recorded in the NASA Extragalactic Database (NED)]. Among the interesting detections are three nearby galaxies in the vicinity of NGC 6946 and 11 detections in the Supergalactic plane crossing region. VLA follow-up observations have been conducted for several of the DOGS detections.

  12. Galaxies and Their Host Dark Matter Structures

    NASA Astrophysics Data System (ADS)

    Hahn, ChangHoon

    Through their connection with dark matter structures, galaxies act as tracers of the underlying matter distribution in the Universe. Their observed spatial distribution allows us to precisely measure large scale structure and effectively test cosmological models that explain the content, geometry, and history of the Universe. Current observations from galaxy surveys such as the Baryon Oscillation Spectroscopic Survey have already probed vast cosmic volumes with millions of galaxies and ushered in an era of precision cosmology. The next surveys will probe over an order of magnitude more. With this unprecedented statistical power, the bottleneck of scientific discovery is in the methodology. In this dissertation, I address major methodological challenges in constraining cosmology with the large-scale distribution of galaxies. I develop a robust framework for treating systematic effects, which significantly bias galaxy clustering measurements. I apply new innovative approaches to probabilistic parameter inference that challenge and test the in- correct assumptions of the standard approach. Furthermore, I use precise predictions of structure formation from cosmology and observations of galaxies during the last eight billion years to develop detailed models of how galaxies are impacted by their host dark matter structures. These models provide key insight into the galaxy-halo connection, which bridges the gap between cosmology theory and observations. They also answer crucial questions of how galaxies form and evolve. The developments in this dissertation will help unlock the full potential of future observations and allow us to precisely test cosmological models, General Relativity and modified gravity scenarios, and even particle physics theory beyond the Standard Model.

  13. Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles

    NASA Astrophysics Data System (ADS)

    Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.

    2018-02-01

    Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.

  14. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  15. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  16. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  17. Simplified galaxy formation with mesh-less hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Volonteri, Marta; Silk, Joseph

    2017-09-01

    Numerical simulations have become a necessary tool to describe the complex interactions among the different processes involved in galaxy formation and evolution, unfeasible via an analytic approach. The last decade has seen a great effort by the scientific community in improving the sub-grid physics modelling and the numerical techniques used to make numerical simulations more predictive. Although the recently publicly available code gizmo has proven to be successful in reproducing galaxy properties when coupled with the model of the MUFASA simulations and the more sophisticated prescriptions of the Feedback In Realistic Environment (FIRE) set-up, it has not been tested yet using delayed cooling supernova feedback, which still represent a reasonable approach for large cosmological simulations, for which detailed sub-grid models are prohibitive. In order to limit the computational cost and to be able to resolve the disc structure in the galaxies we perform a suite of zoom-in cosmological simulations with rather low resolution centred around a sub-L* galaxy with a halo mass of 3 × 1011 M⊙ at z = 0, to investigate the ability of this simple model, coupled with the new hydrodynamic method of gizmo, to reproduce observed galaxy scaling relations (stellar to halo mass, stellar and baryonic Tully-Fisher, stellar mass-metallicity and mass-size). We find that the results are in good agreement with the main scaling relations, except for the total stellar mass, larger than that predicted by the abundance matching technique, and the effective sizes for the most massive galaxies in the sample, which are too small.

  18. Linking Dense Gas from the Milky Way to External Galaxies

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.

    2016-06-01

    In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.

  19. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  20. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  1. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  2. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including

  3. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  4. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  5. Star Formation in a Complete Spectroscopic Survey of Galaxies

    NASA Astrophysics Data System (ADS)

    Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.

    2001-10-01

    density decreases. Whether a galaxy forms stars or not is strongly correlated with the surrounding galaxy density averaged over a scale of a few Mpc. This dependence reflects, in large part, the morphology-density relation. However, for galaxies forming stars, the stellar birthrate parameter is remarkably insensitive to the galaxy density. This conclusion suggests that the triggering of star formation occurs on a smaller spatial scale.

  6. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuang-Han; Fall, S. Michael; Ferguson, Henry C.

    2017-03-20

    We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions asmore » for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.« less

  7. The MUSE view of QSO PG 1307+085: an elliptical galaxy on the MBH-σ* relation interacting with its group environment

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Bennert, V. N.; Scharwächter, J.; Woo, J.-H.; Choudhury, O. S.

    2016-01-01

    We report deep optical integral-field spectroscopy with the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope of the luminous radio-quiet quasi-stellar object (QSO) PG 1307+085 obtained during commissioning. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact (re ˜ 1.3 arcsec) elliptical host galaxy. After spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of σ* = 155 ± 19 km s-1. This places PG 1307+085 on the local MBH-σ* relation within its intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The MUSE observations reveal a large extended narrow-line region (ENLR) around PG 1307+085 reaching out to ˜30 kpc. In addition, we detect a faint ionized gas bridge towards the most massive galaxy of the galaxy group at 50 kpc distance. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of Lbol > 1046 erg s-1. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or gas accretion as the likely scenarios. We conclude that PG 1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is likely affected by the environment through gravity or ambient pressure. It is possible that the interaction with the environment, seen in the ionized gas, might be responsible for driving sufficient gas to the black hole.

  8. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  9. The most complete photometric analysis of 548 CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Gilhuly, Colleen

    We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.

  10. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating a Realistic Population of Satellites around a Milky Way-mass Galaxy

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-08-01

    Low-mass “dwarf” galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FIRE). This simulation models the formation of an MW-mass galaxy to z=0 within ΛCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 {M}⊙ with gas kernel/softening that adapts down to 1 {pc} (with a median of 25{--}60 {pc} at z=0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around an MW-mass host down to {M}{star}≳ {10}5 {M}⊙ . Latte’s population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) diverse range of star formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at {M}{star}≳ {10}5 {M}⊙ that does not suffer from the “missing satellites” or “too big to fail” problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ΛCDM cosmology.

  11. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  12. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  13. Probing star formation relations of mergers and normal galaxies across the CO ladder

    NASA Astrophysics Data System (ADS)

    Greve, Thomas R.

    We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.

  14. LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.

    2017-05-01

    New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .

  15. An Inclination-Dependent IRX-beta Relation for Galaxies at z~1.5

    NASA Astrophysics Data System (ADS)

    Wang, Weichen; Kassin, Susan A.; Pacifici, Camilla; de la Vega, Alexander; Simons, Raymond C.; Barro, Guillermo; Gordon, Karl D.; Snyder, Gregory

    2018-01-01

    Star-forming galaxies near cosmic noon are substantially obscured by dust. Therefore, to measure galaxy star-formation rates (SFRs), it is crucial to accurately account for dust obscuration. This is usually done by measuring the slopes of spectra in the rest-frame ultraviolet (i.e., β). Another independent method is to measure the infrared excess IRX, defined as the ratio between infrared and ultraviolet luminosity. In this work, we present the discovery that the relation between IRX and β varies systematically with galaxy inclination at z~1.5. Edge-on galaxies are on average ~0.5 dex higher in IRX than face-on galaxies at fixed β. Furthermore, we find that the difference between SFR(UV+IR) and β-corrected SFR(UV) is correlated with inclination. Our finding is consistent with the study of local galaxies (Wild et al. 2011), where the dust attenuation curve is found to flatten with increasing inclination. We interpret our results using a picture where dust and young stars are spatially mixed. In this case, β is more sensitive to the optically-thin regions near the surface of galaxy disks. Therefore, compared to the case of face-on galaxies, β measures a smaller fraction of the total dust optical depth for the edge-on galaxies, whereas IRX always probes the total optical depth. We conclude that inclination must be taken into account when evaluating dust attenuation with β at high redshift.

  16. Hubble’s Hunting Dog Galaxy

    NASA Image and Video Library

    2017-12-08

    Tucked away in the small northern constellation of Canes Venatici (The Hunting Dogs) is the galaxy NGC 4242, shown here as seen by the NASA/ESA Hubble Space Telescope. The galaxy lies some 30 million light-years from us. At this distance from Earth, actually not all that far on a cosmic scale, NGC 4242 is visible to anyone armed with even a basic telescope, as British astronomer William Herschel found when he discovered the galaxy in 1788. This image shows the galaxy’s bright center and the surrounding dimmer and more diffuse “fuzz.” Despite appearing to be relatively bright in this image, studies have found that NGC 4242 is actually relatively dim (it has a moderate-to-low surface brightness and low luminosity) and also supports a low rate of star formation. The galaxy also seems to have a weak bar of stars cutting through its asymmetric center, and a very faint and poorly-defined spiral structure throughout its disk. But if NGC 4242 is not all that remarkable, as with much of the Universe, it is still a beautiful and ethereal sight. Credit: ESA/Hubble & NASA

  17. Bar quenching in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  18. Quasar Feedback at the Peak of Galaxy Formation Epoch

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael

    2013-02-01

    The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components in spite of their vastly different masses and physical scales. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous radio-quiet obscured z 0.5 quasars. We now plan to extend this discovery to the era of peak galaxy formation and quasar activity - to the epoch when feedback was most prominent and the galaxy vs. black hole correlations were established. We propose a GMOS IFU survey to map the spatial distribution and the kinematics of Ly(alpha) and N sc v 1240Å emission around 5 obscured quasars at z=3-3.4. We will use Ly(alpha) observations to directly probe the effects of ionizing radiation of obscured quasars on their large-scale environments and N sc v observations to look for signatures of unbound quasar-driven outflows. We will observe in the g-band on sub-galactic and galaxy- wide scales (spatial resolution 3-6 kpc, field of view 40times50 kpc^2 at z=3). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of black hole growth; thus, luminous obscured quasars are the most likely sites of quasar ionization- and wind-feedback, as we found at low redshifts. Our proposed GMOS observations will provide a definitive probe of the effects of quasars on their galaxy-wide and large-scale environments close to the peak of galaxy formation epoch.

  19. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  20. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  1. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  2. A General Precipitation-limited L X–T–R Relation among Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Voit, G. Mark; Ma, C. P.; Greene, J.; Goulding, A.; Pandya, V.; Donahue, M.; Sun, M.

    2018-01-01

    The relation between X-ray luminosity (L X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is determined primarily by cosmological structure formation. In less massive systems, it primarily reflects the feedback response to radiative cooling of circumgalactic gas. Here we present a simple but powerful model for the L X–T relation as a function of physical aperture R within which those measurements are made. The model is based on the precipitation framework for AGN feedback and assumes that the circumgalactic medium is precipitation-regulated at small radii and limited by cosmological structure formation at large radii. We compare this model with many different data sets and show that it successfully reproduces the slope and upper envelope of the L X–T–R relation over the temperature range from ∼0.2 keV through ≳ 10 {keV}. Our findings strongly suggest that the feedback mechanisms responsible for regulating star formation in individual massive galaxies have much in common with the precipitation-triggered feedback that appears to regulate galaxy-cluster cores.

  3. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  4. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  5. On the galaxy-halo connection in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Desmond, Harry; Mao, Yao-Yuan; Wechsler, Risa H.; Crain, Robert A.; Schaye, Joop

    2017-10-01

    Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.

  6. The disk averaged star formation relation for Local Volume dwarf galaxies

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  7. A model for the origin of bursty star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  8. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    NASA Astrophysics Data System (ADS)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z < 0.2. Using the SDSS image at z < 0.1 and the HST image at z > 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  9. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  10. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  11. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  12. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  13. Color-magnitude relations in nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rasheed, Mariwan A.; Mohammad, Khalid K.

    2018-06-01

    The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.

  14. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  15. Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass

    NASA Astrophysics Data System (ADS)

    Bottrell, Connor; Torrey, Paul; Simard, Luc; Ellison, Sara L.

    2017-05-01

    The interpretive power of the newest generation of large-volume hydrodynamical simulations of galaxy formation rests upon their ability to reproduce the observed properties of galaxies. In this second paper in a series, we employ bulge+disc decompositions of realistic dust-free galaxy images from the Illustris simulation in a consistent comparison with galaxies from the Sloan Digital Sky Survey (SDSS). Examining the size-luminosity relations of each sample, we find that galaxies in Illustris are roughly twice as large and 0.7 mag brighter on average than galaxies in the SDSS. The trend of increasing slope and decreasing normalization of size-luminosity as a function of bulge fraction is qualitatively similar to observations. However, the size-luminosity relations of Illustris galaxies are quantitatively distinguished by higher normalizations and smaller slopes than for real galaxies. We show that this result is linked to a significant deficit of bulge-dominated galaxies in Illustris relative to the SDSS at stellar masses log M_{\\star }/M_{⊙}≲ 11. We investigate this deficit by comparing bulge fraction estimates derived from photometry and internal kinematics. We show that photometric bulge fractions are systematically lower than the kinematic fractions at low masses, but with increasingly good agreement as the stellar mass increases.

  16. Star formation quenching in green valley galaxies at 0.5 ≲ z ≲ 1.0 and constraints with galaxy morphologies

    NASA Astrophysics Data System (ADS)

    Nogueira-Cavalcante, J. P.; Gonçalves, T. S.; Menéndez-Delmestre, K.; Sheth, K.

    2018-01-01

    We calculate the star formation quenching time-scales in green valley galaxies at intermediate redshifts (z ∼ 0.5-1) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disc-like, irregular and merger, dividing disc-like galaxies further into unbarred, weakly barred and strongly barred, assuming a simple exponentially decaying star formation history model and based on the H δ absorption feature and the 4000 Å break. We find that different morphological types present different star formation quenching time-scales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching time-scale indicates that discs have typical time-scales 60 per cent to five times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies, in particular, present the slowest transition time-scales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies, contributes, to a more significant degree, to the fast transition through the green valley at these redshifts. In light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at z ∼ 0.8.

  17. REVIEWS OF TOPICAL PROBLEMS: Large-scale star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yurii N.; Chernin, Artur D.

    2003-01-01

    A brief review is given of the history of modern ideas on the ongoing star formation process in the gaseous disks of galaxies. Recent studies demonstrate the key role of the interplay between the gas self-gravitation and its turbulent motions. The large scale supersonic gas flows create structures of enhanced density which then give rise to the gravitational condensation of gas into stars and star clusters. Formation of star clusters, associations and complexes is considered, as well as the possibility of isolated star formation. Special emphasis is placed on star formation under the action of ram pressure.

  18. Galaxy clustering and the origin of large-scale flows

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, R.; Yahil, A.

    1989-01-01

    Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.

  19. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  20. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  1. COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jullo, Eric; Rhodes, Jason; Kiessling, Alina

    2012-05-01

    In the theory of structure formation, galaxies are biased tracers of the underlying matter density field. The statistical relation between galaxy and matter density field is commonly referred to as galaxy bias. In this paper, we test the linear bias model with weak-lensing and galaxy clustering measurements in the 2 deg{sup 2} COSMOS field. We estimate the bias of galaxies between redshifts z = 0.2 and z = 1 and over correlation scales between R = 0.2 h{sup -1} Mpc and R = 15 h{sup -1} Mpc. We focus on three galaxy samples, selected in flux (simultaneous cuts I{sub 814W}more » < 26.5 and K{sub s} < 24) and in stellar mass (10{sup 9} < M{sub *} < 10{sup 10} h{sup -2} M{sub Sun} and 10{sup 10} < M{sub *} < 10{sup 11} h{sup -2} M{sub Sun }). At scales R > 2 h{sup -1} Mpc, our measurements support a model of bias increasing with redshift. The Tinker et al. fitting function provides a good fit to the data. We find the best-fit mass of the galaxy halos to be log (M{sub 200}/h{sup -1} M{sub Sun }) = 11.7{sup +0.6}{sub -1.3} and log (M{sub 200}/h{sup -1} M{sub Sun }) = 12.4{sup +0.2}{sub -2.9}, respectively, for the low and high stellar-mass samples. In the halo model framework, bias is scale dependent with a change of slope at the transition scale between the one and the two halo terms. We detect a scale dependence of bias with a turndown at scale R = 2.3 {+-} 1.5 h{sup -1} Mpc, in agreement with previous galaxy clustering studies. We find no significant amount of stochasticity, suggesting that a linear bias model is sufficient to describe our data. We use N-body simulations to quantify both the amount of cosmic variance and systematic errors in the measurement.« less

  2. ALMA Observations of Gas-rich Galaxies in z ˜ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.

    2017-06-01

    We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  3. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    NASA Astrophysics Data System (ADS)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  4. The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Brennan, Ryan; Somerville, Rachel S.; Choi, Ena; Barro, Guillermo; Wuyts, Stijn; Taylor, Edward N.; Behroozi, Peter; Kirkpatrick, Allison; Faber, Sandra M.; Primack, Joel; Koo, David C.; McIntosh, Daniel H.; Kocevski, Dale; Bell, Eric F.; Dekel, Avishai; Fang, Jerome J.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Lu, Yu; Mantha, Kameswara; Mobasher, Bahram; Newman, Jeffrey; Pacifici, Camilla; Papovich, Casey; van der Wel, Arjen; Yesuf, Hassen M.

    2017-12-01

    We explore observational and theoretical constraints on how galaxies might transition between the 'star-forming main sequence' (SFMS) and varying 'degrees of quiescence' out to z = 3. Our analysis is focused on galaxies with stellar mass M* > 1010 M⊙, and is enabled by GAMA and CANDELS observations, a semi-analytic model (SAM) of galaxy formation, and a cosmological hydrodynamical 'zoom in' simulation with momentum-driven AGN feedback. In both the observations and the SAM, transition galaxies tend to have intermediate Sérsic indices, half-light radii, and surface stellar mass densities compared to star-forming and quiescent galaxies out to z = 3. We place an observational upper limit on the average population transition time-scale as a function of redshift, finding that the average high-redshift galaxy is on a 'fast track' for quenching whereas the average low-redshift galaxy is on a 'slow track' for quenching. We qualitatively identify four physical origin scenarios for transition galaxies in the SAM: oscillations on the SFMS, slow quenching, fast quenching, and rejuvenation. Quenching time-scales in both the SAM and the hydrodynamical simulation are not fast enough to reproduce the quiescent population that we observe at z ∼ 3. In the SAM, we do not find a clear-cut morphological dependence of quenching time-scales, but we do predict that the mean stellar ages, cold gas fractions, SMBH (supermassive black hole) masses and halo masses of transition galaxies tend to be intermediate relative to those of star-forming and quiescent galaxies at z < 3.

  5. RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu

    2012-09-10

    From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less

  6. The AMIGA sample of isolated galaxies. XIII. The HI content of an almost "nurture free" sample

    NASA Astrophysics Data System (ADS)

    Jones, M. G.; Espada, D.; Verdes-Montenegro, L.; Huchtmeier, W. K.; Lisenfeld, U.; Leon, S.; Sulentic, J.; Sabater, J.; Jones, D. E.; Sanchez, S.; Garrido, J.

    2018-01-01

    Context. We present the largest catalogue of HI single dish observations of isolated galaxies to date, as part of the multi-wavelength compilation being performed by the AMIGA project (Analysis of the interstellar Medium in Isolated GAlaxies). Despite numerous studies of the HI content of galaxies, no revision focused on the HI scaling relations of the most isolated L∗ galaxies has been made since Haynes & Giovanelli (1984, AJ, 89, 758). Aims: The AMIGA sample has been demonstrated to be almost "nurture free", therefore, by creating scaling relations for the HI content of these galaxies we will define a metric of HI normalcy in the absence of interactions. Methods: The catalogue comprises of our own HI observations with Arecibo, Effelsberg, Nançay and GBT, and spectra collected from the literature. In total we have measurements or constraints on the HI masses of 844 galaxies from the Catalogue of Isolated Galaxies (CIG). The multi-wavelength AMIGA dataset includes a revision of the B-band luminosities (LB), optical diameters (D25), morphologies, and isolation. Due to the large size of the catalogue, these revisions permit cuts to be made to ensure isolation and a high level of completeness, which was not previously possible. With this refined dataset we fit HI scaling relations based on luminosity, optical diameter and morphology. Our regression model incorporates all the data, including upper limits, and accounts for uncertainties in both variables, as well as distance uncertainties. Results: The scaling relation of HI mass with D25 is in good agreement with that of Haynes & Giovanelli (1984), but our relation with LB is considerably steeper. This disagreement is attributed to the large uncertainties in the luminosities, which introduce a bias when fitting with ordinary least squares regression (as was done in previous works), and the different morphology distributions of the samples. We find that the main effect of morphology on the D25-relation is to increase

  7. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  8. The Physical Origin of Long Gas Depletion Times in Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-18

    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolatedmore » $$L_*$$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.« less

  9. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties and Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-05-01

    We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma

  10. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Abdurro'uf; Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  11. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  12. Molecular gas in low-metallicity starburst galaxies:. Scaling relations and the CO-to-H2 conversion factor

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.

    2016-04-01

    Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model

  13. The Dynamical Properties of Virgo Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Ouellette, Nathalie N.-Q.

    By virtue of its proximity, the Virgo Cluster is an ideal laboratory for us to test our understanding of the formation of structure in our Universe. In this spirit, we present a dynamical study of 33 gas-poor and 34 gas-rich Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo survey. Our final spectroscopic data set was acquired at the 3.5-m telescope at the Apache Point Observatory. Halpha rotation curves for the gas-rich galaxies were modelled with a multi-parameter fit function from which various velocity measurements were inferred. Analog values were measured off of the observed rotation curves, but yielded noisier scaling relations, such as the luminosity-velocity relation (also known as the Tully-Fisher relation). Our best i -band Tully-Fisher relation has slope alpha = --7.2 +/- 0.5 and intercept Mi(2.3) = --21.5 +/- 1.1 mag, matching similar previous studies. Our study takes advantage of our own, as well as literature, data; we plan to continue expanding our compilation in order to build the largest Tully-Fisher relation for a cluster to date. Following extensive testing of the IDL routine pPXF , extended velocity dispersion profiles were extracted for our gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy velocity dispersion in the literature, we have endeavoured to rectify this situation by determining the radius at which the measured velocity dispersion, coupled with the galaxy luminosity, yields the tightest Faber-Jackson relation. We found that radius to be 1.5 R e, which exceeds the extent of most dispersion profiles in other works. The slope of our Faber-Jackson relation is alpha = --4.3 +/- 0.2, which closely matches the virial value of 4. This analysis will soon be applied to a study of the Virgo Cluster Fundamental Plane. Rotation correction of our dispersion profiles will also permit the study of galaxies' velocity dispersion profile shapes in an attempt to refine our

  14. THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilman, David J.; Erwin, Peter

    2012-02-20

    We present results of an analysis of the local (z {approx} 0) morphology-environment relation for 911 bright (M{sub B} < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10{sup 11.7}-10{sup 14.8} h{sup -1} M{sub Sun }, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (wheremore » 'central' galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from {approx}10% to {approx}70%. Here, too, we find striking differences between the central and satellite populations. 20% {+-} 2% of central galaxies with stellar masses M{sub *} > 10{sup 10.5} M{sub Sun} are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>10{sup 13} h{sup -1} M{sub Sun }) halos, where they are 69% {+-} 4% of the M{sub *} > 10{sup 10.5} M{sub Sun} satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M{sub *} {approx}< 10{sup 11} M{sub Sun }) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is

  15. Parsec-scale jets and tori in seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically <= 0.25 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma conditions required to produce the absorption are Ne >= 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  16. Hot Gas and AGN Feedback in Galaxies and Nearby Groups

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Forman, William; Bogdan, Akos; Randall, Scott; Kraft, Ralph; Churazov, Eugene

    2013-07-01

    Massive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.

  17. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillo, C.; Christensen, L.; Gobat, R.

    2014-05-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to modelmore » the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this

  18. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  19. The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-06-01

    We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.

  20. Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.

    1993-12-01

    Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  1. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties, Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, T.; Takeuchi, T. T.

    2001-12-01

    A new model of infrared galaxy counts and the cosmic background radiation (CBR) is developed by extending a model for optical/near-infrared galaxies. Important new characteristics of this model are that mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that the big grain dust temperature T dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T dust and total infrared luminosity L IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L IR-T dust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μ m) and CBR by this model. We found considerably different results from most of previous works based on the empirical L IR-T dust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40--80K). This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2--3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE\\ detections of FIR CBR. The authors thank the financial support by the Japan Society for Promotion of Science.

  2. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  3. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-07-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge, and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored nor cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010 M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  4. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  5. Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection

    NASA Astrophysics Data System (ADS)

    Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan

    2017-08-01

    Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.

  6. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  7. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  8. Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Maubon, G.; Prugniel, Ph.

    We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.

  9. Extrinsic Sources of Scatter in the Richness-mass Relation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rozo, Eduardo; Rykoff, Eli; Koester, Benjamin; Nord, Brian; Wu, Hao-Yi; Evrard, August; Wechsler, Risa

    2011-10-01

    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low-mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using Sloan Digital Sky Survey data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (≈1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is ≈5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.

  10. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  11. The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa

    2018-01-01

    The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.

  12. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  13. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  14. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    NASA/ESA Hubble Space Telescope, the ESA Infrared Space Observatory (ISO) satellite and the NRAO Very Large Array. With the Very Large Telescope, observations were performed on Antu and Kueyen over a two-year period using the quasi-twin instruments FORS1 and FORS2 in the visible and ISAAC in the infrared. In both cases, it was essential to rely on the unique capabilities of the VLT to obtain high-quality spectra with the required resolution. A fleet of results ESO PR Photo 02a/05 ESO PR Photo 02a/05 Luminosity - Oxygen Abundance Relation for Galaxies [Preview - JPEG: 400 x 455 pix - 81k] [Normal - JPEG: 800 x 910 pix - 208k] Caption: ESO PR Photo 02a/05 shows the oxygen abundance (expressed in fraction of the solar value) as a function of the luminosity of the galaxies (in logarithm scale). This relation is fundamental in astrophysics. The relation for local galaxies is shown by the solid red line. The blue dots are the values derived from VLT spectra in a subset of the studied galaxies. They reveal for the first time that this relation is changing with time: for a given value of the luminosity, galaxies of different ages present different values of the oxygen abundance. From their extensive set of data, the astronomers could draw a number of important conclusions. First, based on the near-infrared luminosities of the galaxies, they infer that most of the galaxies they studied contain between 30,000 million and 300,000 million times the mass of the Sun in the form of stars. This is roughly a factor 0.2 to 2 the amount of mass locked in stars in our own Milky Way. Second, they discovered that contrary to the local Universe where so-called Luminous Infrared Galaxies (LIRGs; [3]) are very rare objects, at a redshift from 0.4 to 1, that is, 4,000 to 8,000 million years ago, roughly one sixth of bright galaxies were LIRGs. Because this peculiar class of galaxies is believed to be going through a very active phase of star formation, with a doubling of the stellar mass

  15. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    NASA Technical Reports Server (NTRS)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  16. The edge of galaxy formation - II. Evolution of Milky Way satellite analogues after infall

    NASA Astrophysics Data System (ADS)

    Frings, Jonas; Macciò, Andrea; Buck, Tobias; Penzo, Camilla; Dutton, Aaron; Blank, Marvin; Obreja, Aura

    2017-12-01

    In the first paper, we presented 27 hydrodynamical cosmological simulations of galaxies with total masses between 5 × 108 and 1010 M⊙. In this second paper, we use a subset of these cosmological simulations as initial conditions (ICs) for more than 40 hydrodynamical simulations of satellite and host galaxy interaction. Our cosmological ICs seem to suggest that galaxies on these mass scales have very little rotational support and are velocity dispersion (σ) dominated. Accretion and environmental effects increase the scatter in the galaxy scaling relations (e.g. size-velocity dispersion) in very good agreement with observations. Star formation is substantially quenched after accretion. Mass removal due to tidal forces has several effects: it creates a very flat stellar velocity dispersion profile, and it reduces the dark matter content at all scales (even in the centre), which in turn lowers the stellar velocity on scales around 0.5 kpc even when the galaxy does not lose stellar mass. Satellites which start with a cored dark matter profile are more prone to either be destroyed or to end up in a very dark matter poor galaxy. Finally, we found that tidal effects always increase the 'cuspyness' of the dark matter profile, even for haloes that infall with a core.

  17. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  18. The Near-Infrared Ca II Triplet-σ Relation for Bulges of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Peletier, Reynier F.; Vazdekis, Alexandre; Balcells, Marc

    2003-05-01

    We present measurements of the near-infrared Ca II triplet (CaT, CaT*), Paschen (PaT), and magnesium (Mg I) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decrease with central velocity dispersion σ with small scatter. This dependence is similar to that recently found by Cenarro for elliptical galaxies, implying a uniform CaT*-σ relation that applies to galaxies from ellipticals to intermediate-type spirals. The decrease of CaT and CaT* with σ contrasts with the well-known increase of another α-element index, Mg2, with σ. We discuss the role of Ca underabundance ([Ca/Fe]<0) and initial mass function variations in the onset of the observed relations.

  19. Anisotropy of the galaxy cluster X-ray luminosity-temperature relation

    NASA Astrophysics Data System (ADS)

    Migkas, Konstantinos; Reiprich, Thomas H.

    2018-03-01

    We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX-T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l (-15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX-T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be 2.7σ for ACC and 3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX-T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to

  20. The Physical Origin of Long Gas Depletion Times in Galaxies

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-01

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  1. Which Galaxies Are the Most Habitable?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe

  2. The distribution of early- and late-type galaxies in the Coma cluster

    NASA Technical Reports Server (NTRS)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  3. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  4. The Role of Large-Scale Structure and Assembly in the Quenching of Star Formation in Cluster Galaxies at z 0.2

    NASA Astrophysics Data System (ADS)

    Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.

    2010-01-01

    We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.

  5. Fundamental tests of galaxy formation theory

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The structure of the universe as an environment where traces exist of the seed fluctuations from which galaxies formed is studied. The evolution of the density fluctuation modes that led to the eventual formation of matter inhomogeneities is reviewed, How the resulting clumps developed into galaxies and galaxy clusters acquiring characteristic masses, velocity dispersions, and metallicities, is discussed. Tests are described that utilize the large scale structure of the universe, including the dynamics of the local supercluster, the large scale matter distribution, and the anisotropy of the cosmic background radiation, to probe the earliest accessible stages of evolution. Finally, the role of particle physics is described with regard to its observable implications for galaxy formation.

  6. Bright end of the color-magnitude relation for cD, E and S0 galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lugger, P.M.

    1979-11-01

    Schild and Davis's (Astron. J. 84, 311 (1979)) galaxy photometry for cD's in poor clusters is compared with Sandage's (Astrophys. J. 176, 21(1979)) color-magnitude relation defined by elliptical and S0 galaxies in the Virgo and Coma clusters. The cD galaxies are found to be somewhat bluer on average than galaxies of similar magnitude in the Virgo and Coma sample, consistent with the predictions of the galactic cannibalism model proposed by Hausman and Ostriker (Astrophys. J. 224, 320 (1978)). However, a more uniform selection of galaxy photometry is required before any definitive conclusions regarding the bright end of the color-magnitude relationmore » can be made.« less

  7. Reconstructing the galaxy density field with photometric redshifts - II. Environment-dependent galaxy evolution since z ≃ 3

    NASA Astrophysics Data System (ADS)

    Malavasi, Nicola; Pozzetti, Lucia; Cucciati, Olga; Bardelli, Sandro; Ilbert, Olivier; Cimatti, Andrea

    2017-09-01

    Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the galaxy stellar mass function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z ˜ 3, on physical scales from 0.3 to 2 Mpc, down to masses of M ˜ 1010 M⊙. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z ˜ 2 with the high-mass end (M ≳ 1011 M⊙) being enhanced in high-density environments. On the contrary, for star-forming galaxies, a difference between the GSMF in high- and low-density environments is present for masses M ≲ 1011 M⊙. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z < 1.5. Differences in the shape of the GSMF are not visible anymore at z > 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes that are preferentially in high-density environments.

  8. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2018-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  9. The metal enrichment of passive galaxies in cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.

    2017-02-01

    Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.

  10. Dwarfs and Giants in the local flows of galaxies.

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  11. Extended Schmidt law holds for faint dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  12. Gentle reenergization of electrons in merging galaxy clusters

    PubMed Central

    de Gasperin, Francesco; Intema, Huib T.; Shimwell, Timothy W.; Brunetti, Gianfranco; Brüggen, Marcus; Enßlin, Torsten A.; van Weeren, Reinout J.; Bonafede, Annalisa; Röttgering, Huub J. A.

    2017-01-01

    Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component. We propose that the interplay between radio-emitting plasma and the perturbed intracluster medium can gently reenergize relativistic particles initially injected by active galactic nuclei. Sources powered through this mechanism can maintain electrons at higher energies than radiative aging would allow. If this mechanism is common for aged plasma, a population of mildly relativistic electrons can be accumulated inside galaxy clusters providing the seed population for merger-induced reacceleration mechanisms on larger scales such as turbulence and shock waves. PMID:28983512

  13. Gentle reenergization of electrons in merging galaxy clusters.

    PubMed

    de Gasperin, Francesco; Intema, Huib T; Shimwell, Timothy W; Brunetti, Gianfranco; Brüggen, Marcus; Enßlin, Torsten A; van Weeren, Reinout J; Bonafede, Annalisa; Röttgering, Huub J A

    2017-10-01

    Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component. We propose that the interplay between radio-emitting plasma and the perturbed intracluster medium can gently reenergize relativistic particles initially injected by active galactic nuclei. Sources powered through this mechanism can maintain electrons at higher energies than radiative aging would allow. If this mechanism is common for aged plasma, a population of mildly relativistic electrons can be accumulated inside galaxy clusters providing the seed population for merger-induced reacceleration mechanisms on larger scales such as turbulence and shock waves.

  14. The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura

    2017-12-01

    The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.

  15. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  16. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  17. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  18. Galaxy Zoo: evidence for diverse star formation histories through the green valley

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2015-06-01

    Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†

  19. AGN feedback and the origin of the α enhancement in early-type galaxies - insights from the GAEA model

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela

    2017-03-01

    We take advantage of our recently published model for GAlaxy Evolution and Assembly (GAEA) to study the origin of the observed correlation between [α/Fe] and galaxy stellar mass. In particular, we analyse the role of radio-mode active galactic nuclei (AGN) feedback, which recent work has identified as a crucial ingredient to reproduce observations. In GAEA, this process introduces the observed trend of star formation histories extending over shorter time-scales for more massive galaxies, but does not provide a sufficient condition to reproduce the observed α enhancements of massive galaxies. In the framework of our model, this is possible only by assuming that any residual star formation is truncated for galaxies more massive than 1010.5 M⊙. This results, however, in even shorter star formation time-scales for the most massive galaxies, which translate in total stellar metallicities significantly lower than observed. Our results demonstrate that (I) trends of [α/Fe] ratios cannot be simply converted into relative time-scale indicators; and (II) AGN feedback cannot explain alone the positive correlation between [α/Fe] and galaxy mass/velocity dispersion. Reproducing simultaneously the mass-metallicity relation and the α enhancements observed pose a challenge for hierarchical models, unless more exotic solutions are adopted such as metal-rich winds or a variable initial mass function.

  20. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.

    2012-04-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.

  1. An order statistics approach to the halo model for galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.

    2017-04-01

    We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.

  2. In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, Charlotte R.; Davé, Romeel; Governato, Fabio; Pontzen, Andrew; Brooks, Alyson; Munshi, Ferah; Quinn, Thomas; Wadsley, James

    2016-06-01

    We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range {10}9.5{--}{10}12 {M}⊙ . These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass-halo mass, Tully-Fisher, and mass-metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as {v}{{circ}}-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ˜1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ˜2-3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs.

  3. Dark-ages reionization and galaxy-formation simulation- VI. The origins and fate of the highest known redshift galaxy

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Liu, Chuanwu; Poole, Gregory B.; Geil, Paul M.; Duffy, Alan R.; Trenti, Michele; Oesch, Pascal A.; Illingworth, Garth D.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-12-01

    Using Hubble data, including new grism spectra, Oesch et al. recently identified GN-z11, an MUV = -21.1 galaxy at z = 11.1 (just 400 Myr after the big bang). With an estimated stellar mass of ˜109 M⊙, this galaxy is surprisingly bright and massive, raising questions as to how such an extreme object could form so early in the Universe. Using MERAXES, a semi-analytic galaxy-formation model developed as part of the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations (DRAGONS) programme, we investigate the potential formation mechanisms and eventual fate of GN-z11. The volume of our simulation is comparable to that of the discovery observations and possesses two analogue galaxies of similar luminosity to this remarkably bright system. Existing in the two most massive subhaloes at z = 11.1 (Mvir = 1.4 × 1011 M⊙ and 6.7 × 1010 M⊙), our model analogues show excellent agreement with all available observationally derived properties of GN-z11. Although they are relatively rare outliers from the full galaxy population at high-z, they are no longer the most massive or brightest systems by z = 5. Furthermore, we find that both objects possess relatively smooth, but extremely rapid mass growth histories with consistently high star formation rates and UV luminosities at z > 11, indicating that their brightness is not a transient, merger-driven feature. Our model results suggest that future wide-field surveys with the James Webb Space Telescope may be able to detect the progenitors of GN-z11 analogues out to z ˜ 13-14, pushing the frontiers of galaxy-formation observations to the early phases of cosmic reionization and providing a valuable glimpse of the first galaxies to reionize the Universe on large scales.

  4. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14< z< 1.0. Hosts of nine candidates have spectroscopic observations, of which six are classified as quasars, one as high- and two as low-excitation galaxies. Two candidate HyMoRS are giant (> 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  5. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    effect of the jet on the companion galaxy is likely to be substantial, because the galaxies in 3C321 are extremely close at a distance of only about 20,000 light years apart. They lie approximately the same distance as Earth is from the center of the Milky Way galaxy. A bright spot in the Very Large Array and MERLIN images shows where the jet has struck the side of the galaxy, dissipating some of the jet's energy. The collision disrupted and deflected the jet. X-ray Image of 3C321 X-ray Image of 3C321 Another unique aspect of the discovery in 3C321 is how relatively short-lived this event is on a cosmic time scale. Features seen in the Very Large Array and Chandra images indicate that the jet began impacting the galaxy about one million years ago, a small fraction of the system's lifetime. This means such an alignment is quite rare in the nearby universe, making 3C321 an important opportunity to study such a phenomenon. It is possible the event is not all bad news for the galaxy being struck by the jet. The massive influx of energy and radiation from the jet could induce the formation of large numbers of stars and planets after its initial wake of destruction is complete. The results from Evans and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  6. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    effect of the jet on the companion galaxy is likely to be substantial, because the galaxies in 3C321 are extremely close at a distance of only about 20,000 light years apart. They lie approximately the same distance as Earth is from the center of the Milky Way galaxy. A bright spot in the Very Large Array and MERLIN images shows where the jet has struck the side of the galaxy, dissipating some of the jet's energy. The collision disrupted and deflected the jet. X-ray Image of 3C321 X-ray Image of 3C321 Another unique aspect of the discovery in 3C321 is how relatively short-lived this event is on a cosmic time scale. Features seen in the Very Large Array and Chandra images indicate that the jet began impacting the galaxy about one million years ago, a small fraction of the system's lifetime. This means such an alignment is quite rare in the nearby universe, making 3C321 an important opportunity to study such a phenomenon. It is possible the event is not all bad news for the galaxy being struck by the jet. The massive influx of energy and radiation from the jet could induce the formation of large numbers of stars and planets after its initial wake of destruction is complete. The results from Evans and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  7. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  8. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-06-01

    Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.

  9. Cosmic web and star formation activity in galaxies at z ∼ 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darvish, B.; Mobasher, B.; Sales, L. V.

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emittersmore » and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.« less

  10. What galaxy masses perturb the local cosmic expansion?

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; Fattahi, Azadeh

    2017-06-01

    We use 12 cosmological N-body simulations of Local Group systems (the apostle models) to inspect the relation between the virial mass of the main haloes (Mvir,1 and Mvir,2), the mass derived from the relative motion of the halo pair (Mtim), and that inferred from the local Hubble flow (Mlhf). We show that within the spherical collapse model (SCM), the correspondence between the three mass estimates is exact, I.e. Mlhf = Mtim = Mvir,1 + Mvir,2. However, comparison with apostle simulations reveals that, contrary to what the SCM states, a relatively large fraction of the mass that perturbs the local Hubble flow and drives the relative trajectory of the main galaxies is not contained within Rvir, and that the amount of 'extravirial' mass tends to increase in galaxies with a slow accretion rate. In contrast, modelling the peculiar velocities around the Local Group returns an unbiased constraint on the virial mass ratio of the main galaxy pair. Adopting the outer halo profile found in N-body simulations, which scales as ρ ˜ R-4 at R ≳ Rvir, indicates that the galaxy masses perturbing the local Hubble flow roughly correspond to the asymptotically convergent (total) masses of the individual haloes. We show that estimates of Mvir based on the dynamics of tracers at R ≫ Rvir require a priori information on the internal matter distribution and the growth rate of the main galaxies, both of which are typically difficult to quantify.

  11. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model

  12. THE RELATION BETWEEN GALAXY STRUCTURE AND SPECTRAL TYPE: IMPLICATIONS FOR THE BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5 < z < 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Michael; Kriek, Mariska; Wel, Arjen van der

    We present the relation between galaxy structure and spectral type, using a K-selected galaxy sample at 0.5 < z < 2.0. Based on similarities between the UV-to-NIR spectral energy distributions (SEDs), we classify galaxies into 32 spectral types. The different types span a wide range in evolutionary phases, and thus—in combination with available CANDELS/F160W imaging—are ideal to study the structural evolution of galaxies. Effective radii (R{sub e}) and Sérsic parameters (n) have been measured for 572 individual galaxies, and for each type, we determine R{sub e} at fixed stellar mass by correcting for the mass-size relation. We use the rest-frame U − V versus V − J diagrammore » to investigate evolutionary trends. When moving into the direction perpendicular to the star-forming sequence, in which we see the Hα equivalent width and the specific star formation rate (sSFR) decrease, we find a decrease in R{sub e} and an increase in n. On the quiescent sequence we find an opposite trend, with older redder galaxies being larger. When splitting the sample into redshift bins, we find that young post-starburst galaxies are most prevalent at z > 1.5 and significantly smaller than all other galaxy types at the same redshift. This result suggests that the suppression of star formation may be associated with significant structural evolution at z > 1.5. At z < 1, galaxy types with intermediate sSFRs (10{sup −11.5}–10{sup −10.5} yr{sup −1}) do not have post-starburst SED shapes. These galaxies have similar sizes as older quiescent galaxies, implying that they can passively evolve onto the quiescent sequence, without increasing the average size of the quiescent galaxy population.« less

  13. The Characterization of Galaxy Structure

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis

    There is no all-encompassing intuitive physical understanding of galactic structure. We cannot predict the size, surface brightness, or luminosity of an individual galaxy based on the mass of its halo, or other physical characteristics, from simple first principles or even empirical guidelines. We have come to believe that such an understanding is possible because we have identified a simple scaling relation that applies to all gravitationally bound stellar systems,from giant ellipticals to dwarf spheroidals, from spiral galaxies to globular clusters. The simplicity (and low scatter) of this relationship testifies to an underlying order. In this proposal, we outline what we have learned so far about this scaling relationship, what we need to do to refine it so that it has no free parameters and provides the strongest possible test of galaxy formation and evolution models, and several ways in which we will exploit the relationship to explore other issues. Primarily, the proposed work involves a study of the uniform IR surface photometry of several thousand stellar systems using a single data source (the Spitzer S4G survey) to address shortcomings posed by the current heterogeneous sample and combining these data with the GALEX database to study how excursions from this relationship are related to current or on-going star formation. This relationship, like its antecedents the Fundamental Plane or Tully-Fisher relationship, can also be used to estimate distances and stellar mass-to-light ratios. We will describe the key advantages our relationship has relative to the existing work and how we will exploit those using archival NASA data from the Spitzer, GALEX, and WISE missions.

  14. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved

  15. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  16. The dynamics and evolution of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret; Huchra, John P.

    1987-01-01

    Research was undertaken to produce a coherent picture of the formation and evolution of large-scale structures in the universe. The program is divided into projects which examine four areas: the relationship between individual galaxies and their environment; the structure and evolution of individual rich clusters of galaxies; the nature of superclusters; and the large-scale distribution of individual galaxies. A brief review of results in each area is provided.

  17. The link between tidal interaction and nuclear activity in galaxies

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.; Rees, M. J.

    1988-01-01

    It is considered how nuclear activity in galaxies may be induced by the tidal perturbation of companion galaxies. It is suggested that if the central regions of the galaxies contain marginally self-gravitating disks of gas, trailing spiral density waves, triggered by nonaxisymmetric gravitational instability, lead to efficient angular momentum transport. If the net effect of the external perturbation is to increase the effect of self-gravity in the gas, then the result is to induce a considerable increase in the mass accretion rate into the central region on a relatively short time scale. With a simple prescription, the evolution of self-gravitating accretion disks is examined in this context. These results are discussed in the context of the frequent occurrence of nuclear activity in interacting galaxies.

  18. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  19. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  20. Circumnuclear Structures in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Pjanka, Patryk; Greene, Jenny E.; Seth, Anil C.; Braatz, James A.; Henkel, Christian; Lo, Fred K. Y.; Läsker, Ronald

    2017-08-01

    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ˜100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  1. The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Frith, W. J.; Outram, P. J.; Shanks, T.

    2005-06-01

    We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey

  2. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-08-07

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  3. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  4. A galaxy lacking dark matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  5. fire in the field: simulating the threshold of galaxy formation

    NASA Astrophysics Data System (ADS)

    Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.

    2017-11-01

    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.

  6. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arrangedmore » in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.« less

  7. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatialmore » resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.« less

  8. Galaxy And Mass Assembly (GAMA): The mechanisms for quiescent galaxy formation at z < 1

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Wild, V.; Bourne, N.; Bremer, M.; Brough, S.; Driver, S. P.; Hopkins, A. M.; Owers, M. S.; Phillipps, S.; Pimbblet, K.; Sansom, A. E.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Taylor, E. N.

    2018-01-01

    One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies. We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8 Gyr, the quiescent population has grown more slowly in number density at high masses ({M}_\\ast >10^{11}{M_{⊙}) than at intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times. At intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ∼ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z < 1. However, at high masses ({M}_\\ast >10^{11}{M_{⊙}), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation.

  9. The topology of galaxy clustering.

    NASA Astrophysics Data System (ADS)

    Coles, P.; Plionis, M.

    The authors discuss an objective method for quantifying the topology of the galaxy distribution using only projected galaxy counts. The method is a useful complement to fully three-dimensional studies of topology based on the genus by virtue of the enormous projected data sets available. Applying the method to the Lick counts they find no evidence for large-scale non-gaussian behaviour, whereas the small-scale distribution is strongly non-gaussian, with a shift in the meatball direction.

  10. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  11. Galaxy Surface Photometry

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Jørgensen, Inger

    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.

  12. A new strong-lensing galaxy at z=0.066: Another elliptical galaxy with a lightweight IMF

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-05-01

    We report the discovery of a new low-redshift galaxy-scale gravitational lens, identified from a systematic search of publicly available MUSE observations. The lens galaxy, 2MASXJ04035024-0239275, is a giant elliptical at z = 0.06604 with a velocity dispersion of σ = 314 km s-1. The lensed source has a redshift of 0.19165 and forms a pair of bright images on either side of the lens centre. The Einstein radius is 1.5 arcsec, projecting to 1.8 kpc, which is just one quarter of the galaxy effective radius. After correcting for an estimated 19 per cent dark matter contribution, we find that the stellar mass-to-light ratio from lensing is consistent with that expected for a Milky Way initial mass function (IMF). Combining the new system with three previously-studied low-redshift lenses of similar σ, the derived mean mass excess factor (relative to a Kroupa IMF) is ⟨α⟩ = 1.09±0.08. With all four systems, the intrinsic scatter in α for massive elliptical galaxies can be limited to <0.32, at 90 per cent confidence.

  13. Galaxy and Mass Assembly (GAMA): Mid-infrared Properties and Empirical Relations from WISE

    NASA Astrophysics Data System (ADS)

    Cluver, M. E.; Jarrett, T. H.; Hopkins, A. M.; Driver, S. P.; Liske, J.; Gunawardhana, M. L. P.; Taylor, E. N.; Robotham, A. S. G.; Alpaslan, M.; Baldry, I.; Brown, M. J. I.; Peacock, J. A.; Popescu, C. C.; Tuffs, R. J.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Lara-López, M. A.; Leschinski, K.; López-Sánchez, A. R.; Norberg, P.; Owers, M. S.; Wang, L.; Wilkins, S. M.

    2014-02-01

    The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Survey Explorer (WISE), allows us to explore for the first time the mid-infrared properties of >110, 000 galaxies over 120 deg2 to z ~= 0.5. In this paper we detail the procedure for producing the matched GAMA-WISE catalog for the G12 and G15 fields, in particular characterizing and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4 μm and 4.6 μm WISE measurements. Similarly dust-corrected Hα-derived star formation rates can be compared to 12 μm and 22 μm luminosities to quantify correlations that can be applied to large samples to z < 0.5. To illustrate the applications of these relations, we use the 12 μm star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at z ~ 0.5. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100 h -1 kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.

  14. Evaluating tests of virialization and substructure using galaxy clusters in the ORELSE survey

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.

    2018-07-01

    We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the Observations of Redshift Evolution in Large-Scale Environments survey spanning from 0.7 galaxy clusters using Chandra observations. We studied the properties of these clusters and their members, using Chandra data in conjunction with optical and near-infrared imaging and spectroscopy. We measured X-ray luminosities and gas temperatures of each cluster, as well as velocity dispersions of their member galaxies. We compared these results to scaling relations derived from virialized clusters, finding significant offsets of up to 3σ-4σ for some clusters, which could indicate they are disturbed or still forming. We explored if other properties of the clusters correlated with these offsets by performing a set of tests of virialization and substructure on our sample, including Dressler-Schectman tests, power ratios, analyses of the velocity distributions of galaxy populations, and centroiding differences. For comparison to a wide range of studies, we used two sets of tests: ones that did and did not use spectral energy distribution fitting to obtain rest-frame colours, stellar masses, and photometric redshifts of galaxies. Our results indicated that the difference between the stellar mass or light mean-weighted centre and the X-ray centre, as well as the projected offset of the most-massive/brightest cluster galaxy from other cluster centroids had the strongest correlations with scaling relation offsets, implying they are the most robust indicators of cluster virialization and can be used for this purpose when X-ray data are insufficiently deep for reliable LX and TX measurements.

  15. IRAS galaxies and the large-scale structure in the CfA slice

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Postman, Marc

    1990-01-01

    The spatial distributions of the IRAS and the optical galaxies in the first CfA slice are compared. The IRAS galaxies are generally less clustered than optical ones, but their distribution is essentially identical to that of late-type optical galaxies. The discrepancy between the clustering properties of the IRAS and optical samples in the CfA slice region is found to be entirely due to the paucity of IRAS galaxies in the core of the Coma cluster. The spatial distributions of the IRAS and the optical galaxies, both late and early types, outside the dense core of the Coma cluster are entirely consistent with each other. This conflicts with the prediction of the linear biasing scenario.

  16. Interactions of galaxies outside clusters and massive groups

    NASA Astrophysics Data System (ADS)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  17. Cold gas properties of the Herschel Reference Survey. III. Molecular gas stripping in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cortese, L.; Boquien, M.; Boissier, S.; Catinella, B.; Gavazzi, G.; Lagos, C.; Saintonge, A.

    2014-04-01

    The Herschel Reference Survey is a complete volume-limited, K-band-selected sample of nearby objects including Virgo cluster and isolated objects. Using a recent compilation of Hi and CO data for this sample we study the effects of the cluster environment on the molecular gas content of spiral galaxies. With the subsample of unperturbed field galaxies, we first identify the stellar mass as the scaling variable that traces the total molecular gas mass of galaxies better. We show that, on average, Hi-deficient galaxies are significantly offset (4σ) from the M(H2) vs. Mstar relation for Hi-normal galaxies. We use the M(H2) vs. Mstar scaling relation to define the H2-deficiency parameter as the difference, on logarithmic scale, between the expected and observed molecular gas mass for a galaxy of given stellar mass. The H2-deficiency parameter shows a weak and scattered relation with the Hi-deficiency parameter, here taken as a proxy for galaxy interactions with the surrounding cluster environment. We also show that, as for the atomic gas, the extent of the molecular disc decreases with increasing Hi-deficiency. All together, these results show that cluster galaxies have, on average, a lower molecular gas content than similar objects in the field. Our analysis indicates that ram pressure stripping is the physical process responsible for this molecular gas deficiency. The slope of the H2 - def vs. Hi - def relation is less than unity, while the D(Hi)/D(i) vs. Hi - def relation is steeper than the D(CO)/D(i) vs. Hi - def relation, thereby indicating that the molecular gas is removed less efficiently than the atomic gas. This result can be understood if the atomic gas is distributed on a relatively flat disc that is more extended than the stellar disc. It is thus less anchored to the gravitational potential well of the galaxy than the molecular gas phase, which is distributed on an exponential disc with a scalelength rCO ≃ 0.2r24.5(g). There is a clear trend between the

  18. NCBI BLAST+ integrated into Galaxy.

    PubMed

    Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola

    2015-01-01

    The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.

  19. Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales

    PubMed

    Wittman; Tyson; Kirkman; Dell'Antonio; Bernstein

    2000-05-11

    Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting 'cosmic shear' can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.

  20. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ <ρgal> on ρtot/<ρtot>. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity

  1. The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; van den Bosch, Frank C.

    2012-03-01

    We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.

  2. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  3. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo Velona, A. D.; Gavignaud, I.; Meza, A.

    2013-06-20

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevantmore » evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more

  4. Comparative Study of Broadband Photometry Relations for Ultra-Diffuse and Normal Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Stone, Maria Babakhanyan

    Ultra-diffuse galaxies are a novel type of galaxies discovered first in the Coma cluster. These objects are characterized simultaneously by large sizes and by very low counts of constituent stars. Conflicting theories have been proposed to explain how these large diffuse galaxies could have survived in the harsh environment of clusters. To date, thousands of these new galaxies have been identified in cluster environments. However, further studies are required to understand their relationship to the known giant and dwarf classes of galaxies. The purpose of this study is to compare the trends of inner and outer populations of normal members of the Coma cluster and ultra-diffuse galaxies in color-magnitude space. The present work used several astronomical catalogs to identify the member galaxies based on the coordinates of their positions and to extract available colors and magnitudes. We obtained correlations to convert colors and magnitudes from different systems into the common Sloan Digital Sky Survey system to facilitate the comparative analysis. We showed the quantitative relations describing the color-magnitude trends of galaxies in the core and the outskirts of the cluster. We confirmed that the inner and outer populations of ultra-diffuse galaxies exhibit an offset similar to the normal red sequence galaxies. We presented an initial assessment of stellar population ages and metallicities which correspond to the obtained color offsets. We surveyed the available images of the cluster for outliers, merger candidates, and candidate ultra-diffuse galaxies. We conclude that ultra-diffuse galaxies are an important part of the Coma cluster evolutionary history and future work is needed especially in obtaining spectroscopic data of a larger number of these dim galaxies.

  5. The baryonic Tully-Fisher relationship for S{sup 4}G galaxies and the 'condensed' baryon fraction of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny

    We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, whichmore » we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models

  6. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  7. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  8. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  9. LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores

    NASA Astrophysics Data System (ADS)

    Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.

    2018-05-01

    We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.

  10. Estimates of expansion time scales. [Settlement of Galaxy by spacefaring civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure.

  11. Recovering dark-matter clustering from galaxies with Gaussianization

    NASA Astrophysics Data System (ADS)

    McCullagh, Nuala; Neyrinck, Mark; Norberg, Peder; Cole, Shaun

    2016-04-01

    The Gaussianization transform has been proposed as a method to remove the issues of scale-dependent galaxy bias and non-linearity from galaxy clustering statistics, but these benefits have yet to be thoroughly tested for realistic galaxy samples. In this paper, we test the effectiveness of the Gaussianization transform for different galaxy types by applying it to realistic simulated blue and red galaxy samples. We show that in real space, the shapes of the Gaussianized power spectra of both red and blue galaxies agree with that of the underlying dark matter, with the initial power spectrum, and with each other to smaller scales than do the statistics of the usual (untransformed) density field. However, we find that the agreement in the Gaussianized statistics breaks down in redshift space. We attribute this to the fact that red and blue galaxies exhibit very different fingers of god in redshift space. After applying a finger-of-god compression, the agreement on small scales between the Gaussianized power spectra is restored. We also compare the Gaussianization transform to the clipped galaxy density field and find that while both methods are effective in real space, they have more complicated behaviour in redshift space. Overall, we find that Gaussianization can be useful in recovering the shape of the underlying dark-matter power spectrum to k ˜ 0.5 h Mpc-1 and of the initial power spectrum to k ˜ 0.4 h Mpc-1 in certain cases at z = 0.

  12. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  13. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (MB greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 107-108 yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  14. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  15. Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z = 1.416

    NASA Astrophysics Data System (ADS)

    Galametz, A.; Stern, D.; Stanford, S. A.; De Breuck, C.; Vernet, J.; Griffith, R. L.; Harrison, F. A.

    2010-06-01

    We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 ± 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets <2 Mpc relative to the radio galaxy position and have velocity offsets <1000 km s-1 relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z ~ 1.437, forming a sub-group offset by Δv ~ 3000 km s-1 and approximately 1.'5 east of the radio galaxy.

  16. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  17. Properties of galaxies reproduced by a hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.

  18. Primeval galaxies and cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Szalay, Alexander S.

    1987-01-01

    In the context of the cold dark matter theory for the large-scale matter distribution, the onset of galaxy formation is a gradual process, with star formation being initiated at z = about 10 and reaching a peak for luminous galaxies at z = about 1. The mass function of galaxy cores matches the observed quasar luminosity function at z = 2-3. Primeval galaxies are envisaged as a collection of many interacting and merging clumps, attaining a peak luminosity that is an order of magnitude below that achieved in models in which galaxy formation is initiated abruptly. Hence, ongoing searches for primeval galaxies would not necessarily have been successful unless they are designed to find moderately low-luminosity, low-surface-brigtness extended objects at low redshift.

  19. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  20. LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan

    2017-03-01

    In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}⊙ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ˜3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ˜30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.

  1. A galaxy lacking dark matter.

    PubMed

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  2. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruel, J.; Bayliss, M.; Bazin, G.

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we findmore » that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.« less

  3. The galaxy clustering crisis in abundance matching

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  4. THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Puebla, Aldo; Yang, Xiaohu; Foucaud, Sebastien

    By means of a statistical approach that combines different semi-empirical methods of galaxy-halo connection, we derive the stellar-to-halo mass relations (SHMR) of local blue and red central galaxies. We also constrain the fraction of halos hosting blue/red central galaxies and the occupation statistics of blue and red satellites as a function of halo mass, M {sub h}. For the observational input we use the blue and red central/satellite galaxy stellar mass functions and two-point correlation functions in the stellar mass range of 9 < log(M {sub *}/M {sub ☉}) <12. We find that: (1) the SHMR of central galaxies is segregated bymore » color, with blue centrals having a SHMR above that of red centrals; at log(M {sub h}/M {sub ☉}) ∼12, the M {sub *}-to-M {sub h} ratio of the blue centrals is ≈0.05, which is ∼1.7 times larger than the value of red centrals. (2) The constrained scatters around the SHMRs of red and blue centrals are ≈0.14 and ≈0.11 dex, respectively. The scatter of the average SHMR of all central galaxies changes from ∼0.20 dex to ∼0.14 dex in the 11.3 < log(M {sub h}/M {sub ☉}) <15 range. (3) The fraction of halos hosting blue centrals at M{sub h}=10{sup 11} M {sub ☉} is 87%, but at 2 × 10{sup 12} M {sub ☉} decays to ∼20%, approaching a few percent at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is M{sub h}≈7×10{sup 11} M {sub ☉}. Our results suggest that the SHMR of central galaxies at large masses is shaped by mass quenching. At low masses processes that delay star formation without invoking too strong supernova-driven outflows could explain the high M {sub *}-to-M {sub h} ratios of blue centrals as compared to those of the scarce red centrals.« less

  5. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  6. Very-long-baseline radio interferometry observations of low power radio galaxies.

    PubMed Central

    Giovannini, G; Cotton, W D; Feretti, L; Lara, L; Venturi, T; Marcaide, J M

    1995-01-01

    The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same. PMID:11607596

  7. SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Goddard, D.; Ge, J.; Andrews, B. H.; Brinkman, J.; Brownstein, J. R.; Greco, J.; Law, D.; Lin, Y.-T.; Masters, K. L.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Yan, R.; Drory, N.

    2017-12-01

    The “kinematic” morphology–density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses {10}12.5< {M}{halo}< {10}14.5 {h}-1 {M}ȯ observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.

  8. Seyfert Galaxies in the Infrared

    NASA Astrophysics Data System (ADS)

    Ruiz-Nishiky, Milagros

    1997-10-01

    This thesis contains complementary aspects of the Seyfert phenomenon, each of which is analysed to bring a better understanding of present unification theories. Observations of the nuclear regions of various types of Seyfert galaxies were mostly made at infrared wavelengths which allow the study of dusty environments and provide new information on the physical conditions of these objects. For example, near infrared spectroscopy of Seyfert 2 galaxies revealed that there is a subclass of type 2 Seyferts with hot IR excess at ~3μm with broad IR emission lines suggesting that some Seyfert 2s do in fact contain a hidden Seyfert 1 nucleus. Additional spectropolarimetry showed that the scattering screens, postulated in the standard model, are not always present in Seyfert 2s. At mid infrared wavelengths, it was found that the 10 μm nuclear emission of Seyferts with broad emission lines is intrinsically brighter than that of Seyferts with no broad lines. The extended 10μm emission shows that Seyfert 2 galaxies present enhanced star-formation when compared to Seyfert 1s. Both results pose obstacles for present unification ideas and I discuss possible interpretations to these observations. Seyfert galaxies were also observed at radio wavelengths to study their large scale emission of 1-0 CO. Surprisingly, this emission usually related with star formation activity was found to be similar in both types of Seyfert galaxies and therefore does not explain why Seyfert 2 galaxies have enhanced star formation as concluded in the 10μm study. A study of galaxy morphology and companions in this set of Seyferts shows at a significant statistical level that Seyfert 2s present a higher incidence of asymmetric morphologies compared to Seyfert 1s and field galaxies, and therefore are undergoing gravitational perturbations which may induce star formation. Near infrared spectroscopy of a large sample of Seyfert galaxies is analysed to study the excitation mechanisms of (FeII) and H2 lines

  9. Two channels of supermassive black hole growth as seen on the galaxies mass-size plane

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Cappellari, Michele; McDermid, Richard M.

    2018-02-01

    We investigate the variation of black hole masses (MBH) as a function of their host galaxy stellar mass (M*) and half-light radius (Re). We confirm that the scatter in MBH within this plane is essentially the same as that in the MBH-σ relation, as expected from the negligible scatter reported in the virial mass estimator σ _v^2=G× M_\\ast /(5× R_e). All variation in MBH happens along lines of constant σv on the (M*, Re) plane, or M* ∝ Re for M* ≲ 2 × 1011 M⊙. This trend is qualitatively the same as those previously reported for galaxy properties related to stellar populations, like age, metallicity, alpha enhancement, mass-to-light ratio and gas content. We find evidence for a change in the MBH variation above the critical mass of Mcrit ≈ 2 × 1011 M⊙. This behaviour can be explained assuming that MBH in galaxies less massive than Mcrit can be predicted by the MBH-σ relation, while MBH in more massive galaxies follows a modified relation, which is also dependent on M* once M* > Mcrit. This is consistent with the scenario where the majority of galaxies grow through star formation, while the most massive galaxies undergo a sequence of dissipation-less mergers. In both channels, black holes and galaxies grow synchronously, giving rise to the black hole-host galaxy scaling relations, but there is no underlying single relation that is universal across the full range of galaxy masses.

  10. Korea Institute for Advanced Study Value-Added Galaxy Catalog

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Han, Du-Hwan; Kim, Sungsoo S.

    2010-12-01

    We present the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS VAGC),a catalog of galaxies based on the Large Scale Structure (LSS) sample of New York University Value-Added Galaxy Catalog (NYU VAGC) Data Release 7. Our catalog supplements redshifts of 10,497 galaxies with 10 < r_{P} ≤ 17.6 (1455 with 10 < r_{P} ≤ 14.5) to the NYU VAGC LSS sample. Redshifts from various existing catalogs such as the Updated Zwicky Catalog, the IRAS Point Source Catalog Redshift Survey, the Third Reference Catalogue of Bright Galaxies, and the Two Degree Field Galaxy Redshift Survey have been put into the NYU VAGC photometric catalog. Our supplementation significantly improves spectroscopic completeness: the area covered by the spectroscopic sample with completeness higher than 95% increases from 2.119 to 1.737 sr.Our catalog also provides morphological types of all galaxies that are determined by the automated morphology classification scheme of Park & Choi (2005), and related parameters, together with fundamental photometry parameters supplied by the NYU VAGC. Our catalog contains matches to objects in the Max Planck for Astronomy (MPA) & Johns Hopkins University (JHU) spectrum measurements (Data Release 7). This new catalog, the KIAS VAGC, is complementary to the NYU VAGC and MPA-JHU catalog.

  11. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  12. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  13. Revealing H I gas in emission and absorption on pc to kpc scales in a galaxy at z ˜ 0.017

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Srianand, R.; Farnes, J. S.; Pidopryhora, Y.; Vivek, M.; Paragi, Z.; Noterdaeme, P.; Oosterloo, T.; Petitjean, P.

    2018-05-01

    We present a detailed study of the quasar-galaxy pair: J1243+4043-UGC 07904. The sight line of the background quasar ( zq = 1.5266) passes through a region of the galaxy (zg = 0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z⊙) and negligible dust extinction. We detect H I 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Lyα absorber (DLA). We infer the harmonic mean spin temperature of the gas to be ˜400 K and for a simple two-phase medium we estimate the CNM fraction to be fCNM = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of ˜9 pc at zg. We show that the size of CNM absorbing clouds associated with the foreground galaxy is >5 pc and they may be part of cold gas structures that extend beyond ˜35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-z DLAs. However, we do not find any detectable differences in rotation measures and polarization fraction of sight lines with or without high-z (z ≥ 2) DLAs or low-z (z ≤ 0.3) 21-cm absorbers. Finally, the foreground galaxy UGC 07904 is also part of a galaxy group. We serendipitously detect H I 21-cm emission from four members of the group, and an ˜80 kpc long H I bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.

  14. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  15. THE ROLE OF QUENCHING TIME IN THE EVOLUTION OF THE MASS–SIZE RELATION OF PASSIVE GALAXIES FROM THE WISP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanella, A.; Scarlata, C.; Rutkowski, M. J.

    2016-06-20

    We analyze how passive galaxies at z ∼ 1.5 populate the mass–size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 ≲ z ≲ 2.05, specific star formation rates lower than 0.01 Gyr{sup −1}, and stellar masses above 4.5 × 10{sup 10} M {sub ⊙}. All galaxies have spectrally determined stellar ages from fitting ofmore » their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age ≤2.1 Gyr) and old (age >2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and that predicted by the mass–size relation. This result indicates that the relation between the galaxy age and its distance from the mass–size relation, if it exists, is rather shallow, with a slope α ≳ −0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass–size relation in passive galaxies.« less

  16. Infrared-Bright Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  17. Properties of galaxies reproduced by a hydrodynamic simulation.

    PubMed

    Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L

    2014-05-08

    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales.

  18. Galaxy Clusters, Near and Far, Have a Lot in Common

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters. Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws ("scaling relations") to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someone's weight from their height if you didn't have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESA's XMM-Newton and NASA's Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age. The survey included two unusual systems, one in which two massive

  19. The most massive galaxies in clusters are already fully grown at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Oldham, L. J.; Houghton, R. C. W.; Davies, Roger L.

    2017-02-01

    By constructing scaling relations for galaxies in the massive cluster MACSJ0717.5 at z = 0.545 and comparing with those of Coma, we model the luminosity evolution of the stellar populations and the structural evolution of the galaxies. We calculate magnitudes, surface brightnesses and effective radii using Hubble Space Telescope (HST)/ACS images and velocity dispersions using Gemini/GMOS spectra, and present a catalogue of our measurements for 17 galaxies. We also generate photometric catalogues for ˜3000 galaxies from the HST imaging. With these, we construct the colour-magnitude relation, the Fundamental Plane, the mass-to-light versus mass relation, the mass-size relation and the mass-velocity dispersion relation for both clusters. We present a new, coherent way of modelling these scaling relations simultaneously using a simple physical model in order to infer the evolution in luminosity, size and velocity dispersion as a function of redshift, and show that the data can be fully accounted for with this model. We find that (a) the evolution in size and velocity dispersion undergone by these galaxies between z ˜ 0.5 and z ˜ 0 is mild, with Re(z) ˜ (1 + z)-0.40 ± 0.32 and σ(z) ˜ (1 + z)0.09 ± 0.27, and (b) the stellar populations are old, ˜10 Gyr, with a ˜3 Gyr dispersion in age, and are consistent with evolving purely passively since z ˜ 0.5 with Δ log M/L_B = -0.55_{-0.07}^{+0.15} z. The implication is that these galaxies formed their stars early and subsequently grew dissipationlessly so as to have their mass already in place by z ˜ 0.5, and suggests a dominant role for dry mergers, which may have accelerated the growth in these high-density cluster environments.

  20. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    ; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  1. PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1

    NASA Astrophysics Data System (ADS)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.

  2. An Intermediate-Mass Black Hole in the Dwarf Seyfert 1 Galaxy POX 52

    NASA Astrophysics Data System (ADS)

    Barth, A.; Ho, L.; Sargent, W.

    2004-06-01

    We describe new observations of POX 52, a previously known but nearly forgotten example of a dwarf galaxy with an active nucleus. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with clear broad components to the permitted line profiles. The host galaxy appears to be a dwarf elliptical; this is the only known case of a Seyfert nucleus in a galaxy of this type. Applying scaling relations to estimate the black hole mass from the broad Hβ linewidth and continuum luminosity, we find MBH ≈ 1.6×105 M⊙. The stellar velocity dispersion in the host galaxy is 36 km s-1, also suggestive of a black hole mass of order 105 M⊙. Further searches for AGNs in dwarf galaxies can provide crucial constraints on the demographics of black holes in the mass range below 106 M⊙.

  3. The mass-metallicity relation of AKARI-FMOS infrared galaxies at z ∼ 0.88 in the AKARI North Ecliptic Pole Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Goto, Tomotsugu; Malkan, Matthew; Pearson, Chris; Matsuhara, Hideo

    2017-08-01

    The mass, metallicity, and star formation rate (SFR) of a galaxy are crucial parameters in understanding galaxy formation and evolution. However, the relation between these parameters, (i.e., the fundamental relation) is still a matter of debate for luminous infrared (IR) galaxies, which carry a bulk of the SFR budget of the universe at z ∼ 1. We have investigated the relation among stellar mass, gas-phase oxygen abundance, and SFR of the Japanese infrared satellite AKARI-detected mid-IR galaxies at z ∼ 0.88 in the AKARI north ecliptic pole deep field. We observed ∼350 AKARI sources with Subaru/Fiber Multi Object Spectrograph near-IR spectrograph, and detected confirmed Hα emission lines from 25 galaxies and expected Hα emission lines from 44 galaxies. The SFRHα, IR of our sample is almost constant (〈SFRHα, IR〉 = ∼ 25 M⊙ yr - 1) over the stellar mass range of our sample. Compared with main-sequence (MS) galaxies at a similar redshift range (z ∼ 0.78), the average SFR of our detected sample is comparable for massive galaxies ( ∼ 1010.58 M⊙), while higher by ∼0.6 dex for less massive galaxies ( ∼ 1010.05 M⊙). We measure metallicities from the [N II]/Hα emission line ratio. We find that the mass-metallicity relation of our individually measured sources agrees with that for optically-selected star-forming galaxies at z ∼ 0.1, while metallicities of stacked spectra agree with that of MS galaxies at z ∼ 0.78. Considering the high SFR of individually measured sources, the fundamental metallicity relation (FMR) of the IR galaxies is different from that at z ∼ 0.1. However, on the mass-metallicity plane, they are consistent with the MS galaxies, highlighting the higher SFR of the IR galaxies. This suggests that the evolutionary path of our infrared galaxies is different from that of MS galaxies. A possible physical interpretation includes that the star-formation activities of IR galaxies at z ∼ 0.88 in our sample are enhanced by

  4. Plausible Boosting of Millimeter-Galaxies in the COSMOS Field by Intervening Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.; Wilson, G. W.; Aguilar, E.; Alberts, S.; Scott, K. S.; Scoville, N.; Yun, M. S.; Austermann, J.; Downes, T. D.; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Kawabe, R.; Kohno, K.; Oshima, T.; Perera, T. A.; Tamura, Y.; Zeballos, M.

    2011-10-01

    The 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field, carried out to a 1σ≍1.26 mJy beam-1 depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE), shows number counts with a significant excess of sources when compared to the number counts derived from the ˜0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S1.1mm ˜> 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts ˜< 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 ˜< z ˜< 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S1.mm ˜>5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities.

  5. Dissecting the large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  6. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  7. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  8. An Extreme Metallicity, Large-scale Outflow from a Star-forming Galaxy at z ~ 0.4

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Kacprzak, Glenn G.; Churchill, Christopher W.; Charlton, Jane C.; Nielsen, Nikole M.; Mathes, Nigel L.; Trujillo-Gomez, Sebastian

    2015-10-01

    We present a detailed analysis of a large-scale galactic outflow in the circumgalactic medium of a massive ({M}{{h}}˜ {10}12.5 {M}⊙ ), star-forming (˜ 6.9 {M}⊙ yr-1), sub-L* (˜ 0.5{L}B*) galaxy at z = 0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i=63^\\circ ) and the azimuthal angle ({{Φ }}=73^\\circ ) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, multicomponent structure with ultra-strong, wide velocity spread {{O}} {{VI}} ({log}N=15.16+/- 0.04, {{Δ }}{v}90 = 419 km s-1) and {{N}} {{V}} ({log}N=14.69+/- 0.07, {{Δ }}{v}90 = 285 km s-1) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (˜ {10}-4.2 cm-3), diffuse (˜10 kpc), cool (˜104 K) photoionized gas with a super-solar metallicity ([{{X}}/{{H}}]≳ 0.3). From the observed narrowness of the Lyβ profile, the non-detection of {{S}} {{IV}} absorption, and the presence of strong {{C}} {{IV}} absorption in the low-resolution FOS spectrum, we rule out equilibrium/non-equilibrium collisional ionization models. The low-ionization photoionized gas with a density of ˜ {10}-2.5 cm-3 and a metallicity of [{{X}}/{{H}}]≳ -1.4 is possibly tracing recycled halo gas. We estimate an outflow mass of ˜ 2× {10}10 {M}⊙ , a mass-flow rate of ˜ 54 {M}⊙ {{yr}}-1, a kinetic luminosity of ˜ 9× {10}41 erg s-1, and a mass loading factor of ˜8 for the outflowing high-ionization gas. These are consistent with the properties of “down-the-barrel” outflows from infrared-luminous starbursts as studied by Rupke et al. Such powerful, large-scale, metal-rich outflows are the primary means of sufficient mechanical and chemical feedback as invoked in theoretical models of galaxy formation and evolution.

  9. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  10. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    NASA Astrophysics Data System (ADS)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite

  11. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  12. The connection between dark and baryonic matter in the process of galaxy formation

    NASA Astrophysics Data System (ADS)

    Trujillo, Sebastian

    2014-01-01

    Current galaxy formation theory still struggles to explain many essential galaxy properties. This thesis addresses these problems in the context of the interplay between baryons and dark matter in the concordance cosmological model. In the first part, we investigate galaxy abundance and scaling relations using a compilation of observational data along with large-scale cosmological simulations of dark matter (DM). We find that the standard cosmological model, in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits all basic statistics of galaxies more massive than the Large Magellanic Cloud (LMC). This zero-parameter model predicts the observed luminosity-velocity relation of early-and late-type galaxies, as well as the clustering of bright galaxies and the observed abundance of galaxies as a function of circular velocity. However, we find that all DM halos more massive than the LMC are much more abundant than the galaxies they host. Motivated by the model's shortcomings, in the second part we study the effect of baryons on galaxy formation using numerical simulations that include gas physics. We implement a model of star formation (SF) and stellar feedback based directly on observations of star-forming regions, where stellar feedback from massive stars includes radiation pressure, photoheating, supernovae, and stellar winds. We find that stellar radiation has a strong effect at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component, and yielding rising SF histories that reproduce many observations. Stellar feedback produces bulgeless discs with rotation curves and baryon fractions in excellent agreement with data. Feedback-driven blowouts reduce the central DM density of a dwarf, relieving tension between ACDM and observations. Based on these results, we begin to characterize the baryon cycle of galaxies and its imprint on studies of the circumgalactic medium

  13. Older Galaxy Pair Has Surprisingly Youthful Glow

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version

    A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again.

    Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years).

    The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies.

    This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  14. SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.

    2016-04-20

    The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less

  15. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  16. Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    NASA Astrophysics Data System (ADS)

    Mehta, Kushal; Seo, H.; Eckel, J.; Eisenstein, D.; Metchnik, M.; Pinto, P.; Xu, X.

    2011-05-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2010). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07% - 0.15%.

  17. Galaxy Bias and Its Effects on the Baryon Acoustic Oscillation Measurements

    NASA Astrophysics Data System (ADS)

    Mehta, Kushal T.; Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-06-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the nonlinear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields, achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  18. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  19. THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.

    The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2more » h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.« less

  20. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  1. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  2. Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique

    2018-01-01

    The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.

  3. The Role of Quenching Time in the Evolution of the Mass-size Relation of Passive Galaxies from the Wisp Survey

    NASA Astrophysics Data System (ADS)

    Zanella, A.; Scarlata, C.; Corsini, E. M.; Bedregal, A. G.; Dalla Bontà, E.; Atek, H.; Bunker, A. J.; . Colbert, J.; Dai, Y. S.; Henry, A.; Malkan, M.; Martin, C.; Rafelski, M.; Rutkowski, M. J.; Siana, B.; Teplitz, H.

    2016-06-01

    We analyze how passive galaxies at z ˜ 1.5 populate the mass-size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 ≲ z ≲ 2.05, specific star formation rates lower than 0.01 Gyr-1, and stellar masses above 4.5 × 1010 M ⊙. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age ≤2.1 Gyr) and old (age >2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and that predicted by the mass-size relation. This result indicates that the relation between the galaxy age and its distance from the mass-size relation, if it exists, is rather shallow, with a slope α ≳ -0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass-size relation in passive galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  4. Lurking systematics in dust-based estimates of galaxy ISM masses

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle

    2018-01-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  5. Galactic satellite systems: radial distribution and environment dependence of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, Changbom; Choi, Yun-Young

    2008-09-01

    We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than Mr = -18.0 associated with 2254 hosts brighter than Mr = -19.0 from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology-radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.

  6. VizieR Online Data Catalog: Isolated galaxies, pairs and triplets (Argudo-Fernandez+, 2015)

    NASA Astrophysics Data System (ADS)

    Argudo-Fernandez, M.; Verley, S.; Bergond, G.; Duarte Puertas, S.; Ramos Carmona, E.; Sabater, J.; Fernandez, Lorenzo M.; Espada, D.; Sulentic, J.; Ruiz, J. E.; Leon, S.

    2015-04-01

    Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe with positions, redshifts, and degrees of relation with their physical and large-scale environments. (5 data files).

  7. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    -M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.

  8. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    follow separate, fundamental j{sub *}-M{sub *} scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j{sub *}, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement ({approx}60% and {approx}10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j{sub *} and M{sub *} (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j{sub *}-M{sub *} relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.« less

  9. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  10. Evaluating Tests of Virialization and Substructure Using Galaxy Clusters in the ORELSE Survey

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.

    2018-05-01

    We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the ORELSE survey spanning from 0.7 < z < 1.3. We located diffuse X-ray emission from 16 galaxy clusters using Chandra observations. We studied the properties of these clusters and their members, using Chandra data in conjunction with optical and near-IR imaging and spectroscopy. We measured X-ray luminosities and gas temperatures of each cluster, as well as velocity dispersions of their member galaxies. We compared these results to scaling relations derived from virialized clusters, finding significant offsets of up to 3-4σ for some clusters, which could indicate they are disturbed or still forming. We explored if other properties of the clusters correlated with these offsets by performing a set of tests of virialization and substructure on our sample, including Dressler-Schectman tests, power ratios, analyses of the velocity distributions of galaxy populations, and centroiding differences. For comparison to a wide range of studies, we used two sets of tests: ones that did and did not use spectral energy distribution fitting to obtain rest-frame colours, stellar masses, and photometric redshifts of galaxies. Our results indicated that the difference between the stellar mass or light mean-weighted center and the X-ray center, as well as the projected offset of the most-massive/brightest cluster galaxy from other cluster centroids had the strongest correlations with scaling relation offsets, implying they are the most robust indicators of cluster virialization and can be used for this purpose when X-ray data is insufficiently deep for reliable LX and TX measurements.

  11. Galaxy Transformation Under Extreme Conditions: The Evolution of Galaxies in the Largest Structures in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Lemaux, Brian Clark

    This dissertation describes research performed in the field of observational astrophysics as part of the Observations of Redshift Evolution in Large Scale Environment (ORELSE) survey. The general motivation of the research presented in this dissertation is to investigate the processes responsible for the evolution of galaxies in a wide range of physical conditions over cosmic time. Throughout this dissertation, galaxy populations will be considered in the very nearby universe (i.e., within one billion light years from Earth), the middle-aged universe (i.e., eight billion years ago), and in the very early universe (i.e., just one billion years after the beginning of the universe). In each chapter I present unique data from observations taken and analyzed specifically for the ORELSE survey. In the first part of this dissertation I describe the context, aims, and current state of the ORELSE survey. The studies presented in this dissertation span a large range of galaxy samples and investigate a variety of different astrophysical phenomena. As all of these studies fall under the context of galaxy evolution, these initial sections will set the framework for the variety of studies presented in this thesis. In the second part of this dissertation I present four studies undertaken to investigate various aspects of galaxy evolution. The first of these studies is an investigation of a large population of very distant galaxies detected in one of the ORELSE fields. The survey in this field represents the deepest survey of a particular kind of very distant galaxy population known as Lymanalpha Emitter (LAEs). The number of LAEs found in this survey far exceeded expectations for such galaxies and are shown to be in excess of every other survey of similar galaxies at similar distances. This result has important consequences for galaxy evolution studies, as it suggests that faint LAEs may be much more numerous than previously thought. This work also has important consequences for

  12. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  13. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  14. Faraday dispersion functions of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro

    2014-09-01

    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, findmore » that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.« less

  15. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  16. The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea

    2018-03-01

    We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.

  17. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2017-05-01

    We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, haloes of the same present-day mass but different formation histories will have different z = 0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, σlog M*. For massive haloes that undergo rapid quenching of star formation at z ˜ 2, different mechanisms that trigger this quenching yield different values of σlog M*. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find σlog M* = 0.16 dex for 1011 M⊙ galaxies. Under the assumption that the threshold is constant with time, such a low value of σlog M* rules out all of these models with the exception of quenching by a stellar mass threshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why σlog M* is so small may be key to understanding the physics of galaxy formation.

  18. X-ray-selected galaxy groups in Boötes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and performmore » a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our

  19. A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.

    We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the

  20. Characterising and identifying galaxy protoclusters

    NASA Astrophysics Data System (ADS)

    Lovell, Christopher C.; Thomas, Peter A.; Wilkins, Stephen M.

    2018-03-01

    We study the characteristics of galaxy protoclusters using the latest L-GALAXIES semi-analytic model. Searching for protoclusters on a scale of ˜10 cMpc gives an excellent compromise between the completeness and purity of their galaxy populations, leads to high distinction from the field in overdensity space, and allows accurate determination of the descendant cluster mass. This scale is valid over a range of redshifts and selection criteria. We present a procedure for estimating, given a measured galaxy overdensity, the protocluster probability and its descendant cluster mass for a range of modelling assumptions, particularly taking into account the shape of the measurement aperture. This procedure produces lower protocluster probabilities compared to previous estimates using fixed size apertures. The relationship between active galactic nucleus (AGN) and protoclusters is also investigated and shows significant evolution with redshift; at z ˜ 2, the fraction of protoclusters traced by AGN is high, but the fraction of all AGNs in protoclusters is low, whereas at z ≥ 5 the fraction of protoclusters containing AGN is low, but most AGNs are in protoclusters. We also find indirect evidence for the emergence of a passive sequence in protoclusters at z ˜ 2, and note that a significant fraction of all galaxies reside in protoclusters at z ≥ 2, particularly the most massive.