Sample records for galaxy smm j2135-0102

  1. On the frequency of star-forming galaxies in the vicinity of powerful AGNs: The case of SMM J04135+10277

    NASA Astrophysics Data System (ADS)

    Fogasy, J.; Knudsen, K. K.; Lagos, C. D. P.; Drouart, G.; Gonzalez-Perez, V.

    2017-01-01

    Context. In the last decade several massive molecular gas reservoirs were found <100 kpc distance from active galactic nuclei (AGNs), residing in gas-rich companion galaxies. The study of AGN-gas-rich companion systems opens the opportunity to determine whether the stellar mass of massive local galaxies was formed in their host after a merger event or outside of their host galaxy in a close starbursting companion and later incorporated via mergers. Aims: Our aim is to study the quasar-companion galaxy system of SMM J04135+10277 (z = 2.84) and investigate the expected frequency of quasar-starburst galaxy pairs at high redshift using a cosmological galaxy formation model. Methods: We use archive data and new APEX ArTeMiS data to construct and model the spectral energy distribution of SMM J04135+10277 in order to determine its properties. We also carry out a comprehensive analysis of the cosmological galaxy formation model galform with the aim of characterising how typical the system of SMM J04135+10277 is and whether quasar-star-forming galaxy pairs may constitute an important stage in galaxy evolution. Finally, we compare our results to observations found in the literature at both large and small scales (1 Mpc-100 kpc). Results: The companion galaxy of SMM J04135+10277 is a heavily dust-obscured starburst galaxy with a median star formation rate (SFR) of 700 M⊙ yr-1, median dust mass of 5.1 × 109M⊙ and median dust luminosity of 9.3 × 1012L⊙. Our simulations, performed at z = 2.8, suggest that SMM J04135+10277 is not unique. In fact, at a distance of <100 kpc, 22% of our simulated quasar sample have at least one companion galaxy of a stellar mass >108M⊙, and 0.3% have at least one highly star-forming companion (SFR> 100 M⊙ yr-1). Conclusions: Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and

  2. A near/mid infrared search for ultra-bright submillimetre galaxies: Searching for Cosmic Eyelash Analogues

    NASA Astrophysics Data System (ADS)

    Iglesias-Groth, S.; Díaz-Sánchez, A.; Rebolo, R.; Dannerbauer, H.

    2017-05-01

    We present results from a near-/mid-IR search for submillimetre galaxies over a region of 6230 deg2 of the southern sky. We used a cross-correlation of the VISTA Hemispheric Survey (VHS) and the WISE data base to identify bright galaxies (Ks ≤ 18.2) with near-/mid-IR colours similar to those of the high-redshift lensed submm galaxy SMM J2135-0102. We find seven galaxies that fulfil all five adopted near-/mid-IR colour (NMIRQC) criteria and resemble the SED of the reference galaxy at these wavelengths. For these galaxies, which are broadly distributed in the sky, we determined photometric redshifts in the range z = 1.6-3.2. We searched the VHS for clusters of galaxies, which may be acting as gravitational lenses, and found that six out of the seven galaxies are located within 3.5 arcmin of a cluster/group of galaxies. Using the J-Ks versus J sequences, we determine photometric redshifts for these clusters/groups in the range z = 0.2-0.9. We propose the newly identified sources are ultrabright high-redshift lensed SMG candidates. Follow-up observations in the submm and mm are key to determine the ultimate nature of these objects.

  3. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    NASA Astrophysics Data System (ADS)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  4. Weighing "El Gordo" with a Precision Scale: Hubble Space Telescope Weak-lensing Analysis of the Merging Galaxy Cluster ACT-CL J0102-4915 at z = 0.87

    NASA Astrophysics Data System (ADS)

    Jee, M. James; Hughes, John P.; Menanteau, Felipe; Sifón, Cristóbal; Mandelbaum, Rachel; Barrientos, L. Felipe; Infante, Leopoldo; Ng, Karen Y.

    2014-04-01

    We present a Hubble Space Telescope weak-lensing study of the merging galaxy cluster "El Gordo" (ACT-CL J0102-4915) at z = 0.87 discovered by the Atacama Cosmology Telescope (ACT) collaboration as the strongest Sunyaev-Zel'dovich decrement in its ~1000 deg2 survey. Our weak-lensing analysis confirms that ACT-CL J0102-4915 is indeed an extreme system consisting of two massive (gsim 1015 M ⊙ each) subclusters with a projected separation of {\\sim }0.7\\,h_{70}^{-1} Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members. We estimate the mass of ACT-CL J0102-4915 by simultaneously fitting two axisymmetric Navarro-Frenk-White (NFW) profiles allowing their centers to vary. We use only a single parameter for the NFW mass profile by enforcing the mass-concentration relation from numerical simulations. Our Markov-Chain-Monte-Carlo analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M_{200c}=(1.38+/- 0.22)\\times 10^{15} \\,h_{70}^{-1}\\, M_{\\odot } and (0.78+/- 0.20)\\times 10^{15} \\,h_{70}^{-1}\\, M_{\\odot }, respectively, where the quoted errors include only 1σ statistical uncertainties determined by the finite number of source galaxies. These mass estimates are subject to additional uncertainties (20%-30%) due to the possible presence of triaxiality, correlated/uncorrelated large scale structure, and departure of the cluster profile from the NFW model. The lensing-based velocity dispersions are 1133_{-61}^{+58}\\; km\\; s^{-1} and 1064_{-66} ^{+62}\\; km\\; s^{-1} for the NW and SE components, respectively, which are consistent with their spectroscopic measurements (1290 ± 134 km s-1 and 1089 ± 200 km s-1, respectively). The centroids of both components are tightly constrained (~4'') and close to the optical luminosity centers. The X-ray and mass peaks are spatially offset by ~8'' ({\\sim }62\\,h

  5. The GBT Discovery of a Massive CO(1-0) Filament Associated with the z=2.8 Submillimeter Galaxy SMM J02399-0136

    NASA Astrophysics Data System (ADS)

    Frayer, David; Maddalena, Ronald; Vanden Bout, Paul; Watts, Galen

    2018-01-01

    Using the Ka-band receiver on the GBT, we have uncovered a new velocity component in CO(1-0) associated the submillimeter galaxy SMM J02399-0136. Follow-up imaging with ALMA in CO(3-2) shows that this velocity component is associated with a large linear filament covering 8" on the sky (60 kpc). This component comprises 50% or more of the total molecular gas mass in the system, and may repesent tidal debris from a merger event or represents inflowing cold molecular gas that is fueling the ongoing starburst and AGN activity.

  6. The Atacama Cosmology Telescope: ACT-CL J0102-4215 "El Gordo," a Massive Merging Cluster at Redshift 0.87

    NASA Technical Reports Server (NTRS)

    Menanteau, Felipe; Hughes, John Pl; Baker, Andrew J.; Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Hilton, Matt; Das, Sudeep; Spergel, David N.; hide

    2011-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) +/- 1321 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(X) = 14:5 +/- 0:1 keV and 0.5 2.0 keV band luminosity of L(X) = (2:19 0:11) 1045 h(exp -2)70erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(X) , and integrated SZ distortion, we estimate a cluster mass of M(200) = (2:16 +/- 0:32) 10(exp 15) h(exp-1) 70M compared to the Sun. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6:6 +/- 0:7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other from which we estimate a merger speed of around 1300 km s(exp -1) for an assumed merger timescale of 1 Gyr. ACTCL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard CDM cosmology in the lower part of its allowed mass range. Massive

  7. The Atacama Cosmology Telescope: ACT-CL J0102-4915 'EL GORDO', A Massive Merging Cluster at Redshift 0.87

    NASA Technical Reports Server (NTRS)

    Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; hide

    2012-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(sub gal) = 1321+/-106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(sub X) = 14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of L(sub X) = (2.19+/-0.11)×10(sup 45) h(sup -2)(sub 70) erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(sub X), and integrated SZ distortion, we estimate a cluster mass of M(sub 200a) = (2.16+/-0.32)×1015 h(sup -1)(sub 70) solar mass. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift

  8. Weighing 'El Gordo' with a precision scale: Hubble space telescope weak-lensing analysis of the merging galaxy cluster ACT-CL J0102–4915 at z = 0.87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jee, M. James; Ng, Karen Y.; Hughes, John P.

    2014-04-10

    We present a Hubble Space Telescope weak-lensing study of the merging galaxy cluster 'El Gordo' (ACT-CL J0102–4915) at z = 0.87 discovered by the Atacama Cosmology Telescope (ACT) collaboration as the strongest Sunyaev-Zel'dovich decrement in its ∼1000 deg{sup 2} survey. Our weak-lensing analysis confirms that ACT-CL J0102–4915 is indeed an extreme system consisting of two massive (≳ 10{sup 15} M {sub ☉} each) subclusters with a projected separation of ∼0.7 h{sub 70}{sup −1} Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members.more » We estimate the mass of ACT-CL J0102–4915 by simultaneously fitting two axisymmetric Navarro-Frenk-White (NFW) profiles allowing their centers to vary. We use only a single parameter for the NFW mass profile by enforcing the mass-concentration relation from numerical simulations. Our Markov-Chain-Monte-Carlo analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M{sub 200c}=(1.38±0.22)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙} and (0.78±0.20)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙}, respectively, where the quoted errors include only 1σ statistical uncertainties determined by the finite number of source galaxies. These mass estimates are subject to additional uncertainties (20%-30%) due to the possible presence of triaxiality, correlated/uncorrelated large scale structure, and departure of the cluster profile from the NFW model. The lensing-based velocity dispersions are 1133{sub −61}{sup +58} km s{sup −1} and 1064{sub −66}{sup +62} km s{sup −1} for the NW and SE components, respectively, which are consistent with their spectroscopic measurements (1290 ± 134 km s{sup –1} and 1089 ± 200 km s{sup –1}, respectively). The centroids of both components are tightly constrained (∼4'') and close to the optical luminosity centers. The X

  9. The Discovery of a New Massive Molecular Gas Component Associated with the Submillimeter Galaxy SMM J02399-0136

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Maddalena, Ronald J.; Ivison, R. J.; Smail, Ian; Blain, Andrew W.; Vanden Bout, Paul

    2018-06-01

    We present CO(1–0), CO(3–2), and CO(7–6) observations using the Green Bank Telescope (GBT) and the Atacama Large Millimeter Array (ALMA) of the z = 2.8 submillimeter galaxy SMM J02399‑0136. This was the first submillimeter-selected galaxy discovered and remains an archetype of the class, comprising a merger of several massive and active components, including a quasar-luminosity AGN and a highly obscured, gas-rich starburst spread over a ∼25 kpc extent. The GBT CO(1–0) line profile is comprised of two distinct velocity components separated by about 600 km s‑1 and suggests the presence of a new component of molecular gas that had not been previously identified. The CO(3–2) observations with ALMA show that this new component, designated W1, is associated with a large extended structure stretching 13 kpc westward from the AGN. W1 is not detected in the ALMA CO(7–6) data, implying that this gas has much lower CO excitation than the central starburst regions, which are bright in CO(7–6). The molecular gas mass of W1 is about 30% of the total molecular gas mass in the system, depending on the CO-to-H2 conversion factor. W1 is arguably a merger remnant; alternatively, it could be a massive molecular outflow associated with the AGN, or perhaps inflowing metal-enriched molecular gas fueling the ongoing activity.

  10. Discovery of a Lensed Ultrabright Submillimeter Galaxy at z = 2.0439

    NASA Astrophysics Data System (ADS)

    Díaz-Sánchez, A.; Iglesias-Groth, S.; Rebolo, R.; Dannerbauer, H.

    2017-07-01

    We report an ultrabright lensed submillimeter galaxy (SMG) at z = 2.0439, WISE J132934.18+224327.3, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed to search for bright analogs of the SMG SMM J2135, the Cosmic Eyelash. Inspection of archival SCUBA-2 observations of the candidates revealed a source with fluxes ({S}850μ {{m}}=130 mJy) consistent with the Planck measurements. The centroid of the SCUBA-2 source coincides within 1 arcsec with the position of the AllWISE mid-IR source, and, remarkably, with an arc-shaped lensed galaxy in HST images at visible wavelengths. Low-resolution rest-frame UV-optical spectroscopy of this lensed galaxy obtained with 10.4 m GTC reveals the typical absorption lines of a starburst galaxy. Gemini-N near-IR spectroscopy provided a clear detection of {{{H}}}α emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.44 modeling with Lenstool indicates a lensing amplification factor of 11 ± 2. We determine an intrinsic rest-frame 8-1000 μm luminosity, {L}{IR}, of (1.3+/- 0.1)× {10}13 {L}⊙ , and a likely star formation rate (SFR) of ˜ 500{--}2000 {M}⊙ {{yr}}-1. The SED shows a remarkable similarity with the Cosmic Eyelash from optical-mid/IR to submillimeter/radio, albeit at higher fluxes.

  11. APEX Snaps First Close-up of Star Factories in Distant Universe

    NASA Astrophysics Data System (ADS)

    2010-03-01

    For the first time, astronomers have made direct measurements of the size and brightness of regions of star-birth in a very distant galaxy, thanks to a chance discovery with the APEX telescope. The galaxy is so distant, and its light has taken so long to reach us, that we see it as it was 10 billion years ago. A cosmic "gravitational lens" is magnifying the galaxy, giving us a close-up view that would otherwise be impossible. This lucky break reveals a hectic and vigorous star-forming life for galaxies in the early Universe, with stellar nurseries forming one hundred times faster than in more recent galaxies. The research is published online today in the journal Nature. Astronomers were observing a massive galaxy cluster [1] with the Atacama Pathfinder Experiment (APEX) telescope, using submillimetre wavelengths of light, when they found a new and uniquely bright galaxy, more distant than the cluster and the brightest very distant galaxy ever seen at submillimetre wavelengths. It is so bright because the cosmic dust grains in the galaxy are glowing after being heated by starlight. The new galaxy has been given the name SMM J2135-0102. "We were stunned to find a surprisingly bright object that wasn't at the expected position. We soon realised it was a previously unknown and more distant galaxy being magnified by the closer galaxy cluster," says Carlos De Breuck from ESO, a member of the team. De Breuck was making the observations at the APEX telescope on the plateau of Chajnantor at an altitude of 5000 m in the Chilean Andes. The new galaxy SMM J2135-0102 is so bright because of the massive galaxy cluster that lies in the foreground. The vast mass of this cluster bends the light of the more distant galaxy, acting as a gravitational lens [2]. As with a telescope, it magnifies and brightens our view of the distant galaxy. Thanks to a fortuitous alignment between the cluster and the distant galaxy, the latter is strongly magnified by a factor of 32. "The magnification

  12. XMM-Newton Observation of IGR J18538-0102 and an Optical/IR Candidate

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2010-02-01

    We observed the X-ray counterpart of IGR J18538-0102 (Stephen et al., ATel #2441) in a pointed observation with XMM-Newton on 2004 October 8. This apparently steady source (in an 8 ks exposure) can be fitted with a power-law model of photon index 1.7+/-0.1, NH = (1.5+/-0.2)e22 cm-2, and unabsorbed 1-10 keV flux 5.6e-12 erg cm-2 s-1. Its coordinates 18h53m48.50s, -01d02'30.0" (J2000), with 90% confidence error radius of 3.2", coincide with an object in the 2MASS Point Source Catalog at 18h53m48.48s, -01d02'29.6" of magnitudes H=14.00+/-0.05 and K=12.50+/-0.05.

  13. 47 CFR 213.5 - Precedence designators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Precedence designators. 213.5 Section 213.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.5 Precedence designators. (a) The following precedence...

  14. 47 CFR 213.5 - Precedence designators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Precedence designators. 213.5 Section 213.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.5 Precedence designators. (a) The following precedence...

  15. 47 CFR 213.5 - Precedence designators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Precedence designators. 213.5 Section 213.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.5 Precedence designators. (a) The following precedence...

  16. 47 CFR 213.5 - Precedence designators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Precedence designators. 213.5 Section 213.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.5 Precedence designators. (a) The following precedence...

  17. 47 CFR 213.5 - Precedence designators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Precedence designators. 213.5 Section 213.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.5 Precedence designators. (a) The following precedence...

  18. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight test...

  19. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the FAA received a flight test report...

  20. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  1. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  2. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  3. 1 CFR 21.35 - OMB control numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false OMB control numbers. 21.35 Section 21.35... PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General Omb Control Numbers § 21.35 OMB control numbers. To display OMB control numbers in agency regulations, those numbers shall be...

  4. 1 CFR 21.35 - OMB control numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true OMB control numbers. 21.35 Section 21.35 General... DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General Omb Control Numbers § 21.35 OMB control numbers. To display OMB control numbers in agency regulations, those numbers shall be placed...

  5. 1 CFR 21.35 - OMB control numbers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true OMB control numbers. 21.35 Section 21.35 General... DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General Omb Control Numbers § 21.35 OMB control numbers. To display OMB control numbers in agency regulations, those numbers shall be placed...

  6. 1 CFR 21.35 - OMB control numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false OMB control numbers. 21.35 Section 21.35... PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General Omb Control Numbers § 21.35 OMB control numbers. To display OMB control numbers in agency regulations, those numbers shall be...

  7. 19 CFR 213.5 - Access to Commission resources.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Access to Commission resources. 213.5 Section 213.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.5 Access to Commission resources. Commission resources, in...

  8. 19 CFR 213.5 - Access to Commission resources.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Access to Commission resources. 213.5 Section 213.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.5 Access to Commission resources. Commission resources, in...

  9. 19 CFR 213.5 - Access to Commission resources.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Access to Commission resources. 213.5 Section 213.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.5 Access to Commission resources. Commission resources, in...

  10. 19 CFR 213.5 - Access to Commission resources.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Access to Commission resources. 213.5 Section 213.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.5 Access to Commission resources. Commission resources, in...

  11. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  12. 31 CFR 0.102 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Policy. 0.102 Section 0.102 Money and Finance: Treasury Office of the Secretary of the Treasury DEPARTMENT OF THE TREASURY EMPLOYEE RULES OF... is not limited to: (1) Reassignment of work duties; (2) Disqualification from a particular assignment...

  13. 45 CFR 213.5 - Filing and service of papers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Filing and service of papers. 213.5 Section 213.5... and service of papers. (a) All papers in the proceedings shall be filed with the FSA Hearing Clerk, in...) All papers in the proceedings shall be served on all parties by personal delivery or by mail. Service...

  14. 45 CFR 213.5 - Filing and service of papers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Filing and service of papers. 213.5 Section 213.5... and service of papers. (a) All papers in the proceedings shall be filed with the FSA Hearing Clerk, in...) All papers in the proceedings shall be served on all parties by personal delivery or by mail. Service...

  15. Galaxy Cluster IDCS J1426

    NASA Image and Video Library

    2016-01-07

    Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multi-wavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light detected by the Spitzer Space Telescope in red. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how such megastructures formed and evolved early in the universe. The light astronomers observed from IDCS 1426 began its journey to Earth when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early time. First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance. Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive. New data from the Chandra X-ray Observatory confirm the galaxy cluster's mass and show that about 90 percent of this mass is in the form of dark matter -- the mysterious substance that has so far been detected only through its gravitational pull on normal matter composed of atoms. http://photojournal.jpl.nasa.gov/catalog/PIA20063

  16. The CO-12 and CO-13 J=2-1 and J=1-0 observations of hot and cold galaxies

    NASA Technical Reports Server (NTRS)

    Xie, Shuding; Schloerb, F. Peter; Young, Judith

    1990-01-01

    Researchers observed the nuclear regions of the galaxies NGC 2146 and IC 342 in CO-12 and CO-13 J=1-0 and J=2-1 lines using the Five College Radio Astronomy Observatory (FCRAO) 14m telescope. NGC 2146 is a peculiar Sab spiral galaxy. Its complex optical morphology and strong nuclear radio continuum emission suggest that it is experiencing a phase of violent activity and could have a polar ring which may have resulted from an interaction. IC 342 is a nearby luminous Scd spiral galaxy. Strong CO, infrared and radio continuum emission from the nuclear region of IC 342 indicate enhanced star-forming activity, and interferometric CO-12 J=1-0 observations reveal a bar-like structure centered on the nucleus, along the dark lane in the NS direction. These two galaxies are selected based on their different dust temperatures and star formation efficiencies (SFE) as derived from the Infrared Astronomy Satellite (IRAS) S sub 60 mu/S sub 100 mu flux density ratio and L sub IR/M(H2), respectively, with a relatively high SFE and dust temperature of 45 K in NGC 2146 and a relatively low SFE and dust temperature of 35 K in IC 342. The data from the different CO-12 and CO-13 lines are used to study the physical conditions in the molecular clouds in the galaxies. Researchers also consider the radiative transfer to determine whether a warm and optically thin gas component exists in these galaxies, as has been suggested in the case of M82 (Knapp et al. 1980), and whether the warm gas is related to the dust properties. Since optically thin CO-12 gas is rarely detected in our own Galaxy (except in outflow sources), to confirm its existence in external galaxies is very important in understanding the molecular content of external galaxies and its relationship to star formation activity. The present CO-12 J=2-1 and CO-13 J=2-1 and J=1-0 data for NGC 2146 are the first detections of this galaxy to our knowledge. The CO-12 J=1-0 distribution in NGC 2146 has been measured as part of the FCRAO

  17. 32 CFR 213.5 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUPPORT FOR NON-FEDERAL ENTITIES AUTHORIZED TO OPERATE ON DOD INSTALLATIONS § 213.5 Responsibilities. (a... policy matters and Office of the Secretary of Defense oversight of non-Federal entities on DoD... of non-Federal entities on DoD installations. (3) Assign responsibilities to the DoD Components to...

  18. 32 CFR 213.5 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUPPORT FOR NON-FEDERAL ENTITIES AUTHORIZED TO OPERATE ON DOD INSTALLATIONS § 213.5 Responsibilities. (a... policy matters and Office of the Secretary of Defense oversight of non-Federal entities on DoD... of non-Federal entities on DoD installations. (3) Assign responsibilities to the DoD Components to...

  19. 32 CFR 213.5 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUPPORT FOR NON-FEDERAL ENTITIES AUTHORIZED TO OPERATE ON DOD INSTALLATIONS § 213.5 Responsibilities. (a... policy matters and Office of the Secretary of Defense oversight of non-Federal entities on DoD... of non-Federal entities on DoD installations. (3) Assign responsibilities to the DoD Components to...

  20. 32 CFR 213.5 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUPPORT FOR NON-FEDERAL ENTITIES AUTHORIZED TO OPERATE ON DOD INSTALLATIONS § 213.5 Responsibilities. (a... policy matters and Office of the Secretary of Defense oversight of non-Federal entities on DoD... of non-Federal entities on DoD installations. (3) Assign responsibilities to the DoD Components to...

  1. 32 CFR 213.5 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUPPORT FOR NON-FEDERAL ENTITIES AUTHORIZED TO OPERATE ON DOD INSTALLATIONS § 213.5 Responsibilities. (a... policy matters and Office of the Secretary of Defense oversight of non-Federal entities on DoD... of non-Federal entities on DoD installations. (3) Assign responsibilities to the DoD Components to...

  2. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  3. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  4. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  5. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  6. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  7. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    PubMed

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  8. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  9. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  10. H I OBSERVATIONS OF THE Ca II ABSORBING GALAXIES Mrk 1456 AND SDSS J211701.26-002633.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherinka, B.; Schulte-Ladbeck, R. E.; Rosenberg, J. L.

    2009-12-15

    In an effort to study Damped Ly{alpha} (DLA) galaxies at low redshift, we have been using the Sloan Digital Sky Survey (SDSS) to identify galaxies projected onto quasi-stellar object (QSO) sight lines and to characterize their optical properties. For low-redshift galaxies, the H I 21 cm emission line can be used as an alternate tool for identifying possible DLA galaxies, since H I-emitting galaxies typically exhibit H I columns that are larger than the classical DLA limit. Here, we report on follow-up H I 21 cm emission-line observations of two DLA candidates that are both low-redshift spiral galaxies, Mrk 1456more » and SDSS J211701.26-002633.7. The observations were made using the Green Bank Telescope (GBT) and Arecibo telescope, respectively. Analysis of their H I properties reveal the galaxies to be about one and two M*{sub HI} galaxies, respectively, and to have average H I mass, gas richness, and gas-mass fraction for their morphological types. We consider Mrk 1456 and SDSS J211701.26-002633.7 to be candidate DLA systems based upon the strength of the Ca II absorption lines they cause in their QSO's spectra, and impact parameters to the QSO that are smaller than the stellar disk. Compared to the small numbers of other H I detected DLA and candidate DLA galaxies, Mrk 1456 and SDSS J211701.26-002633.7 have high H I masses. Mrk 1456 and SDSS J211701.26-002633.7 have also been found to lie in galaxy groups that are high in H I gas mass compared to the group containing SBS 1543+593, the only DLA galaxy previously known to be situated in a galaxy group. When compared with the expected properties of low-z DLAs from an H I-detected sample of galaxies, Mrk 1456 and SDSS J211701.26-002633.7 fall within the ranges for impact parameter and M{sub B} ; and the H I mass distribution for the H I-detected DLAs agrees with that of the expected H I mass distribution for low-z DLAs. Our observations support galaxy-evolution models in which high-mass galaxies make up an

  11. The host galaxy and Fermi-LAT counterpart of HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Peter, D.; Domainko, W.; Sanchez, D. A.; van der Wel, A.; Gässler, W.

    2014-11-01

    Context. The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. Aims: The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. Methods: We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV galaxy, and thus point toward an extragalactic scenario for the VHE gamma-ray source, assuming that the near-infrared source is the counterpart of HESS J1943+213. A high-Sérsic index profile provides a better fit than an exponential profile, indicating that the surface brightness profile of 2MASS J19435624+2118233 follows that of a typical, massive elliptical galaxy more closely than that of a disk galaxy. With Fermi-LAT a HE counterpart is found with a power-law spectrum above 1 GeV, with a normalization of (3.0 ± 0.8stat ± 0.6sys) × 10-15 cm-2 s-1 MeV-1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. Conclusions: The infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The

  12. Fermi Large Area Telescope detection of bright γ-ray outbursts from the peculiar quasar 4C +21.35

    DOE PAGES

    Tanaka, Y. T.; Stawarz, Ł.; Thompson, D. J.; ...

    2011-04-29

    In this study, we report on the two-year-long Fermi-Large Area Telescope observation of the peculiar blazar 4C +21.35 (PKS 1222+216). This source was in a quiescent state from the start of the science operations of the Fermi Gamma-ray Space Telescope in 2008 August until 2009 September, and then became more active, with gradually increasing flux and some moderately bright flares. In 2010 April and June, 4C +21.35 underwent a very strong GeV outburst composed of several major flares characterized by rise and decay timescales of the order of a day. During the outburst, the GeV spectra of 4C +21.35 displayedmore » a broken power-law form with spectral breaks observed near 1-3 GeV photon energies. We demonstrate that, at least during the major flares, the jet in 4C +21.35 carried a total kinetic luminosity comparable to the total accretion power available to feed the outflow. We also discuss the origin of the break observed in the flaring spectra of 4C +21.35. We show that, in principle, a model involving annihilation of the GeV photons on the He II Lyman recombination continuum and line emission of "broad-line region" clouds may account for such. However, we also discuss the additional constraint provided by the detection of 4C +21.35 at 0.07-0.4 TeV energies by the MAGIC telescope, which coincided with one of the GeV flares of the source. We argue that there are reasons to believe that the lesssim TeV emission of 4C +21.35 (as well as the GeV emission of the source, if co-spatial) is not likely to be produced inside the broad-line region zone of highest ionization (~10 17 cm from the nucleus), but instead originates further away from the active center, namely, around the characteristic scale of the hot dusty torus surrounding the 4C +21.35 nucleus (~10 19 cm).« less

  13. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  14. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells.

    PubMed

    Song, Ji-Hoon; Lee, Hae-Rim; Shim, Soon-Mi

    2017-01-01

    The objectives of the current study were to determine S-methyl-L-methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco-2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P-glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco-2 cells. The apparent coefficient permeability (P app ) of SMM was 4.69 × 10 -5 cm/s, indicating that it will show good oral absorption in in vivo. © 2016 Institute of Food Technologists®.

  15. RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.

    2014-12-01

    RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young

  16. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  17. Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

    NASA Astrophysics Data System (ADS)

    Dionatos, O.; Jørgensen, J. K.; Green, J. D.; Herczeg, G. J.; Evans, N. J.; Kristensen, L. E.; Lindberg, J. E.; van Dishoeck, E. F.

    2013-10-01

    Context. Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. Different mechanisms for the origin of these lines have been proposed, including shocks induced by protostellar jets and radiation or heating by the embedded protostar of its immediate surroundings. Aims: By studying of the most important molecular and atomic coolants, we aim at constraining the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measuring the CO/H2 ratio in warm gas. Methods: Spectro-imaging observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) provide an almost complete wavelength coverage between 5 and 200 μm. Within this range, emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants of excited gas are detected. Emission line maps reveal the morphology of the observed emission and indicate associations between the different species. The excitation conditions for molecular species are assessed through rotational diagrams. Emission lines from major coolants are compared to the results of steady-state C- and J-type shock models. Results: Line emission tends to peak at distances of ~10-20″ from the protostellar sources with all but [CII] peaking at the positions of outflow shocks seen in near-IR and sub-millimeter interferometric observations. The [CII] emission pattern suggests that it is most likely excited from energetic UV radiation originating from the nearby flat-spectrum source SMM6. Excitation analysis indicates that H2 and CO originate in gas at two distinct rotational temperatures of ~300 K and 1000 K, while the excitation temperature for H2O and OH is ~100-200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism, which allows direct

  18. Identification and multi-filter photometry of HII regions from nearby galaxies with J-PLUS

    NASA Astrophysics Data System (ADS)

    Logroño-García, R.; Vilella-Rojo, G.; López-Sanjuan, C.; Varela, J.; Muniesa, D.; Lamadrid, J. L.; Cenarro, A. J.; J-PLUS, T.

    2017-03-01

    The Javalambre Photometric Local Universe Survey (J-PLUS) has already started the data acquisition phase at the Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. Benefiting from the large field of view (2 deg^2) and the 12 filters set of the T80Cam at the T80/JAST telescope, we aim to study the properties of HII regions in nearby galaxies (z < 0.015). In this poster, we apply our procedures to the galaxy Messier 101. We have developed a fully automatized pipeline to identify and characterize the nearby universe HII regions. This pipeline: (1) Homogenizes the PSF in the 12 images of the different filters. (2) Estimates realistic photometric errors following Labbé et al. (2003) method. (3) Constructs a detection image showing the excess of Hα+[NII], following Vilella-Rojo et al. (2015) prescriptions. (4) Performs the photometry in the 12 J-PLUS bands using as reference the Hα+NII detection image. (5) Constructs the photo-spectra for each identified HII region. We demonstrate the capabilities of this method by comparing synthetic aperture photometry from SDSS spectra with the Hα flux measured with J-PLUS data. Such comparison can be found in the poster by Vilella-Rojo et al. Once the pipeline is implemented, we will generate a catalog of nearby HII regions at z<0.015 in the 8500deg^2 of J-PLUS. With this catalog, we will study the impact of environment in the 2D star formation properties of nearby galaxies, taking advantage of the unprecedented large contiguous area that J-PLUS will offer.

  19. Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456

    NASA Astrophysics Data System (ADS)

    Turner, Jeremy; Jeremy Turner

    2018-01-01

    The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.

  20. Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd

    2014-01-01

    One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.

  1. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-07-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  2. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  3. The Rise of SN 2014J in the Nearby Galaxy M 82

    NASA Technical Reports Server (NTRS)

    A.Goobar; Johansson, J.; Amanullah, R.; Cao, Y.; Perley, D.A.; Kasliwal, M. M.; Ferreti, R.; Nugent, P. E.; Harris, C.; Cenko, S. B.

    2014-01-01

    We report on the discovery of SN 2014J in the nearby galaxy M 82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova over a wide range of the electromagnetic spectrum. Optical, near-IR and mid-IR observations on the rising lightcurve, orchestrated by the intermediate Palomar Transient Factory (iPTF), show that SN 2014J is a spectroscopically normal Type Ia supernova, albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the lightcurve rise. Similarly to other highly reddened Type Ia supernovae, a low value of total-to-selective extinction, R (sub V) less than or approximately equal to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from HST with special emphasis on the sources nearest to the SN location.

  4. Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data

    EPA Pesticide Factsheets

    As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part of EPA's Sustainable Materials Management Program (SMM). SMM seeks to reduce the environmental impact of materials through their entire life cycle. This includes how they are extracted, manufactured, distributed, used, reused, recycled, and disposed. Organizations are encouraged to follow the Food Recovery Hierarchy (https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy) to prioritize their actions to prevent and divert wasted food. Each tier of the Food Recovery Hierarchy focuses on different management strategies for your wasted food. The program started in 2011 and the first data were made available in 2012. The FRC is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program.

  5. SMM coronagraph observations of particulate contamination

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Warner, T.

    1991-01-01

    Some recent images taken by the white light coronagraph telescope aboard the Solar Maximum Mission (SMM) observatory show bright streaks that are apparently caused by particles associated with the spacecraft. In this report we describe these observations, and we analyze the times of their occurrence. We demonstrate that the sightings occur most often near SMM's orbital dawn, and we speculate that thermal shock is the mechanism that produces the particles. Although these sightings have not seriously affected the coronagraph's scientific operations, the unexpected passage of bright material through the field of view of sensitive spaceborne telescopes can lead to data loss or, in some cases, serious detector damage. The topic of space debris has become a significant concern for designers of both manned and unmanned orbiting platforms. The returned samples from the SMM spacecraft and the observations reported here provide a baseline of experience for future orbital platforms that plan long duration missions.

  6. 12 CFR 612.2135 - Director and employee responsibilities and conduct-generally.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conduct, directors and employees shall observe, to the best of their abilities, the letter and intent of... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Director and employee responsibilities and... § 612.2135 Director and employee responsibilities and conduct—generally. (a) Directors and employees of...

  7. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  8. LBT/LUCIFER Observations of the z ~ 2 Lensed Galaxy J0900+2234

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Fan, Xiaohui; Bechtold, Jill; McGreer, Ian D.; Just, Dennis W.; Sand, David J.; Green, Richard F.; Thompson, David; Peng, Chien Y.; Seifert, Walter; Ageorges, Nancy; Juette, Marcus; Knierim, Volker; Buschkamp, Peter

    2010-12-01

    We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z = 2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared (NIR) instrument mounted on the Large Binocular Telescope. We fitted lens models to the rest-frame optical images and found that the galaxy has an intrinsic effective radius of 7.4 ± 0.8 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high signal-to-noise ratio rest-frame spectra covered by the H + K band, we detected Hβ, [O III], Hα, [N II], and [S II] emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction toward the ionized H II regions (Eg (B - V)) was computed from the flux ratio of Hα and Hβ and appears to be much higher than that toward the stellar continuum (Es (B - V)), derived from the optical and NIR broadband photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5-1/3 solar abundance, which is much lower than for typical z ~ 2 star-forming galaxies. From the flux ratio of [S II]λ6717 and [S II]λ6732, we found that the electron number density of the H II regions in the high-z galaxy was sime1000 cm-3, consistent with other z ~ 2 galaxies but much higher than that in local H II regions. The star formation rate was estimated via the Hα luminosity, after correction for the lens magnification, to be about 365 ± 69 M sun yr-1. Combining the FWHM of Hα emission lines and the half-light radius, we found that the dynamical mass of the lensed galaxy is (5.8 ± 0.9) × 1010 M sun. The gas mass is (5.1 ± 1.1) × 1010 M sun from the Hα flux surface density using global Kennicutt-Schmidt law, indicating a very high gas fraction of 0.79 ± 0.19 in J0900+2234. Based on data acquired

  9. MACS J0416.1-2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chirivì, G.; Suyu, S. H.; Grillo, C.; Halkola, A.; Balestra, I.; Caminha, G. B.; Mercurio, A.; Rosati, P.

    2018-06-01

    Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1-2403, and our multi-plane model reproduces the observed image positions with a rms offset of 0.''53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1-2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms 0.''3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within 10% for 95% of them, those 5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1-2403 and N-body simulated clusters. Since our model of MACS J0416.1-2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1-2403.

  10. SMM Observations of Saturn

    NASA Technical Reports Server (NTRS)

    Schnopper, Herbert; Mushotzky, Richard (Technical Monitor)

    2001-01-01

    During the past year I have participated in a series of team telecons to I plan our observation of Saturn with SMM. The observation, scheduled for this month (September), was canceled and a new observation is being planned for 2002.

  11. The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility.

    PubMed

    Ragozzino, Michael E; Artis, Sonja; Singh, Amritha; Twose, Trevor M; Beck, Joseph E; Messer, William S

    2012-03-01

    Various neurodegenerative diseases and psychiatric disorders are marked by alterations in brain cholinergic function and cognitive deficits. Efforts to alleviate such deficits have been limited by a lack of selective M(1) muscarinic agonists. 5-(3-Ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine hydrochloride (CDD-0102A) is a partial agonist at M(1) muscarinic receptors with limited activity at other muscarinic receptor subtypes. The present studies investigated the effects of CDD-0102A on working memory and strategy shifting in rats. CDD-0102A administered intraperitoneally 30 min before testing at 0.1, 0.3, and 1 mg/kg significantly enhanced delayed spontaneous alternation performance in a four-arm cross maze, suggesting improvement in working memory. In separate experiments, CDD-0102A had potent enhancing effects on learning and switching between a place and visual cue discrimination. Treatment with CDD-0102A did not affect acquisition of either a place or visual cue discrimination. In contrast, CDD-0102A at 0.03 and 0.1 mg/kg significantly enhanced a shift between a place and visual cue discrimination. Analysis of the errors in the shift to the place or shift to the visual cue strategy revealed that in both cases CDD-0102A significantly increased the ability to initially inhibit a previously relevant strategy and maintain a new, relevant strategy once selected. In anesthetized rats, the minimum dose required to induce salivation was approximately 0.3 mg/kg i.p. Salivation increased with dose, and the estimated ED(50) was 2.0 mg/kg. The data suggest that CDD-0102A has unique memory and cognitive enhancing properties that might be useful in the treatment of neurological disorders at doses that do not produce adverse effects such as salivation.

  12. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  13. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  14. 28 CFR 0.102 - Drug enforcement policy coordination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Drug enforcement policy coordination. 0... JUSTICE Drug Enforcement Administration § 0.102 Drug enforcement policy coordination. The Administrator of the Drug Enforcement Administration shall report to the Attorney General, through the Deputy Attorney...

  15. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    PubMed

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  16. SPT-CL J2040–4451: An SZ-selected galaxy cluster at x=1.478 with significant ongoing star formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ashby, M. L. N.; Ruel, J.

    2014-09-18

    SPT-CL J2040-4451-spectroscopically confirmed at z = 1.478-is the highest-redshift galaxy cluster yet discovered via the Sunyaev-Zel'dovich effect. SPT-CL J2040-4451 was a candidate galaxy cluster identified in the first 720 deg(2) of the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey, and has been confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+ IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O Pi]lambda lambda 3727 emission. SPT-CL J2040-4451 has an SZ-measured mass of M-500,(SZ) = 3.2 ± 0.8 x 10 14M(circle dot) h(-1) 70, corresponding to M-200,M- (SZ) = 5.8 ± 1.4 x 10more » 14M(circle dot) h(70-)(1.) The velocity dispersion measured entirely from blue star-forming members is sv = 1500 ± 520 km s -1. The prevalence of star-forming cluster members (galaxies with > 1.5M(circle dot) yr -1 implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z greater than or similar to 1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be > 99%, indicating that its discovery is not in tension with the concordance Lambda CDM cosmological model.« less

  17. A submillimeter background galaxy projected on the debris disk of HD95086 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Ho, Paul T. P.; Rodríguez, Luis F.

    2018-06-01

    We present sensitive observations carried out with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the dusty debris disc HD 95086. These observations were made in bands 6 (223 GHz) and 7 (338 GHz) with an angular resolution of about 1 arcsec, which allowed us to resolve well the debris disc with a deconvolved size of 7.0 × 6.0 arcsec2 and with an inner depression of about 2 arcsec. We do not detect emission from the star itself and the possible inner dusty belt. We also do not detect CO (J = 2-1) and (J = 3-2) emission, excluding the possibility of an evolved gaseous primordial disc as noted in previous studies of HD95086. We estimated a lower limit for the gas mass of ≤0.01 M⊕ for the debris disc of HD95086. From the mm. emission, we computed a dust mass for the debris disc HD95086 of 0.5 ± 0.2 M⊕, resulting in a dust-to-gas ratio of ≥50. Finally, we confirm the detection of a strong submillimeter source to the north-west of the disc (ALMA-SMM1) revealed by recent ALMA observations. This new source might be interpreted as a planet in formation on the periphery of the debris disc HD 95086 or as a strong impact between dwarf planets. However, given the absence of the proper motions of ALMA-SMM1 similar to those reported in the debris disc (estimated from these new ALMA observations) and for the optical star, this is more likely to be a submillimeter background galaxy.

  18. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  19. Sustainable Materials Management (SMM) Web Academy Webinar: EPA's SMM Electronics Challenge - What's in it for you?

    EPA Pesticide Factsheets

    There will be a webinar entitled, EPA’s SMM Electronics Challenge: What’s in it for you?” to hear how the Challenge can help you preserve the environment, demonstrate leadership by building more sustainable electronics.

  20. Sustainable Materials Management (SMM) Electronics Challenge

    EPA Pesticide Factsheets

    Learn how the SMM Electronics Challenge encourage electronic manufacturers to strive to send 100 percent of the used electronics they collect from the public and retailers to certified electronics refurbishers and recyclers.

  1. J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Suyu, S.; Schrabback, T.; Hildebrandt, H.; Erben, T.; Halkola, A.

    2010-05-01

    Aims: We have discovered a strong lensing fossil group (J0454) projected near the well-studied cluster MS0451-0305. Using the large amount of available archival data, we compare J0454 to normal groups and clusters. A highly asymmetric image configuration of the strong lens enables us to study the substructure of the system. Methods: We used multicolour Subaru/Suprime-Cam and CFHT/Megaprime imaging, together with Keck spectroscopy to identify member galaxies. A VLT/FORS2 spectrum was taken to determine the redshifts of the brightest elliptical and the lensed arc. Using HST/ACS images, we determined the group's weak lensing signal and modelled the strong lens system. This is the first time that a fossil group is analysed with lensing methods. The X-ray luminosity and temperature were derived from XMM-Newton data. Results: J0454 is located at z = 0.26, with a gap of 2.5 mag between the brightest and second brightest galaxies within half the virial radius. Outside a radius of 1.5 Mpc, we find two filaments extending over 4 Mpc, and within we identify 31 members spectroscopically and 33 via the red sequence with i < 22 mag. They segregate into spirals (σ_v = 590 km s-1) and a central concentration of ellipticals (σ_v = 480 km s-1), establishing a morphology-density relation. Weak lensing and cluster richness relations yield consistent values of r200 = 810-850 kpc and M200 = (0.75-0.90) × 1014 M_⊙. The brightest group galaxy (BGG) is inconsistent with the dynamic centre of J0454. It strongly lenses a galaxy at z = 2.1 ± 0.3, and we model the lens with a pseudo-isothermal elliptical mass distribution. A high external shear, and a discrepancy between the Einstein radius and the weak lensing velocity dispersion requires that the BGG must be offset from J0454's dark halo centre by at least 90-130 kpc. The X-ray halo is offset by 24 ± 16 kpc from the BGG, shows no signs of a cooling flow and can be fit by a single β-model. With LX = (1.4 ± 0.2) × 1043 erg s-1 J0454

  2. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  3. SMM-system: A mining tool to identify specific markers in Salmonella enterica.

    PubMed

    Yu, Shuijing; Liu, Weibing; Shi, Chunlei; Wang, Dapeng; Dan, Xianlong; Li, Xiao; Shi, Xianming

    2011-03-01

    This report presents SMM-system, a software package that implements various personalized pre- and post-BLASTN tasks for mining specific markers of microbial pathogens. The main functionalities of SMM-system are summarized as follows: (i) converting multi-FASTA file, (ii) cutting interesting genomic sequence, (iii) automatic high-throughput BLASTN searches, and (iv) screening target sequences. The utility of SMM-system was demonstrated by using it to identify 214 Salmonella enterica-specific protein-coding sequences (CDSs). Eighteen primer pairs were designed based on eighteen S. enterica-specific CDSs, respectively. Seven of these primer pairs were validated with PCR assay, which showed 100% inclusivity for the 101 S. enterica genomes and 100% exclusivity of 30 non-S. enterica genomes. Three specific primer pairs were chosen to develop a multiplex PCR assay, which generated specific amplicons with a size of 180bp (SC1286), 238bp (SC1598) and 405bp (SC4361), respectively. This study demonstrates that SMM-system is a high-throughput specific marker generation tool that can be used to identify genus-, species-, serogroup- and even serovar-specific DNA sequences of microbial pathogens, which has a potential to be applied in food industries, diagnostics and taxonomic studies. SMM-system is freely available and can be downloaded from http://foodsafety.sjtu.edu.cn/SMM-system.html. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. SPT-CL J2040–4451: An SZ-selected galaxy cluster at z = 1.478 with significant ongoing star formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Ashby, M. L. N.

    2014-10-10

    SPT-CL J2040–4451—spectroscopically confirmed at z = 1.478—is the highest-redshift galaxy cluster yet discovered via the Sunyaev-Zel'dovich effect. SPT-CL J2040–4451 was a candidate galaxy cluster identified in the first 720 deg{sup 2} of the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey, and has been confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O II] λλ3727 emission. SPT-CL J2040–4451 has an SZ-measured mass of M {sub 500,} {sub SZ} = 3.2 ± 0.8 × 10{sup 14} M {sub ☉} h {sub 70}{sup −1}, corresponding to Mmore » {sub 200,} {sub SZ} = 5.8 ± 1.4 × 10{sup 14} M {sub ☉} h {sub 70}{sup −1}. The velocity dispersion measured entirely from blue star-forming members is σ {sub v} = 1500 ± 520 km s{sup –1}. The prevalence of star-forming cluster members (galaxies with >1.5 M {sub ☉} yr{sup –1}) implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z ≳ 1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be >99%, indicating that its discovery is not in tension with the concordance ΛCDM cosmological model.« less

  5. High b Value (2,000 s/mm2) Diffusion-Weighted Magnetic Resonance Imaging in Prostate Cancer at 3 Tesla: Comparison with 1,000 s/mm2 for Tumor Conspicuity and Discrimination of Aggressiveness

    PubMed Central

    Tamada, Tsutomu; Kanomata, Naoki; Sone, Teruki; Jo, Yoshimasa; Miyaji, Yoshiyuki; Higashi, Hiroki; Yamamoto, Akira; Ito, Katsuyoshi

    2014-01-01

    Objective The objective of our study was to investigate tumor conspicuity and the discrimination potential for tumor aggressiveness on diffusion-weighted magnetic resonance imaging (DW-MRI) with high b value at 3-T. Materials and Methods The institutional review board approved this study and waived the requirement for informed consent. A total of 50 patients with prostate cancer (69 cancer foci; 48 in the PZ, 20 in the TZ, and one in whole prostate) who underwent multiparametric prostate MRI including DW-MRI (b values: 0, 1000 s/mm2 and 0, 2000 s/mm2) on a 3-T system were included. Lesion conspicuity score (LCS) using visual assessment (1 = invisible for surrounding normal site; 2 = slightly high intensity; 3 = moderately high; and 4 = very high) and tumor-normal signal intensity ratio (TNR) were assessed, and apparent diffusion coefficient (ADC, ×10−3 mm2/s) of the tumor regions and normal regions were measured. Results Mean LCS and TNR at 0, 2000 s/mm2 was significantly higher than those at 0, 1000 s/mm2 (p<0.001 for both). In addition, ADC at both 0, 1000 and 0, 2000 s/mm2 was found to distinguish intermediate or high risk cancer with Gleason score ≥7 from low risk cancer with Gleason score ≤6 (p<0.001 for both). Furthermore, ADC of tumor regions correlated with Gleason score at both 0, 1000 s/mm2 (ρ = −0.602; p<0.001) and 0, 2000 s/mm2 (ρ = −0.645; p<0.001). Conclusions For tumor conspicuity and characterization of prostate cancer on DW-MRI of 3-T MRI, b = 0, 2000 s/mm2 is more useful than b = 0, 1000 s/mm2. PMID:24802652

  6. High b value (2,000 s/mm2) diffusion-weighted magnetic resonance imaging in prostate cancer at 3 Tesla: comparison with 1,000 s/mm2 for tumor conspicuity and discrimination of aggressiveness.

    PubMed

    Tamada, Tsutomu; Kanomata, Naoki; Sone, Teruki; Jo, Yoshimasa; Miyaji, Yoshiyuki; Higashi, Hiroki; Yamamoto, Akira; Ito, Katsuyoshi

    2014-01-01

    The objective of our study was to investigate tumor conspicuity and the discrimination potential for tumor aggressiveness on diffusion-weighted magnetic resonance imaging (DW-MRI) with high b value at 3-T. The institutional review board approved this study and waived the requirement for informed consent. A total of 50 patients with prostate cancer (69 cancer foci; 48 in the PZ, 20 in the TZ, and one in whole prostate) who underwent multiparametric prostate MRI including DW-MRI (b values: 0, 1000 s/mm2 and 0, 2000 s/mm2) on a 3-T system were included. Lesion conspicuity score (LCS) using visual assessment (1 = invisible for surrounding normal site; 2 = slightly high intensity; 3 = moderately high; and 4 = very high) and tumor-normal signal intensity ratio (TNR) were assessed, and apparent diffusion coefficient (ADC, ×10-3 mm2/s) of the tumor regions and normal regions were measured. Mean LCS and TNR at 0, 2000 s/mm2 was significantly higher than those at 0, 1000 s/mm2 (p<0.001 for both). In addition, ADC at both 0, 1000 and 0, 2000 s/mm2 was found to distinguish intermediate or high risk cancer with Gleason score ≥7 from low risk cancer with Gleason score ≤6 (p<0.001 for both). Furthermore, ADC of tumor regions correlated with Gleason score at both 0, 1000 s/mm2 (ρ = -0.602; p<0.001) and 0, 2000 s/mm2 (ρ = -0.645; p<0.001). For tumor conspicuity and characterization of prostate cancer on DW-MRI of 3-T MRI, b = 0, 2000 s/mm2 is more useful than b = 0, 1000 s/mm2.

  7. Modelling the magnetic behaviour of square-pyramidal Co(II)5 aggregates: tuning SMM behaviour through variations in the ligand shell.

    PubMed

    Klöwer, Frederik; Lan, Yanhua; Nehrkorn, Joscha; Waldmann, Oliver; Anson, Christopher E; Powell, Annie K

    2009-07-27

    Three new mu4-bridged Co(II)5 clusters with similar core motifs have been synthesised with the use of N-tert-butyldiethanolamine (tbdeaH2) and pivalic acid (piv): [Co(II)5(mu4-N3)(tbdea)2(mu-piv)4(piv)(CH3CN)2].CH3CN (1), [Co(II)5(mu4-Cl)(Cl)(tbdea)2(mu-piv)4(pivH)2] (2) and [Co(II)5(mu4-N3)(Cl)(tbdea)2(mu-piv)4(pivH)2] (3). Magnetic measurements were performed for all three compounds. It was found that while the chloride-bridged cluster 2 does not show an out-of-phase signal, which excludes single-molecule magnet (SMM) behaviour, the azide-bridged compounds 1 and 3 show out-of-phase signals as well as frequency dependence of the ac susceptibility, as expected for SMMs. We confirmed that 1 is a SMM with zero-field quantum tunnelling of the magnetisation at 1.8 K. Compound 3 is likely a SMM with a blocking temperature well below 1.8 K. We established a physical model to fit the chiT versus T and M versus B curves of the three compounds to reproduce the observed SMM trend. The analysis showed that small changes in the ligand shell modify not only the magnitude of exchange constants, but also affect the J and g matrices in a non-trivial way.

  8. SMM-UVSP ozone profile inversion programs

    NASA Technical Reports Server (NTRS)

    Smith, H. J. P.

    1983-01-01

    The documentation and user manual for the software used to invert the UVSP aeronomy data taken by the SMM are provided. The programs are described together with their interfaces and what inputs are required from the user.

  9. Sustainable Materials Management (SMM) WasteWise Data

    EPA Pesticide Factsheets

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  10. THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strazzullo, V.; Pannella, M.; Daddi, E.

    We use Hubble Space Telescope /WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z = 2, one of the few bona fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red-sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest thatmore » the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterizing the inner cluster core with respect to lower-density environments. On the other hand, the color–magnitude diagram of this cluster is definitely different from that of lower-redshift z ≲ 1 clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the protocluster and established lower-redshift cluster regimes.« less

  11. J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J.

    2018-03-01

    We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O32 = [O III] λ5007/[O II] λ3727 = 11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly α emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km s-1, one of the lowest known for Ly α-emitting galaxies, implying a high fesc(Ly α). Comparing the extinction-corrected Ly α/H β flux ratio with the case B value, we find fesc(Ly α) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length α = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 ± 0.01, the lowest stellar mass M⋆ = 108.20 M⊙, a similar star formation rate SFR = 18.9 M⊙ yr-1, and a high specific SFR of 1.2 × 10-7 yr-1.

  12. Gravitational lensing by globular clusters and dwarf galaxies-- the explanation of quasar-galaxy associations

    NASA Astrophysics Data System (ADS)

    Yushchenko, A.; Kim, C.; Sergeev, A.

    2003-04-01

    Quasar-galaxy associations can be explained as gravitational lensing by globular clusters, located in the halos of the foreground galaxies and dwarf galaxies in small groups of galaxies. We propose an observational test for checking this hypothesis. We used the SUPERCOSMOS sky survey to find the overdensities of star-like sources with zero proper motions in the vicinities of the~foreground galaxies from the CfA3 catalog. The results obtained for 19413 galaxies are presented. We show the results of calculations of number densities of star-like sources with zero proper motions in the vicinity of 19413 galaxies. Two different effects can explain the observational data: lensing by globular clusters and lensing by dwarf galaxies. We carried out the CCD 3-color photometry with the 2.0-m telescope of the~Terskol Observatory and the 1.8-m telescope of the Bohyunsan Observatory (South Korea) to select extremely lensed objects around several galaxies for future spectroscopic observations. From ads Wed Jan 12 06:25:17 2005 Return-Path: Received: (from ads@localhost) by head.cfa.harvard.edu (d/w) id j0CBPHjt007159; Wed, 12 Jan 2005 06:25:17 -0500 (EST) Received: from cfa.harvard.edu (cfa.harvard.edu [131.142.10.1]) by head.cfa.harvard.edu (d/w) with ESMTP id j0CBOuKD007095 for ; Wed, 12 Jan 2005 06:24:56 -0500 (EST) Received: from uqbar.mao.kiev.ua (mao.gluk.org [194.183.183.193]) by cfa.harvard.edu (8.12.9-20030924/8.12.9/cfunix Mast-Sol 1.0) with ESMTP id j0CBOgRv026875 for ; Wed, 12 Jan 2005 06:24:51 -0500 (EST) Received: from maoling.mao.kiev.ua (root@maoling.mao.kiev.ua [194.44.216.101]) by uqbar.mao.kiev.ua (8.11.6/8.11.6) with ESMTP id j0CBOdv08381 for ; Wed, 12 Jan 2005 13:24:39 +0200 Received: from maoling.mao.kiev.ua (gallaz@localhost [127.0.0.1]) by maoling.mao.kiev.ua (8.12.3/8.12.3/Debian-7.1) with ESMTP id j0CBObPb014682 for ; Wed, 12 Jan 2005 13:24:37 +0200 Received: (from gallaz

  13. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  14. X-ray spectroscopy of SNR E0102-72 with the ASCA satellite

    NASA Technical Reports Server (NTRS)

    Hayashi, Ichizo; Koyama, Katsuji; Ozaki, Masanobu; Miyata, Emi; Tsumeni, Hiroshi; Hughes, John P.; Petre, Robert

    1994-01-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite has obtained a moderate-resolution energy spectrum of E0102-72, the brightest Supernova Remnant (SNR) in the Small Magellanic Cloud (SMC). This paper reports on the first results of the analysis of the high quality spectrum of E0102-72. The spectrum shows resolved emission lines of He-like K alpha, H-like K alpha and K beta from oxygen, neon, and magnesium. The intensity ratios of these lines cannot be explained by a multi-component plasma model with uniform abundances, but requires abundance inhomogeneity in the plasma. We demonstrate how the spectral capabilities of the ASCA SIS make available new diagnostics of X-ray plasmas in a state of non-equilibrium ionization. Some interpretation based on the spectral analysis is also given.

  15. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  16. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  17. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  18. Detection of Lyman-alpha Emission from a Triply Imaged z = 6.85 Galaxy behind MACS J2129.4-0741

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Lemaux, Brian C.; Schmidt, Kasper B.; Hoag, Austin; Bradač, Maruša; Treu, Tommaso; Dijkstra, Mark; Fontana, Adriano; Henry, Alaina; Malkan, Matthew; Mason, Charlotte; Morishita, Takahiro; Pentericci, Laura; Ryan, Russell E., Jr.; Trenti, Michele; Wang, Xin

    2016-05-01

    We report the detection of Lyα emission at ˜9538 Å in the Keck/DEIMOS and Hubble Space Telescope WFC3 G102 grism data from a triply imaged galaxy at z=6.846+/- 0.001 behind galaxy cluster MACS J2129.4-0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is [O II] at z = 1.57. After accounting for magnification, we calculate the weighted average of the intrinsic Lyα luminosity to be ˜ 1.3× {10}42 {erg} {{{s}}}-1 and Lyα equivalent width to be 74 ± 15 Å. Its intrinsic UV absolute magnitude at 1600 Å is -18.6 ± 0.2 mag and stellar mass (1.5+/- 0.3)× {10}7\\quad {M}⊙ , making it one of the faintest (intrinsic {L}{UV}˜ 0.14 {L}{UV}\\ast ) galaxies with Lyα detection at z˜ 7 to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at z≳ 7; the inferred Lyα escape fraction is high (≳ 10%), which could be common for sub-L* z≳ 7 galaxies with Lyα emission. This galaxy offers a glimpse of the galaxy population that is thought to drive reionization, and it shows that gravitational lensing is an important avenue for probing the sub-L* galaxy population.

  19. The Role of Galaxies and AGN in Reionising the IGM - slowromancapi@: Keck Spectroscopy of 5 < z < 7 Galaxies in the QSO Field J1148+5251

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Ellis, Richard S.; Laporte, Nicolas; Zitrin, Adi; Eilers, Anna-Christina; Ryan-Weber, Emma; Meyer, Romain A.; Robertson, Brant; Stark, Daniel P.; Bosman, Sarah E. I.

    2018-05-01

    We introduce a new method for determining the influence of galaxies and active galactic nuclei (AGN) on the intergalactic medium (IGM) at high redshift and illustrate its potential via a first application to the field of the z = 6.42 QSO J1148+5251. Correlating spatial positions Lyman break galaxies (LBGs) with the Lyman alpha forest seen in the spectrum of a background QSO, we provide a statistical measure of the typical escape fraction of Lyman continuum photons. Using Keck DEIMOS spectroscopy to locate 7 colour-selected LBGs in the range 5.3 ≲ z ≲ 6.4 we examine the spatial correlation between this sample and Lyα/Lyβ transmission fluctuations in a Keck ESI spectrum of the QSO. Interpreting the statistical H I proximity effect as arising from faint galaxies clustered around the LBGs, we translate the observed mean Lyα transmitted flux into a constraint on the mean escape fraction ⟨fesc⟩ ≥ 0.08 at z ≃ 6. We also report individual transverse H I proximity effect for a z = 6.177 luminous LBG via a Lyβ transmission spike and two broad Lyα transmission spikes around the z = 5.701 AGN. We discuss the origin of such associations which suggest that while faint galaxies are primarily driving reionisation, luminous galaxies and AGN may provide important contributions to the UV background or thermal fluctuations of the IGM at z ≃ 6. Although a limited sample, our results demonstrate the potential of making progress using this method in resolving one of the most challenging aspects of the contribution of galaxies and AGN to cosmic reionisation.

  20. SNR 1E0102.2-7219 after Six Years with Chandra

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Schlegel, E. M.; Keohane, J.

    2005-12-01

    We present Chandra X-ray Observatory archived observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud. Combining 22 ACIS-I observations for 230 ks of total exposure time, we present ACIS images with an unprecedented signal to noise ratio for this remnant. We present three upper limits on the X-ray flux for the remnant's elusive central compact object, which are consistent with current neutron star cooling models, based on a Cas A-like blackbody spectrum. Additionally, we discuss the elliptical structure of the remnant and the relative positions of the blast wave, the reverse shock, and the extent of 1E0102.2-7219's rim. This research was supported by the NSF REU Program at SAO under Eric Schlegel, whose research was supported by contract number NAS8-39073 from NASA to SAO for operation of the Chandra X-Ray Observatory. Jonathan Keohane's research was supported by Chandra award GO3-4070C.

  1. The host galaxy and Fermi -LAT counterpart of HESS J1943+213

    DOE PAGES

    Peter, D.; Domainko, W.; Sanchez, D. A.; ...

    2014-11-06

    The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV stat ± 0.6 sys) × 10 -15 cmmore » -2 s -1 MeV -1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. In conclusion, the infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The source is most likely located at a redshift between 0.03 and 0.45 according to extension and EBL attenuation arguments.« less

  2. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  3. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  4. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii aremore » generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that

  5. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  6. Newly Formed Dust in the Core-Collapse Supernova Remnant E0102

    NASA Astrophysics Data System (ADS)

    Ludwig, Bethany; Sandstrom, Karin; Bolatto, Alberto

    2018-01-01

    The mechanism of interstellar dust formation is a matter of continuing debate. In the very early universe, some high redshift galaxies are observed to have a substantial amount of dust. This has led to the suggestion that core collapse supernovae must be the producers of much of the dust in the universe. However, most observed supernova remnants (SNRs) in the local universe have measured dust yields far below the necessary levels. Cassiopeia A and SN 1987A are exceptions--in these young remnants, Herschel Space Observatory observations found large quantities of newly-formed dust. In these two cases, the SNR is young enough that the reverse shock has not yet interacted with most of the newly formed dust. To study supernova dust production, we observe SNR 1E0102.2-7219, which is approximately 1000 years old with a reverse shock that has only reached into a small part of its ejecta making it an excellent candidate to search for newly formed dust that has not yet been destroyed by those shocks. Using Herschel data, we carefully model the background around the remnant to remove emission that is unrelated to the SNR. We then measure the mass, temperature, and chemical composition of the dust by fitting the spectral energy distribution. Our findings reveal a substantial amount of previously undetected cold dust in the remnant, suggesting that indeed core collapse supernovae may host substantial amounts of newly formed dust, at least prior to the passage of the reverse shock.

  7. Estimating sizes of faint, distant galaxies in the submillimetre regime

    NASA Astrophysics Data System (ADS)

    Lindroos, L.; Knudsen, K. K.; Fan, L.; Conway, J.; Coppin, K.; Decarli, R.; Drouart, G.; Hodge, J. A.; Karim, A.; Simpson, J. M.; Wardlow, J.

    2016-10-01

    We measure the sizes of redshift ˜2 star-forming galaxies by stacking data from the Atacama Large Millimeter/submillimeter Array (ALMA). We use a uv-stacking algorithm in combination with model fitting in the uv-domain and show that this allows for robust measures of the sizes of marginally resolved sources. The analysis is primarily based on the 344 GHz ALMA continuum observations centred on 88 submillimetre galaxies in the LABOCA ECDFS Submillimeter Survey (ALESS). We study several samples of galaxies at z ≈ 2 with M* ≈ 5 × 1010 M⊙, selected using near-infrared photometry (distant red galaxies, extremely red objects, sBzK-galaxies, and galaxies selected on photometric redshift). We find that the typical sizes of these galaxies are ˜0.6 arcsec which corresponds to ˜5 kpc at z = 2, this agrees well with the median sizes measured in the near-infrared z band (˜0.6 arcsec). We find errors on our size estimates of ˜0.1-0.2 arcsec, which agree well with the expected errors for model fitting at the given signal-to-noise ratio. With the uv-coverage of our observations (18-160 m), the size and flux density measurements are sensitive to scales out to 2 arcsec. We compare this to a simulated ALMA Cycle 3 data set with intermediate length baseline coverage, and we find that, using only these baselines, the measured stacked flux density would be an order of magnitude fainter. This highlights the importance of short baselines to recover the full flux density of high-redshift galaxies.

  8. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  9. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  10. Simulating the Galaxy Cluster “El Gordo”: Gas Motion, Kinetic Sunyaev–Zel’dovich Signal, and X-Ray Line Features

    NASA Astrophysics Data System (ADS)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2018-03-01

    The massive galaxy cluster “El Gordo” (ACT-CL J0102–4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and theoretical modeling. Zhang et al. propose two types of mergers, a nearly head-on merger and an off-axis merger with a large impact parameter, to reproduce most of the observational features of the cluster using numerical simulations. The different merger configurations of the two models result in different gas motion in the simulated clusters. In this paper, we predict the kinetic Sunyaev–Zel’dovich (kSZ) effect, the relativistic correction of the thermal Sunyaev–Zel’dovich (tSZ) effect, and the X-ray spectrum of this cluster, based on the two proposed models. We find that (1) the amplitudes of the kSZ effect resulting from the two models are both on the order of ΔT/T ∼ 10‑5 but their morphologies are different, which trace the different line-of-sight velocity distributions of the systems; (2) the relativistic correction of the tSZ effect around 240 GHz can be possibly used to constrain the temperature of the hot electrons heated by the shocks; and (3) the shift between the X-ray spectral lines emitted from different regions of the cluster can be significantly different in the two models. The shift and the line broadening can be up to ∼25 eV and 50 eV, respectively. We expect that future observations of the kSZ effect and the X-ray spectral lines (e.g., by ALMA, XARM) will provide a strong constraint on the gas motion and the merger configuration of ACT-CL J0102–4915.

  11. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  12. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    PubMed

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  13. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  14. Carbon monoxide emission from small galaxies

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Bally, John

    1987-01-01

    A search was conducted for J = 1 yields 0 CO emission from 22 galaxies, detecting half, as part of a survey to study star formation in small to medium size galaxies. Although substantial variation was found in the star formation efficiencies of the sample galaxies, there is no apparent systematic trend with galaxy size.

  15. The projected gravitational potential of the galaxy cluster MACS J1206 derived from galaxy kinematics

    NASA Astrophysics Data System (ADS)

    Stock, Dennis; Meyer, Sven; Sarli, Eleonora; Bartelmann, Matthias; Balestra, Italo; Grillo, Claudio; Koekemoer, Anton; Mercurio, Amata; Nonino, Mario; Rosati, Piero

    2015-12-01

    We reconstruct the radial profile of the projected gravitational potential of the galaxy cluster MACS J1206 from 592 spectroscopic measurements of velocities of cluster members. To accomplish this, we use a method we have developed recently based on the Richardson-Lucy deprojection algorithm and an inversion of the spherically-symmetric Jeans equation. We find that, within the uncertainties, our reconstruction agrees very well with a potential reconstruction from weak and strong gravitational lensing as well as with a potential obtained from X-ray measurements. In addition, our reconstruction is in good agreement with several common analytic profiles of the lensing potential. Varying the anisotropy parameter in the Jeans equation, we find that isotropy parameters, which are either small, β ≲ 0.2, or decrease with radius, yield potential profiles that strongly disagree with that obtained from gravitational lensing. We achieve the best agreement between our potential profile and the profile from gravitational lensing if the anisotropy parameter rises steeply to β ≈ 0.6 within ≈ 0.5 Mpc and stays constant further out.

  16. Multifrequency studies of the peculiar quasar 4C+21.35 during the 2010 flaring activity

    DOE PAGES

    None, None

    2014-04-25

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. Here, we present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHEmore » was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. Furthermore, an increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We also model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  17. Multifrequency studies of the peculiar quasar 4C +21.35 during the 2010 flaring activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE wasmore » observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  18. Multifrequency studies of the peculiar quasar 4C+21.35 during the 2010 flaring activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar. Here, we present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHEmore » was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. Furthermore, an increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We also model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of« less

  19. The X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.56. The dawn of starburst activity in cluster cores

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J. S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Pratt, G. W.; Mohr, J. J.

    2011-03-01

    Context. Observational galaxy cluster studies at z > 1.5 probe the formation of the first massive M > 1014 M⊙ dark matter halos, the early thermal history of the hot ICM, and the emergence of the red-sequence population of quenched early-type galaxies. Aims: We present first results for the newly discovered X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.555, detected and confirmed by the XMM-Newton Distant Cluster Project (XDCP) survey. Methods: We selected the system as a serendipitous weak extended X-ray source in XMM-Newton archival data and followed it up with two-band near-infrared imaging and deep optical spectroscopy. Results: We can establish XMMU J1007.4+1237 as a spectroscopically confirmed, massive,bona fide galaxy cluster with a bolometric X-ray luminosity of Lbol_X,500≃(2.1 ± 0.4)× 10^{44} erg/s, a red galaxy population centered on the X-ray emission, and a central radio-loud brightest cluster galaxy. However, we see evidence for the first time that the massive end of the galaxy population and the cluster red-sequence are not yet fully in place. In particular, we find ongoing starburst activity for the third ranked galaxy close to the center and another slightly fainter object. Conclusions: At a lookback time of 9.4 Gyr, the cluster galaxy population appears to be caught in an important evolutionary phase, prior to full star-formation quenching and mass assembly in the core region. X-ray selection techniques are an efficient means of identifying and probing the most distant clusters without any prior assumptions about their galaxy content. Based on observations under programme ID 081.A-0312 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figure 2 and Tables 1 and 2 are only

  20. The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica

    2018-06-01

    We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.

  1. VizieR Online Data Catalog: Jellyfish galaxy candidates in galaxy clusters (Poggianti+, 2016)

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Moretti, A.; Paccagnella, A.; Jaffe, Y. L.; Vulcani, B.; Fritz, J.; Couch, W.; D'Onofrio, M.

    2016-10-01

    WIde-field Nearby Galaxy-cluster Survey (WINGS) is a large survey targeting 76 clusters of galaxies selected on the basis of their X-ray luminosity (Ebeling et al. 1996, Cat. J/MNRAS/281/799; Ebeling et al. 1998, Cat. J/MNRAS/301/881; Ebeling et al. 2000, Cat. J/MNRAS/318/333), covering a wide range in cluster masses (σ=500-1200+km/s, logLX=43.3-45erg/s, Fasano et al. 2006A&A...445..805F). The original WINGS data set consisted of B and V deep photometry of a 34'*34' field of view with the WFC@INT and the WFC@2.2mMPG/ESO (Varela et al. 2009, Cat. J/A+A/497/667), spectroscopic follow-ups with 2dF@AAT and WYFFOS@WHT (Cava et al. 2009, Cat. J/A+A/495/707), plus J and K imaging with WFC@UKIRT (Valentinuzzi et al. 2009, Cat. J/A+A/501/851) and some U-band imaging (Omizzolo et al. 2014, Cat. J/A+A/561/A111). This database is presented in Moretti et al. 2014A&A...564A.138M and has been employed for a number of studies (see https://sites.google.com/site/wingsomegawings/). OmegaCAM-VST observations of WINGS galaxy clusters (OMEGAWINGS) is a recent extention of this project, that quadruples the area covered (1deg2) and allows to reach up to ~2.5 cluster virial radii. OMEGAWINGS is based on two OmegaCAM@VST GTO programs for 46 WINGS clusters: a B and V campaign completed in P93, and an ongoing u-band programme. The B and V data, the data reduction and the photometric catalogs are presented in Gullieuszik et al. 2015 (Cat. J/A+A/581/A41). Spectra are obtained with AAOmega@AAT on the OmegaCAM field. So far, we have secured high quality spectra for ~30 OMEGAWINGS clusters, reaching very high spectroscopic completeness levels for galaxies brighter than V=20 from the cluster cores to their periphery (A. Moretti et al. 2016, in preparation). Galaxies are considered cluster members if they are within 3σ from the cluster redshift. The mean redshift uncertainty, computed from the differences between WINGS and OMEGAWINGS redshift values of repeated objects, is Δz=0.0002. For this

  2. The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Simha, Vimal; Weinberg, David H.; Davé, Romeel; Gnedin, Oleg Y.; Katz, Neal; Kereš, Dušan

    2009-10-01

    We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 109Msolar. Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2-5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5-1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1-0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z = 1, 27 per cent of central galaxies (above 3 × 1010Msolar) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain `central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.

  3. A 21-35 kDa Mixed Protein Component from Helicobacter pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria.

    PubMed

    Tan, Ran-Jing; Sun, He-Qiang; Zhang, Wei; Yuan, Han-Mei; Li, Bin; Yan, Hong-Tao; Lan, Chun-Hui; Yang, Jun; Zhao, Zhuo; Wu, Jin-Jin; Wu, Chao

    2016-12-01

    Helicobacter pylori (H. pylori) seem to involve in the etiology of chronic spontaneous urticaria (CSU). But studies of the pathogenic mechanism are very little. In this study, we detected the serum-specific anti-H. pylori IgG and IgE antibodies in 211 CSU and 137 normal subjects by enzyme-linked immunosorbent assay (ELISA), evaluated the direct activation effects of H. pylori preparations and its protein components on human LAD 2 mast cell line in vitro, and analyzed the specific protein ingredients and functions of the most effective H. pylori mixed protein component using liquid chromatography-mass spectrometry and ELISA assay. In CSU patients, the positive rate of anti-H. pylori IgG positive rate was significantly higher than that in normal controls, and the anti-H. pylori IgE levels had no statistical difference between H. pylori-infected patients with and without CSU. Further studies suggested that H. pylori preparations can directly activate human LAD 2 mast cell line in a dose-dependent manner and its most powerful protein component was a mixture of 21-35 kDa proteins. Moreover, the 21-35 kDa mixed protein component mainly contained 23 kinds of proteins, which can stimulate the release of histamine, TNF-a, IL-3, IFN-γ, and LTB4 by LAD 2 cells in a dose-dependent or time-dependent manner. A 21-35 kDa mixed protein component should be regarded as the most promising pathogenic factor contributing to the CSU associated with H. pylori infection. © 2016 John Wiley & Sons Ltd.

  4. Integral Field Spectroscopy of Supernova Remnant 1E0102–7219 Reveals Fast-moving Hydrogen and Sulfur-rich Ejecta

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Vogt, Frédéric P. A.; Terry, Jason P.; Ghavamian, Parviz; Dopita, Michael A.; Ruiter, Ashley J.; Sukhbold, Tuguldur

    2018-02-01

    We study the optical emission from heavy element ejecta in the oxygen-rich young supernova remnant 1E 0102.2–7219 (1E 0102) in the Small Magellanic Cloud. We have used the Multi-Unit Spectroscopic Explorer optical integral field spectrograph at the Very Large Telescope on Cerro Paranal and the wide field spectrograph (WiFeS) at the ANU 2.3 m telescope at Siding Spring Observatory to obtain deep observations of 1E 0102. Our observations cover the entire extent of the remnant from below 3500 Å to 9350 Å. Our observations unambiguously reveal the presence of fast-moving ejecta emitting in [S II], [S III], [Ar III], and [Cl II]. The sulfur-rich ejecta appear more asymmetrically distributed compared to oxygen or neon, a product of carbon burning. In addition to the forbidden line emission from products of oxygen burning (S, Ar, Cl), we have also discovered Hα and Hβ emission from several knots of low surface brightness, fast-moving ejecta. The presence of fast-moving hydrogen points toward a progenitor that had not entirely shed its hydrogen envelope prior to the supernova. The explosion that gave rise to 1E 0102 is therefore commensurate with a Type IIb supernova.

  5. LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. IV. {sup 12}CO J = 6-5 OBSERVATIONS OF VV 114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sliwa, Kazimierz; Wilson, Christine D.; Krips, Melanie

    We present high-resolution (∼2.''5) observations of {sup 12}CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect {sup 12}CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new {sup 12}CO J = 6-5 observations with previously published or archival low-J CO observations, which include {sup 13}CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer codemore » RADEX and a Bayesian likelihood code to constrain the temperature (T{sub kin}), density (n{sub H{sub 2}}), and column density (N{sub {sup 1}{sup 2}CO}) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T{sub kin} = 38 K), moderately dense (n{sub H{sub 2}} = 10{sup 2.89} cm{sup –3}) molecular gas component. We find that the most probable {sup 12}CO to {sup 13}CO abundance ratio ([{sup 12}CO]/[{sup 13}CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high {sup 12}CO/ {sup 13}CO line ratio (>25). The unusual {sup 13}CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate {sup 13}CO optical depths (τ = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H{sub 2} conversion factor, α{sub CO}, to be 0.5{sup +0.6}{sub -0.3} M{sub ☉} (K km s{sup –1} pc{sup 2}){sup –1}, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes and Solomon (α{sub CO} = 0.8 M{sub ☉} (K km s{sup –1} pc{sup 2}){sup –1})« less

  6. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  7. Warped Disks and Inclined Rings around Galaxies

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.

    2006-11-01

    Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.

  8. The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun; Ebeling, Harald; Donovan, David; Barrett, Elizabeth

    2008-09-01

    We present the results of a wide-field spectroscopic analysis of the galaxy population of the massive cluster MACS J0717.5+3745 and the surrounding filamentary structure (z = 0.55), as part of our systematic study of the 12 most distant clusters in the MACS sample. Of 1368 galaxies spectroscopically observed in this field, 563 are identified as cluster members; of those, 203 are classified as emission-line galaxies, 260 as absorption-line galaxies, and 17 as E+A galaxies (defined by (H δ + H γ )/2 > 6 Å and no detection of [O II] and Hβ in emission). The variation of the fraction of emission- and absorption-line galaxies as a function of local projected galaxy density confirms the well-known morphology-density relation, and becomes flat at projected galaxy densities less than ~20 Mpc-2. Interestingly, 16 out of 17 E+A galaxies lie (in projection) within the ram-pressure stripping radius around the cluster core, which we take to be direct evidence that ram-pressure stripping is the primary mechanism that terminates star formation in the E+A population of galaxy clusters. This conclusion is supported by the rarity of E+A galaxies in the filament, which rules out galaxy mergers as the dominant driver of evolution for E+A galaxies in clusters. In addition, we find that the 42 e(a) and 27 e(b) member galaxies, i.e., the dusty-starburst and starburst galaxies respectively, are spread out across almost the entire study area. Their spatial distribution, which shows a strong preference for the filament region, suggests that starbursts are triggered in relatively low-density environments as galaxies are accreted from the field population. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based also in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of

  9. Discovery of the X-ray selected galaxy cluster XMMU J0338.8+0021 at z = 1.49. Indications of a young system with a brightest galaxy in formation

    NASA Astrophysics Data System (ADS)

    Nastasi, A.; Fassbender, R.; Böhringer, H.; Šuhada, R.; Rosati, P.; Pierini, D.; Verdugo, M.; Santos, J. S.; Schwope, A. D.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mühlegger, M.; Quintana, H.

    2011-08-01

    We report the discovery of a galaxy cluster at z = 1.490 originally selected as an extended X-ray source in the XMM-Newton Distant Cluster Project. Further observations carried out with the VLT-FORS2 spectrograph allowed the spectroscopic confirmation of seven secure cluster members, providing a median system redshift of z = 1.490 ± 0.009. The color-magnitude diagram of XMMU J0338.8+0021 reveals the presence of a well-populated red sequence with z - H ≈ 3, albeit with an apparent significant scatter in color. Since we do not detect indications of any strong star formation activity in these objects, the color spread could represent the different stellar ages of the member galaxies. In addition, we found the brightest cluster galaxy in a very active dynamical state, with an interacting, merging companion located at a physical projected distance of d ≈ 20 kpc. From the X-ray luminosity, we estimate a cluster mass of M200 ~ 1.2 × 1014 M⊙. The data appear to be consistent with a scenario in which XMMU J0338.8+0021 is a young system, possibly caught in a moment of active ongoing mass assembly. Based on observations under programme ID 084.A-0844 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 1, 2 and Figs. 3-6 are available in electronic form at http://www.aanda.org

  10. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.

    2017-07-01

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.

  11. Extended Star-formation and Disk-like Kinematics in a z~3 Massive ``Main-Sequence'' Galaxy through [CII] Imaging and Multi-J CO Line Observations

    NASA Astrophysics Data System (ADS)

    Leung, Tsz Kuk Daisy; Riechers, Dominik A.; Clements, David; Cooray, Asantha; Ivison, Rob; Perez-Fournon, Ismael; Wardlow, Julie

    2018-01-01

    Dusty star-forming galaxies (SFG) at high redshifts are the main contributors to the comoving star formation rate (SFR) density, which peaks between the redshift of z=1-3 (``Cosmic Noon''). Yet, new insights into their gas dynamics, and thus, structural evolution are awaiting spatially resolved observations. I will present the latest results from our kpc-scale [CII] imaging and multi-J CO line observations obtained with ALMA, CARMA, PdBI, and the VLA in one of the most massive ``main-sequence'' disk galaxy known. XMM03 (z=2.9850) is an extremely IR-luminous galaxy with a SFR of ~3000 Msun/yr, but its molecular gas excitation is surprisingly similar to the Milky Way up to J=5, which is in stark contrast with most high-z galaxies studied to date. The monotonic velocity gradient seen in the [CII] line emission suggest that it is a rotating disk galaxy. Based on the molecular gas surface density and the far-UV radiation flux determined from photo-dissociation region (PDR) modeling, the star-forming environment of XMM03 is similar to nearby SFGs. These findings together with the ~1100 km/s wide CO(1-0) line across the entire disk of ~8 kpc in radius showcase the different interstellar medium (ISM) environment that we are probing at the most massive end of galaxies in the early Universe. With a stellar mass of M*~10^12, its specific SFR is consistent with an extrapolation of the ``star-forming main-sequence'' up to M*~10^12 Msun at z~3. Our findings therefore confirm the prevalence of disk-wide star formation responsible for assembling most of the stellar masses toward the ``Cosmic Noon''.

  12. Radial Profiles of PKS 0745-191 Galaxy Cluster with XMM-Newton X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Tumer, A.; Ezer, C.; Ercan, E.

    2017-10-01

    Since clusters of galaxies are the largest comprehensive samples of the universe, they provide essential information on from the most basic to the most complex physical mechanisms such as nucleosynthesis and supernovae events. Some of these information are provided by the X-ray emission data from Intra Cluster Medium (ICM) which contains hot dilute gas. Recent archieved observation of the X-Ray spectrum of the cool core galaxy cluster PKS 0745-191 provided by XMM-Newton is subjected to data analysis using ESAS package. Followed by spectra analysis utilizing Xspec spectral fitting software, we present the radial profiles of temperature and abundance from the core to 0.5R_500 of brightest distant cluster (z ˜ 0.102) PKS 0745-191. Using the deprojected spectra, the radial distribution of pressure and entropy in the aforementioned region are also presented.

  13. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  14. Irradiance Observations of SMM, Spacelab 1, UARS, and ATLAS Experiments

    NASA Technical Reports Server (NTRS)

    Willson, Richard

    1994-01-01

    Detection of intrinsic solar variability on the total flux level was made using results from the first active Radiometer Irradiance Monitor (ACRIM) experiment, launched on the Solar Maximum Mission (SMM)in early 1980.

  15. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies

    PubMed Central

    Kristinsson, Sigurdur Y.

    2011-01-01

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed. PMID:21441462

  16. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies.

    PubMed

    Korde, Neha; Kristinsson, Sigurdur Y; Landgren, Ola

    2011-05-26

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed.

  17. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-04-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  18. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-06-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  19. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  20. Foreground effect on the J-factor estimation of classical dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Ichikawa, Koji; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei; Horigome, Shun-ichi

    2017-07-01

    The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo so that they give stringent constraints on the O(1) TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-negligible systematic uncertainties are not taken into account. Among them, the effect of foreground stars on the astrophysical factors has not been paid much attention, which becomes more important for deeper and wider stellar surveys in the future. In this article, we assess the effects of the foreground contamination by generating the mock samples of stars and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and find that the cuts on the velocity and surface gravity can efficiently eliminate the contamination. We also propose a new likelihood function that includes the foreground distribution function. We apply this likelihood function to the fit of the three types of the mock data (Ursa Minor, Draco with large dark matter halo and Draco with small halo) and three cases of the observation. The likelihood successfully reproduces the input J-factor value while the fit without considering the foreground distribution gives a large deviation from the input value by a factor of 3.

  1. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Bayliss, M.; Wuyts, E.

    2017-07-01

    For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of {r}e=2.7+/- 0.3 {kpc} measured from two-dimensional fitting to F606W using Galfit, and {r}e=1.9+/- 0.1 {kpc} measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30-50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc such sizes are wholly unexplored by surveys of galaxy evolution at 1< z< 3.

  2. Simulations of the galaxy cluster CIZA J2242.8+5301 - I. Thermal model and shock properties

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.; Beck, A. M.; Dolag, K.; Röttgering, H. J. A.

    2017-11-01

    The giant radio relic in CIZA J2242.8+5301 provides clear evidence of an Mpc-sized shock in a massive merging galaxy cluster. Here, we present idealized SPH hydrodynamical and collisionless dark matter simulations, aiming to find a model that is consistent with that large range of observations of this galaxy cluster. We first show that in the northern shock, the observed radio spectral index profile and integrated radio spectrum are consistent with the observed upstream X-ray temperature. Using simulations, we first find that only a cool-core versus non-cool-core merger can lead to the observed elongated X-ray morphology. We then carry out simulations for two merging clusters assuming a range of NFW and β-model density profiles and hydrostatic equilibrium. We find a fiducial model that mimics the overall morphology of the shock structures, has a total mass of 1.6 × 1015 M⊙ and a mass ratio of 1.76. For this model, the derived Mach number for the northern shock is 4.5. This is almost a factor 2 higher compared to the observational determination of the Mach number using X-ray observations or measurements of the radio injection spectral index. We could not find numerical models that both fit the X-ray properties and yielded such low Mach numbers. We discuss various ways of understanding this difference and argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and reconcile the differences.

  3. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    , allow astronomers to get an even sharper view of the structure of this galaxy, completely free of obscuring dust. The original images, obtained by observing in the near-infrared through three different filters (J, H, K) were combined using a new technique that removes the dark, screening effect of the dust, providing a clear view of the centre of this galaxy. What the astronomers found was surprising: "There is a clear ring of stars and clusters hidden behind the dust lanes, and our images provide an unprecedentedly detailed view toward it," says Jouni Kainulainen, lead author of the paper reporting these results. "Further analysis of this structure will provide important clues on how the merging process occurred and what has been the role of star formation during it." The research team is excited about the possibilities this new technique opens: "These are the first steps in the development of a new technique that has the potential to trace giant clouds of gas in other galaxies at high resolution and in a cost-effective way," explains co-author João Alves. "Knowing how these giant clouds form and evolve is to understand how stars form in galaxies." Looking forward to the new, planned telescopes, both on the ground and in space, "this technique is very complementary to the radio data ALMA will collect on nearby galaxies, and at the same time it poses interesting avenues of research for extragalactic stellar populations with the future European Extremely Large Telescope and the James Webb Space Telescope, as dust is omnipresent in galaxies," says co-author Yuri Beletsky. Previous observations done with ISAAC on the VLT have revealed that a supermassive black hole lurks inside Centaurus A. Its mass is about 200 million times the mass of our Sun, or 50 times more massive than the one that lies at the centre of our Milky Way. In contrast to our own galaxy, the supermassive black hole in Centaurus A is continuously fed by material falling onto into it, making the giant

  4. SMM detection of diffuse Galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  5. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.

    2016-06-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.

  6. MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Weeren, R. J. van; Clarke, T. E.

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  7. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  8. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE PAGES

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...

    2016-05-25

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  9. EMU battery/SMM power tool characterization study

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1982-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft was modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery was tested for the power tool application. The results are that the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  10. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  11. The Jet-driven Outflow in the Radio Galaxy SDSS J1517+3353: Implications for Double-peaked Narrow-line Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Shields, G. A.; Taylor, G. B.; Salviander, S.; Smith, K. L.

    2010-06-01

    We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s-1 and 500 km s-1 with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet-driven kinematics and

  12. J-PLUS: The Javalambre Photometric Local Universe Survey

    NASA Astrophysics Data System (ADS)

    Cenarro, Javier; Marin-Franch, Antonio; Moles, Mariano; Cristobal-Hornillos, David; Mendes de Oliveira, Claudia; Sodre, Laerte

    2015-08-01

    The Javalambre-Photometric Local Universe Survey, J-PLUS (www.j-plus.es), is defined to observe 8500 deg2 of the sky visible from the Javalambre Observatory (Teruel, Spain) with the panoramic camera T80Cam at the JAST/T80 telescope, using a set of 12 broad, intermediate and narrow band optical filters. The Project is particularly designed to carry out the photometric calibration of J-PAS (http://j-pas.org). For this reason, some J-PLUS filters are located at key stellar spectral features that allow to retrieve very accurate spectral energy distributions for more than 5 millions of stars in our Galaxy. Beyond the calibration goals, the unusually large FOV of T80Cam, 2deg2, together with the unique width and location of some filters, turn the J-PLUS Project into a powerful 3D view of the nearby Universe, mapping more than 20 millions of galaxies with reliable distance determinations and a similar number of stars of the Milky Way halo. At a rate of 100 gigabytes of data per night, J-PLUS will provide unprecedented multi-color images of the Universe to address a wide variety of astrophysical questions related with cosmology, large scale structure, galaxy clusters, 2D stellar populations and star formation studies in galaxies, the discovery of high redshift galaxies at specific redshift slices, quasars, supernovae, Milky Way science and structure, and minor bodies in the Solar System. In addition, the repetition of the whole area over time in certain filters will allow to face variability studies in the time domain.Complementing J-PLUS, a replica of the JAST/T80 telescope, T80Cam and the J-PLUS filters have been installed at the CTIO, allowing to extend the project to the Southern Hemisphere. J-PLUS together with the southern extension, S-PLUS, constitute an All-sky Photometric Local Universe Survey whose details and scientific applications are the bulk of the present talk.

  13. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    PubMed Central

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kpo, of ~1.17 heads s−1·MLCK−1. Also we measured the dwell time of single QD-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s−1, which was similar to kpo mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kds, and estimates of [SMM] and [MLCK] in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association to SMM (11-46 s−1) would be much faster than to pSMM (<0.1-0.2 s−1). This suggests that the probability of MLCK interacting with unphosphorylated versus pSMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle. PMID:24144337

  14. Sustainable Materials Management (SMM) Web Academy Webinar: The Changing Waste Stream

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  15. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  16. ALMA Observations of SMM11 Reveal an Extremely Young Protostar in Serpens Main Cluster

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Aikawa, Yuri; Machida, Masahiro N.; Saigo, Kazuya; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei; Williams, Jonathan P.

    2017-11-01

    We report the discovery of an extremely young protostar, SMM11, located in the associated submillimeter condensation in the Serpens Main cluster using the Atacama Large Millimeter/submillimeter Array (ALMA) during its Cycle 3 at 1.3 mm and an angular resolution of ˜ 0\\buildrel{\\prime\\prime}\\over{.} 5˜ 210 {AU}. SMM11 is a Class 0 protostar without any counterpart at 70 μm or shorter wavelengths. The ALMA observations show 1.3 mm continuum emission associated with a collimated 12CO bipolar outflow. Spitzer and Herschel data show that SMM11 is extremely cold ({T}{bol} = 26 K) and faint ({L}{bol} ≲ 0.9 {L}⊙ ). We estimate the inclination angle of the outflow to be ˜ 80^\\circ , almost parallel to the plane of the sky, from simple fitting using a wind-driven-shell model. The continuum visibilities consist of Gaussian and power-law components, suggesting a spherical envelope with a radius of ˜600 au around the protostar. The estimated low C18O abundance, X(C18O) = 1.5-3 × {10}-10, is also consistent with its youth. The high outflow velocity, a few 10 {km} {{{s}}}-1 at a few 1000 au, is much higher than theoretical simulations of first hydrostatic cores, and we suggest that SMM11 is a transitional object right after the second collapse of the first core.

  17. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  18. Probing star formation relations of mergers and normal galaxies across the CO ladder

    NASA Astrophysics Data System (ADS)

    Greve, Thomas R.

    We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.

  19. Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.; Burkepile, J. T.; St. Cyr, O. C.

    1994-01-01

    The speeds of 936 features in 673 coronal mass ejections have been determined from trajectories observed with the Solar Maximum Mission (SMM) coronagraph in 1980 and 1984 to 1989. The distribution of observed speeds has a range (from 5th to 95th percentile) of 35 to 911 km/s; the average and median speeds are 349 and 285 km/s. The speed distributions of some selected classes of mass ejections are significantly different. For example, the speeds of 331 'outer loops' range from 80 to 1042 km/s; the average and median speeds for this class of ejections are 445 and 372 km/s. The speed distributions from each year of SMM observations show significant changes, with the annual average speeds varying from 157 (1984) to 458 km/s (1985). These variations are not simply related to the solar activity cycle; the annual averages from years near the sunspot maxima and minimum are not significantly different. The widths, latitudes, and speeds of mass ejections determined from the SMM observations are only weakly correlated. In particular, mass ejection speeds vary only slightly with the heliographic latitudes of the ejection. High-latitude ejections, which occur well poleward of the active latitudes, have speeds similar to active latitude ejections.

  20. VizieR Online Data Catalog: Compact early-type galaxies in SDSS (Saulder+, 2015)

    NASA Astrophysics Data System (ADS)

    Saulder, C.; van den Bosch, R. C. E.; Mieske, S.

    2015-11-01

    As the baseline sample of our search for b19 analogues, we made broad use of the Sloan Digital Sky Surveys (SDSS) and especially of its tenth (Ahn et al., 2014ApJS..211...17A) and seventh (Abazajian et al., 2009ApJS..182..543A) data releases (DR10 and DR7). Furthermore, we used GalaxyZoo (Lintott et al., 2008MNRAS.389.1179L, 2011, Cat. J/MNRAS/410/166) for our galaxy classifications, the refits of SDSS DR7 using Sersic profiles done by Simard et al. (2011, Cat. J/ApJS/196/11), and the stellar masses from Mendel et al. (2014, Cat. J/ApJS/210/3), which is itself based on the previous work of Simard et al. (2011, Cat. J/ApJS/196/11). For comparison, we also used the list of 63 compact massive galaxies from Taylor et al. (2010, Cat. J/ApJ/720/723), which is based on SDSS DR7 as well as a list of 29 compact massive galaxies from Trujillo et al. (2009ApJ...692L.118T), which is based on the NYU Value-Added Galaxy Catalog (Blanton et al., 2005AJ....129.2562B) and covers a sub-sample of SDSS. (9 data files).

  1. Investigating source confusion in PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  2. VizieR Online Data Catalog: Friends-of-friends galaxy group finder (Tempel+, 2016)

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-01-01

    To delineate galaxy groups in the local Universe, we used galaxy data from the extragalactic distance database (EDD2; Tully et al., 2009AJ....138..323T). The sample encompasses three datasets. As the main source, we used the Two Micron All Sky Survey (Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) Redshift Survey (2MRS) galaxies brighter than 11.75 mag in the Ks band (for a description of the catalogue, see Huchra et al., 2012, Cat. J/ApJS/199/26). We only used galaxies that are securely off the Galactic plane: Galactic latitude |b|>5°. Since the galaxy sample becomes extremely sparse farther away, we only used galaxies with a cosmic microwave background (CMB) corrected redshift z=0...0.1 (up to 430Mpc). This selection restricts our 2MRS sample to 43480 galaxies. For our analysis, we complemented the main 2MRS sample with two other sources. From the CosmicFlows-2 survey that contains 8198 galaxies with redshift-independent distance estimates (CF2; Tully et al., 2013, Cat. J/AJ/146/86), we added 3627 (of these, 2799 galaxies do not have a measured Ks magnitude). In addition, we made use of the 2M++ catalogue Lavaux & Hudson (2011, Cat. J/MNRAS/416/2840), which combines elements from the 2MRS, the 6DF Galaxy Survey (Jones et al. 2009MNRAS.399..683J, Cat. VII/259), and the Sloan Digital Sky Survey (York et al., 2000AJ....120.1579Y). Of the 64745 galaxies of the 2M++, we added 31271 galaxies down to Ks<12.54, which extends the sample well beyond the 2MRS magnitude limit. Our final galaxy dataset includes 78378 galaxies. (4 data files).

  3. The Complex Kinematics of Galaxies in Hickson 67

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Buson, L. M.

    The kinematics of galaxies belonging to the Hickson compact group HCG67 are investigated. The latter consists of four galaxies, three of which (a, c, d) are embedded in a common envelope. The fourth galaxy (b) is a spiral that is detected both in radio and in IR wave-bands. Our observations show that the three galaxies in apparent interaction are probably caught during an ongoing merger process. Z Balcells, M., Morganti, R., Oosterloo, T., Peréz-Fournon, I. González Serrano, J. I. 1995, aap, 302, 665. Bertola, F., Bettoni, D., Rusconi, L., Sedmak, G. 1984, aj, 89, 356 Barnes, J. 1985, mnras, 215, 517 Hickson, P. 1982, apj, 255, 382 Hickson, P. 1993, Astrophys. Lett. Commun., 29, 1 Hickson, P., Menon, T. K., Palumbo, G. G. C., Persic, M. 1989, apj, 341,679 Leon, S., Combes, F., Menon, T. K. 1998, aap, 330, 37 Mamon, G. A. 1992, in "Physics of Nearby Galaxies: Nature or Nurture?", ed. T. X6. Thuan, C. Balkowski & Thran Thanh Van (12th Moriond Astrophysics Meeting)(Editions Frontiéres), p.367. Mendes de Oliveira, C., Hickson, P. 1991, apj, 380, 30 Mendes de Oliveira, C., Plana, H, Amram, P., Bolte, M., Boulesteix, J. 1998, apj, 507, 691 Menon, T. K. 1995, mnras, 274, 845 Rabaça, C. R., Sulentic, J. W. 1991, baas, 23, 1338 Zepf, S. E., Whitmore, B. C., Levison, H. F. 1991, apj, 383, 524

  4. An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard

    2018-01-01

    The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like

  5. CLASH: DISCOVERY OF A BRIGHT z {approx_equal} 6.2 DWARF GALAXY QUADRUPLY LENSED BY MACS J0329.6-0211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitrin, A.; Moustakas, J.; Bradley, L.

    2012-03-15

    We report the discovery of a z{sub phot} = 6.18{sup +0.05}{sub -0.07} (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z{sub l} = 0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman break in the 18-band photometry, making this galaxy one of the highest-redshift multiply lensed objects known to date with an observed magnitude of F125W =24.00 {+-} 0.04 AB mag for its most magnified image. We also present the first strong-lensing analysis ofmore » this cluster uncovering 15 additional multiply imaged candidates of five lower-redshift sources spanning the range z{sub s} {approx_equal} 2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6{sup +8.9}{sub -4.1}, 17.6{sup +6.2}{sub -3.9}, 3.9{sup +3.0}{sub -1.7}, and 3.7{sup +1.3}{sub -0.2}, respectively, for the four images of the high-redshift galaxy. By delensing the most magnified image we construct an image of the source with a physical resolution of {approx}200 pc when the universe was {approx}0.9 Gyr old, where the z {approx_equal} 6.2 galaxy occupies a source-plane area of approximately 2.2 kpc{sup 2}. Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of {approx}10{sup 9} M{sub Sun }, subsolar metallicity (Z/Z{sub Sun} {approx} 0.5), low dust content (A{sub V} {approx} 0.1 mag), a demagnified star formation rate (SFR) of {approx}3.2 M{sub Sun} yr{sup -1}, and a specific SFR of {approx}3.4 Gyr{sup -1}, all consistent with the properties of local dwarf galaxies.« less

  6. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.

    1989-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.

  7. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  8. AMI-CL J0300+2613: a Galactic anomalous-microwave-emission ring masquerading as a galaxy cluster

    NASA Astrophysics Data System (ADS)

    Perrott, Yvette C.; Cantwell, Therese M.; Carey, Steve H.; Elwood, Patrick J.; Feroz, Farhan; Grainge, Keith J. B.; Green, David A.; Hobson, Michael P.; Javid, Kamran; Jin, Terry Z.; Pooley, Guy G.; Razavi-Ghods, Nima; Rumsey, Clare; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Waldram, Elizabeth M.

    2018-01-01

    The Arcminute Microkelvin Imager (AMI) carried out a blind survey for galaxy clusters via their Sunyaev-Zel'dovich effect decrements between 2008 and 2011. The first detection, known as AMI-CL J0300+2613, has been reobserved with AMI equipped with a new digital correlator with high dynamic range. The combination of the new AMI data and more recent high-resolution sub-mm and infrared maps now shows the feature in fact to be a ring of positive dust-correlated Galactic emission, which is likely to be anomalous microwave emission (AME). If so, this is the first completely blind detection of AME at arcminute scales.

  9. First Weak-lensing Results from “See Change”: Quantifying Dark Matter in the Two z ≳ 1.5 High-redshift Galaxy Clusters SPT-CL J2040-4451 and IDCS J1426+3508

    NASA Astrophysics Data System (ADS)

    Jee, M. James; Ko, Jongwan; Perlmutter, Saul; Gonzalez, Anthony; Brodwin, Mark; Linder, Eric; Eisenhardt, Peter

    2017-10-01

    We present a weak-lensing study of SPT-CL J2040-4451 and IDCS J1426+3508 at z = 1.48 and 1.75, respectively. The two clusters were observed in our “See Change” program, a Hubble Space Telescope survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using infrared images from the Wide Field Camera 3 (WFC3), which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using a Navarro-Frenk-White profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426 + 3508 to be {M}200={8.6}-1.4+1.7× {10}14 {M}⊙ and {2.2}-0.7+1.1× {10}14 {M}⊙ , respectively. The weak-lensing mass of SPT-CL J2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z≳ 1.48 is only ˜ 0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current ΛCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high-mass end. The mass of IDCS J1426+3508 is in excellent agreement with our previous Advanced Camera for Surveys-based weak-lensing result, while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ˜ 40% smaller.

  10. Controllable magnetic thermal rectification in a SMM dimmer with the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Xu, Ai-Hua; Liu, Juan; Luo, Bo

    2016-10-01

    Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.

  11. A HYDRODYNAMICAL SOLUTION FOR THE ''TWIN-TAILED'' COLLIDING GALAXY CLUSTER ''EL GORDO''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Sandor M.; Broadhurst, Tom, E-mail: sandor@phys.ntu.edu.tw

    The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster ''El Gordo'' (ACT-CT J0102–4915; z = 0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray ''bullet'' leads a ''twin-tailed'' wake, with the Sunyaev-Zel'dovich (SZ) centroid at the end of the northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, SZ, and Hubble lensing and dynamical data. The X-ray morphology and the location of the two dark matter components and the SZ peak are accurately described by amore » simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ≅300 kpc, and a relative initial infall velocity of ≅2250 km s{sup –1} when separated by the sum of the two virial radii assuming an initial total mass of 2.15 × 10{sup 15} M {sub ☉} and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the northern X-ray tail along the collision axis between the mass peaks, and that the southern tail lies off axis, comprising compressed and shock heated gas generated as the less massive component plunges through the main cluster. The challenge for ΛCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high-infall-velocity case of the Bullet cluster and other such cases being uncovered in new SZ based surveys.« less

  12. Post-flare coronal arches observed with the SMM/XRP flat crystal spectrometer

    NASA Technical Reports Server (NTRS)

    Hick, Paul; Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    Postflare coronal arch observations made with the SMM Flat Crystal Spectrometer on January 20-23, 1985 are discussed. Results suggest that the arch revival following the dynamic flare of 23:50 UT on January 1 was of the type noted on November 6-8 and June 4, 1980 by the SMM Hard X-ray Imaging Spectrometer (HXIS). Activity different from that of the HXIS observations was found starting at about 23 UT on January 22, with no trigger of the revival being identified, and with the activity being restricted to the coronal regions (without any related disturbance in the chromosphere). The development of the arch enhancement in the corona was shown to be slower than is expected for a flare-associated revival.

  13. Post-flare coronal arches observed with the SMM/XRP flat crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Hick, Paul; Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1987-09-01

    Postflare coronal arch observations made with the SMM Flat Crystal Spectrometer on January 20-23, 1985 are discussed. Results suggest that the arch revival following the dynamic flare of 23:50 UT on January 1 was of the type noted on November 6-8 and June 4, 1980 by the SMM Hard X-ray Imaging Spectrometer (HXIS). Activity different from that of the HXIS observations was found starting at about 23 UT on January 22, with no trigger of the revival being identified, and with the activity being restricted to the coronal regions (without any related disturbance in the chromosphere). The development of the arch enhancement in the corona was shown to be slower than is expected for a flare-associated revival.

  14. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  15. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  16. Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.

    2016-12-01

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f⋆ = (6.8 ± 1.7) × 10-3 within a radius of r200c ≃ 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ˜100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.

  17. Serendipitous discovery of a faint dwarf galaxy near a Local Volume dwarf

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.; Antipova, A. V.; Karachentsev, I. D.; Tully, R. B.

    2018-03-01

    A faint dwarf irregular galaxy has been discovered in the HST/ACS field of LV J1157+5638. The galaxy is resolved into individual stars, including the brightest magnitude of the red giant branch. The dwarf is very likely a physical satellite of LV J1157+5638. The distance modulus of LV J1157+5638 using the tip of the red giant branch (TRGB) distance indicator is 29.82 ± 0.09 mag (D = 9.22 ± 0.38 Mpc). The TRGB distance modulus of LV J1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42 Mpc). The distances to the two galaxies are consistent within the uncertainties. The projected separation between them is only 3.9 kpc. LV J1157+5638 has a total absolute V magnitude of -13.26 ± 0.10 and linear Holmberg diameter of 1.36 kpc, whereas its faint satellite LV J1157+5638 sat has MV = -9.38 ± 0.13 mag and Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first time beyond the nearest 4 Mpc from us. The presence of main-sequence stars in both galaxies unambiguously indicates the classification of the objects as dwarf irregulars with recent or ongoing star formation events in both galaxies.

  18. Bright end of the color-magnitude relation for cD, E and S0 galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lugger, P.M.

    1979-11-01

    Schild and Davis's (Astron. J. 84, 311 (1979)) galaxy photometry for cD's in poor clusters is compared with Sandage's (Astrophys. J. 176, 21(1979)) color-magnitude relation defined by elliptical and S0 galaxies in the Virgo and Coma clusters. The cD galaxies are found to be somewhat bluer on average than galaxies of similar magnitude in the Virgo and Coma sample, consistent with the predictions of the galactic cannibalism model proposed by Hausman and Ostriker (Astrophys. J. 224, 320 (1978)). However, a more uniform selection of galaxy photometry is required before any definitive conclusions regarding the bright end of the color-magnitude relationmore » can be made.« less

  19. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  20. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1989-01-01

    Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.

  1. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    PubMed

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized. This journal is © The Royal Society of Chemistry 2011

  2. Hubble Eyes a Powerful Galaxy

    NASA Image and Video Library

    2017-06-30

    Not all galaxies have the luxury of possessing a simple moniker or quirky nickname. This impressive galaxy imaged by the NASA/ESA Hubble Space Telescope is one of the unlucky ones, and goes by a name that looks more like a password for a computer: 2XMM J143450.5+033843. Such a name may seem like a random jumble of numbers and letters, but like all galactic epithets it has a distinct meaning. This galaxy, for example, was detected and observed as part of the second X-ray sky survey performed by ESA’s XMM-Newton Observatory. Its celestial coordinates form the rest of the bulky name, following the “J”: a right ascension value of 14h (hours) 34m (minutes) 50.5s (seconds). This can be likened to terrestrial longitude. It also has a declination of +03d (degrees) 38m (minutes) 43s (seconds). Declination can be likened to terrestrial latitude. The other fuzzy object in the frame was named in the same way — it is a bright galaxy named 2XMM J143448.3+033749. 2XMM J143450.5+033843 lies nearly 400 million light-years away from Earth. It is a Seyfert galaxy that is dominated by something known as an Active Galactic Nucleus — its core is thought to contain a supermassive black hole that is emitting huge amounts of radiation, pouring energetic X-rays out into the Universe. Photo credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    PubMed

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  4. Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.

    2017-09-01

    Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 < z < 1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns as [OII] and Hα emitters. Our spectroscopy was complemented with HST/ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity. Results: Vmax was robustly determined for six cluster galaxies and three field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band TFR and the local velocity-size relation (VSR), finding that cluster galaxies are on average 1.6 mag brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (I.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The averaged deviation from the local TFR is ⟨ ΔMB ⟩ = -0.7 for the high

  5. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  6. MUSE Integral Field Observations of the Oxygen-rich SNR 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Vogt, Frédéric P. A.; Terry, Jason P.; Dopita, Michael A.; Ruiter, Ashley J.; Ghavamian, Parviz; Sukhbold, Tuguldur

    2017-02-01

    We have observed the oxygen-rich SNR 1E 0102.2-7219 with the integral field spectrograph WiFeS at Siding Spring Observatory and discovered sulfur-rich ejecta for the first time. Follow-up deep DDT observations with MUSE on the VLT (8100 s on source) reaching down to a noise level of ~5 × 10-20ergs-1cm-2Å-1spaxel-1 have led to the additional discovery of fast-moving hydrogen as well as argon-rich and chlorine-rich material. The detection of fast-moving hydrogen knots challenges the interpretation that the progenitor of 1E 0102 was a compact core of a Wolf-Rayet star that had shed its entire envelope. In addition to the detection of hydrogen and the products of oxygen-burning, this unprecedented sharp (0.2'' spaxel size at ~0.7'' seeing) and deep MUSE view of an oxygen-rich SNR in the Magellanic Clouds reveals further exciting discoveries, including [Fe xiv]λ5303 and [Fe xi]λ7892 emission, which we associate with the forward shock. We present this exciting data set and discuss some of its implications for the explosion mechanism and nucleosynthesis of the associated supernova.

  7. Star Formation in Galaxies: Proceedings of a Conference Held in Pasadena, California

    DTIC Science & Technology

    1987-05-01

    Spirals of the Virgo Cluster B. Guiderdoni 283 - 286 Molecular Gas and Star Formation in HI-Deficient Virgo Cluster Galaxies J.D. Kenney and J.S. Young...in developing the image processing tasks. The research described in this paper was carried out in part at the Jet Propul- sion Laboratory, California...of 34 SO galaxies in the Virgo cluster were detected by IRAS. The 60Pin/lOOPm color temperatures of these galaxies are similar to those of normal

  8. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and I bands presented in our previous paper and based on sources with zAB< 25.2 detected using z-band images from the the Large Binocular Cameras (LBC) at the Large Binocular Telescope (LBT) over the same field of view. We used these new infrared data together with H and K photometric measurements from the MUlti-wavelength Survey by Yale-Chile (MUSYC) and with the Spitzer Infrared Array Camera (IRAC) data to refine our selection of Lyman break galaxies (LBGs), extending our selection criteria to galaxies in the range 25.2 J1030 field with photometric redshift z 6 and colors I-z ≥ 1.3. We found a significant asymmetry in the distribution of the high redshift galaxies in J1030, supporting the existence of a coherent large-scale structure around the quasar. We estimated an overdensity of z 6 galaxies in the field of δ = 2.4, which is significant at >4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  9. An Exploration of Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    and Durham University) to identify the multi-wavelength properties of these galaxies in a pilot study that they hope to extend to many more similar galaxies in the future.Lessons from Distant GalaxiesWhat did Simpson and collaborators learn in this study?Photometric redshift distribution of the ALMA-identified submillimeter galaxies in the authors sample (grey). [Simpson et al. 2017]For the set of galaxies for which the team could measure photometric redshifts, the median redshift was z 2.65 (though redshifts ranged up to z 5).Submillimeter galaxies are cooler and larger than local far-infrared galaxies (known as ULIRGs). The authors therefore argue that its unlikely that ULIRGs are evolved versions of submillimeter galaxies.Estimates of dust mass in these galaxies suggest that effectively all of the optical-to-near-infrared light from colocated stars is obscured by dust.Estimates of the future stellar mass of these galaxies suggest that they cannot evolve into lenticular or spiral galaxies. Instead, the authors conclude, submillimeter galaxies must be the progenitors of local elliptical galaxies.CitationJ. M. Simpson et al 2017 ApJ 839 58. doi:10.3847/1538-4357/aa65d0

  10. The Cosmic Dance of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2006-03-01

    detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its

  11. A Multi-wavelength Mass Analysis of RCS2 J232727.6-020437, A ˜3 × 1015 M⊙ Galaxy Cluster at z = 0.7

    NASA Astrophysics Data System (ADS)

    Sharon, K.; Gladders, M. D.; Marrone, D. P.; Hoekstra, H.; Rasia, E.; Bourdin, H.; Gifford, D.; Hicks, A. K.; Greer, C.; Mroczkowski, T.; Barrientos, L. F.; Bayliss, M.; Carlstrom, J. E.; Gilbank, D. G.; Gralla, M.; Hlavacek-Larrondo, J.; Leitch, E.; Mazzotta, P.; Miller, C.; Muchovej, S. J. C.; Schrabback, T.; Yee, H. K. C.; RCS-Team

    2015-11-01

    We present an initial study of the mass and evolutionary state of a massive and distant cluster, RCS2 J232727.6-020437. This cluster, at z = 0.6986, is the richest cluster discovered in the RCS2 project. The mass measurements presented in this paper are derived from all possible mass proxies: X-ray measurements, weak-lensing shear, strong lensing, Sunyaev-Zel’dovich effect decrement, the velocity distribution of cluster member galaxies, and galaxy richness. While each of these observables probe the mass of the cluster at a different radius, they all indicate that RCS2 J232727.6-020437 is among the most massive clusters at this redshift, with an estimated mass of {M}200˜ 3× {10}15{h}70-1 {M}⊙ . In this paper, we demonstrate that the various observables are all reasonably consistent with each other to within their uncertainties. RCS2 J232727.6-020437 appears to be well relaxed—with circular and concentric X-ray isophotes, with a cool core, and no indication of significant substructure in extensive galaxy velocity data. Based on observations obtained with : MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; the NASA/ESA Hubble Space Telescope (HST), obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-2655; the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile;

  12. Gargantuan Super Spiral Galaxies Loom Large in the Cosmos

    NASA Image and Video Library

    2016-03-17

    In archived NASA data, researchers have discovered "super spiral" galaxies that dwarf our own spiral galaxy, the Milky Way, and compete in size and brightness with the largest galaxies in the universe. The unprecedented galaxies have long hidden in plain sight by mimicking the appearance of typical spirals. Three examples of super spirals are presented here in images taken by the Sloan Digital Sky Survey. The super spiral on the left (Figure 1), catalogued as 2MASX J08542169+0449308, contains two galactic nuclei, instead of just the usual one, and thus looks like two eggs frying in a pan. The central image (Figure 2) shows a super spiral designated 2MASX J16014061+2718161, and it also contains the double nuclei. On the right (Figure 3), a huge galaxy with the moniker SDSS J094700.08+254045.7 stands as one of the biggest and brightest super spirals. The mega-galaxy's starry disk and spiral arms stretch about 320,000 light-years across, or more than three times the breadth of the Milky Way. These double nuclei, which are known to result from the recent merger of two galaxies, could offer a vital hint about the potential origin of super spirals. Researchers speculate that a special merger involving two, gas-rich spiral galaxies could see their pooled gases settle down into a new, larger stellar disk -- presto, a super spiral. The super spirals were discovered using the NASA/IPAC Extragalactic Database, or NED, an online repository containing information on over 100 million galaxies. NED brings together a wealth of data from many different projects, including ultraviolet light observations from the Galaxy Evolution Explorer, visible light from Sloan Digital Sky Survey, infrared light from the 2-Micron All-Sky Survey, and links to data from other missions such as NASA's Spitzer Space Telescope and Wide-Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA20064

  13. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  14. Erratum - the Lowest Surface Brightness Disc Galaxy Known

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Phillipps, S.; Disney, M. J.

    1988-11-01

    The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.

  15. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  16. CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balestra, I.; Sartoris, B.; Girardi, M.

    2016-06-01

    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 ( z  = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin{sup 2}, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r {sub 200} (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster ( M {sub 200} ∼ 0.9 × 10{sup 15} M {sub ⊙} and σ{sub V,r200} ∼ 1000 km s{supmore » −1}) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Δ V {sub rf} ∼ 1100 km s{sup −1} with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z  ∼ 0.390, ∼10′ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of Δ V{sub rf} ∼ −1700 km s{sup −1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this

  17. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  18. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  19. Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

    NASA Image and Video Library

    2017-12-08

    By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. MC 2: Dynamical Analysis of the Merging Galaxy Cluster MACS J1149.5+2223

    DOE PAGES

    Golovich, Nathan; Dawson, William A.; Wittman, David; ...

    2016-10-31

    Here, we present an analysis of the merging cluster MACS J1149.5+2223 using archival imaging from Subaru/Suprime-Cam and multi-object spectroscopy from Keck/DEIMOS and Gemini/GMOS. We employ two- and three-dimensional substructure tests and determine that MACS J1149.5+2223 is composed of two separate mergers among three subclusters occurring ~1 Gyr apart. The primary merger gives rise to elongated X-ray morphology and a radio relic in the southeast. The brightest cluster galaxy is a member of the northern subcluster of the primary merger. This subcluster is very massive (more » $${16.7}_{-1.60}^{+1.25}\\times {10}^{14}\\,{M}_{\\odot }$$). The southern subcluster is also very massive ($${10.8}_{-3.54}^{+3.37}\\times {10}^{14}\\,{M}_{\\odot }$$), yet it lacks an associated X-ray surface brightness peak, and it has been unidentified previously despite the detailed study of this Frontier Field cluster. A secondary merger is occurring in the north along the line of sight (LOS) with a third, less massive subcluster ($${1.20}_{-0.34}^{+0.19}\\times {10}^{14}\\,{M}_{\\odot }$$). We perform a Monte Carlo dynamical analysis on the main merger and estimate a collision speed at pericenter of $${2770}_{-310}^{+610}$$ km s -1. We show the merger to be returning from apocenter with core passage occurring $${1.16}_{-0.25}^{+0.50}$$ Gyr before the observed state. We identify the LOS merging subcluster in a strong lensing analysis in the literature and show that it is likely bound to MACS J1149 despite having reached an extreme collision velocity of ~4000 km s -1.« less

  1. MC2: Dynamical Analysis of the Merging Galaxy Cluster MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Golovich, Nathan; Dawson, William A.; Wittman, David; Ogrean, Georgiana; van Weeren, Reinout; Bonafede, Annalisa

    2016-11-01

    We present an analysis of the merging cluster MACS J1149.5+2223 using archival imaging from Subaru/Suprime-Cam and multi-object spectroscopy from Keck/DEIMOS and Gemini/GMOS. We employ two- and three-dimensional substructure tests and determine that MACS J1149.5+2223 is composed of two separate mergers among three subclusters occurring ˜1 Gyr apart. The primary merger gives rise to elongated X-ray morphology and a radio relic in the southeast. The brightest cluster galaxy is a member of the northern subcluster of the primary merger. This subcluster is very massive ({16.7}-1.60+1.25× {10}14 {M}⊙ ). The southern subcluster is also very massive ({10.8}-3.54+3.37× {10}14 {M}⊙ ), yet it lacks an associated X-ray surface brightness peak, and it has been unidentified previously despite the detailed study of this Frontier Field cluster. A secondary merger is occurring in the north along the line of sight (LOS) with a third, less massive subcluster ({1.20}-0.34+0.19× {10}14 {M}⊙ ). We perform a Monte Carlo dynamical analysis on the main merger and estimate a collision speed at pericenter of {2770}-310+610 km s-1. We show the merger to be returning from apocenter with core passage occurring {1.16}-0.25+0.50 Gyr before the observed state. We identify the LOS merging subcluster in a strong lensing analysis in the literature and show that it is likely bound to MACS J1149 despite having reached an extreme collision velocity of ˜4000 km s-1.

  2. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  3. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE PAGES

    Palmese, A.; Lahav, O.; Banerji, M.; ...

    2016-08-20

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less

  4. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Lahav, O.; Banerji, M.

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less

  5. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Lahav, O.; Banerji, M.

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensingmore » studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.« less

  6. Optical spectroscopy of SN2014J

    NASA Astrophysics Data System (ADS)

    Kotak, R.

    2014-01-01

    Authors: J. Polshaw, R. Kotak, J. R. Maund, S. J. Smartt (QUB), M. Fraser, N. Walton (IoA), J. M. Abreu (IAC), M. Balcells, C. Benn, J. Mendez, A. Oscoz, O. Zamora, C. Zurita (ING) A spectrum of the supernova SN 2014J in the nearby galaxy M82 was obtained on Jan. 23.2 2014 (UT) at the 2.54m Isaac Newton Telescope (INT) with IDS and the grating R1200R (approximate wavelength range 5600 - 7500A, at 2A resolution).

  7. NASA Telescopes Help Discover Surprisingly Young Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies

    NASA Technical Reports Server (NTRS)

    Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.

    2015-01-01

    Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.

  9. Discovery of a Large-Scale Filament Connected to the Massive Galaxy Cluster MACS J0717.5+3745 at z=0.551,

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Barrett, E.; Donovan, D.

    2004-07-01

    We report the detection of a 4 h-170 Mpc long large-scale filament leading into the massive galaxy cluster MACS J0717.5+3745. The extent of this object well beyond the cluster's nominal virial radius (~2.3 Mpc) rules out prior interaction between its constituent galaxies and the cluster and makes it a prime candidate for a genuine filament as opposed to a merger remnant or a double cluster. The structure was discovered as a pronounced overdensity of galaxies selected to have V-R colors close to the cluster red sequence. Extensive spectroscopic follow-up of over 300 of these galaxies in a region covering the filament and the cluster confirms that the entire structure is located at the cluster redshift of z=0.545. Featuring galaxy surface densities of typically 15 Mpc-2 down to luminosities of 0.13L*V, the most diffuse parts of the filament are comparable in density to the clumps of red galaxies found around A851 in the only similar study carried out to date (Kodama et al.). Our direct detection of an extended large-scale filament funneling matter onto a massive distant cluster provides a superb target for in-depth studies of the evolution of galaxies in environments of greatly varying density and supports the predictions from theoretical models and numerical simulations of structure formation in a hierarchical picture. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy

  10. Imaging of High Redshift Starburst galaxies in the light of Lyman alpha

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    1997-07-01

    associated with an active nucleus. We can get this information by imaging each ga laxy through two filters centered o n or near Lyman alpha with different widths. The technique is similar to the infrared technique used to discover these objects. Although the HST filters were not specifically designed for this task, there is sufficient choice to make it possible with various wide and medium width filters. In the event that Lyman alpha is weak or absent, we can average the data to create a higher signal to noise ratio image. The integration times have been chosen to give S/N ratios of between 10 and 50, depending on the {unknown} brightness of the galaxies in the selected bands. The infrared and R band magnitudes suggest AB magnitudes of order 24 to 25 for each object. Bechtold, J., Yee, H. K. C., Elston, R., & Ellingson, E. 1997, { it Ap. J. Letters}, { bf 477}, L29 Beckwith, S. V. W., Thompson, D. J., Mannucci, F., & Djorgovski, S. G. 1998, { it Ap. J.}, in press Cowie, L. L., & Hu, E. M., 1998, { it A. J.}, in press {astro- ph/9801003} Cowie, L. L., Songaila, A., Hu, E. M., Egam i, , Huang, J.-S., Pickles, A. J., Ridgway, S. E., & Wainscoat, R. J. 1994, { it Ap. J. Letters}, { bf 432}, L83 Djorgovski, S. G., Pahre, M. A., Bechtold J., & Elston, R., 1996, { it Nature}, { bf 382}, 234 Franceschini, A., Silva, L., Granato, G. L., Bressan, A., Danese, L., 1998, { it Ap. J. Lett}, in press Francis, P. J., Woodgate, B. E., and Danks, A. C. 1998, {astroph/9801300} Graham, J. R., & Dey, A. 1996, { it Ap. J.}, { bf 471}, 720 Guideroni, B., Bouchet, F. R., Puget, J.-L., Lagache, G., & Hivon, E., 1997, { it Nature}, { bf 390}, 257 Hu, E. M., McMahon, R. G., 1996, { it Nature}, { bf 382}, 231 Lowenthal, J. D., Hogan, C. J., Green, R. F., Caulet, A., Woodgate, B. E., Brown, L., and Foltz, C. B. 1991, { it Ap. J. Letters}, { bf 377}, L73 Macchetto, F., Lipari, S., Giavalisco, M., Turshek, D. A., & Sparks, W. B. 1993, { it Ap. J.} { bf 404}, 511 Malkan, M. A., Teplitz, H., & McLean, I. S

  11. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  12. NIR Spectroscopic Observation of Massive Galaxies in the Protocluster at z = 3.09

    NASA Astrophysics Data System (ADS)

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2015-01-01

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K AB < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z spec < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 <= z spec <= 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J - K AB > 1.4), hyper extremely red objects (J - K AB > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ~2-5 × 1014 M ⊙, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J - K AB >= 2.4) protocluster galaxies are massive galaxies with M star ~ 1011 M ⊙ showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ~ 2-3 in the general field.

  13. MACS J0553.4-3342: a young merging galaxy cluster caught through the eyes of Chandra and HST

    NASA Astrophysics Data System (ADS)

    Pandge, M. B.; Bagchi, Joydeep; Sonkamble, S. S.; Parekh, Viral; Patil, M. K.; Dabhade, Pratik; Navale, Nilam R.; Raychaudhury, Somak; Jacob, Joe

    2017-12-01

    We present a detailed analysis of a young merging galaxy cluster MACS J0553.4-3342 (z=0.43) from Chandra X-ray and Hubble Space Telescope archival data. X-ray observations confirm that the X-ray emitting intra-cluster medium (ICM) in this system is among the hottest (average T = 12.1 ± 0.6 keV) and most luminous known. Comparison of X-ray and optical images confirms that this system hosts two merging subclusters SC1 and SC2, separated by a projected distance of about 650 kpc. The subcluster SC2 is newly identified in this work, while another subcluster (SC0), previously thought to be a part of this merging system, is shown to be possibly a foreground object. Apart from two subclusters, we find a tail-like structure in the X-ray image, extending to a projected distance of ∼1 Mpc, along the north-east direction of the eastern subcluster (SC1). From a surface brightness analysis, we detect two sharp surface brightness edges at ∼40 (∼320 kpc) and ∼80 arcsec (∼640 kpc) to the east of SC1. The inner edge appears to be associated with a merger-driven cold front, while the outer one is likely to be due to a shock front, the presence of which, ahead of the cold front, makes this dynamically disturbed cluster interesting. Nearly all the early-type galaxies belonging to the two subclusters, including their brightest cluster galaxies, are part of a well-defined red sequence.

  14. VizieR Online Data Catalog: LITTLE THINGS dwarf irregular galaxies FUV regions (Hunter+, 2016)

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.; Gehret, E.

    2018-03-01

    The sample of galaxies is taken from LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey, Hunter et al. 2012, J/AJ/144/134). This is a multi-wavelength survey of nearby (<10.3 Mpc) dIrr galaxies and BCDs, which builds on the THINGS project, whose emphasis was on nearby spirals (Walter et al. 2008, J/AJ/136/2563). The galaxies and a few key parameters are listed in Table 1. We used FUV (1516 Å) images obtained by GALEX (Melena et al. 2009, J/AJ/138/1203; Hunter et al. 2010AJ....139..447H, 2011AJ....142..121H; Zhang et al. 2012AJ....143...47Z) to identify knots of emission in the outer disks of each galaxy. In order to better distinguish knots from the wide-spread diffuse emission, we subtracted the stellar continuum from each FUV image using the V-band image. (2 data files).

  15. J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source

    NASA Technical Reports Server (NTRS)

    Mao, Minnie Y.; Owen, Frazer; Duffin, Ryan; Keel, Bill; Lacy, Mark; Momjian, Emmanuel; Morrison, Glenn; Mroczkowski, Tony; Neff, Susan; Norris, Ray P.; hide

    2014-01-01

    We report the discovery of a grand-design spiral galaxy associated with a double-lobed radio source. J1649+2635 (z = 0.0545) is a red spiral galaxy with a prominent bulge that it is associated with a L(1.4GHz) is approximately 10(exp24) W Hz(exp-1) double-lobed radio source that spans almost 100 kpc. J1649+2635 has a black hole mass of M(BH) is approximately 3-7 × 10(exp8) Solar mass and SFR is approximately 0.26 - 2.6 solar mass year(exp-1). The galaxy hosts a approximately 96 kpc diffuse optical halo, which is unprecedented for spiral galaxies. We find that J1649+2635 resides in an overdense environment with a mass of M(dyn) = 7.7(+7.9/-4.3) × 10(exp13) Solar mass, likely a galaxy group below the detection threshold of the ROSAT All-Sky Survey. We suggest one possible scenario for the association of double-lobed radio emission from J1649+2635 is that the source may be similar to a Seyfert galaxy, located in a denser-than-normal environment. The study of spiral galaxies that host large-scale radio emission is important because although rare in the local Universe, these sources may be more common at high-redshifts.

  16. VizieR Online Data Catalog: Lyα profile in 43 Green Pea galaxies (Yang+, 2017)

    NASA Astrophysics Data System (ADS)

    Yang, H.; Malhotra, S.; Gronke, M.; Rhoads, J. E.; Leitherer, C.; Wofford, A.; Jiang, T.; Dijkstra, M.; Tilvi, V.; Wang, J.

    2018-03-01

    In SDSS DR7, a sample of 251 Green Peas was observed as serendipitous spectroscopic targets (Cardamone+ 2009MNRAS.399.1191C). A subset of 66 Green Peas have sufficient signal-to-noise ratio (S/N) in both continuum and emission lines (Hα, Hβ, and [OIII]λ5007) to study galactic properties. In Paper I (Yang+ 2016ApJ...820..130Y), we matched these 66 Green Peas with the COS archive and studied Lyα escape in a sample of 12 Green Peas with COS UV spectra. To address the bias and expand the sample size, we took the Lyα spectra of 20 additional Green Peas (PI S. Malhotra, GO 14201). We also supplement this sample with 11 additional Green Peas from published literature. In total, we have 43 Green Peas from six HST programs -- 20 galaxies from GO 14201 (PI S. Malhotra), 9 galaxies from GO 12928 (PI A. Henry; Henry+ 2015ApJ...809...19H), 7 galaxies from GO 11727 and GO 13017 (PI T. Heckman; Heckman+ 2011ApJ...730....5H ; Alexandroff+ 2015ApJ...810..104A), 2 galaxies from GO 13293 (PI A. Jaskot; Jaskot & Oey 2014ApJ...791L..19J), and 5 galaxies from GO 13744 (PI T. Thuan; Izotov+ 2016MNRAS.461.3683I). (4 data files).

  17. SMM mesospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  18. HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Solomon, Philip M.

    2004-05-01

    We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.

  19. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  20. ALMA Multiple-transition Observations of High-density Molecular Tracers in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2018-04-01

    We present the results of our ALMA observations of 11 (ultra)luminous infrared galaxies ((U)LIRGs) at J = 4–3 of HCN, HCO+, and HNC and J = 3–2 of HNC. This is an extension of our previously published HCN and HCO+ J = 3–2 observations to multiple rotational J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ultraluminous infrared galaxies (ULIRGs) that contain or may contain luminous obscured active galactic nuclei (AGNs) tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J = 4–3 and J = 3–2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J = 3–2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v 2 = 1f) HCN J = 4–3 emission line is seen in one ULIRG, IRAS 12112‑0305 NE. P Cygni profiles are detected in the HCO+ J = 4–3 and J = 3–2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ∼250–750 M ⊙ yr‑1. The SiO J = 6–5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.

  1. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  2. A Giant Gathering of Galaxies

    NASA Image and Video Library

    2015-11-03

    The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. This color image is constructed from multi-wavelength observations: Infrared observations from NASA's Spitzer Space Telescope are shown in red; near-infrared and visible light captured by the Gemini Observatory atop Mauna Kea in Hawaii is green and blue; and radio light from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), near Owens Valley in California, is purple. In addition to galaxies, clusters also contain a reservoir of hot gas with temperatures in the tens of millions of degrees Celsius/Kelvin. CARMA was used to detect this gas, and to determine the mass of this cluster. http://photojournal.jpl.nasa.gov/catalog/PIA20052

  3. Sustainable Materials Management (SMM) Web Academy Webinar: Reducing Wasted Food: How Packaging Can Help

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  4. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2016-07-01

    Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).

  5. HERSCHEL/SPIRE SUBMILLIMETER SPECTRA OF LOCAL ACTIVE GALAXIES {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; Busquet, Gemma

    2013-05-01

    We present the submillimeter spectra from 450 to 1550 GHz of 11 nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) on board Herschel. We detect CO transitions from J{sub up} = 4 to 12, as well as the two [C I] fine structure lines at 492 and 809 GHz and the [N II]1461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions. The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions hasmore » similar physical conditions (n{sub H{sub 2}}{approx} 10{sup 3.2}-10{sup 3.9} cm{sup -3} and T{sub kin} {approx} 300-800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H{sub 2} emission. We could not determine the specific heating mechanism of the warm gas, however, it is possibly related to the star formation activity in these galaxies. Our modeling of the [C I] emission suggests that it is produced in cold (T{sub kin} < 30 K) and dense (n{sub H{sub 2}}>10{sup 3} cm{sup -3}) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J = 1-0 transition at 1232 GHz is detected in absorption in UGC 05101 and in emission in NGC 7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the active galactic nucleus of this galaxy. In some galaxies, few H{sub 2}O emission lines are present. Additionally, three OH{sup +} lines at 909, 971, and 1033 GHz are identified in NGC 7130.« less

  6. STScI-PRC02-11a FARAWAY GALAXIES PROVIDE A STUNNING 'WALLPAPER' BACKDROP FOR A RUNAWAY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    galaxies represent twice the number of those discovered in the legendary Hubble Deep Field, the orbiting observatory's 'deepest' view of the heavens, taken in 1995 by the Wide Field and Planetary Camera 2. The ACS picture, however, was taken in one-twelfth the time it took to observe the original Hubble Deep Field. In blue light, ACS sees even fainter objects than were seen in the 'deep field.' The galaxies in the ACS picture, like those in the deep field, stretch back to nearly the beginning of time. They are a myriad of shapes and represent fossil samples of the universe's 13-billion-year evolution. The ACS image is so sharp that astronomers can identify distant colliding galaxies, the 'building blocks' of galaxies, an exquisite 'Whitman's Sampler' of galaxies, and many extremely faraway galaxies. ACS made this observation on April 1 and 9, 2002. The color image is constructed from three separate images taken in near-infrared, orange, and blue filters. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA The ACS Science Team: (H. Ford, G. Illingworth, M. Clampin, G. Hartig, T. Allen, K. Anderson, F. Bartko, N. Benitez, J. Blakeslee, R. Bouwens, T. Broadhurst, R. Brown, C. Burrows, D. Campbell, E. Cheng, N. Cross, P. Feldman, M. Franx, D. Golimowski, C. Gronwall, R. Kimble, J. Krist, M. Lesser, D. Magee, A. Martel, W. J. McCann, G. Meurer, G. Miley, M. Postman, P. Rosati, M. Sirianni, W. Sparks, P. Sullivan, H. Tran, Z. Tsvetanov, R. White, and R. Woodruff)

  7. Faint Compact Galaxy in the Early Universe

    NASA Image and Video Library

    2015-12-03

    This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. The cluster's immense gravitational field magnifies the image of galaxies far behind it, in a phenomenon called gravitational lensing. The inset is an image of an extremely faint and distant galaxy that existed only 400 million years after the big bang. It was discovered by Hubble and NASA's Spitzer Space Telescope. The gravitational lens makes the galaxy appear 20 times brighter than normal. The galaxy is comparable in size to the Large Magellanic Cloud (LMC), a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate ten times faster than the LMC. This might be the growing core of what was to eventually evolve into a full-sized galaxy. The research team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America. http://photojournal.jpl.nasa.gov/catalog/PIA20054

  8. Radio Selection of the Most Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of z< 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  9. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  10. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  11. NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi

    2015-01-20

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K {sub AB} < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z {sub spec} < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ≤ z {sub spec} ≤ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J – K {sub AB} > 1.4), hyper extremely red objects (J –more » K {sub AB} > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2-5 × 10{sup 14} M {sub ☉}, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J – K {sub AB} ≥ 2.4) protocluster galaxies are massive galaxies with M {sub star} ∼ 10{sup 11} M {sub ☉} showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2-3 in the general field.« less

  12. NuSTAR Observations of WISE J1036+0449, a Galaxy at z~1 Obscured by Hot Dust

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Chang, C. S.; Chen, C.-T. J.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Díaz-Santos, T.; Eisenhardt, P. R.; Farrah, D.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Jun, H. D.; Koss, M. J.; LaMassa, S.; Lansbury, G. B.; Markwardt, C. B.; Stalevski, M.; Stanley, F.; Treister, E.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.; Zappacosta, L.; Zhang, W. W.

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer’s all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z> 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z˜ 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 ({L}{Bol}≃ 8× {10}46 {erg} {{{s}}}-1). We find evidence of a broadened component in Mg II, which would imply a black hole mass of {M}{BH}≃ 2× {10}8 {M}⊙ and an Eddington ratio of {λ }{Edd}≃ 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of {N}{{H}}≃ (2{--}15)× {10}23 {{cm}}-2. The source has an intrinsic 2-10 keV luminosity of ˜ 6× {10}44 {erg} {{{s}}}-1, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z≲ 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  13. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  14. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; hide

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  15. A dwarf galaxy's transformation and a massive galaxy's edge: detailed modeling of the extended stream in NGC1097

    NASA Astrophysics Data System (ADS)

    Cristiano Amorisco, Nicola; Martinez-Delgado, David

    2015-08-01

    Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies

  16. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  17. Hubble peeks at a spiral galaxy

    NASA Image and Video Library

    2015-07-10

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. Image credit: ESA/Hubble & NASA, Acknowledgement: Flickr user C. Claude NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NASA's Hubble Spots Embryonic Galaxy SPT0615-JD

    NASA Image and Video Library

    2018-01-11

    This Hubble Space Telescope image shows the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing. The embryonic galaxy, named SPT0615-JD, existed when the universe was just 500 million years old. Though a few other primitive galaxies have been seen at this early epoch, they have essentially all looked like red dots, given their small size and tremendous distances. However, in this case, the gravitational field of a massive foreground galaxy cluster, called SPT-CL J0615-5746, not only amplified the light from the background galaxy but also smeared the image of it into an arc (about 2 arcseconds long). Image analysis shows that the galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang. https://photojournal.jpl.nasa.gov/catalog/PIA22079

  19. Sustainable Materials Management (SMM) Web Academy Webinar: Food Waste Reduction Alliance, a Unique Industry Collaboration

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  20. Sustainable Materials Management (SMM) Web Academy Webinar: Management Challenges for Lithium Batteries at Electronics Recyclers

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled, An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry.

  1. Sustainable Materials Management (SMM) Web Academy Webinar: The EPA's Food Recovery Challenge: Be an Endorser!

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  2. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T; Neelakandan, S

    2015-01-01

    The charged surface modifying macromolecule (cSMM) was blended into the casting solution of poly(ether imide) (PEI) to prepare surface modified ultrafiltration membranes by phase inversion technique. The separation of proteins including bovine serum albumin, egg albumin, pepsin and trypsin was investigated by the fabricated membranes. On increasing cSMM content, solute rejection decreases whereas membrane flux increases. The pore size and surface porosity of the 5 wt% cSMM blend PEI membranes increases to 41.4 Å and 14.8%, respectively. Similarly, the molecular weight cut-off of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. The toxic heavy metal ions Cu(II), Cr(III), Zn(II) and Pb(II) from aqueous solutions were subjected to rejection by the prepared blended membrane with various concentration of polyethyleneimine (PETIM) as water soluble polymeric ligand. It was found that the rejection behavior of metal ion depends on the PETIM concentration and the stability complexation of metal ion with ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of hard X-ray spectra obtained by spectrometers on Hinotori and SMM and detection of 'superhot' component

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki

    1988-01-01

    Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.

  4. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  5. RX J1548.9+0851, a fossil cluster?

    NASA Astrophysics Data System (ADS)

    Eigenthaler, P.; Zeilinger, W. W.

    2012-04-01

    Context. Fossil galaxy groups are spatially extended X-ray sources with X-ray luminosities above L{X, bol ≥ 1042 h50-2} erg s-1 and a central elliptical galaxy dominating the optical, the second-brightest galaxy being at least 2 mag fainter in the R band. Whether these systems are a distinct class of objects resulting from exceptional formation and evolution histories is still unclear, mainly due to the small number of objects studied so far, mostly lacking spectroscopy of group members for group membership confirmation and a detailed kinematical analysis. Aims: To complement the scarce sample of spectroscopically studied fossils down to their faint galaxy populations, the fossil candidate RX J1548.9+0851 (z = 0.072) is studied in this work. Our results are compared with existing data from fossils in the literature. Methods: We use ESO VLT VIMOS multi-object spectroscopy to determine redshifts of the faint galaxy population and study the luminosity-weighted dynamics and luminosity function of the system. The full-spectrum fitting package ULySS is used to determine ages and metallicities of group members. VIMOS imaging data are used to study the morphology of the central elliptical. Results: We identify 40 group members spectroscopically within the central 300 kpc of the system and find 31 additional redshifts from the literature, resulting in a total number of 54 spectroscopically confirmed group members within 1 Mpc. RX J1548.9+0851 is made up of two bright ellipticals in the central region with a magnitude gap of Δm1,2 = 1.34 in the SDSS r' band leaving the definition of RX J1548.9+0851 being a fossil to the assumption of the virial radius. We find a luminosity-weighted velocity dispersion of 568 km s-1 and a mass of 2.5 × 1014 M⊙ for the system confirming previous studies that revealed fossils to be massive. An average mass-to-light ratio of M/L 400 M⊙/L⊙ is derived from the SDSS g', r', and i' bands. The central elliptical is well-fitted by a pure de

  6. Long-term variations in the gamma-ray background on SMM

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  7. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  8. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  9. Infrared images of distant 3C radio galaxies

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Chokshi, Arati

    1990-01-01

    J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.

  10. Inversion method applied to the rotation curves of galaxies

    NASA Astrophysics Data System (ADS)

    Márquez-Caicedo, L. A.; Lora-Clavijo, F. D.; Sanabria-Gómez, J. D.

    2017-07-01

    We used simulated annealing, Montecarlo and genetic algorithm methods for matching both numerical data of density and velocity profiles in some low surface brigthness galaxies with theoretical models of Boehmer-Harko, Navarro-Frenk-White and Pseudo Isothermal Profiles for galaxies with dark matter halos. We found that Navarro-Frenk-White model does not fit at all in contrast with the other two models which fit very well. Inversion methods have been widely used in various branches of science including astrophysics (Charbonneau 1995, ApJS, 101, 309). In this work we have used three different parametric inversion methods (MonteCarlo, Genetic Algorithm and Simmulated Annealing) in order to determine the best fit of the observed data of the density and velocity profiles of a set of low surface brigthness galaxies (De Block et al. 2001, ApJ, 122, 2396) with three models of galaxies containing dark mattter. The parameters adjusted by the inversion methods were the central density and a characteristic distance in the Boehmer-Harko BH (Boehmer & Harko 2007, JCAP, 6, 25), Navarro-Frenk-White NFW (Navarro et al. 2007, ApJ, 490, 493) and Pseudo Isothermal Profile PI (Robles & Matos 2012, MNRAS, 422, 282). The results obtained showed that the BH and PI Profile dark matter galaxies fit very well for both the density and the velocity profiles, in contrast the NFW model did not make good adjustments to the profiles in any analized galaxy.

  11. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  12. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  13. The Most Massive Galaxies and Black Holes Allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-04-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z > 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected ΛCDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass — stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  14. Searching for planetary nebulae at the Galactic halo via J-PAS and J-PLUS

    NASA Astrophysics Data System (ADS)

    Goncalves, Denise R.; Aparício-Villegas, Teresa; Akras, Stavros; Borges Fernandes, Marcelo; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey to be carried out from a dedicated 2.5m telescope and a 4.7 sq.deg camera with 1.2Gpix. It will last 5 years and will observe 8500 sq.deg of Northern sky to a 5-σ magnitude depth for point sources, equivalent to i ~23.3 over an aperture of 2 arcsec2. The J-PAS filter system consists of 54 contiguous narrow band filters of 145-Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. The Javalambre Photometric Local Universe Survye (J-PLUS) will be an auxiliary survey ofJ-PAS (mainly for calibration) with a dedicated 0.80m telescope. J-PLUS comprises 12 filters, including g, r, i and z SDSS ones. Though about 2,500 planetary nebulae (PNe, confirmed spectroscopically) are known in the Galaxy, only 14 objects have been convincingly identified as halo PNe. They were classified as such from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched by J-PAS, and even by J-PLUS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS/J-PLUS, given the typical limit magnitude of the survey. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS/J-PLUS strategy to search for PNe. Our first results will be shown in this poster.

  15. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    to the most massive galaxies belonging to clusters. "Most surprising is that in three of the four groups, the brightest galaxy also has a bright companion galaxy. These galaxy pairs are merging systems," says Tran. The brightest galaxy in each group can be ordered in a time sequence that shows how luminous galaxies continue to grow by merging until recently, that is, in the last 5 billion years. It appears that due to the most recent episode of this 'galactic cannibalism', the brightest galaxies became at least 50% more massive. This discovery provides unique and powerful validation of hierarchical formation as manifested in both galaxy and cluster assembly. "The stars in these galaxies are already old and so we must conclude that the recent merging did not produce a new generation of stars," concludes Tran. "Most of the stars in these galaxies were born at least 7 billion years ago." The team is composed of Kim-Vy H. Tran (Institute for Theoretical Physics, University of Zürich, Switzerland), John Moustakas (New York University, USA), Anthony H. Gonzalez and Stefan J. Kautsch (University of Florida, Gainesville, USA), and Lei Bai and Dennis Zaritsky (Steward Observatory, University of Arizona, USA). The results presented here are published in the Astrophysical Journal Letters: "The Late Stellar Assembly Of Massive Cluster Galaxies Via Major Merging", by Tran et al.

  16. Hydride Molecules towards Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  17. Department of State Strategic Planning Workshop II. Center for Strategic Leadership Issue Paper, Volume 01-02

    DTIC Science & Technology

    2002-04-01

    Strategic Leadership 650 Wright Avenue Carlisle, PA 170l3-5049 OFFICIAL BUSINESS DEPARTMENT OF STATE STRATEGIC PLANNING WORKSHOP II U.S. ARMY WAR COLLEGE CSL 4 ...April 2002 Issues Paper 01-02 Department of State Strategic Planning Workshop II By Colonel Jeffrey C. Reynolds A State Department request, made...at the senior level, asked the Army Chief of Staff if the Army could help State improve its capacity to undertake strategic planning. In April

  18. NuSTAR Observations of WISE J1036+0449, A Galaxy at Z Approx. 1 Obscured by Hot Dust

    NASA Technical Reports Server (NTRS)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  19. NuSTAR Observations of WISE J1036+0449, A Galaxy at zeta approx 1 Obscured by Hot Dust

    NASA Technical Reports Server (NTRS)

    Ricci, C.; Assef, R. J.; Stern, Daniel K.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A.W.; Zhang, William W.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  20. Dusty Death of a Massive Star

    NASA Image and Video Library

    2006-06-06

    NASA Spitzer Space Telescope shows the supernova remnant 1E0102.2-7219 sits next to the nebula N76 in a bright, star-forming region of the Small Magellanic Cloud, a satellite galaxy to our Milky Way galaxy.

  1. VizieR Online Data Catalog: hCOSMOS: Hectospec survey of galaxies in COSMOS (Damjanov+, 2018)

    NASA Astrophysics Data System (ADS)

    Damjanov, I.; Zahid, H. J.; Geller, M. J.; Fabricant, D. G.; Hwang, Ho S.

    2018-03-01

    We target galaxies with r-band magnitudes 17.77J/ApJS/206/8 for spectroscopy. We selected extended objects in HST images; see section 2.1 for further details. We observed hCOSMOS galaxies with Hectospec mounted on the 6.5m MMT. The Hectospec spectra cover the wavelength range 3700-9100Å at a resolution of R~1500. We conducted observations during dark and gray nights in 2015 February, 2015 April, 2016 February, and 2016 March. We obtained 5492 science quality spectra (out of which 1405 are duplicates) in varying conditions. We include additional 275 spectra of galaxies in the COSMOS field from the Hectospec data archive. Thus, the hCOSMOS sample includes 4362 unique galaxies. Among these objects, 2661 have a redshift in the zCOSMOS (Lilly+ 2007, J/ApJS/172/70 ; 2009, J/ApJS/184/218) catalog and 1701 redshifts are completely new. For the galaxies that overlap with zCOSMOS, the Hectospec spectra yield a redshift with a smaller error along with broader wavelength coverage. (1 data file).

  2. Discovery of the Lensed Quasar System DES J0408-5354

    DOE PAGES

    Lin, H.; Buckley-Geer, E.; Agnello, A.; ...

    2017-03-27

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  3. Discovery of the Lensed Quasar System DES J0408-5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.; Buckley-Geer, E.; Agnello, A.

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  4. AMI SZ observation of galaxy-cluster merger CIZA J2242+5301: perpendicular flows of gas and dark matter

    NASA Astrophysics Data System (ADS)

    Rumsey, Clare; Perrott, Yvette C.; Olamaie, Malak; Saunders, Richard D. E.; Hobson, Michael P.; Stroe, Andra; Schammel, Michel P.; Grainge, Keith J. B.

    2017-10-01

    Arcminute Microkelvin Imager observations towards CIZA J2242+5301, in comparison with observations of weak gravitational lensing and X-ray emission from the literature, are used to investigate the behaviour of non-baryonic dark matter (NBDM) and gas during the merger. Analysis of the Sunyaev-Zel'dovich (SZ) signal indicates the presence of high pressure gas elongated perpendicularly to the X-ray and weak-lensing morphologies, which, given the merger-axis constraints in the literature, implies that high pressure gas is pushed out into a linear structure during core passing. Simulations in the literature closely matching the inferred merger scenario show the formation of gas density and temperature structures perpendicular to the merger axis. These SZ observations are challenging for modified gravity theories in which NBDM is not the dominant contributor to galaxy-cluster gravity.

  5. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O

  6. Sustainable Materials Management (SMM) Web Academy Webinar: Managing Wasted Food with Anaerobic Digestion: Incentives and Innovations

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  7. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  8. Spiral galaxy HI models, rotation curves and kinematic classifications

    NASA Astrophysics Data System (ADS)

    Wiegert, Theresa B. V.

    Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional "tilted-ring'' method RCs. The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a

  9. The clustering evolution of distant red galaxies in the GOODS-MUSIC sample

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Fontana, A.; Moscardini, L.; Salimbeni, S.; Menci, N.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2006-07-01

    Aims.We study the clustering properties of Distant Red Galaxies (DRGs) to test whether they are the progenitors of local massive galaxies. Methods.We use the GOODS-MUSIC sample, a catalog of ~3000 Ks-selected galaxies based on VLT and HST observation of the GOODS-South field with extended multi-wavelength coverage (from 0.3 to 8~μm) and accurate estimates of the photometric redshifts to select 179 DRGs with J-Ks≥ 1.3 in an area of 135 sq. arcmin.Results.We first show that the J-Ks≥ 1.3 criterion selects a rather heterogeneous sample of galaxies, going from the targeted high-redshift luminous evolved systems, to a significant fraction of lower redshift (1galaxies in the local Universe and might mark the regions that will later evolve into structures of intermediate mass, like groups or small galaxy clusters. Low-z DRGs, on the other hand, will likely evolve into slightly less massive field galaxies.

  10. Combining strong lensing and dynamics in galaxy clusters: integrating MAMPOSSt within LENSTOOL. I. Application on SL2S J02140-0535

    NASA Astrophysics Data System (ADS)

    Verdugo, T.; Limousin, M.; Motta, V.; Mamon, G. A.; Foëx, G.; Gastaldello, F.; Jullo, E.; Biviano, A.; Rojas, K.; Muñoz, R. P.; Cabanac, R.; Magaña, J.; Fernández-Trincado, J. G.; Adame, L.; De Leo, M. A.

    2016-10-01

    Context. The mass distribution in galaxy clusters and groups is an important cosmological probe. It has become clear in recent years that mass profiles are best recovered when combining complementary probes of the gravitational potential. Strong lensing (SL) is very accurate in the inner regions, but other probes are required to constrain the mass distribution in the outer regions, such as weak lensing or studies of dynamics. Aims: We constrain the mass distribution of a cluster showing gravitational arcs by combining a strong lensing method with a dynamical method using the velocities of its 24 member galaxies. Methods: We present a new framework in which we simultaneously fit SL and dynamical data. The SL analysis is based on the LENSTOOL software and the dynamical analysis uses the MAMPOSSt code, which we integrated into LENSTOOL. After describing the implementation of this new tool, we applied it to the galaxy group SL2S J02140-0535 (zspec = 0.44), which we had previously studied. We used new VLT/FORS2 spectroscopy of multiple images and group members, as well as shallow X-ray data from XMM. Results: We confirm that the observed lensing features in SL2S J02140-0535 belong to different background sources. One of these sources is located at zspec = 1.017 ± 0.001, whereas the other source is located at zspec = 1.628 ± 0.001. With the analysis of our new and our previously reported spectroscopic data, we find 24 secure members for SL2S J02140-0535. Both data sets are well reproduced by a single NFW mass profile; the dark matter halo coincides with the peak of the light distribution, with scale radius, concentration, and mass equal to rs = 82+44-17 kpc, c200 = 10.0+1.7-2.5, and M200 = 1.0+0.5-0.2 × 1014 M⊙ respectively. These parameters are better constrained when we fit SL and dynamical information simultaneously. The mass contours of our best model agrees with the direction defined by the luminosity contours and the X-ray emission of SL2S J02140-0535. The

  11. VizieR Online Data Catalog: Galaxy structural parameters from 3.6um images (Kim+, 2014)

    NASA Astrophysics Data System (ADS)

    Kim, T.; Gadotti, D. A.; Sheth, K.; Athanassoula, E.; Bosma, A.; Lee, M. G.; Madore, B. F.; Elmegreen, B.; Knapen, J. H.; Zaritsky, D.; Ho, L. C.; Comeron, S.; Holwerda, B.; Hinz, J. L.; Munoz-Mateos, J.-C.; Cisternas, M.; Erroz-Ferrer, S.; Buta, R.; Laurikainen, E.; Salo, H.; Laine, J.; Menendez-Delmestre, K.; Regan, M. W.; de Swardt, B.; Gil de Paz, A.; Seibert, M.; Mizusawa, T.

    2016-03-01

    We select our samples from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al. 2010, cat. J/PASP/122/1397). We chose galaxies that had already been processed by the first three S4G pipelines (Pipelines 1, 2, and 3; Sheth et al. 2010, cat. J/PASP/122/1397) at the moment of this study (2011 November). In brief, Pipeline processes images and provides science-ready images. Pipeline 2 prepares mask images (to exclude foreground and background objects) for further analysis, and Pipeline 3 derives surface brightness profiles and total magnitudes using IRAF ellipse fits. We excluded highly inclined (b/a<0.5), significantly disturbed, very faint, or irregular galaxies. Galaxies were also discarded if their images are unsuitable for decomposition due to contamination such as a bright foreground star or significant stray light from stars in the IRAC scattering zones. Then we chose barred galaxies from all Hubble types from S0 to Sdm using the numerical Hubble types from Hyperleda (Paturel et al. 2003, cat. VII/237, VII/238). The assessment of the presence of a bar was done visually by K. Sheth, T. Kim, and B. de Swardt. Later, we also confirmed the presence of a bar by checking the mid-infrared classification (Buta et al. 2010, cat. J/ApJS/190/147; Buta et al. 2015, cat. J/ApJS/217/32). A total of 144 barred galaxies were selected that satisfy our criteria, and we list our sample in Table1 with basic information. Table2 presents the measures of structural parameters for all galaxies in the sample obtained from the 2D model fit with BUDDA (BUlge/disk Decomposition Analysis, de Souza et al., 2004ApJS..153..411D; Gadotti, 2008MNRAS.384..420G) code. (2 data files).

  12. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less

  13. Suzaku and Chandra observations of CIZA J1700.8-3144, a cluster of galaxies in the Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki; Maeda, Yoshitomo; Ueda, Yoshihiro; Nakazawa, Kazuhiro; Tawara, Yuzuru

    2017-02-01

    We present the Chandra and Suzaku observations of 1RXS J170047.8-314442, located towards the Galactic bulge, to reveal a wide-band (0.3-10 keV) X-ray morphology and spectrum of this source. With the Chandra observation, no point source was found at the position of 1RXS J170047.8-314442. Instead, we revealed the presence of diffuse X-ray emission, via the wide-band X-ray image obtained from the Suzaku XIS. Although the X-ray emission had a nearly circular shape with a spatial extent of ˜3{^'.}5, the surface brightness profile was not axisymmetric; a bright spot-like emission was found at ˜ 1' away in the northwestern direction from the center. The radial profile of the surface brightness, except for this spot-like emission, was reproduced with a single β-model; β and the core radius were found to be 1.02 and 1{^'.}51, respectively. The X-ray spectrum of the diffuse emission showed an emission line at ˜6 keV, indicating an origin of a thermal plasma. The spectrum was well explained with an absorbed, optically-thin thermal plasma model with a temperature of 6.2 keV and a redshift parameter of z = 0.14 ± 0.01. Hence, the X-ray emission was considered to arise from the hot gas associated with a cluster of galaxies. Our spectroscopic result confirmed the optical identification of 1RXS J170047.8-314442 by Kocevski et al. (2007, ApJ, 662, 224): CIZA J1700.8-3144, a member of the cluster catalogue in the Zone of Avoidance. The estimated bolometric X-ray luminosity of 5.9 × 1044 erg s-1 was among the lowest with this temperature, suggesting that this cluster is far from relaxed.

  14. Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA

    NASA Astrophysics Data System (ADS)

    Adam, R.; Comis, B.; Macías-Pérez, J.-F.; Adane, A.; Ade, P.; André, P.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Blanquer, G.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Cruciani, A.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Tucker, C.; Zylka, R.

    2015-04-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-m telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster's radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02-0.79 × 1014M⊙ within the radius R500 = 930+50-43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster's redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs. The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A12

  15. Added value of high-b-value (b = 3000 s/mm2) diffusion-weighted imaging at 3 T in relation to fluid-attenuated inversion recovery images for the evaluation of cortical lesions in inflammatory brain diseases.

    PubMed

    Iwashita, Koya; Hirai, Toshinori; Kitajima, Mika; Shigematsu, Yoshinori; Uetani, Hiroyuki; Iryo, Yasuhiko; Azuma, Minako; Hayashida, Eri; Ando, Yukio; Murakami, Ryuji; Yamashita, Yasuyuki

    2013-01-01

    The purpose of this study was to determine how the gray-to-white matter contrast in healthy subjects changes on high-b-value diffusion-weighted imaging (DWI) acquired at 3 T and evaluate whether high-b-value DWI at 3 T is useful for the detection of cortical lesions in inflammatory brain diseases. Ten healthy volunteers underwent DWI at b = 1000, 2000, 3000, 4000, and 5000 s/mm(2) on a 3-T MRI unit. On DW images, 1 radiologist performed region-of-interest measurements of the signal intensity of 8 gray matter structures. The gray-to-white matter contrast ratio (GWCR) was calculated. Ten patients with inflammatory cortical lesions were also included. All patients underwent conventional MRI and DWI at b = 1000 and 3000 s/mm(2). Using a 4-point grading system, 2 radiologists independently assessed the presence of additional information on DW images compared with fluid-attenuated inversion recovery images. Interobserver agreement was assessed by κ statistics. In the healthy subjects, the b value increased as the GWCR decreased in all evaluated gray matter structures. On DW images acquired at b = 3000 s/mm(2), mean GWCR was less than 1.0 in 7 of 8 structures. For both reviewers, DWI at b = 3000 s/mm(2) yielded significantly more additional information than did DWI at b = 1000 s/mm(2) (P < 0.05). Interobserver agreement for DWI at b = 1000 s/mm(2) and b = 3000 s/mm(2) was fair (κ = 0.35) and excellent (κ = 1.0), respectively. At 3-T DWI, the gray-to-white matter contrast in most gray matter structures reverses at b = 3000 s/mm. In the evaluation of cortical lesions in patients with inflammatory brain diseases, 3-T DWI at b = 3000 s/mm was more useful than b = 1000 s/mm(2).

  16. The most massive galaxies and black holes allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-07-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  17. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P.

    2006-06-01

    Aims.We measure the redshift of the lensing galaxy in eight gravitationally lensed quasars in view of determining the Hubble parameter H0 from the time delay method. Methods.Deep VLT/FORS1 spectra of lensed quasars are spatially deconvolved in order to separate the spectrum of the lensing galaxies from the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy (MOS) which allows the simultaneous observation of the target and of several PSF and flux calibration stars. The advantage of this method over traditional long-slit observations is a much more reliable extraction and flux calibration of the spectra. Results.For the first time we measure the redshift of the lensing galaxy in three multiply-imaged quasars: SDSS J1138+0314 (z_lens = 0.445), SDSS J1226-0006 (z_lens = 0.517), SDSS J1335+0118 (z_lens = 0.440), and we give a tentative estimate of the redshift of the lensing galaxy in Q 1355-2257 (z_lens = 0.701). We confirm four previously measured redshifts: HE 0047-1756 (z_lens = 0.407), HE 0230-2130 (z_lens = 0.523), HE 0435-1223 (z_lens = 0.454) and WFI J2033-4723 (z_lens = 0.661). In addition, we determine the redshift of the second lensing galaxy in HE 0230-2130 (z_lens = 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in HE 0230-2130 which displays prominent [OII] emission.

  18. Spectroscopic classification of supernova SN 2018Z by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Pastorello, A.; Benetti, S.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.

    2018-01-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernova SN 2018Z in host galaxy SDSS J231809.76+212553.5 The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2018-01-09.9 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes PS18ao | SN 2018Z | 2018-01-01.2 | 19.96 | 2018-01-09.9 | 0.102 | Ia | post-maximum? | (1) (1) Redshift was derived from the SN and host absorption features.

  19. VizieR Online Data Catalog: Galaxy properties in clusters. II. (Muriel+, 2014)

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-06-01

    In paper I (Coenda & Muriel, 2009A&A...504..347C, Cat. J/A+A/504/347), we selected an X-ray sample of 49 clusters of galaxies from Popesso et al. (2004A&A...423..449P, Cat. J/A+A/423/449, hereafter P04) in the redshift range 0.05Galaxies in these clusters were identified using the Main Galaxy Sample (MGS; Strauss et al. 2002AJ....124.1810S) of the Fifth Data Release (DR5; Adelman-McCarthy et al. 2007ApJS..172..634A, Cat. II/276) of SDSS, which includes spectroscopic redshifts down to a Petrosian magnitude r=17.77. In this paper, we expand the X-ray cluster sample using the cross-correlation between NORAS and SDSS. We identify a subsample from Bohringer et al. (2000ApJS..129..435B, Cat. J/ApJS/129/435, hereafter B00), which we labelled C-B00-I, using the MGS of the Seventh Data Release (DR7; Abazajian et al. 2009ApJS..182..543A) of SDSS. This subsample comprises 55 galaxy clusters in the redshift range 0.05

  20. A partial list of southern clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Quintana, H.; White, R. A.

    1990-01-01

    An inspection of 34 SRC/ESO J southern sky fields is the basis of the present list of clusters of galaxies and their approximate classifications in terms of cluster concentration, defined independently of richness and shape-symmetry. Where possible, an estimate of the cluster morphological population is provided. The Bautz-Morgan classification was applied using a strict comparison with clusters on the Palomar Sky Survey. Magnitudes were estimated on the basis of galaxies with photoelectric or photographic magnitudes.

  1. MACS: The impact of environment on galaxy evolution at z>0.5

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun

    2010-08-01

    In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and

  2. The AMIGA sample of isolated galaxies. IV. A catalogue of neighbours around isolated galaxies

    NASA Astrophysics Data System (ADS)

    Verley, S.; Odewahn, S. C.; Verdes-Montenegro, L.; Leon, S.; Combes, F.; Sulentic, J.; Bergond, G.; Espada, D.; García, E.; Lisenfeld, U.; Sabater, J.

    2007-08-01

    Context: Studies of the effects of environment on galaxy properties and evolution require well defined control samples. Such isolated galaxy samples have up to now been small or poorly defined. The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies) represents an attempt to define a statistically useful sample of the most isolated galaxies in the local (z ≤ 0.05) Universe. Aims: A suitable large sample for the AMIGA project already exists, the Catalogue of Isolated Galaxies (CIG, Karachentseva, 1973, Astrofizicheskie Issledovaniia Izvestiya Spetsial'noj Astrofizicheskoj Observatorii, 8, 3; 1050 galaxies), and we use this sample as a starting point to refine and perform a better quantification of its isolation properties. Methods: Digitised POSS-I E images were analysed out to a minimum projected radius R ≥ 0.5 Mpc around 950 CIG galaxies (those within Vr = 1500 km s-1 were excluded). We identified all galaxy candidates in each field brighter than B = 17.5 with a high degree of confidence using the LMORPHO software. We generated a catalogue of approximately 54 000 potential neighbours (redshifts exist for ≈30% of this sample). Results: Six hundred sixty-six galaxies pass and two hundred eighty-four fail the original CIG isolation criterion. The available redshift data confirm that our catalogue involves a largely background population rather than physically associated neighbours. We find that the exclusion of neighbours within a factor of four in size around each CIG galaxy, employed in the original isolation criterion, corresponds to Δ Vr ≈ 18 000 km s-1 indicating that it was a conservative limit. Conclusions: Galaxies in the CIG have been found to show different degrees of isolation. We conclude that a quantitative measure of this is mandatory. It will be the subject of future work based on the catalogue of neighbours obtained here. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc

  3. 38 CFR 21.35 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., diagnostic, medical, social, psychological, and educational services determined by the Department of Veterans..., diagnostic, medical, social, psychological, independent living, economic, educational, vocational, and.... 99-576) (j) Program of employment services. This term includes the counseling, medical, social, and...

  4. 38 CFR 21.35 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., diagnostic, medical, social, psychological, and educational services determined by the Department of Veterans..., diagnostic, medical, social, psychological, independent living, economic, educational, vocational, and.... 99-576) (j) Program of employment services. This term includes the counseling, medical, social, and...

  5. 38 CFR 21.35 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., diagnostic, medical, social, psychological, and educational services determined by the Department of Veterans..., diagnostic, medical, social, psychological, independent living, economic, educational, vocational, and.... 99-576) (j) Program of employment services. This term includes the counseling, medical, social, and...

  6. 38 CFR 21.35 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., diagnostic, medical, social, psychological, and educational services determined by the Department of Veterans..., diagnostic, medical, social, psychological, independent living, economic, educational, vocational, and.... 99-576) (j) Program of employment services. This term includes the counseling, medical, social, and...

  7. 38 CFR 21.35 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., diagnostic, medical, social, psychological, and educational services determined by the Department of Veterans..., diagnostic, medical, social, psychological, independent living, economic, educational, vocational, and.... 99-576) (j) Program of employment services. This term includes the counseling, medical, social, and...

  8. A Giant Radio Halo in a Low-Mass SZ-Selected Galaxy Cluster: ACT-CL J0256.5+0006

    NASA Technical Reports Server (NTRS)

    Knowles, K.; Intema, H. T.; Baker, A. J.; Bharadwaj, V.; Bond, J. R.; Cress, C.; Gupta, N.; Hajian, A.; Hilton, M.; Hincks, A. D.; hide

    2016-01-01

    We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (zeta = 0.363), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to host a faint (S(sub 610) = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, M(sub 500,SZ) = (5.0 +/- 1.2) x 10(sup14) solar mass foud to host a GRH. We measure the GRH at lower significance at 325 MHz (S(sub 325) = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of alpha sup 610 sub 325 = 1.0(sup +0.7)(sub 0.9). This result is consistent with the mean spectral index of the population of typical radio halos, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P(sub 1.4GHz) = (1.0 +/- 03) x 10(sup 24) W Hz(sup -1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of perpendicular = 1880 +/- 210 km s(sup -1). We construct a simple merger model of infer relevant time-scales in the merger. From its location on the P1.4GHz-L(sub x) scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing.

  9. VizieR Online Data Catalog: Giant molecular clouds in nearby galaxies (Donovan Meyer+, 2013)

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, J.; Koda, J.; Momose, R.; Mooney, T.; Egusa, F.; Carty, M.; Kennicutt, R.; Kuno, N.; Rebolledo, D.; Sawada, T.; Scoville, N.; Wong, T.

    2015-02-01

    The CO(J=1-0) observations presented in this paper were taken as part of the CANON CO(1-0) Survey, in which data from the Combined Array for Research in Millimeter Astronomy (CARMA) and Nobeyama Radio Observatory 45m (NRO45) single dish telescope are combined to image the central regions of nearby spiral galaxies (J. Koda et al., in preparation). We observe all galaxies in the (J=1-0) transition of 12CO with CARMA in the C and D configurations. The observations presented in this paper were taken from early 2007 through 2012 March. To achieve accurate total flux measurements, we also observe the galaxies using the Beam Array Receiver System (BEARS) instrument on the NRO45 single dish telescope. The total bandwidth is 265MHz, and we smooth the 500kHz velocity resolution to 5.08km/s to match the CARMA data. (2 data files).

  10. Determination of solar flare accelerated ion angular distributions from SMM gamma ray and neutron measurements and determination of the He-3/H ratio in the solar photosphere from SMM gamma ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1989-01-01

    Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.

  11. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  12. Fossil group origins. VIII. RX J075243.6+455653 a transitionary fossil group

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Longobardi, A.; Zarattini, S.; Kundert, A.; D'Onghia, E.; Domínguez-Palmero, L.

    2018-01-01

    Context. It is thought that fossil systems are relics of structure formation in the primitive Universe. They are galaxy aggregations that have assembled their mass at high redshift with few or no subsequent accretion. Observationally these systems are selected by large magnitude gaps between their 1st and 2nd ranked galaxies (Δm12). Nevertheless, there is still debate over whether or not this observational criterium selects dynamically evolved ancient systems. Aims: We have studied the properties of the nearby fossil group RX J075243.6+455653 in order to understand the mass assembly of this system. Methods: Deep spectroscopic observations allow us to construct the galaxy luminosity function (LF) of RX J075243.6+455653 down to Mr*+6. The analysis of the faint-end of the LF in groups and clusters provides valuable information about the mass assembly of the system. In addition, we have analyzed the nearby large-scale structure around this group. Results: We identified 26 group members within r200 0.96 Mpc. These galaxies are located at Vc = 15551 ± 65 km s-1 and have a velocity dispersion of σc = 333 ± 46 km s-1. The X-ray luminosity of the group is LX = 2.2 × 1043 h70-2 erg s-1, resulting in a mass of M = 4.2 × 1013 h70-1 within 0.5r200. The group has Δm12 = 2.1 within 0.5r200, confirming the fossil nature of this system. RX J075243.6+455653 has a central brightest group galaxy (BGG) with Mr = -22.67, one of the faintest BGGs observed in fossil systems. The LF of the group shows a flat faint-end slope (α = -1.08 ± 0.33). This low density of dwarf galaxies is confirmed by the low value of the dwarf-to-giant ratio (DGR = 0.99 ± 0.49) for this system. Both the lack of dwarf galaxies and the low luminosity of the BGG suggests that RX J075243.6+455653 still has to accrete mass from its nearby environment. This mass accretion will be achieved because it is the dominant structure of a rich environment formed by several groups of galaxies (15) within 7 Mpc from the

  13. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  14. Sustainable Materials Management (SMM) Web Academy Webinar: Pay-As-You Throw: Growth & Opportunity for Sustainable Materials Management

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  15. THE EGNoG SURVEY: GAS EXCITATION IN NORMAL GALAXIES AT z Almost-Equal-To 0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauermeister, A.; Blitz, L.; Wright, M.

    As observations of molecular gas in galaxies are pushed to lower star formation rate (SFR) galaxies at higher redshifts, it is becoming increasingly important to understand the conditions of the gas in these systems to properly infer their molecular gas content. The rotational transitions of the carbon monoxide (CO) molecule provide an excellent probe of the gas excitation conditions in these galaxies. In this paper, we present the results from the gas excitation sample of the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey at the Combined Array for Research in Millimeter-wave Astronomy (CARMA). This subset of the fullmore » EGNoG sample consists of four galaxies at z Almost-Equal-To 0.3 with SFRs of 40-65 M {sub Sun} yr{sup -1} and stellar masses of Almost-Equal-To 2 Multiplication-Sign 10{sup 11} M {sub Sun }. Using the 3 mm and 1 mm bands at CARMA, we observe both the CO(J = 1 {yields} 0) and CO(J = 3 {yields} 2) transitions in these four galaxies in order to probe the excitation of the molecular gas. We report robust detections of both lines in three galaxies (and an upper limit on the fourth), with an average line ratio, r {sub 31} = L'{sub CO(3-2)}/L'{sub CO(1-0)}, of 0.46 {+-} 0.07 (with systematic errors {approx}< 40%), which implies sub-thermal excitation of the CO(J = 3 {yields} 2) line. We conclude that the excitation of the gas in these massive, highly star-forming galaxies is consistent with normal star-forming galaxies such as local spirals, not starbursting systems like local ultraluminous infrared galaxies. Since the EGNoG gas excitation sample galaxies are selected from the main sequence (MS) of star-forming galaxies, we suggest that this result is applicable to studies of MS galaxies at intermediate and high redshifts, supporting the assumptions made in studies that find molecular gas fractions in star-forming galaxies at z {approx} 1-2 to be an order of magnitude larger than what is observed locally.« less

  16. CoMStOC vs. International Solar Month - Experience gained and lessons learned from SMM campaigns

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1991-01-01

    The factors that should be addressed by the organizers of a solar observing campaign are outlined and described. Two recent solar observing campaigns are compared and discussed. Lessons learned from these and other campaigns involving the SMM satellite are analyzed and advice for future campaigns is offered.

  17. The X-ray halo of an extremely luminous LSB disk galaxy

    NASA Technical Reports Server (NTRS)

    Weiner, Benjamin J.

    2004-01-01

    We are continuing to refine our upper limit on emission from halo gas in Malin 2. The upper limit is, of course, below the detected flux, but is made more difficult to quantify by the disk and possible AGN sources. We are also exploring spectral and spatial-size constraints to help separate the sources of emission. On the theory side, more recent work on the X-ray halo luminosity from halo gas leftover from galaxy formation has lowered the prediction for disk galaxies (e.g. Toft et al. 2002, MNRAS, 335, 799). While our upper limit is well below the original prediction, refinements in model have moved the theoretical goalposts, so that the observation may be consistent with newer models. A recent theoretical development, which our observations of Malin 2 appear to support, is that a substantial amount of mass can be accreted onto galaxies without being heated at a virial shock. The previous standard theory was that gas accreting into a halo hits a virial shock and is heated to high temperatures, which could produce X-ray halos in massive galaxies. Recent models show that "smooth accretion" of matter bypasses the virial shocking (Murali e t al. 2002, ApJ, 571, 1; Birnboim & Dekel 2003, MNRAS, 345, 349). Additionally, new hydrodynamical simulations of galaxy mergers by UCSC graduate student T. J. Cox show that hot gas halos can be created by gas blown out from the merger, taking up orbital energy of the merging galaxies (Cox et al. 2004, ApJ, 607, L87). If mergers rather than virial shocking are the origin of hot gas halos, the existence of an X-ray halo should depend more on past merger activity than halo mass. Then it makes sense that elliptical galaxies and poor groups with ellipticals, which are probably formed in mergers, have X-ray gas halos; while a giant, quiescent LSB disk galaxy like Malin 2, which has never suffered a major merger, does not have an X-ray halo. While both the observational expectations and theoretical models have changed since we began this

  18. Peering Into an Early Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    reports on what weve learned peering into CR7s interior with ALMA.ALMA observations of [C II] (white contours) are overlaid on an ultraviolet image of the galaxy CR7 taken with Hubble (background image). The presence of [C II] throughout the galaxy indicate that CR7 does not primarily consist of metal-free gas, as had been previously proposed. [Matthee et al. 2017]Metals yet No Dust?Matthee and collaborators deep spectroscopic observations of CR7 targeted the far-infrared dust continuum emission and a gas emission line, [C II]. The authors detected [C II] emission in a large region in and around the galaxy, including near the ultraviolet clumps. This clearly indicates the presence of metals in these star-forming regions, and it rules out the possibility that CR7s gas is mostly primordial and forming metal-free Pop III stars.The authors do not detect far infrared continuum emission from dust, which sets an unusually low upper limit on the amount of dust that may be present in this galaxy. This limit allows them to better interpret their measurements of star formation rates in CR7, providing more information about the galaxys properties.Lastly, Matthee and collaborators note that the [C II] emission is detected in multiple different components that have different velocities. The authors propose that these components are accreting satellite galaxies. If this is correct, then CR7 is not only a target to learn about early sources of light in the universe its also a rare opportunity to directly witness the build-up of a central galaxy in the early universe.CitationJ. Matthee et al 2017 ApJ 851 145. doi:10.3847/1538-4357/aa9931

  19. Dynamical Characterization of Galaxies at z ˜ 4-6 via Tilted Ring Fitting to ALMA [C II] Observations

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Carilli, C. L.; Shao, Y.; Wang, R.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Karim, A.; Neeleman, M.; Walter, F.

    2017-12-01

    Until recently, determining the rotational properties of galaxies in the early universe (z> 4, universe age < 1.5 Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-)millimeter wavelengths with the typically high strength of the [C II] 158 μm emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star-forming disk galaxies at z˜ 4{--}7. Using a procedure centered around GIPSY’s ROTCUR task, we have fit tilted ring models to some of the best available ALMA [C II] data of a small set of galaxies: the MS galaxies HZ9 and HZ10, the damped Lyα absorber host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of { O }({10}11) {M}⊙ . We present an analysis of the possible velocity dispersions of two sources based on matching simulated observations to the integrated [C II] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.

  20. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneouslymore » covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.« less

  1. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  2. An r-process enhanced star in the dwarf galaxy Tucana III

    DOE PAGES

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.; ...

    2017-03-20

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66–593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-Imore » star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. Furthermore, we explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them.« less

  3. An r-process enhanced star in the dwarf galaxy Tucana III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66–593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-Imore » star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. Furthermore, we explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them.« less

  4. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  5. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  6. The prediction of total skeletal muscle mass in a Caucasian population - comparison of Magnetic resonance imaging (MRI) and Dual-energy X-ray absorptiometry (DXA).

    PubMed

    Geisler, Corinna; Pourhassan, Maryam; Braun, Wiebke; Schweitzer, Lisa; Müller, Manfred J

    2017-03-01

    Dual-energy X-ray (DXA) is an alternative to magnetic resonance imaging (MRI) to measure skeletal muscle mass. DXA assesses lean body mass (LBM), and MRI measures skeletal muscle mass (SMM). Kim et al. (Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655) developed MRI-based algorithms to estimate whole-body SMM by DXA. These algorithms were based on an ethnically mixed study population (Kim et al., Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655). It is unclear whether Kim's algorithms are accurate in an exclusive Caucasian population. The aim of our study was to validate Kim's equation in a Caucasian population of 346 subjects. SMM MRI was assessed using MRI, and LBM and BMC DXA were measured by DXA and fat mass (FM ADP ) by air-displacement plethysmographie (ADP). SMM MRI and predicted SMM were highly correlated (r = 0·944; P<0·05). The standard error of estimate of the regression equation was 2·4 kg. However, Bland-Altman plots showed a significant (P<0·001) systematic bias between SMM MRI (median 25·1 kg; IQ 20·2-31·1 kg) and predicted SMM (median 26·3 kg; IQ 22·6-33·0 kg), overestimating SMM by 9·8%. Multiple regression analyses showed that weight explained 4·4% of the variance in the differences between SMM MRI and predicted SMM with the major part unexplained. Kim's algorithm has a systematic unexplained bias and is not recommended in Caucasians. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. The JCMT Nearby Galaxies Legacy Survey - XI. Environmental variations in the atomic and molecular gas radial profiles of nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Knapen, J. H.; Sánchez-Gallego, J. R.; Brinks, E.; Rosolowsky, E.

    2017-06-01

    We present an analysis of the radial profiles of a sample of 43 H I-flux selected spiral galaxies from the Nearby Galaxies Legacy Survey (NGLS) with resolved James Clerk Maxwell Telescope (JCMT) CO J = 3 - 2 and/or Very Large Array (VLA) H I maps. Comparing the Virgo and non-Virgo populations, we confirm that the H I discs are truncated in the Virgo sample, even for these relatively H I-rich galaxies. On the other hand, the H2 distribution is enhanced for the Virgo galaxies near their centres, resulting in higher H2 to H I ratios and steeper H2 and total gas radial profiles. This is likely due to the effects of moderate ram pressure stripping in the cluster environment, which would preferentially remove low-density gas in the outskirts while enhancing higher density gas near the centre. Combined with Hα star formation rate data, we find that the star formation efficiency (SFR/H2) is relatively constant with radius for both samples, but the Virgo galaxies have an ˜40 per cent lower star formation efficiency than the non-Virgo galaxies.

  8. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-07-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜30 per cent. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the centre of elliptical galaxies.

  9. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-04-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜ 20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜ 30%. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the center of elliptical galaxies.

  10. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    , redder CIG galaxies with companions. Reciprocally, the satellites are redder and with an older stellar populations around massive early-type CIG galaxies, while they have a younger stellar content around massive late-type CIG galaxies. This suggests that the CIG is composed of a heterogeneous population of galaxies, sampling from old to more recent, dynamical systems of galaxies. CIG galaxies with companions might have a mild tendency (0.3-0.4 dex) to be more massive, and may indicate a higher frequency of having suffered a merger in the past. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A94

  11. A strong-lensing elliptical galaxy in the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  12. Hubble Views 'Third Kind' of Galaxy

    NASA Image and Video Library

    2017-12-08

    The subject of this image is NGC 6861, a galaxy discovered in 1826 by the Scottish astronomer James Dunlop. Almost two centuries later we now know that NGC 6861 is the second brightest member of a group of at least a dozen galaxies called the Telescopium Group — otherwise known as the NGC 6868 Group — in the small constellation of Telescopium (The Telescope). This NASA/ESA Hubble Space Telescope view shows some important details of NGC 6861. One of the most prominent features is the disk of dark bands circling the centre of the galaxy. These dust lanes are a result of large clouds of dust particles obscuring the light emitted by the stars behind them. Dust lanes are very useful for working out whether we are seeing the galaxy disk edge-on, face-on or, as is the case for NGC 6861, somewhat in the middle. Dust lanes like these are typical of a spiral galaxy. The dust lanes are embedded in a white oval shape, which is made up of huge numbers of stars orbiting the center of the galaxy. This oval is, rather puzzlingly, typical of an elliptical galaxy. So which is it — spiral or elliptical? The answer is neither! NGC 6861 does not belong to either the spiral or the elliptical family of galaxies. It is a lenticular galaxy, a family which has features of both spirals and ellipticals. The relationships between these three kinds of galaxies are not yet well understood. A lenticular galaxy could be a faded spiral that has run out of gas and lost its arms, or the result of two galaxies merging. Being part of a group increases the chances for galactic mergers, so this could be the case for NGC 6861. Credit: ESA/Hubble & NASA; acknowledgement: J. Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  13. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS IImore » cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.« less

  14. Tropical behavior of mesospheric ozone as observed by SMM

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Kendig, D. J.

    1992-01-01

    The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.

  15. The 6dF Galaxy Survey: First Data Release

    NASA Astrophysics Data System (ADS)

    Jones, H.; Saunders, W.; Colless, M.; Read, M.; Parker, Q.; Watson, F.; Campbell, L.

    2005-06-01

    The 6dF Galaxy Survey (6dFGS) is currently measuring the redshifts of around 170 000 galaxies and the peculiar velocities of a 15 000-member sub-sample. It will be the largest redshift survey of the local universe and more than an order of magnitude larger than any peculiar velocity survey to date. When complete, it will cover essentially the entire southern sky around a mean redshift of z = 0.05. Central to the survey is the Six-Degree Field (6dF) multi-fibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7°-field of the UK Schmidt Telescope. Targets have been drawn from the 2MASS Extended Source Catalog (XSC) to include all galaxies brighter than Ktot = 12.75, supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, rF, bJ) = (13.05, 13.75, 15.6, 16.75). Here we describe the implementation of the survey and the procedures used to select sources and determine redshifts. We also describe early results utilising the First Data Release of ˜ 45 000 redshifts. There is an online database of 6dFGS data accessible from the 6dFGS web site (http://www.mso.anu.edu.au/6dFGS).

  16. Neutral hydrogen gas, past and future star formation in galaxies in and around the ‘Sausage’ merging galaxy cluster

    DOE PAGES

    Stroe, Andra; Oosterloo, Tom; Rottgering, Huub J. A.; ...

    2015-07-25

    CIZA J2242.8+5301 (z = 0.188, nicknamed ‘Sausage’) is an extremely massive (M 200 ~2.0 × 10 15 M ⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H i observations of the ‘Sausage’ cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the ‘Sausage’ cluster have, on average, as much H i gas as fieldmore » galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H i reservoirs are expected to be consumed within ~0.75–1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. In conclusion, this fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.« less

  17. Sustainable Materials Management (SMM) Web Academy Webinar: Recycling Right: Tactics and Tools for Effective Residential Outreach (Part 2)

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  18. Sustainable Materials Management (SMM) Web Academy Webinar: Recycling Right: Tactics and Tools for Effective Residential Outreach (Part 1)

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  19. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    operate at different rates for different sizes of galaxies. The authors argue that for galaxies with stellar mass larger than 109 solar masses, the primary means of quenching is gas consumption. The timescale for this mechanism to quench the largest galaxies is roughly 5 Gyr. For galaxies with stellar mass smaller than 109 solar masses, gas stripping takes over, and star-formation is quenched within 1 Gyr for the smallest galaxies. Neither quenching mechanisms operates efficiently for galaxies with stellar mass right around 109 solar masses, though, so these galaxies can sustain star formation for much longer. This could explain why the Magellanic clouds (which both have stellar mass of roughly 109 solar masses) are still star-forming despite being within the Milky Way's halo! Citation: Andrew R. Wetzel et al. 2015, ApJ, 808, L27. doi:10.1088/2041-8205/808/1/L27

  20. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    between the galaxies, as expected for a true galaxy cluster rather than one that has been caught in the act of forming. Also, without the X-ray observations, the possibility remained that this object could have been a blend of different groups of galaxies along the line of sight, or a filament, a long stream of galaxies and gas, viewed front on. The mass and temperature of the hot gas detected estimated from the Chandra observations rule out both of those alternatives. The extent and shape of the X-ray emission, along with the lack of a central radio source argue against the possibility that the X-ray emission is caused by scattering of cosmic microwave background light by particles emitting radio waves. It is not yet possible, with the detection of just one extremely distant galaxy cluster, to test cosmological models, but searches are underway to find other galaxy clusters at extreme distances. "This discovery is exciting because it is like finding a Tyrannosaurus Rex fossil that is much older than any other known," said co-author Ben Maughan, from the University of Bristol in the United Kingdom. "One fossil might just fit in with our understanding of dinosaurs, but if you found many more, you would have to start rethinking how dinosaurs evolved. The same is true for galaxy clusters and our understanding of cosmology." The previous record holder for a galaxy cluster was 9.2 billion light years away, XMMXCS J2215.9-1738, discovered by ESA's XMM-Newton in 2006. This broke the previous distance record by only about 0.1 billion light years, while JKCS041 surpasses XMMXCS J2215.9 by about ten times that. "What's exciting about this discovery is the astrophysics that can be done with detailed follow-up studies," said Andreon. Among the questions scientists hope to address by further studying JKCS041 are: What is the build-up of elements (such as iron) like in such a young object? Are there signs that the cluster is still forming? Do the temperature and X-ray brightness of

  1. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (I.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  2. Discovery of bright z ≃ 7 galaxies in the UltraVISTA survey

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Ideue, Y.; Ihara, Y.; Rogers, A. B.; Taniguchi, Y.

    2012-11-01

    We have exploited the new, deep, near-infrared UltraVISTA imaging of the Cosmological Evolution Survey (COSMOS) field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ≃ 7. The year-one UltraVISTA data provide contiguous Y, J, H, Ks imaging over 1.5 deg2, reaching a 5σ detection limit of Y + J ≃ 25 (AB mag, 2-arcsec-diameter aperture). The central ≃1 deg2 of this imaging coincides with the final deep optical (u*, g, r, i) data provided by the Canada-France-Hawaii Telescope (CFHT) Legacy Survey and new deep Subaru/Suprime-Cam z'-band imaging obtained specifically to enable full exploitation of UltraVISTA. It also lies within the Hubble Space Telescope (HST) I814 band and Spitzer/Infrared Array Camera imaging obtained as part of the COSMOS survey. We have utilized this unique multiwavelength dataset to select galaxy candidates at redshifts z > 6.5 by searching first for Y + J-detected objects which are undetected in the CFHT and HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower redshift galaxy contaminants and cool galactic M, L, T dwarf stars. The final result of this process is a small sample of (at most) 10 credible galaxy candidates at z > 6.5 (from over 200 000 galaxies detected in the year-one UltraVISTA data) which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked spectral energy distribution yields zphot = 6.98 ± 0.05 with a stellar mass M* ≃ 5 × 109 M⊙ and rest-frame ultraviolet (UV) spectral slope β ≃ -2.0 ± 0.2 (where fλ ∝ λβ). The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are dwarf stars cannot be completely excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf star contamination, but also contains objects likely to lie at redshifts just

  3. J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration

    2017-10-01

    We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.

  4. VizieR Online Data Catalog: Galaxies and QSOs FIR size and surface brightness (Lutz+, 2016)

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Berta, S.; Contursi, A.; Forster Schreiber, N. M.; Genzel, R.; Gracia-Carpio, J.; Herrera-Camus, R.; Netzer, H.; Sturm, E.; Tacconi, L. J.; Tadaki, K.; Veilleux, S.

    2016-08-01

    We use 70, 100, and 160um images from scan maps obtained with PACS on board Herschel, collecting archival data from various projects. In order to cover a wide range of galaxy properties, we first obtain an IR-selected local sample ranging from normal galaxies up to (ultra)luminous infrared galaxies. For that purpose, we searched the Herschel archive for all cz>=2000km/s objects from the IRAS Revised Bright Galaxy Sample (RBGS, Sanders et al., 2003, Cat. J/AJ/126/1607). (1 data file).

  5. Giant Cosmic Lens Reveals Secrets of Distant Galaxy

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Using the National Science Foundation's Very Large Array (VLA) radio telescope and helped by a gigantic cosmic lens conveniently provided by nature, an international team of astronomers has discovered that a young galaxy had a central disk of gas in which hundreds of new stars were being born every year -- at a time when the Universe was only a fraction of its current age. Artist's Conception of the Star-Forming Disk (Click on Image for Larger Version) VLA Image of PSS J2322+1944 (Click on Image for Larger Version) "This unique look into a very distant, young galaxy gives us unprecedented insight into the process that produced both tremendous numbers of stars and supermassive black holes in forming galaxies," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM, leader of the research team. "This work strongly supports the idea that the stars and the black holes formed simultaneously," he added. The research was published in the April 4 issue of Science Express. The astronomers studied a quasar called PSS J2322+1944, about 12 billion light-years from Earth. The quasar is an extremely luminous object powered by the supermassive black hole at the core of a galaxy. At the distance of this quasar, the scientists see the object as it was when the Universe was less than 2 billion years old, about 15 percent of its current age. The discovery required a huge assist from nature. To find the star-forming disk, the astronomers needed to observe natural radio emission from the carbon monoxide (CO) molecule, an important component of the gas that forms stars. However, this molecule emits radio waves at frequencies much higher than the VLA is capable of receiving. At PSS J2322+1944's distance of 12 billion light-years, however, the expansion of the Universe stretched the radio waves, reducing their frequency. CO emission at 230 GigaHertz was shifted to 45 GigaHertz, within the VLA's range. That alone was not enough. The distance that made it

  6. 2MASS J00423991+3017515: An AGN On The Run?

    NASA Astrophysics Data System (ADS)

    Hogg, James

    2016-09-01

    We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). We propose high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date.

  7. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  8. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189.

    PubMed

    Reiner, Anton; Heldt, Scott A; Presley, Chaela S; Guley, Natalie H; Elberger, Andrea J; Deng, Yunping; D'Surney, Lauren; Rogers, Joshua T; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G; Gurley, Steven N; Moore, Bob M

    2014-12-31

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  9. VizieR Online Data Catalog: Keck/MOSFIRE spectroscopy of ZFOURGE galaxies (Tran+, 2017)

    NASA Astrophysics Data System (ADS)

    Tran, K.-V. H.; Alcorn, L. Y.; Kacprzak, G. G.; Nanayakkara, T.; Straatman, C.; Yuan, T.; Cowley, M.; Dave, R.; Glazebrook, K.; Kewley, L. J.; Labbe, I.; Martizzi, D.; Papovich, C.; Quadri, R.; Spitler, L. R.; Tomczak, A.

    2017-06-01

    Here we combine Hα emission from our ZFIRE survey (Nanayakkara+ 2016, J/ApJ/828/21) with galaxy properties from the ZFOURGE survey (Straatman+ 2016, J/ApJ/830/51) and IR luminosities from Spitzer to track how galaxies grow at z~2. ZFIRE is a near-IR spectroscopic survey with MOSFIRE on Keck I where targets are selected from ZFOURGE, an imaging survey that combines deep near-IR observations taken with the FourStar Imager at the Magellan Observatory with public multi-wavelength observations, e.g., Hubble Space Telescope (HST) imaging from CANDELS (Grogin+ 2011ApJS..197...35G). The Keck/MOSFIRE spectroscopy was obtained on observing runs in 2013 December and 2014 February. A total of eight slit masks were observed in the K-band (1.93-2.38um). We also observed two masks in the H-band covering 1.46-1.81um. (1 data file).

  10. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  11. VizieR Online Data Catalog: Galaxy Zoo 2: new classification (Hart+, 2016)

    NASA Astrophysics Data System (ADS)

    Hart, R. E.; Bamford, S. P.; Willett, K. W.; Masters, K. L.; Cardamone, C.; Lintott, C. J.; Mackay, R. J.; Nichol, R. C.; Rosslowe, C. K.; Simmons, B. D.; Smethurst, R. J.

    2017-11-01

    We make use of morphological information from the public data release of Galaxy Zoo 2. The galaxies classified by GZ2 were taken from the SDSS Data Release 7 (DR7; Abazajian et al. 2009ApJS..182..543A). The SDSS main galaxy sample is an r-band selected sample of galaxies in the legacy imaging area targeted for spectroscopic follow-up (Strauss et al., 2002AJ....124.1810S) The GZ2 sample contains essentially all well-resolved galaxies in DR7 down to a limiting absolute magnitude of mr<=17, supplemented by additional sets of galaxies in Stripe 82 for which deeper, co-added imaging exists (see W13 (Willett et al., 2013MNRAS.435.2835W, Cat. J/MNRAS/435/2835) for details). In this paper, we only consider galaxies with mr<=17 that were classified in normal-depth SDSS imaging and which have DR7 spectroscopic redshifts. We refer to this as our full sample, containing 228201 galaxies, to which the debiasing procedure described in Section 3.3 is applied. (1 data file).

  12. The first gamma-ray outburst of a narrow-line Seyfert 1 galaxy: The case of PMN J0948+0022 in 2010 July

    DOE PAGES

    Foschini, Luigi; Ghisellini, G.; Kovalev, Y. Y.; ...

    2011-05-11

    We report on a multiwavelength campaign for the radio-loud narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 (z= 0.5846) performed in 2010 July–September and triggered by a high-energy γ-ray outburst observed by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1–100 GeV energy band exceeded, for the first time in this type of source, the value of ~10–6 photon cm–2 s–1, corresponding to an observed luminosity of ~1048 erg s–1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength datamore » that confirmed the state of high activity across the sampled electromagnetic spectrum. Furthermore, the comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar – such as 3C 273 – shows that the power emitted at γ-rays is extreme.« less

  13. The Structure of Massive Quiescent Galaxies at Z ~ 3 in the CANDELS-COSMOS Field

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Fang, Guanwen; Chen, Yang; Pan, Zhizheng; Lv, Xuanyi; Li, Jinrong; Lin, Lin; Kong, Xu

    2013-07-01

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 <= z <= 4.0 in the CANDELS-COSMOS field. We construct an H F160W-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z ~ 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z ~ 3 galaxies can be modeled by assuming their formation at z form ~ 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by re vprop(1 + z)-1.0. Low Sérsic index and axis ratio, with median values n ~1.5 and b/a ~ 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  14. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-12-08

    Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...

  15. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  16. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  17. Star Formation in Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mansheim, Alison Seiler

    This thesis straddles two areas of cosmology, each of which are active, rich and plagued by controversy in their own right: merging clusters and the environmental dependence of galaxy evolution. While the greater context of this thesis is major cluster mergers, our individual subjects are galaxies, and we apply techniques traditionally used to study the differential evolution of galaxies with environment. The body of this thesis is drawn from two papers: Mansheim et al. 2016a and Mansheim et al. 2016b, one on each system. Both projects benefited from exquisite data sets assembled as part of the Merging Cluster Collaboration (MC2), and Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey, allowing us to scrutinize the evolutionary states of galaxy populations in multiple lights. Multi-band optical and near-infrared imaging was available for both systems, allowing us to calculate photometric redshifts for completeness corrections, colors (red vs. blue) and stellar masses to view the ensemble properties of the populations in and around each merger. High-resolution spectroscopy was also available for both systems, allowing us to confirm cluster members by measuring spectroscopic redshifts, which are unparalleled in accuracy, and gauge star formation rates and histories by measuring the strengths of certain spectral features. We had the luxury of HST imaging for Musket Ball, allowing us to use galaxy morphology as an additional diagnostic. For Cl J0910, 24 mum imaging allowed us to defeat a most pernicious source of uncertainty. Details on the acquisition and reduction of multi-wavelength data for each system are found within each respective chapter. It is important to note that the research presented in Chapter 3 is based on a letter which had significant space restrictions, so much of the observational details are outsourced to papers written by ORELSE collaboration members. Below is a free-standing summary of each project, drawn from the

  18. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  19. Fermi LAT detection of renewed gamma-ray flaring activity from the radio galaxy NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed GeV gamma-ray flaring activity from a source positionally consistent with NGC 1275 (also known as 2FGL J0319.8+4130, Nolan et al. 2012, ApJS, 199, 31, as Perseus A and 3C 84) a radio galaxy located at the center of the Perseus galaxy cluster (see also Abdo et al. 2009, ApJ, 699, 31).

  20. Dusty Sunrise at Core of Galaxy Artist Concept

    NASA Image and Video Library

    2015-05-21

    This artist's concept depicts the current record holder for the most luminous galaxy in the universe. The galaxy, named WISE J224607.57-052635.0, is erupting with light equal to more than 300 trillion suns. It was discovered by NASA's Wide-Field Infrared Survey Explorer, or WISE. The galaxy is smaller than the Milky Way, yet puts out 10,000 times more energy. Scientists think that a supermassive black hole at the center of this dusty galaxy is busily consuming gaseous material in a colossal growth spurt. As the gas is dragged toward the black hole, it heats up and blasts out visible, ultraviolet and X-ray light. The dust swaddling the galaxy absorbs this light and heats up, radiating longer-wavelength, infrared light. The dust also blocks our view of shorter, visible-light wavelengths, while letting longer-wavelengths through. This is similar to what happens when sunlight streams through our dusty atmosphere, producing a brilliant red sunrise. In fact, more than 99 percent of the light escaping from this dusty galaxy is infrared. As a result, it is much harder to see with optical telescopes. Because light from the galaxy hosting the black hole has traveled 12.5 billion years to reach us, astronomers are seeing the object as it was in the distant past. During this epoch, galaxies would have been more than five times closer together than they are now, as illustrated in the background of the artist's concept. This is due to the expansion of space -- space itself and the galaxies in it are stretching apart from each other at ever-increasing speeds. http://photojournal.jpl.nasa.gov/catalog/PIA19339

  1. VizieR Online Data Catalog: Star-forming galaxies in near-IR (Martins+, 2013)

    NASA Astrophysics Data System (ADS)

    Martins, L. P.; Rodriguez-Ardila, A.; Diniz, S.; Riffel, R.; de Souza, R.

    2014-10-01

    The sample used here was presented in Martins et al. (2013MNRAS.431.1823M) and is a subset of the one presented in the magnitude-limited optical spectroscopic survey of nearby bright galaxies of Ho, Filippenko & Sargent (1995, Cat. J/ApJS/98/477, hereafter HO95). These galaxies are sources defined by Ho, Filippenko & Sargent (1997, Cat. J/ApJS/112/315, hereafter HO97) as those composed of 'nuclei dominated by emission lines from regions of active star formation (HII or starburst nuclei)'. In addition, five galaxies, classified as non-star forming in the optical, dominated by old stellar population and with no detected emission lines, were included as a control sample. All spectra were obtained at the NASA 3m Infrared Telescope Facility (IRTF) in two observing runs (2007 and 2008) - the same data from Martins et al. (2013MNRAS.431.1823M). (2 data files).

  2. The Stability of Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T.; Swaters, R. A.; Verheijen, M. A.

    2013-01-01

    Using measurements of velocity dispersion and mass surface density for both the gas and stellar components, we calculate the multi-component stability (Q) for 30 galaxy disks observed by the DiskMass Survey. Despite their sub-maximality (Bershady et al. 2011, ApJL, 739, 47), we find all disks to be stable with roughly 85% falling in the range 1galaxy. We measure the shape of the SVE using methods developed by Westfall (2009, PhD Thesis) and Westfall et al. (2011, ApJ, 742, 18); these methods primarily hinge on asymmetric-drift measurements determined by our gas and stellar rotation curves. We find high-quality SVE measurements for a third of the galaxies in our sample. Practical (inclination) limitations and/or the requisite dynamical assumptions in these methods currently prevent satisfactory SVE solutions for the remainder of our sample; for these galaxies, we determine Q using reasonable SVE estimates based on our own high-quality results and others gathered from the literature (e.g., van der Kruit & de Grijs 1999, A&A, 352, 129; Gerssen & Shapiro Griffin 2012, MNRAS, 423, 2726). Finally, we explore correlations between disk stability and other galaxy properties such as star-formation rate, gas mass fraction, disk maximality, and Hubble type to understand their interdependencies within the context of the secular evolution of galaxy disks. We acknowledge support for this work from the National Science Foundation (AST-0307417, AST-0607516, OISE-0754437, AST-1009491), The Netherlands Organisation for Scientific Research (grant 614.000.807), the UW Graduate School (PRJ13SL, 050167, and the Vilas Associate award), the Leids Kerkhoven-Bosscha Fonds, and NASA/JPL/Spitzer (GO-30894).

  3. Sustainable Materials Management (SMM) Web Academy Webinar: Building Collection Infrastructure for Composting: Success in the Greater Worcester, Massachusetts Area

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  4. Modified Gravity and its test on galaxy clusters

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau

    2018-05-01

    The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.

  5. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirmmore » the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.« less

  6. Dark matter in the local group of galaxies

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Buettner, D. J.

    We describe the neutrino flavor (e = electron, μ = muon, τ = tau) masses as mi=e,μ,τ = m + Δmi with |Δmi| m < 1 and probably |Δmi| m ≪ 1. The quantity m is the degenerate neutrino mass. Because neutrino flavor is not a quantum number, this degenerate mass appears in the neutrino equation-of-state [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2014), doi:10.1142/s0218271815500042.]. We apply a Monte Carlo computational physics technique to the Local Group (LG) of galaxies to determine an approximate location for a Dark Matter embedding Condensed Neutrino Object (CNO) [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2016), doi:10.1142/s0218271816500899.]. The calculation is based on the rotational properties of the only spiral galaxies within the LG: M31, M33 and the Milky Way. CNOs could be the Dark Matter everyone is looking for and we estimate the CNO embedding the LG to have a mass 5.17 × 1015 M⊙ and a radius 1.316 Mpc, with the estimated value of m ≃ 0.8 eV/c2. The up-coming KATRIN experiment [https://www.katrin.kit.edu.] will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.

  7. Long term X-ray variability characteristics of the narrow-line Seyfert 1 galaxy RE J1034+396

    NASA Astrophysics Data System (ADS)

    Chaudhury, K.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.; Bhattacharyya, Sudip; Dewangan, G. C.; Chakraborty, S.; Chandra, S.; Stewart, G. C.; Mukerjee, K.; Dey, R. K.

    2018-05-01

    We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be ˜3 × 106 M⊙, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.

  8. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less

  9. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Groupmore » of galaxies and reveals the great potential of this technique.« less

  10. VizieR Online Data Catalog: X-ray observations of HCG galaxies (Tzanavaris+, 2016)

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-04-01

    In this paper we study a sample of 15 compact groups (CGs) observed with Chandra/ACIS, Swift/UVOT and Spitzer/IRAC-MIPS for which archival data exist, allowing us to obtain SFRs, stellar masses, sSFRs and X-ray fluxes and luminosities. Table 1 shows the group sample, including redshifts, luminosity distances and group evolutionary types. Allowing for the fact that some galaxies do not fall in the field of view of all three instruments, the total number of CG galaxies analyzed is 47. Details on the Swift and Spitzer observations and data for systems in this sample can be found in Tzanavaris et al. (2010ApJ...716..556T) and (L. Lenkic et al. 2015, in preparation). For Chandra/ACIS observations we refer the reader to Tzanavaris et al. (2014, J/ApJS/212/9) and Desjardins et al. (2013ApJ...763..121D; 2014ApJ...790..132D). (2 data files).

  11. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    NASA Astrophysics Data System (ADS)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  12. VizieR Online Data Catalog: Luminous persistent sources in nearby galaxies search (Ofek, 2017)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.

    2018-04-01

    I compiled a catalog of nearby galaxies within 108Mpc. The catalog is based on combining the HyperLEDA galaxies (Paturel+ 2003, VII/238 ; Makarov+ 2014A&A...570A..13M) with the NASA Extragalactic Database (NED) redshifts, and the Sloan Digital Sky Survey (SDSS; York+ 2000AJ....120.1579Y ; see V/147) galaxies with known redshifts. Both catalogs are restricted to the FIRST radio survey footprint (Becker+ 1995ApJ...450..559B ; see VIII/92). (1 data file).

  13. Discovery of Highly Obscured Galaxies in the Zone of Avoidance

    DTIC Science & Technology

    2008-08-01

    the optical (e.g., Roman et al. 2000), near-infrared (DENIS, Schroder et al. 1999; Two Micron All Sky Survey ( 2MASS ), Jarrett et al. 2000), far... 2MASS (Skrutskie et al. 2006), downloaded directly from the NASA/IPAC Infrared Science Archive (IRSA).5 The boundaries of our search were set by the...Figure 3. 2MASS J (blue), H (green), and /is (red) color composite images of the same galaxies. The galaxies are displayed in the same order as shown

  14. The AMIGA sample of isolated galaxies. XII. Revision of the isolation degree for AMIGA galaxies using the SDSS

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Leon, S.; Espada, D.; Verdes-Montenegro, L.; Santander-Vela, J. D.; Ruiz, J. E.; Sánchez-Expósito, S.

    2013-12-01

    AMIGA works. The AMIGA sample is improved by this study, because we reduced the sample of isolated galaxies used in previous AMIGA works by about 20%. The availability of the spectroscopic data allows us to check the validity of the CIG isolation criteria, which is not fully efficient. About 50% of the neighbours considered as potential companions in the photometric study are in fact background objects. We also find that about 92% of the neighbour galaxies that show recession velocities similar to the corresponding CIG galaxy are not considered by the CIG isolation criteria as potential companions, which may have a considerable influence on the evolution of the central CIG galaxy. Full Tables 2 and 4 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A9

  15. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  16. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    PubMed Central

    Reiner, Anton; Heldt, Scott A.; Presley, Chaela S.; Guley, Natalie H.; Elberger, Andrea J.; Deng, Yunping; D’Surney, Lauren; Rogers, Joshua T.; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G.; Gurley, Steven N.; Moore, Bob M.

    2014-01-01

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI. PMID:25561230

  17. SUPERMODEL ANALYSIS OF A1246 AND J255: ON THE EVOLUTION OF GALAXY CLUSTERS FROM HIGH TO LOW ENTROPY STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusco-Femiano, R.; Lapi, A., E-mail: roberto.fuscofemiano@iaps.inaf.it

    2015-02-10

    We present an analysis of high-quality X-ray data out to the virial radius for the two galaxy clusters A1246 and GMBCG J255.34805+64.23661 (J255) by means of our entropy-based SuperModel. For A1246 we find that the spherically averaged entropy profile of the intracluster medium (ICM) progressively flattens outward, and that a nonthermal pressure component amounting to ≈20% of the total is required to support hydrostatic equilibrium in the outskirts; there we also estimate a modest value C ≈ 1.6 of the ICM clumping factor. These findings agree with previous analyses on other cool-core, relaxed clusters, and lend further support to themore » picture by Lapi et al. that relates the entropy flattening, the development of the nonthermal pressure component, and the azimuthal variation of ICM properties to weakening boundary shocks. In this scenario clusters are born in a high-entropy state throughout, and are expected to develop on similar timescales a low-entropy state both at the center due to cooling, and in the outskirts due to weakening shocks. However, the analysis of J255 testifies how such a typical evolutionary course can be interrupted or even reversed by merging especially at intermediate redshift, as predicted by Cavaliere et al. In fact, a merger has rejuvenated the ICM of this cluster at z ≈ 0.45 by reestablishing a high-entropy state in the outskirts, while leaving intact or erasing only partially the low-entropy, cool core at the center.« less

  18. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  19. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Lulu; Chen Yang; Pan Zhizheng

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of thesemore » z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.« less

  20. A NEW COLLISIONAL RING GALAXY AT z = 0.111: AURIGA'S WHEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conn, Blair C.; Pasquali, Anna; Pompei, Emanuela

    2011-11-10

    We report the serendipitous discovery of a collision ring galaxy, identified as 2MASX J06470249+4554022, which we have dubbed 'Auriga's Wheel', found in a SUPRIME-CAM frame as part of a larger Milky Way survey. This peculiar class of galaxies is the result of a near head-on collision typically between a late-type and an early-type galaxy. Subsequent Gemini Multi-object Spectrograph North long-slit spectroscopy has confirmed both the relative proximity of the components of this interacting pair and has shown that it has a redshift of 0.111. Analysis of the spectroscopy reveals that the late-type galaxy is a LINER class active galactic nucleusmore » (AGN) while the early-type galaxy is also potentially an AGN candidate; this is very uncommon among known collision ring galaxies. Preliminary modeling of the ring finds an expansion velocity of {approx}200 km s{sup -1} consistent with our observations, making the collision about 50 Myr old. The ring currently has a radius of about 10 kpc and a bridge of stars and gas is also visible connecting the two galaxies.« less

  1. Blue compact dwarf galaxies. II - Near-infrared studies and stellar populations

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.

    1983-01-01

    An IR photometric survey was performed of 36 blue compact dwarf galaxies (BCDG) where intense bursts of star formation have been observed. The survey covered the J, H, and K lines, with all readings taken at the level of a few mJy. Although the near-IR fluxes observed in the galaxies are due to K and M giants, the bursts have calculated ages of less than 50 million yr. However, the BCDG galaxies surveyed are not young, with the least chemically evolved galaxy observed, I Zw 18, featuring 50 pct of its stars formed prior to its last burst, but with a missing mass that is not accounted for by H I interferometric observations. It is concluded that the old stars must be more spatially extended than the young stars, and a mixture of OB stars with the K and M giants is projected as capable of displaying the colors observed. The star formation processes in the BCDG galaxies is defined as dependent on the total mass of the galaxies, with low mass galaxies having a high ratio of star formation, compared to their previous rates.

  2. Search for Dark Matter Annihilation in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  3. Search for Dark Matter Annihilation in Galaxy Groups.

    PubMed

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  4. AEGIS: The Diversity of Bright Near-IR-selected Distant Red Galaxies

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Newman, J. A.; Georgakakis, A.; Almaini, O.; Coil, A. L.; Cooper, M. C.; Eisenhardt, P.; Foucaud, S.; Koekemoer, A.; Lotz, J.; Noeske, K.; Weiner, B.; Willmer, C. N. A.

    2007-05-01

    We use deep and wide near-infrared (NIR) imaging from the Palomar telescope combined with DEEP2 spectroscopy and HST and Chandra imaging to investigate the nature of galaxies that are red in NIR colors. We locate these ``distant red galaxies'' (DRGs) through the color cut (J-K)Vega>2.3 over 0.7 deg2, where we find 1010 DRG candidates down to Ks=20.5. We combine 95 high-quality spectroscopic redshifts with photometric redshifts from BRIJK photometry to determine the redshift and stellar mass distributions for these systems, and the morphological/structural and X-ray properties for 107 DRGs in the Extended Groth Strip. We find that many bright (J-K)Vega>2.3 galaxies with Ks<20.5 are at redshifts z<2, with 64% in the range 1galaxies are broad, ranging from 109 to 1012 Msolar, but with most z>2 systems being massive with M*>1011 Msolar. HST imaging shows that the structural properties and morphologies of DRGs are also diverse, with the majority elliptical/compact (57%) and the remainder edge-on spiral (7%) and peculiar (29%). The DRGs at z<1.4 with high-quality spectroscopic redshifts are generally compact, with small half-light radii, and span a range in rest-frame optical properties. The spectral energy distribution for the DRGs at z<1.4 differs from higher redshift DRGs: they are bluer by 1 mag in observed (I-J) color. A pure IR color selection of high-redshift populations is not sufficient to identify unique populations, and other colors or spectroscopic redshifts are needed to produce homogeneous samples.

  5. A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.

    2014-11-10

    The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and coolmore » CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.« less

  6. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  7. VizieR Online Data Catalog: Tully-Fisher relation for SDSS galaxies (Reyes+, 2011)

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.

    2012-05-01

    In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z<0.1 with long-slit Hα spectroscopy from Pizagno et al. (2007, Cat. J/AJ/134/945) and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ~170000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). (4 data files).

  8. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  9. Activity of the Seyfert galaxy neighbours

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Plionis, M.; Chavushyan, V.; Dultzin, D.; Krongold, Y.; Georgantopoulos, I.; León-Tavares, J.

    2013-04-01

    We present a follow-up study of a series of papers concerning the role of close interactions as a possible triggering mechanism of AGN activity. We have already studied the close (≤100 h-1 kpc) and the large-scale (≤1 h-1 Mpc) environment of a local sample of Sy1, Sy2, and bright IRAS galaxies (BIRG) and of their respective control samples. The results led us to the conclusion that a close encounter appears capable of activating a sequence where an absorption line galaxy (ALG) galaxy first becomes a starburst, then a Sy2, and finally a Sy1. Here we investigate the activity of neighbouring galaxies of different types of AGN, since both galaxies of an interacting pair should be affected. To this end we present the optical spectroscopy and X-ray imaging of 30 neighbouring galaxies around two local (z ≲ 0.034) samples of 10 Sy1 and 13 Sy2 galaxies. Although this is a pilot study of a small sample, various interesting trends have been discovered that imply physical mechanisms that may lead to different Seyfert types. Based on the optical spectroscopy, we find that more than 70% of all neighbouring galaxies exhibit star forming and/or nuclear activity (namely recent star formation and/or AGN), while an additional X-ray analysis showed that this percentage might be significantly higher. Furthermore, we find a statistically significant correlation, at a 99.9% level, between the value of the neighbour's [OIII]/Hβ ratio and the activity type of the central active galaxy, i.e. the neighbours of Sy2 galaxies are systematically more ionized than the neighbours of Sy1s. This result, in combination with trends found using the Equivalent Width of the Hα emission line and the stellar population synthesis code STARLIGHT, indicate differences in the stellar mass, metallicity, and star formation history between the samples. Our results point towards a link between close galaxy interactions and activity and also provide more clues regarding the possible evolutionary sequence

  10. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  11. Management of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM).

    PubMed

    Kyle, Robert A; Rajkumar, S Vincent

    2011-06-01

    Monoclonal gammopathy of undetermined significance (MGUS) is defined as a serum M protein level of less than 3 g/dL, less than 10% clonal plasma cells in the bone marrow, and the absence of end-organ damage. The prevalence of MGUS is 3.2% in the white population but is approximately twice that high in the black population. MGUS may progress to multiple myeloma, AL amyloidosis, Waldenström macroglobulinemia, or lymphoma. The risk of progression is approximately 1% per year, but the risk continues even after more than 25 years of observation. Risk factors for progression include the size of the serum M protein, the type of serum M protein, the number of plasma cells in the bone marrow, and the serum free light chain ratio. Smoldering (asymptomatic) multiple myeloma (SMM) is characterized by the presence of an M protein level of 3 g/dL or higher and/or 10% or more monoclonal plasma cells in the bone marrow but no evidence of end-organ damage. The overall risk of progression to a malignant condition is 10% per year for the first 5 years, approximately 3% per year for the next 5 years, and 1% to 2% per year for the following 10 years. Patients with both MGUS and SMM must be followed up for their lifetime.

  12. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.

    2013-03-01

    We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0

  13. A Lot of Galaxies Need Guarding in this NASA Hubble View

    NASA Image and Video Library

    2017-12-08

    Much like the eclectic group of space rebels in the upcoming film Guardians of the Galaxy Vol. 2, NASA’s Hubble Space Telescope has some amazing superpowers, specifically when it comes to observing innumerable galaxies flung across time and space. A stunning example is a galaxy cluster called Abell 370 that contains an astounding assortment of several hundred galaxies tied together by the mutual pull of gravity. That’s a lot of galaxies to be guarding, and just in this one cluster! Read more: go.nasa.gov/2paAitl Photo caption: Galaxy cluster Abell 370 contains several hundred galaxies tied together by the mutual pull of gravity. Photographed in a combination of visible and near-infrared light, the brightest and largest galaxies are the yellow-white, massive, elliptical galaxies containing many hundreds of billions of stars each. Spiral galaxies have younger populations of stars and are bluish. Mysterious-looking arcs of blue light are distorted images of remote galaxies behind the cluster. The cluster acts as a huge lens in space that magnifies and stretches images of background galaxies like a funhouse mirror. Photo Credit: NASA, ESA, and J. Lotz and the HFF Team (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. GRAVITATIONAL LENS CAPTURES IMAGE OF PRIMEVAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image shows several blue, loop-shaped objects that actually are multiple images of the same galaxy. They have been duplicated by the gravitational lens of the cluster of yellow, elliptical and spiral galaxies - called 0024+1654 - near the photograph's center. The gravitational lens is produced by the cluster's tremendous gravitational field that bends light to magnify, brighten and distort the image of a more distant object. How distorted the image becomes and how many copies are made depends on the alignment between the foreground cluster and the more distant galaxy, which is behind the cluster. In this photograph, light from the distant galaxy bends as it passes through the cluster, dividing the galaxy into five separate images. One image is near the center of the photograph; the others are at 6, 7, 8, and 2 o'clock. The light also has distorted the galaxy's image from a normal spiral shape into a more arc-shaped object. Astronomers are certain the blue-shaped objects are copies of the same galaxy because the shapes are similar. The cluster is 5 billion light-years away in the constellation Pisces, and the blue-shaped galaxy is about 2 times farther away. Though the gravitational light-bending process is not new, Hubble's high resolution image reveals structures within the blue-shaped galaxy that astronomers have never seen before. Some of the structures are as small as 300 light-years across. The bits of white imbedded in the blue galaxy represent young stars; the dark core inside the ring is dust, the material used to make stars. This information, together with the blue color and unusual 'lumpy' appearance, suggests a young, star-making galaxy. The picture was taken October 14, 1994 with the Wide Field Planetary Camera-2. Separate exposures in blue and red wavelengths were taken to construct this color picture. CREDIT: W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA Image files

  15. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, P.; Suchyta, E.; Huff, E.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  16. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  17. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  18. The Hunt for Missing Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    galaxies that resemble the UDGs found in Virgo and Coma clusters, verifying that such objects exist in environments beyond only massive clusters.And at the faint end of the sample, the authors find additional extremely low-surface-brightness dwarfs that are several orders of magnitude fainter even than classical UDGs.The authors describe the properties of these galaxies and compare them to systems like classical UDGs and dwarf spheroidal galaxies in our own Local Cluster. The next step is to determine which of the differences between the sample of NGFS dwarfs and previously known systems are explained by the environmental factors of their host cluster, and which are simply due to sample biases.With much more data from the NGFS still to come, it seems likely that we will soon be able to examine an even larger sample of no-longer-missing dwarfs!CitationRoberto P. Muoz et al 2015 ApJ 813 L15. doi:10.1088/2041-8205/813/1/L15

  19. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  20. Results of a search for a new class of GRBS in the SMM data

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Cline, T. L.; Desai, U. D.; Dennis, B. R.; Orwig, L. E.

    1986-01-01

    The results of a search for the soft and short Gamma-Ray Bursts (GRBs) in the data of the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) are presented. Data for four events are presented, including their time profiles and spectral characteristics. In one case the instrument time resolution reveals a total burst duration of 55 ms with rise and decay times of less than about 5 ms.

  1. Are We Really Missing Small Galaxies?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    dark matter, however, the team included baryons in their simulations. They then produced mock observations of the resulting galaxy velocities to see what an observed velocity function would look like for their simulated galaxies.No Problem After All?Comparison of theoretical velocity functions to observations. The black dashed line shows the original, dark-matter-only model predictions; the black solid line includes the effects of detectability. Blue lines show the authors new model, including the effects of detectability and inclusion of baryons. The red and teal data points from observations match this corrected model well. [Brooks et al. 2017]Based on their baryon-inclusive simulations, Brooks and collaborators argue that there are two main factors that have contributed to the seeming theory/observation mismatch of the missing dwarf problem:Galaxies with low velocities arent detectable by our current surveys.The authors found that the detectable fraction of their simulated galaxies plunges as soon as galaxy velocity drops below 35 km/s. They conclude that were probably unable to see a large fraction of the smallest galaxies.Were not correctly inferring the circular velocity of the galaxies.Circular velocity is usually measured by looking at the line width of a gas tracer like HI. The authors find that this doesnt trace the full potential wells of the dwarf galaxies, however, resulting in an incorrect interpretation of their velocities.The authors show that the inclusion of these effects in the theoretical model significantly changes the predicted shape of the galaxy velocity function. This new function beautifully matches observations, neatly eliminating the missing dwarf problem. Perhaps this long-standing mystery has been a problem of interpretation all along!CitationAlyson M. Brooks et al 2017 ApJ 850 97. doi:10.3847/1538-4357/aa9576

  2. Study of galaxies in the Lynx-Cancer void - VII. New oxygen abundances

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Perepelitsyna, Y. A.; Kniazev, A. Y.

    2016-11-01

    We present new or improved oxygen abundances (O/H) for the nearby Lynx-Cancer void updated galaxy sample. They are obtained via the SAO 6-m telescope spectroscopy (25 objects), or derived from the Sloan Digital Sky Survey spectra (14 galaxies, of which for seven objects O/H values were unknown). For eight galaxies with detected [O III] λ4363 line, O/H values are derived via the direct (Te) method. For the remaining objects, O/H was estimated via semi-empirical and empirical methods. For all accumulated O/H data for 81 galaxies of this void (with 40 of them derived via Te method), their relation `O/H versus MB' is compared with that for similar late-type galaxies from denser environments (the Local Volume `reference sample'). We confirm our previous conclusion derived for a subsample of 48 objects: void galaxies show systematically reduced O/H for the same luminosity with respect to the reference sample, in average by 0.2 dex, or by a factor of ˜1.6. Moreover, we confirm the fraction of ˜20 per cent of strong outliers, with O/H of two to four times lower than the typical values for the `reference' sample. The new data are consistent with the conclusion on the slower evolution of the main void galaxy population. We obtained Hα velocity for the faint optical counterpart of the most gas-rich (M(H I)/LB = 25) void object J0723+3624, confirming its connection with the respective H I blob. For similar extremely gas-rich dwarf J0706+3020, we give a tentative O/H ˜(O/H)⊙/45. In Appendix A, we present the results of calibration of semi-empirical method by Izotov & Thuan and of empirical calibrators by Pilyugin & Thuan and Yin et al. on the sample of ˜150 galaxies from the literature with O/H measured by Te method.

  3. Galaxy evolution in merging clusters: The passive core of the "Train Wreck" cluster of galaxies, A 520

    NASA Astrophysics Data System (ADS)

    Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon

    2017-11-01

    Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J

  4. VizieR Online Data Catalog: RX J105453.3+552102 cluster SDSS photometry (Aguerri+, 2011)

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Girardi, M.; Boschin, W.; Barrena, R.; Mendez-Abreu, J.; Sanchez-Janssen, R.; Borgani, S.; Castro-Rodriguez, N.; Corsini, E. M.; Del Burgo, C.; D'Onghia, E.; Iglesias-Paramo, J.; Napolitano, N.; Vilchez, J. M.

    2011-08-01

    Optical imaging of RX J105453.3+552102 was carried out at the 2.5m NOT telescope in March 2008. Optical deep images were used for studying the properties of the brightest group galaxy and for computing the photometric luminosity function of the group. We have also performed a detail dynamical analysis of the system based on redshift data for 116 galaxies. Combining galaxy velocities and positions we selected 78 group members. (1 data file).

  5. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  6. A periodicity of approximately 1 hour in X-ray emission from the active galaxy RE J1034+396.

    PubMed

    Gierliński, Marek; Middleton, Matthew; Ward, Martin; Done, Chris

    2008-09-18

    Active galactic nuclei and quasars are thought to be scaled-up versions of Galactic black hole binaries, powered by accretion onto supermassive black holes with masses of 10(6)-10(9) M[symbol: see text], as opposed to the approximately 10 M [symbol: see text] in binaries (here M [symbol: see text] is the solar mass). One example of the similarities between these two types of systems is the characteristic rapid X-ray variability seen from the accretion flow. The power spectrum of this variability in black hole binaries consists of a broad noise with multiple quasi-periodic oscillations superimposed on it. Although the broad noise component has been observed in many active galactic nuclei, there have hitherto been no significant detections of quasi-periodic oscillations. Here we report the discovery of an approximately 1-hour X-ray periodicity in a bright active galaxy, RE J1034+396. The signal is highly statistically significant (at the 5.6 sigma level) and very coherent, with quality factor Q > 16. The X-ray modulation arises from the direct vicinity of the black hole.

  7. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  8. VizieR Online Data Catalog: GV galaxies UV-optical radial color profiles (Pan+, 2014)

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Li, J.; Lin, W.; Wang, J.; Kong, X.

    2017-04-01

    Our parent sample is drawn from Schawinski et al. (2014MNRAS.440..889S), which contains ~46000 galaxies at the redshift range of z = [0.02, 0.05]. This sample is magnitude completed to Mz, Petro = -19.5 AB mag and with Galaxy Zoo (Lintott 2008MNRAS.389.1179L; 2011, J/MNRAS/410/166) visual morphological classifications (http://data.galaxyzoo.org/). The stellar masses are derived by fitting the five SDSS photometric bands to a library of 6.8x106 models of star formation histories generated from Maraston et al. (1998MNRAS.300..872M; 2005MNRAS.362..799M) stellar models. We follow the process of Schawinski et al. (2014MNRAS.440..889S) to select GV galaxies. First, the galaxies are k-corrected to z = 0 using the KCORRECT code of Blanton & Roweis (2007AJ....133..734B) with the SDSS five broadband photometry. Then, the magnitudes are corrected for dust reddening using estimates of internal extinction from the stellar continuum fits by Oh et al. (2011ApJS..195...13O), applying the Cardelli et al. (1989ApJ...345..245C) law. (2 data files).

  9. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  10. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  11. Search for soft gamma repeaters in the SMM/HXRBS data

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Wood, K. S.; Cline, T. L.; Dennis, B. R.; Desal, U. D.; Orwig, L. E.

    1992-01-01

    The triggered fast memory of the hard X-ray burst spectrometer (HXRBS) on board the SMM is used to describe the results of a search for short transients resembling soft gamma repeater (SGR) bursts. Memory data for a total of about 4000 burst triggers, out of which only a very few could be considered as valid SGR candidate events, are analyzed. The search methodology is outlined, the HXRBS exposure and sensitivity to SGR bursts are calculated, and the criteria which constrain the number of candidate events are described. An upper limit is given for the SGR source number density. This limit, combined with results from other relevant observations and the assumption of a neutron star origin, are applied to obtain a constraint on SGR-active lifetimes.

  12. V/V(max) test applied to SMM gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  13. Which Galaxies Are the Most Habitable?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    (cataloged by the Sloan Digital Sky Survey).Based on these predictions, the authors find that the galaxies likely to host the largest number of habitable planets are those that have a mass greater than twice that of the Milky Way and star formation rates less than a tenth of that of the Milky Way.These galaxies tend to be giant elliptical galaxies, rather than compact spirals like our own galaxy. The authors calculate that the most hospitable galaxies can host up to 10,000 times as many Earth-like planets and 1,000,000 times as many gas-giants (which might have habitable moons) as the Milky Way!CitationPratika Dayal et al.2015 ApJ 810 L2 doi:10.1088/2041-8205/810/1/L2

  14. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  15. J-Plus: Measuring Ha Emission Line Flux In The Nearby Universe

    NASA Astrophysics Data System (ADS)

    Logroño-García, Rafael; Vilella-Rojo, Gonzalo; López-San Juan, Carlos; Varela, Jesús; Viironen, Kerttu

    2017-10-01

    In the present presentation we aim to validate the methodology designed to extract the Ha emission line flux from J-PLUS data, a twelve optical filter survey carried out with the 2 deg² field of view T80Cam camera, mounted at the JAST/T80 telescope in the OAJ, Teruel, Spain. We use the information of the twelve J-PLUS bands, including the J0660 narrow-band filter located at rest-frame Ha, over 42 deg² to extract de-reddened and [NII] decontaminated Ha emission line fluxes of 46 star-forming regions with previous SDSS and/or CALIFA spectroscopic information. The agreement of the J-PLUS photometric Ha flux and the spectroscopic one is remarkable, with a ratio R = 1,01 +/- 0,27. This demonstrates that we are able to recover reliable Ha fluxes from J-PLUS photometric data. With an expected final area of 8,500 deg2, the large J-PLUS footprint will permit the study of the spatially resolved star formation rate of thousands nearby galaxies at z 0,015, as well as the influence of the close environment. As an illustrative example, we looked to the close pair of interacting galaxies NGC3994 and NGC3995, finding an enhancement of the star formation rate not only in the central part of NGC3994 but also in outer parts of the disc.

  16. STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer

    We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less

  17. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    .5 arcmin 2 area of the "AXAF Deep Field" , as observed with the ISAAC multi-mode instrument at VLT ANTU in the near-IR K band (at wavelength 2.x µm). The total integration time is 8.5 hours and the limiting magnitude is K = 23.5 per arcsec 2 (at S/N-ratio = 3). The pixel size is 0.15 arcsec. North is up and east is left. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The reproduction is "negative", with dark objects on a light sky, in order to better show the faintest objects. See also the technical note below. ESO PR Photo 06b/00 ESO PR Photo 06b/00 [Preview - JPEG: 400 x 451 pix - 103k] [Normal - JPEG: 800 x 902 pix - 270k] [Full-Res - JPEG: 924 x 1042 pix - 704k] Caption : ESO PR Photo 06b/00 is a composite colour image of the field shown in PR Photo 06a/00 . It is a combination of the K-band image from ANTU/ISAAC shown in PR Photo 06a/00 with two images obtained in the B and R bands with the SUSI-2 optical imager at the New Technology Telescope (NTT) on La Silla in the framework of the ESO-EIS survey. Note the relatively high density of red galaxies, visible in the upper right part of this image. The colours of most of these galaxies are consistent with those of "evolved" galaxies, already present when the Universe was only 4 billions years old. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The group of European astronomers recently obtained a first "ultra-deep" 4.5 arcmin 2 image in the near-infrared J (wavelength 1.2 µm) and K (2.2 µm) bands, centered in the so-called "AXAF Deep Field", cf. PR Photos 06a-b/00 . This area of the sky is remarkably devoid of bright stars and provides a clear view towards the remote Universe, as there is little obscuring dust in our own Galaxy, the Milky Way, in this direction. It is therefore uniquely suited to probe the depth of the Universe. It is exactly for this reason that it was

  18. Evidence for explosive chromospheric evaporation in a solar flare observed with SMM

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.; Canfield, R. C.; Metcalf, T.

    1986-01-01

    SMM soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflow motions, was observed in the coronal Ca XIX line during the soft X-ray rise phase. H-alpha redshifts, indicative of downward motions, were observed simultaneously in bright flare kernels during the period of hard X-ray emission. It is shown that, to within observational errors, the impulsive phase momentum transported by the upflowing soft X-ray plasma is equivalent to that of the downward moving chromospheric material.

  19. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  20. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  1. The return of the merging galaxy subclusters of El Gordo?

    DOE PAGES

    Ng, Karen Y.; Dawson, William A.; Wittman, D.; ...

    2015-08-25

    Merging galaxy clusters with radio relics provide rare insights to the merger dynamics as the relics are created by the violent merger process. We demonstrate one of the first uses of the properties of the radio relic to reduce the uncertainties of the dynamical variables and determine the three-dimensional (3D) configuration of a cluster merger, ACT-CL J0102-4915, nicknamed El Gordo. From the double radio relic observation and the X-ray observation of a comet-like gas morphology induced by motion of the cool core, it is widely believed that El Gordo is observed shortly after the first core passage of the subclusters. Here, we employ a Monte Carlo simulation to investigate the 3D configuration and dynamics of El Gordo. Using the polarization fraction of the radio relic, we constrain the estimate of the angle between the plane of the sky and the merger axis to be α=21°±more » $$9\\atop{11}$$. We find the relative 3D merger speed of El Gordo to be 2400 ± $$400\\atop{200}$$ km s -1 at pericentre. The two possible estimates of the time since pericentre (TSP) are 0.46 ± $$0.09\\atop{0.16}$$ and 0.91± $$0.22\\atop{0.39}$$ Gyr for the outgoing and returning scenario, respectively. We put our estimates of the TSP into context by showing that if the time-averaged shock velocity is approximately equal to or smaller than the pericentre velocity of the corresponding subcluster in the centre-of-mass frame, the two subclusters are more likely to be moving towards, rather than away, from each other, post apocentre. Finally, we compare and contrast the merger scenario of El Gordo with that of the Bullet Cluster, and show that this late-stage merging scenario explains why the south-east (SE) dark matter lensing peak of El Gordo is closer to the merger centre than the SE cool core.« less

  2. The return of the merging galaxy subclusters of El Gordo?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Karen Y.; Dawson, William A.; Wittman, D.

    Merging galaxy clusters with radio relics provide rare insights to the merger dynamics as the relics are created by the violent merger process. We demonstrate one of the first uses of the properties of the radio relic to reduce the uncertainties of the dynamical variables and determine the three-dimensional (3D) configuration of a cluster merger, ACT-CL J0102-4915, nicknamed El Gordo. From the double radio relic observation and the X-ray observation of a comet-like gas morphology induced by motion of the cool core, it is widely believed that El Gordo is observed shortly after the first core passage of the subclusters. Here, we employ a Monte Carlo simulation to investigate the 3D configuration and dynamics of El Gordo. Using the polarization fraction of the radio relic, we constrain the estimate of the angle between the plane of the sky and the merger axis to be α=21°±more » $$9\\atop{11}$$. We find the relative 3D merger speed of El Gordo to be 2400 ± $$400\\atop{200}$$ km s -1 at pericentre. The two possible estimates of the time since pericentre (TSP) are 0.46 ± $$0.09\\atop{0.16}$$ and 0.91± $$0.22\\atop{0.39}$$ Gyr for the outgoing and returning scenario, respectively. We put our estimates of the TSP into context by showing that if the time-averaged shock velocity is approximately equal to or smaller than the pericentre velocity of the corresponding subcluster in the centre-of-mass frame, the two subclusters are more likely to be moving towards, rather than away, from each other, post apocentre. Finally, we compare and contrast the merger scenario of El Gordo with that of the Bullet Cluster, and show that this late-stage merging scenario explains why the south-east (SE) dark matter lensing peak of El Gordo is closer to the merger centre than the SE cool core.« less

  3. Measuring Sizes & Shapes of Galaxies

    NASA Astrophysics Data System (ADS)

    Kusmic, Samir; Willemn Holwerda, Benne

    2018-01-01

    Software is how galaxy morphometrics are calculated, cutting down on time needed to categorize galaxies. However, new surveys coming in the next decade is expected to count upwards of a thousand times more galaxies than with current surveys. This issue would create longer time consumption just processing data. In this research, we looked into how we can reduce the time it takes to get morphometric parameters in order to classify galaxies, but also how precise we can get with other findings. The software of choice is Source Extractor, known for taking a short amount of time, as well as being recently updated to get compute morphometric parameters. This test is being done by running CANDELS data, five fields in the J and H filters, through Source Extractor and then cross-correlating the new catalog with one created with GALFIT, obtained from van der Wel et al. 2014, and then with spectroscopic redshift data. With Source Extractor, we look at how many galaxies counted, how precise the computation, how to classify morphometry, and how the results stand with other findings. The run-time was approximately 10 hours when cross-correlated with GALFIT and approximately 8 hours with the spectroscopic redshift; these were expected times as Source Extractor and already faster than GALFIT's run-time by a large factor. As well, Source Extractor's recovery was large: 79.24\\% of GALFIT's count. However, the precision is highly variable. We have created two thresholds to see which would be better in order to combat this;we ended up picking an unbiased isophotal area threshold as the better choice. Still, with such a threshold, spread was relatively wide. However, comparing the parameters with redshift showed agreeable findings, however, not necessarily to the numerical value. From the results, we see Source Extractor as a good first-look, to be followed up by other software.

  4. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s < 25.3-25.9 AB. We use 5 near-IR medium-bandwidth filters (J 1, J 2, J 3, H s , H l ) as well as broad-band K s at 1.05-2.16 μm to 25-26 AB at a seeing of ˜0.″5. Each field has ancillary imaging in 26-40 filters at 0.3-8 μm. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z,pairs = 0.01-0.02 at 1 < z < 2.5. We quantify how σ z,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer/MIPS and Herschel/PACS data. We derive rest-frame U - V and V - J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ˜ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  5. AN OPTICAL AND X-RAY STUDY OF THE FOSSIL GROUP RX J1340.6+4018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes de Oliveira, Claudia L.; Cypriano, Eduardo S.; Sodre, Laerte

    2009-08-15

    Fossil groups are systems with one single central elliptical galaxy and an unusual lack of luminous galaxies in the inner regions. The standard explanation for the formation of these systems suggests that the lack of bright galaxies is due to galactic cannibalism. In this study, we show the results of an optical and X-ray analysis of RX J1340.6+4018, the prototype fossil group. The data indicate that RX J1340.6+4018 is similar to clusters in almost every sense (dynamical mass, X-ray luminosity, M/L, and luminosity function) except for the lack of L* galaxies. There are claims in the literature that fossil systemsmore » have a lack of small mass halos, compared to predictions based on the lambda cold dark matter scenario. The observational data gathered on this and other fossil groups so far offer no support for this idea. Analysis of the SN Ia/SN II ejecta ratio in the inner and outer regions shows a marginally significant central dominance of SN Ia material. This suggests that either the merger which originated in the central galaxy was dry or the group has been formed at early epochs, although better data are needed to confirm this result.« less

  6. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    PubMed

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  7. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Chen; Fang, Taotao; Wang, Junfeng

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright,more » optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.« less

  8. Most Distant Group of Galaxies Known in the Universe

    NASA Astrophysics Data System (ADS)

    2002-04-01

    the Universe was very young, just a small fraction of its present age. The radio galaxies are amongst the most massive objects in the early Universe and there has long been circumstantial evidence that they are located at the heart of young clusters of galaxies, still in the process of formation. In this sense, they act as signposts of early cosmic "meeting points" . Radio galaxies are therefore potential beacons for pinpointing regions of the Universe in which large galaxies and clusters of galaxies are being formed. VLT observations of the environment of radio galaxy TN J1338-1942 ESO PR Photo 11a/02 ESO PR Photo 11a/02 [Preview - JPEG: 400 x 493 pix - 336k] [Normal - JPEG: 1250 x 1541 pix - 2.3M] Caption : PR Photo 11a/02 shows the sky region near the powerful radio galaxy TN J1338-1942 at a redshift of 4.1 [2], i.e. at a distance of about 13.5 billion light-years from the Earth (we see it as it was when the Universe was just 1.5 billion years old). The photo is a "negative" rendering (the objects are dark on a bright background) of an image obtained with the FORS2 multi-mode instrument on the 8.2-m VLT KUEYEN telescope (ESO Paranal Observatory, Chile) through a narrow-band optical filter, centered at the wavelength of the redshifted Lyman-alpha line. The 20 galaxies that have been confirmed to be emitting the sharp colours due to glowing hydrogen gas at the distance of the radio galaxy are encircled in blue. The green rectangle marks the radio galaxy, from which a stream of hydrogen gas stretches to the northwest, over a distance of about 300,000 light-years. The size of the sky field corresponds to about 10 million light-years at the distance of these galaxies. North is up and East is left. Technical information about the photo is available below. ESO PR Photo 11b/02 ESO PR Photo 11b/02 [Preview - JPEG: 515 x 400 pix - 136k] [Normal - JPEG: 1000 x 777 pix - 320k] Caption : PR Photo 11b/02 shows the spectra (brightness as a function of wavelength) for ten of the

  9. The first example of erbium triple-stranded helicates displaying SMM behaviour.

    PubMed

    Gorczyński, Adam; Kubicki, Maciej; Pinkowicz, Dawid; Pełka, Robert; Patroniak, Violetta; Podgajny, Robert

    2015-10-14

    A series of isostructural C3-symmetrical triple stranded dinuclear lanthanide [Ln2L3](NO3)3 molecules have been synthesized using subcomponent self-assembly of Ln(NO3)3 with 2-(methylhydrazino)benzimidazole and 4-tert-butyl-2,6-diformylphenol, where Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), and Yb (6). The temperature dependent and field dependent magnetic properties of 1-6 were modeled using the van Vleck approximation including the crystal field term HCF, the super-exchange term HSE and the Zeeman term HZE. Ferromagnetic interactions were found in 1, 2, 4 and 6, while antiferromagnetic interactions were found in 3 and 5. The erbium analogue reveals field induced SMM behaviour.

  10. VizieR Online Data Catalog: CALIFA galaxies observational hints (Ruiz-Lara+, 2017)

    NASA Astrophysics Data System (ADS)

    Ruiz-Lara, T.; Perez, I.; Florido, E.; Sanchez-Blazquez, P.; Mendez-Abreu, J.; Sanchez-Menguiano, L.; Sanchez, S. F.; Lyubenova, M.; Falcon-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Caceres, A.; Catalan-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; Garcia-Benito, R.; Husemann, B.; Kehrig, C.; Marquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegle, B.; Califa Team

    2017-05-01

    Characterisation of the sample of galaxies under analysis in the paper. The sample comprises 214 galaxies from the CALIFA survey. For each galaxy the name, equatorial coordinates, morphological type, presence of a bar, surface brightness profile type, inner disc scale length (kpc), outer disc scale length (kpc), and break radius in units of the inner disc scale length are given. Columns (1), (2), (3), and (4) from the CALIFA general sample characterisation (Walcher et al., 2014A&A...569A...1W). Columns (5), (6), (7), (8), (9), and (10) from the 2D decomposition performed in Mendez-Abreu et al. (2017, Cat. J/A+A/598/A32). (1 data file).

  11. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79).

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Sakaguchi, T; Takeuchi, R; Takashima, T; Kobayashi, M; Terasawa, K; Takahashi, K; Watanabe, A; Kyan, A; Hasebe, N; Kashiwagi, T; Ogura, K; Nagaoka, S; Kato, M; Nakano, T; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET

  12. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79)

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Sakaguchi, T.; Takeuchi, R.; Takashima, T.; Kobayashi, M.; Terasawa, K.; Takahashi, K.; Watanabe, A.; hide

    1997-01-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET

  13. CO in Hickson compact group galaxies with enhanced warm H2 emission: Evidence for galaxy evolution?

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.

    2014-10-01

    Context. Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7 μm PAH emission (so-called Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. Aims: We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. Methods: We observed the CO(1-0) emission of 20 galaxies in HCGs and complemented our sample with 11 CO(1-0) spectra from the literature. Most of the galaxies have measured warm H2 emission, and 14 of them are classified as MOHEGs. We mapped some of these galaxies in order to search for extra-galactic CO emission. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Results: Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as found for field galaxies. (ii) Some of the galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 km s-1 in the central pointing. The line shapes are irregular and show various components. (iii) In the mapped objects we found asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (=SFR/MH2) of galaxies in HCGs is very similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-type and spiral galaxies has been found. In a few objects the SFE is significantly lower, indicating the presence of molecular gas that is not actively forming stars

  14. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    EPA Pesticide Factsheets

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  15. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  16. The role of molecular gas in galaxy transition in compact groups

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Alatalo, K.; Zucker, C.; Appleton, P. N.; Gallagher, S.; Guillard, P.; Johnson, K.

    2017-11-01

    Compact groups (CGs) provide an environment in which interactions between galaxies and with the intra-group medium enable and accelerate galaxy transitions from actively star forming to quiescent. Galaxies in transition from active to quiescent can be selected, by their infrared (IR) colors, as canyon or infrared transition zone (IRTZ) galaxies. We used a sample of CG galaxies with IR data from the Wide Field Infrared Survey Explorer (WISE) allowing us to calculate the stellar mass and star formation rate (SFR) for each galaxy. Furthermore, we present new CO(1-0) data for 27 galaxies and collect data from the literature to calculate the molecular gas mass for a total sample of 130 galaxies. This data set allows us to study the difference in the molecular gas fraction (Mmol/M∗) and star formation efficiency (SFE = SFR/Mmol) between active, quiescent, and transitioning (I.e., canyon and IRTZ) galaxies. We find that transitioning galaxies have a mean molecular gas fraction and a mean SFE that are significantly lower than those of actively star-forming galaxies. The molecular gas fraction is higher than that of quiescent galaxies, whereas the SFE is similar. These results indicate that the transition from actively star-forming to quiescent in CG galaxies goes along with a loss of molecular gas, possibly due to tidal forces exerted from the neighboring galaxies or a decrease in the gas density. In addition, the remaining molecular gas loses its ability to form stars efficiently, possibly owing to turbulence perturbing the gas,as seen in other, well-studied examples such as Stephan's Quintet and HCG 57. Thus, the amount and properties of molecular gas play a crucial role in the environmentally driven transition of galaxies from actively star forming to quiescent. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A110

  17. Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    The Sloan Digital Sky Survey (SDSS) reveals many new features of galaxy morphologies. Among others, the discovery of blue elliptical galaxies provides some insights into the formation and evolution of galaxies. There seems to be two types of blue elliptical galaxies. One type shows globally blue colors suggesting star formations over the entire galaxy whereas the other type shows blue core that indicates enhanced star formation in the nuclear regions. The former seems to be currently forming galaxies, while the latter is thought to be in transition stage from the blue cloud to the red sequence due to AGN feedback.

  18. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  19. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  20. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  1. A Gemini view of the galaxy cluster RXC J1504-0248: insights on the nature of the central gaseous filaments

    NASA Astrophysics Data System (ADS)

    Soja, A. C.; Sodré, L.; Monteiro-Oliveira, R.; Cypriano, E. S.; Lima Neto, G. B.

    2018-07-01

    We revisit the galaxy cluster RXC J1504-0248, a remarkable example of a structure with a strong cool core in a near redshift (z = 0.216). We performed a combined analysis using photometric and spectroscopic data obtained at Gemini South Telescope. We estimated the cluster mass through gravitational lensing, obtaining M200 = 5.3 ± 0.4 × 1014 h_{70}^{-1} M⊙ within R200 = 1.56 ± 0.04 h^{-1}_{70} Mpc, in agreement with a virial mass estimate. This cluster presents a prominent filamentary structure associated with its brightest cluster galaxy, located mainly along its major axis and aligned with the X-ray emission. A combined study of three emission line diagnostic diagrams has shown that the filament emission falls in the so-called transition region of these diagrams. Consequently, several ionizing sources should be playing a meaningful role. We have argued that old stars, often invoked to explain low-ionization nuclear emission-line region emission, should not be the major source of ionization. We have noticed that most of the filamentary emission has line ratios consistent with the shock excitation limits obtained from shock models. We also found that line fluxes are related to gas velocities (here estimated from line widths) by power laws with slopes in the range expected from shock models. These models also show, however, that only ˜10 per cent of H α luminosity can be explained by shocks. We conclude that shocks probably associated with the cooling of the intracluster gas in a filamentary structure may indeed be contributing to the filament nebular emission, but cannot be the major source of ionizing photons.

  2. A bright lensed galaxy at z = 5.4 with strong Lyα emission

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Clément, Benjamin; Mainali, Ramesh; Stark, Daniel P.; Gronke, Max; Dijkstra, Mark; Fan, Xiaohui; Bian, Fuyan; Frye, Brenda; Jiang, Linhua; Kneib, Jean-Paul; Limousin, Marceau; Walth, Gregory

    2018-05-01

    We present a detailed study of a unusually bright, lensed galaxy at z = 5.424 discovered within the CFHTLS imaging survey. With an observed flux of iAB = 23.0, J141446.82+544631.9 is one of the brightest galaxies known at z > 5. It is characterized by strong Lyα emission, reaching a peak in (observed) flux density of >10-16 erg s-1 cm-2 Å-1. A deep optical spectrum from the LBT places strong constraints on N V and C IV emission, disfavouring an AGN source for the emission. However, a detection of the N IV] λ1486 emission line indicates a hard ionizing continuum, possibly from hot, massive stars. Resolved imaging from HST deblends the galaxy from a foreground interloper; these observations include narrowband imaging of the Lyα emission, which is marginally resolved on ˜few kpc scales and has EW0 ˜ 260Å. The Lyα emission extends over ˜2000 km s-1 and is broadly consistent with expanding shell models. SED fitting that includes Spitzer/IRAC photometry suggests a complex star formation history that include both a recent burst and an evolved population. J1414+5446 lies 30″ from the centre of a known lensing cluster in the CFHTLS; combined with the foreground contribution this leads to a highly uncertain estimate for the lensing magnification in the range 5 ≲ μ ≲ 25. Because of its unusual brightness J1414+5446 affords unique opportunities for detailed study of an individual galaxy near the epoch of reionization and a preview of what can be expected from upcoming wide-area surveys that will yield hundreds of similar objects.

  3. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    galaxies are in the range n = 1.5-3 both in S0s and in galaxies classified as bona fide ellipticals, such as NGC 2974 and IC 2006. We note that in our sample optical Sérsic indices are usually higher than in the UV indices. (M2-V) color profiles are bluer in ring- or arm-like structures than in the galaxy body. Conclusions: The lower values of Sérsic indices in the UV bands with respect to optical bands, suggesting the presence of a disk, point out that the role of the dissipation cannot be neglected in recent evolutionary phases of these early-type galaxies. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A97

  4. H I-SELECTED GALAXIES AS A PROBE OF QUASAR ABSORPTION SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoshi, Katsuya; Nagashima, Masahiro; Gouda, Naoteru

    2010-02-20

    We investigate the properties of H I-rich galaxies detected in blind radio surveys within the hierarchical structure formation scenario using a semianalytic model of galaxy formation. By drawing a detailed comparison between the properties of H I-selected galaxies and H I absorption systems, we argue a link between the local galaxy population and quasar absorption systems, particularly for damped Lyalpha absorption (DLA) systems and sub-DLA systems. First, we evaluate how many H I-selected galaxies exhibit H I column densities as high as those of DLA systems. We find that H I-selected galaxies with H I masses M{sub H{sub I}} {approx}>more » 10{sup 8} M{sub sun} have gaseous disks that produce H I column densities comparable to those of DLA systems. We conclude that DLA galaxies where the H I column densities are as high as those of DLA systems, contribute significantly to the population of H I-selected galaxies at M{sub H{sub I}} {approx}> 10{sup 8} M{sub sun}. Second, we find that star formation rates (SFRs) correlate tightly with H I masses (M{sub H{sub I}}) rather than B- (and J-) band luminosities: SFR {proportional_to} M {sup alpha}{sub H{sub I}}, alpha = 1.25-1.40 for 10{sup 6} <= M{sub H{sub I}}/M{sub sun} <= 10{sup 11}. In the low-mass range M{sub H{sub I}} {approx}< 10{sup 8} M{sub sun}, sub-DLA galaxies replace DLA galaxies as the dominant population. The number fraction of sub-DLA galaxies relative to galaxies reaches 40%-60% for M{sub H{sub I}} {approx} 10{sup 8} M{sub sun} and 30%-80% for M{sub H{sub I}} {approx} 10{sup 7} M{sub sun}. The H I-selected galaxies at M{sub H{sub I}} {approx} 10{sup 7} M{sub sun} are a strong probe of sub-DLA systems that place stringent constraints on galaxy formation and evolution.« less

  5. VizieR Online Data Catalog: S4G disk galaxies stellar mass distribution (Diaz-Garcia+, 2016)

    NASA Astrophysics Data System (ADS)

    Diaz-Garcia, S.; Salo, H.; Laurikainen, E.

    2016-08-01

    We provide the tabulated radial profiles of mean stellar mass density in bins of total stellar mass (M*, from Munoz-Mateos et al., 2015ApJS..219....3M) and Hubble stage (T, from Buta et al., 2015, Cat. J/ApJS/217/32). We used the 3.6um imaging for the non-highly inclined galaxies (i<65° in Salo et al., 2015, Cat. J/ApJS/219/4) in the Spitzer Survey of Stellar Structure in Galaxies (Sheth et al., 2010, Cat. J/PASP/122/1397). We also provide the averaged stellar contribution to the circular velocity, computed from the radial force profiles of individual galaxies (from Diaz-Garcia et al., 2016A&A...587A.160D). Besides, we provide the FITS files of the bar synthetic images (2D) obtained by stacking images rescaled to a common frame determined by the bar parameters (from Herrera-Endoqui et al., 2015A&A...582A..86H) in bins of M*, T, and galaxy family (from Buta et al. 2015). For the bar stacks, we also tabulate the azimuthally averaged luminosity profiles, the tangential-to-radial forces (Qt), the m=2,4 Fourier amplitudes (A2,A4), and the radial profiles of ellipticity and b4 parameter. The fits files (.fit) of the bar stacks, in units of flux (MJy/sr). The pixel size is 0.02 x rbar, where rbar refers to the bar radius. The images are cut at a radius of 3 x rbar. In every folder, the terminology used to label the ".dat" and ".fit" files, in relation to their content, is the following: a) The term "starmass" is used when the binning of the sample was based on the total stellar mass of the galaxy, from Munoz-Mateos et al. (2015ApJS..219....3M). We indicate the common logarithm of the boundaries: (8.5,9.9.5,10,10.5,11). b) The term "ttype" is used when the binning of the sample was based on the Hubble stage of the galaxy (-3,0,3,5,8,11), from Buta et al. (2015, Cat. J/ApJS/217/32) c) The term "family" is used when the binning of the sample was based on the morphological family of the galaxy (AB,AB,AB,B), from Buta et al. (2015, Cat. J/ApJS/217/32). d) The term "hr" is

  6. STScI-PRC02-11d HUBBLE'S NEWEST CAMERA TAKES A DEEP LOOK AT TWO MERGING GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Milky Way several billion years from now when it collides with our nearest large neighbor, the Andromeda Galaxy (M31). This picture is assembled from three sets of images taken on April 7, 2002, in blue, orange, and near-infrared filters. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA The ACS Science Team: (H. Ford, G. Illingworth, M. Clampin, G. Hartig, T. Allen, K. Anderson, F. Bartko, N. Benitez, J. Blakeslee, R. Bouwens, T. Broadhurst, R. Brown, C. Burrows, D. Campbell, E. Cheng, N. Cross, P. Feldman, M. Franx, D. Golimowski, C. Gronwall, R. Kimble, J. Krist, M. Lesser, D. Magee, A. Martel, W. J. McCann, G. Meurer, G. Miley, M. Postman, P. Rosati, M. Sirianni, W. Sparks, P. Sullivan, H. Tran, Z. Tsvetanov, R. White, and R. Woodruff)

  7. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  8. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    NASA Astrophysics Data System (ADS)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  9. Hubble Sees Spiral Bridge of Young Stars Between Two Ancient Galaxies

    NASA Image and Video Library

    2014-07-11

    NASA's Hubble Space Telescope has photographed the dense galaxy cluster SDSS J1531+3414 in the northern constellation Corona Borealis. Made up primarily of giant elliptical galaxies with a few spirals and irregular galaxies thrown in for good measure, the cluster's powerful gravity warps the image of background galaxies into blue streaks and arcs. At the center of the bull's-eye of blue, gravitationally lensed filaments lies a pair of elliptical galaxies that are also exhibiting some interesting features. A 100,000-light-year-long structure that looks like a string of pearls twisted into a corkscrew shape winds around the cores of the two massive galaxies. The "pearls" are superclusters of blazing, blue-white, newly born stars. These super star clusters are evenly spaced along the chain at separations of 3,000 light-years from one another. Read more: 1.usa.gov/1ztQvL9 Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  11. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    billion solar masses. This is an unprecedented factor of 3,000 larger than the stellar mass for the galaxy (obtained from the galaxys luminosity) which means that VCC 1287 has an unusually large dark matter halo given its stellar population.Clues to OriginsThis result makes it unlikely that VCC 1287 is a tidal-dwarf system, since these usually have dark-matter fractions of less than 10%. The authors also dont believe it is a tidally stripped system, since no obvious tidal features were revealed in their imaging. Instead, they think the most probable scenario is that VCC 1287 is a massive dwarf galaxy that had its star formation quenched by gas starvation as it fell into the Virgo cluster long ago.To learn whether VCC 1287 is typical of UDGs, the authors encourage finding additional UDG masses using the same techniques outlined in this study. Additional observations of the globular-cluster populations for UDGs will significantly help understand these unusual galaxies.CitationMichael A. Beasley et al 2016 ApJ 819 L20. doi:10.3847/2041-8205/819/2/L20

  12. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, M.; Diaz, R.; Levenson, N. A.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [Omore » III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.« less

  13. How does ionizing radiation escape from galaxies?

    NASA Astrophysics Data System (ADS)

    Orlitova, Ivana

    2016-10-01

    Search for sources that reionized the Universe from z 15 to z 6 is one of the main drivers of present-day astronomy. Low-mass star-forming galaxies are the most favoured sources of ionizing photons, but the searches of escaping Lyman continuum (LyC) have not been extremely successful. Our team has recently detected prominent LyC escape from five Green Pea galaxies at redshift 0.3, using the HST/COS spectrograph, which represents a significant breakthrough. We propose here to study the LyC escape of the strongest among these leakers, J1152, with spatial resolution. From the comparison of the ionizing and non-ionizing radiation maps, and surface brightness profiles, we will infer the major mode in which LyC is escaping: from the strongest starburst, from the galaxy edge, through a hole along our line-of-sight, through clumpy medium, or directly from all the production sites due to highly ionized medium in the entire galaxy. In parallel, we will test the predictive power of two highly debated indirect indicators of LyC leakage: the [OIII]5007/[OII]3727 ratio, and Lyman-alpha. We predict that their spatial distribution should closely follow that of the ionizing continuum if column densities of the neutral gas are low. This combined study, which relies on the HST unique capabilities, will bring crucial information on the structure of the leaking galaxies, provide constraints for hydrodynamic simulations, and will lead to efficient future searches for LyC leakers across a large range of redshifts.

  14. The search for molecular gas in the most distant submillimetre galaxy at z=4.76

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Weiss, Axel; De Breuck, Carlos; Walter, Fabian; Edge, Alastair; Kovacs, Attila; Ivison, Rob; Huynh, Minh; Smail, Ian; Schinnerer, Eva; Greve, Thomas; Wardlow, Julie

    2009-07-01

    We propose to use ATCA to measure the CO(2-1) and CO(5-4) emission in the highest redshift submm-selected galaxy (SMG) known: LESS J033229 at z=4.76. These observations will measure the gas mass and dynamics of this far-infrared luminous galaxy at a time when the Universe was only 1 Gyr old. In conjunction with similar observations of three z~4-4.5 SMG, these observations will constrain the potential evolution of the star formation and dynamical mass of these high redshift, but relatively typical, young galaxies and their potential role as the precursor population to the red-and-dead galaxies seen at z~3, as well as allowing us to contrast the physical state of the gas reservoirs in these early galaxies with the well-studied and more numerous SMG population at z~2. These observations will provide a sneak-preview of the science which ALMA will provide on the formation of the earliest massive galaxies in the Universe.

  15. Sustainable Materials Management (SMM) Web Academy Webinar: How to Reduce Wasted Food: EPA’s Food Waste Reduction Tools for Food Services & Restaurants

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  16. 2MASS J00423991+3017515: An AGN On The Run?

    NASA Astrophysics Data System (ADS)

    Hogg, James

    2016-10-01

    We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). Gravitational-wave recoil kicks result from the coalescence of two SMBHs and have implications for the early growth of high-redshift quasars and SMBH-galaxy co-evolution. We propose high-resolution imaging in the NIR, optical, and UV with the WFC3 camera on Hubble and high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. We request 3 orbits with Hubble and 8 ksec with Chandra to conduct these follow-up observations. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date, providing a new, indirect constraint on SMBH spin evolution and merger rates.

  17. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189

    PubMed Central

    McAfee, Samuel S.; Guley, Natalie M.; Del Mar, Nobel; Bu, Wei; Heldt, Scott A.; Honig, Marcia G.; Moore, Bob M.

    2017-01-01

    Abstract Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189. PMID:28828401

  18. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189.

    PubMed

    Liu, Yu; McAfee, Samuel S; Guley, Natalie M; Del Mar, Nobel; Bu, Wei; Heldt, Scott A; Honig, Marcia G; Moore, Bob M; Reiner, Anton; Heck, Detlef H

    2017-01-01

    Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.

  19. VizieR Online Data Catalog: CANDELS z~2 galaxy properties (Trump+, 2014)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Barro, G.; Juneau, S.; Weiner, B. J.; Luo, B.; Brammer, G. B.; Bell, E. F.; Brandt, W. N.; Dekel, A.; Guo, Y.; Hopkins, P. F.; Koo, D. C.; Kocevski, D. D.; McIntosh, D. H.; Momcheva, I.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kartaltepe, J.; Koekemoer, A. M.; Lotz, J.; Maseda, M.; Mozena, M.; Nandra, K.; Rosario, D. J.; Zeimann, G. R.

    2017-04-01

    We select a sample of 44 clumpy galaxies from the Great Observatories Origins Deep Survey South (GOODS-S; Giavalisco et al. 2004ApJ...600L..93G) region of CANDELS. For comparison, we also construct mass-matched samples of 41 smooth (non-clumpy) and 35 intermediate galaxies. All galaxies have H<24 (to ensure reliable classification of clumpiness) and have [O III] detected at the 3σ level (for reliable AGN line ratio diagnostics) in the redshift range 1.3

  20. VizieR Online Data Catalog: Barred & unbarred galaxies N, O abundance ratio (Florido+, 2015)

    NASA Astrophysics Data System (ADS)

    Florido, E.; Zurita, A.; Perez, I.; Perez-Montero, E.; Coelho, P. R. T.; Gadotti, D. A.

    2015-11-01

    The tables contain nebular emission line fluxes for the central region of 251 barred and 324 unbarred galaxies. The sample contains all spiral face-on galaxies (axial ratio b/a>=0.9) in the SDSS DR-2, with stellar masses larger than 1010 the solar mass, redshift 0.02J...743L..13C) for further details about the galaxy sample. (2 data files).

  1. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  2. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  3. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  4. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    PubMed

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  5. Origin of SMM behaviour in an asymmetric Er(III) Schiff base complex: a combined experimental and theoretical study.

    PubMed

    Das, Chinmoy; Upadhyay, Apoorva; Vaidya, Shefali; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-04-11

    An asymmetric erbium(III) Schiff base complex [Er(HL)2(NO3)3] was synthesized which shows SMM behaviour with an Ueff of 5.2 K. Dipolar interaction in 1 significantly reduced upon dilution which increases the barrier height to 51.5 K. Ab initio calculations were performed to shed light on the mechanism of magnetization relaxation.

  6. Precision Scaling Relations for Disk Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  7. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  8. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  9. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers.

    PubMed

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K

    2016-01-04

    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  10. A BIRD'S EYE VIEW OF A GALAXY COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Roger Lynds (KPNO/NOAO) and Earl J. O'Neil, Jr. (Steward Obs.), used infrared, red, visual and ultravoilet filters to image this galaxy system. Lynds and O'Neil are currently using the Hubble data along with ground-based radio observations to further study the interactions within NGC 6745. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Roger Lynds (KPNO/NOAO)

  11. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  12. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  13. The Biological Immune Response - A Review of Effect of Dietary Amino Acids.

    DTIC Science & Technology

    1979-12-19

    multiple deficiences, underlying diseases with accompanying therapies , and clinical limitations of obtaining data during illness and recovery stages of the...with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J. Immunol. 112:2135-2147. 42. Siegel, J., R. Rent

  14. Evidence for solar flare directivity from the Gamma-Ray Spectrometer aboard the SMM satellite

    NASA Technical Reports Server (NTRS)

    Vestrand, W. T.; Forrest, D. J.; Chupp, E. L.; Rieger, E.; Share, G. H.

    1986-01-01

    A number of observations from the SMM Gamma-Ray Spectrometer are presented that altogether strongly indicate that the high-energy emission from flares is anisotropic. They are: (1) the fraction of events detected at energies above 300 keV near the limb is significantly higher than is expected for isotropically emitting flares; (2) there is a statistically significant center-to-limb variation in the 300-1000-keV spectra of flares; and (3) nearly all of the events detected at above 10 MeV are located near the limb.

  15. RCS2 J232727.6-020437: An Efficient Cosmic Telescope at z=0.6986

    NASA Astrophysics Data System (ADS)

    Hoag, A.; Bradač, M.; Huang, K. H.; Ryan, R. E., Jr.; Sharon, K.; Schrabback, T.; Schmidt, K. B.; Cain, B.; Gonzalez, A. H.; Hildebrandt, H.; Hinz, J.; Lemaux, B. C.; von der Linden, A.; Lubin, L. M.; Treu, T.; Zaritsky, D.

    2015-11-01

    We present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and intra-cluster light, its high redshift (z = 0.6986) makes it ideal for studying high-redshift background galaxies. Using new Advanced Camera for Surveys and WFC3/IR Hubble Space Telescope data, we identify 16 new multiple images belonging to 6 distinct source galaxies. From Multi-object Spectrometer for Infrared Exploration (MOSFIRE) follow-up, we identify a strong emission line in the spectrum of one multiple image, measuring the redshift of that system to z = 2.083. With a highly magnified (μ ≳ 3) source plane area of ∼0.9 arcmin2 at z = 7, RCS2 J232727.6-020437 has a lensing efficiency comparable to the Hubble Frontier Fields clusters. We discover four highly magnified z ∼ 7 candidate Lyman-break galaxies behind the cluster. Correcting for magnification, we find that all four galaxies are fainter than 0.5{L}\\star . One candidate is detected at >10σ in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyα emission line from any of the four candidates. From the MOSFIRE spectra, we place median upper limits on the Lyα flux of (3-11)× {10}-19 {erg} {{{s}}}-1 {{cm}}-2 (5σ).

  16. A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Read, A. M.; Esquej, P.; Komossa, S.; Dougherty, S.; Rodriguez-Pascual, P.; Barrado, D.

    2012-05-01

    Aims: The study of tidal disruption flares from galactic nuclei has historically been hampered by a lack of high quality spectral observations taken around the peak of the outburst. Here we introduce the first results from a program designed to identify tidal disruption events at their peak by making near-real-time comparisons of the flux seen in XMM-Newton slew sources with that seen in ROSAT. Methods: Flaring extragalactic sources, which do not appear to be AGN, are monitored with Swift and XMM-Newton to track their temporal and spectral evolution. Timely optical observations are made to monitor the reaction of circumnuclear material to the X-ray flare. Results: SDSS J120136.02+300305.5 was detected in an XMM-Newton slew from June 2010 with a flux 56 times higher than an upper limit from ROSAT, corresponding to LX ~ 3 × 1044 erg s-1. It has the optical spectrum of a quiescent galaxy (z = 0.146). Overall the X-ray flux has evolved consistently with the canonical t-5/3 model, expected for returning stellar debris, fading by a factor ~300 over 300 days. In detail the source is very variable and became invisible to Swift between 27 and 48 days after discovery, perhaps due to self-absorption. The X-ray spectrum is soft but is not the expected tail of optically thick thermal emission. It may be fit with a Bremsstrahlung or double-power-law model and is seen to soften with time and declining flux. Optical spectra taken 12 days and 11 months after discovery indicate a deficit of material in the broad line and coronal line regions of this galaxy, while a deep radio non-detection implies that a jet was not launched during this event. Partly based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC) and observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio

  17. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  18. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  19. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  20. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  1. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  2. Sustainable Materials Management (SMM) Electronics Challenge Data

    EPA Pesticide Factsheets

    On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Challenge??s goals are to: 1). Ensure responsible recycling through the use of third-party certified recyclers, 2). Increase transparency and accountability through public posting of electronics collection and recycling data, and 3). Encourage outstanding performance through awards and recognition. By striving to send 100 percent of used electronics collected to certified recyclers and refurbishers, Challenge participants are ensuring that the used electronics they collect will be responsibly managed by recyclers that maximize reuse and recycling, minimize exposure to human health and the environment, ensure the safe management of materials by downstream handlers, and require destruction of all data on used electronics. Electronics Challenge participants are publicly recognized on EPA's website as a registrant, new participant, or active participant. Awards are offered in two categories - tier and champion. Tier awards are given in recognition of achieving all the requirements under a gold, silver or bronze tier. Champion awards are given in two categories - product and non-product. For champion awards, a product is an it

  3. Directory of Federal Contacts on Environmental Protection,

    DTIC Science & Technology

    1982-01-01

    Director D. M. Hannemann 111B 0362 Energy Coordinator D. K. Bain f1IP 0102 Support Services W. E. Elgin 1111 0102 Head, Management Branch E. E. Hoover... Hannemann , D. M................................................. 8 Ilannesslager, R.............................................. ... 76 Hansen, A.J

  4. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  5. Immunogenicity and persistence of the 13-valent Pneumococcal Conjugate Vaccine (PCV13) in patients with untreated Smoldering Multiple Myeloma (SMM): A pilot study.

    PubMed

    Bahuaud, Mathilde; Bodilis, Hélène; Malphettes, Marion; Maugard Landre, Anaïs; Matondo, Caroline; Bouscary, Didier; Batteux, Frédéric; Launay, Odile; Fermand, Jean-Paul

    2017-11-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder that frequently progress to multiple myeloma (MM), a disease at high risk of pneumococcal infections. Moreover, if the polysaccharide vaccine is poorly immunogenic in MM, the 13-valent conjugated vaccine has never been tested in clonal plasma cell disorders. We evaluated its immunogenicity for 7 serotypes in 20 patients ≥ 50 years of age with smoldering multiple myeloma (SMM) pre and post routine-vaccination with PCV13. Concentrations of IgG specific for 7 serotypes were measured at baseline, 1, 6, and 12 months after vaccination by standardized ELISA and an Opsonophagocytic Assay (OPA). The primary endpoint was the proportion of patients responding to at least 5 of the 7 serotypes by ELISA at one month. At 1 month post vaccination, 12 patients (60%) were responders by ELISA, among whom 8 were also responders by OPA. At 6 months, 6 (30% of total) of the 12 responders had persistent immunity, and only 2 (10% of total) at 12 months. These results suggested a partial response in this population and a rapid decrease in antibody levels in the first months of vaccination. Although one injection of the 13-valent pneumococcal conjugate vaccine is immunogenic in some patients with SMM, the response is transient. Repeated injections are likely to be needed for effective and sustained protection.

  6. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 (z = 0.902)

    NASA Astrophysics Data System (ADS)

    Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia

    2018-03-01

    Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based

  7. 2MASS J00423991+3017515: An Interacting Oddball or a Recoiling AGN?

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Blecha, Laura; Reynolds, Christopher S.

    2017-06-01

    We present deep, multiband Hubble imaging and two epochs of optical spectroscopic monitoring of a peculiar nearby (z=0.14) AGN, 2MASS J00423991+3017515. The host galaxy containing the AGN is morphologically disturbed and interacting with an unmerged companion galaxy, suggesting it has had a rich merger history. The AGN itself is spatially displaced from the apparent center of its host galaxy and the symmetric broad Hα and Hβ lines are consistently blueshifted from the narrow line emission and host galaxy absorption by Δv = 1530 km/s. The investigation is ongoing, but we put forward two hypotheses to explain the odd features of this system. First, the abnormalities could be due to separate, independent causes. Projection effects from the interaction of the two galaxies could give the appearance of a spatial offset, while complex wind dynamics from the AGN accretion disk could give rise to the kinematic shift in the broad line emission. Second, this could be a recoiling AGN. This system fits the template of an accreting supermassive black hole (SMBH) that has recently received a “kick” from the asymmetric emission of gravitational waves (GWs) following the merger of two progenitor SMBHs. SMBH mergers are a likely end-product of hierarchical structure formation and are the supermassive cousins of the stellar-mass BH mergers observed with LIGO in the GW150914 and GW151226 events. However, a SMBH merger has yet to be unambigously detected. If confirmed as a recoiling AGN, 2MASS J00423991+3017515 will provide the first evidence of this growth pathway acting in the SMBH regime.

  8. Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling

    NASA Astrophysics Data System (ADS)

    Kamenetzky, J.; Privon, G. C.; Narayanan, D.

    2018-05-01

    Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4‑3 through J = 13‑12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the “best-case” scenario of a fully sampled SLED through J = 10‑9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.

  9. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  10. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  11. THE RELATION BETWEEN GALAXY STRUCTURE AND SPECTRAL TYPE: IMPLICATIONS FOR THE BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5 < z < 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Michael; Kriek, Mariska; Wel, Arjen van der

    We present the relation between galaxy structure and spectral type, using a K-selected galaxy sample at 0.5 < z < 2.0. Based on similarities between the UV-to-NIR spectral energy distributions (SEDs), we classify galaxies into 32 spectral types. The different types span a wide range in evolutionary phases, and thus—in combination with available CANDELS/F160W imaging—are ideal to study the structural evolution of galaxies. Effective radii (R{sub e}) and Sérsic parameters (n) have been measured for 572 individual galaxies, and for each type, we determine R{sub e} at fixed stellar mass by correcting for the mass-size relation. We use the rest-frame U − V versus V − J diagrammore » to investigate evolutionary trends. When moving into the direction perpendicular to the star-forming sequence, in which we see the Hα equivalent width and the specific star formation rate (sSFR) decrease, we find a decrease in R{sub e} and an increase in n. On the quiescent sequence we find an opposite trend, with older redder galaxies being larger. When splitting the sample into redshift bins, we find that young post-starburst galaxies are most prevalent at z > 1.5 and significantly smaller than all other galaxy types at the same redshift. This result suggests that the suppression of star formation may be associated with significant structural evolution at z > 1.5. At z < 1, galaxy types with intermediate sSFRs (10{sup −11.5}–10{sup −10.5} yr{sup −1}) do not have post-starburst SED shapes. These galaxies have similar sizes as older quiescent galaxies, implying that they can passively evolve onto the quiescent sequence, without increasing the average size of the quiescent galaxy population.« less

  12. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  13. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  14. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  15. Aperture-free star formation rate of SDSS star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.

    2017-03-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors

  16. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  17. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  18. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  19. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  20. Narrow-line Seyfert 1 galaxies at hard X-rays

    NASA Astrophysics Data System (ADS)

    Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.

    2011-11-01

    Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.

  1. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  2. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  3. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  4. Cold Gas in High-z Galaxies: The CO Gas Excitation Ladder and the need for the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.; Champagne, Jaclyn; Narayanan, Desika; Davé, Romeel; Hung, Chao-Ling; Carilli, Chris; Murphy, Eric Joseph; Decarli, Roberto; Popping, Gergo; Riechers, Dominik A.; Somerville, Rachel; Walter, Fabian

    2018-01-01

    We will present updated results on a community study led to understand the observable molecular gas properties of high-z galaxies. This work uses a series of high-resolution, hydrodynamic, cosmological zoom-in simulations from MUFASA, the Despotic radiative transfer code that uses simultaneous thermal and statistical equilibrium in calculating molecular and atomic level populations, and a CASA simulator which generates mock ngVLA and ALMA observations. Our work reveals a stark contrast in gas characteristics (geometry and kinematics) as measured from low-J transitions of CO to high-J transitions, demonstrating the need for the ngVLA in probing the cold gas reservoir in the highest-redshift galaxies.

  5. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  6. A Study of Interstellar Medium Components of the Ohio State University Bright Spiral Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Butner, Melissa; Deustua, S. E.; Conti, A.; Smtih, J.

    2011-01-01

    Multi-wavelength data can be used to provide information on the interstellar medium of galaxies, as well as on their stellar populations. We use the Ohio State University Bright Spiral Galaxy Survey (OSBSGS) to investigate the distribution and properties of the interstellar medium in a set of nearby galaxies. The OSBSGS consists of B, V, R, J, H and K band images for a over 200 nearby spiral galaxies. These data allow us to probe the dust temperatures and distribution using color maps. When combined with a pixel based analysis, it may be possible to tease out, perhaps better constraining, the heating mechanism for the ISM, as well as constrain dust models. In this paper we will discuss our progress in understanding, in particular, the properties of dust in nearby galaxies. Melissa Butner was a participant in the STScI Summer Student Program supported by the STScI Director's Discretionary Research Fund. MB also acknowledges support and computer cluster access via NSF grant 07-22890.

  7. Surface photometry of WINGS galaxies with GASPHOT

    NASA Astrophysics Data System (ADS)

    D'Onofrio, M.; Bindoni, D.; Fasano, G.; Bettoni, D.; Cava, A.; Fritz, J.; Gullieuszik, M.; Kjærgaard, P.; Moretti, A.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Valentinuzzi, T.; Varela, J.

    2014-12-01

    softwares for common galaxies indicates that the systematic differences are small in general. The only significant deviations are most likely due to the peculiar (and very accurate) image processing adopted by WINGS for large galaxies. The main advantages of GASPHOT with respect to other tools are (i) the automatic finding of the local PSF; (ii) the short CPU execution time; and (iii) the remarkable stability against the choice of the initial-guess parameters. All these characteristics make GASPHOT an ideal tool for blind surface photometry of large galaxy samples in wide-field CCD mosaics. Catalogs are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A87

  8. Stellar Populations and Physical Conditions at 100 pc Resolution in a Lensed Galaxy at z 4

    NASA Astrophysics Data System (ADS)

    Berg, Danielle

    2015-10-01

    Large surveys of star-forming galaxies at high redshift (z > 1.5) have provided us with a broad understanding of how galaxies assemble and evolve, but the spatial and spectral limitations inherent in observing faint, distant objects mean that many of the physical processes regulating this dynamic evolution are poorly constrained. Much of our most detailed knowledge of the physical conditions in distant galaxies comes from careful studies of gravitationally lensed sources, few of which are at z>3.5. FOR J0332-3557 is a gravitationally lensed galaxy at z 4 for which we and other groups have obtained a total of 37.3 hours of VLT spectroscopy. The rest-frame UV spectrum is notable for its unusual combination of both strong emission lines in the rest-frame UV and strong Lya and interstellar absorption, and for the unusual spatial variation seen in the nebular emission lines, which are less extended than the underlying stellar continuum. We propose high spatial resolution imaging of FOR J0332-3557 with four broadband filters on WFC3, taking advantage of both the HST resolution and the lensing magnification to study star formation and extinction on 100 pc scales. Because the interpretation of our unusual rest-frame UV and optical spectra requires an accurate reddening estimate, combining these observations with ground-based spectroscopy will give the most complete picture to date of chemical evolution in a distant galaxy.

  9. Faraday rotation at low frequencies: magnetoionic material of the large FRII radio galaxy PKS J0636-2036

    NASA Astrophysics Data System (ADS)

    O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.

    2018-04-01

    We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.

  10. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  11. Environmental Variations in the Atomic and Molecular Gas Radial Profiles of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine; JCMT Nearby Galaxies Legacy Survey

    2017-01-01

    We present an analysis of the radial profiles of a sample of 43 HI-flux selected spiral galaxies from the Nearby Galaxies Legacy Survey (NGLS) with resolved James Clerk Maxwell Telescope (JCMT) CO J= 3-2 and/or Very Large Array (VLA) HI maps. Comparing the Virgo and non-Virgo populations, we confirm that the HI disks are truncated in the Virgo sample, even for these relatively HI-rich galaxies. On the other hand, the H2 distribution is enhanced for Virgo galaxies near their centres, resulting in higher H2 to HI ratios and steeper H2 and total gas radial profiles. This is likely due to the effects of moderate ram pressure stripping in the cluster environment, which would preferentially remove low density gas in the outskirts while enhancing higher density gas near the centre. Combined with Hα star formation rate data, we find that the star formation efficiency (SFR/H2) is relatively constant with radius for both samples, but Virgo galaxies have a ˜40% lower star formation efficiency than non-Virgo galaxies. These results suggest that the environment of spiral galaxies can play an important role in the formation of molecular gas and the star formation process.

  12. Gas distribution in the central region of the galaxy. I. Atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, W.B.; Liszt, H.S.

    A simple model of the distribution and kinematics of gas within 1.5 pc of the galactic center is described, the model refers to all such gas, whether at apparently permitted or anomalous velocities. The inner-Galaxy material is confined in a layer of scale height 0.1 kpc to a disk of 3 kpc diameter, tilted 22/sup 0/ with respect to the plane b = 0/sup 0/ and 78/sup 0/ with respect to the plane of the sky. Within this disk the kinematics involve rotation and expansion of approx. 170 km s/sup -1/. Detailed specification of the model parameters arises from comparisonmore » of synthetic 21-cm emission profiles with a new set of high-sensitivity H I data. The resultant model accounts in a coherent way for many observed spectral features which were previously studied separately and variously identified with bars, spiral arms, or isolated ejecta. In particular, the model subsumes the individual features E, J2, J4, J5, VII, X, and XII, which were previously considered as evidence of recurring, collimated ejections from the galactic nucleus. The model accounts for the rotating nuclear disk feature, the principal source of the inner-Galaxy gravitational field, and subsumes several other extended spectral features (such as III, the connecting arm) at velocities which are permitted by pure rotation. The H I mass of the disk is 1 x 10/sup 7/ M sub solar, and the expansion flux across its outer boundary is 4 M sub solar yr/sup -1/. No evidence is seen of important density enhancements or kinematic perturbations associated with particular observed spectral features, nor of anisotropic ejection from the nucleus. The complete axial symmetry shared by all parameters of the synthesis suggests that a steady state prevails. The large-scale consequences of the fundamental inner-Galaxy distribution depend on the total mass. With no dynamical foundation, the principal use of the phenomenological model is the constraint of other interpretations of the inner-Galaxy gas. 11 figures, 2

  13. A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta

    2012-06-20

    Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify themore » situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.« less

  14. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  15. The /a/m ratio of the baryonic matter and the black holes demography in galaxies

    NASA Astrophysics Data System (ADS)

    Curir, Anna; Mazzei, Paola

    2001-06-01

    The last years have seen a big progress in establishing the existence of supermassive black holes in the centers of galaxies. There are numerous very good cases [MNRAS 291 (1997) 219] where observations require a deep potential well. These observations raise the problem of when and how they formed and eventually when they gain most of their mass. The formation of a stationary black-hole is constrained by the conditions M>3 M ⊙ and cJ/ GM2≡ a/ m<1, J and M being the angular momentum and the total mass of the configuration which has collapsed to the hole. In this paper we analyze the behaviour of the a/ m ratio of the baryonic content in a protogalaxy, "primordial" scenario, and in a hot galaxy, "evolved" scenario, endowed with a suitable angular momentum distribution. In both the cases the baryonic matter is embedded in the gravitational potential generated by a cosmological Dark Matter (DM) halo. We deduce that the "primordial" scenario is less favourable to the black hole formation than the "evolved" one. Moreover, in the "evolved" scenario we find a twofold behaviour of the a/ m parameter which reflects the observed bimodal distribution of the central brightness in early-type galaxies and agrees with their corresponding degree of nuclear activity. As suggested by results of our SPH simulations of barred galaxies, the treatment of the dissipative processes and the inclusion of the star formation further improve the previous framework showing that barred galaxies provide very good environment for black hole formation.

  16. Sustainable Materials Management (SMM) Web Academy Webinar: Wasted Food to Energy: How 6 Water Resource Recovery Facilities are Boosting Biogas Production & the Bottom Line

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  17. Sustainable Materials Management (SMM) Web Academy Webinar: Cupertino CA and Cambridge MA: Tips for How Communities Can Successfully Engage Businesses to Divert Food Scraps

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  18. Sustainable Materials Management (SMM) Web Academy Webinar: An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled, An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry.

  19. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  20. Obscured AGNs in Bulgeless Hosts discovered by WISE: The Case Study of SDSS J1224+5555

    NASA Astrophysics Data System (ADS)

    Satyapal, S.; Secrest, N. J.; Rothberg, B.; O'Connor, J. A.; Ellison, S. L.; Hickox, R. C.; Constantin, A.; Gliozzi, M.; Rosenberg, J. L.

    2016-08-01

    There is mounting evidence that supermassive black holes (SMBHs) form and grow in bulgeless galaxies. However, a robust determination of the fraction of active galactic nuclei (AGNs) in bulgeless galaxies, an important constraint to models of SMBH seed formation and merger-free models of AGN fueling, is unknown, since optical studies have been shown to be incomplete for AGNs in low-mass galaxies. In a recent study using the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless galaxies that display mid-infrared signatures of extremely hot dust suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report X-ray follow-up observations of J122434.66+555522.3, a nearby (z = 0.052) isolated bulgeless galaxy that contains an unresolved X-ray source detected at the 3σ level by XMM-Newton with an observed luminosity uncorrected for intrinsic absorption of {L}2-10{keV}=(1.1+/- 0.4)× {10}40 erg s-1. Ground-based near-infrared spectroscopy with the Large Binocular Telescope and multiwavelength observations from ultraviolet to millimeter wavelengths together suggest that J1224+5555 harbors a highly absorbed AGN with an intrinsic absorption of {N}{{H}}\\gt {10}24 cm-2. The hard X-ray luminosity of the putative AGN corrected for absorption is {L}2-10{keV}˜ 3× {10}42 erg s-1, which, depending on the bolometric correction factor, corresponds to a bolometric luminosity of the AGN of {L}{bol}.˜ 6× {10}43-3 × 1044 {erg} {{{s}}}-1 and a lower mass limit for the black hole of {M}{BH}≃ 2× {10}6 {M}⊙ , based on the Eddington limit. While enhanced X-ray emission and hot dust can be produced by star formation in extremely low metallicity environments typical in dwarf galaxies, J1224+5555 has a stellar mass of ˜ 2.0× {10}10 {M}⊙ and an above solar metallicity (12 + {logO}/{{H}} = 9.11), typical of our WISE-selected bulgeless galaxy sample. While collectively these