Sample records for galaxy spiral arms

  1. Spiral Arm Morphology of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Lee, Hyun-Rok

    2013-06-01

    We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

  2. Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-12-01

    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

  3. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  4. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-07-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge, and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored nor cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010 M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  5. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  6. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honig, Z. N.; Reid, M. J., E-mail: mreid@cfa.harvard.edu

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiralmore » arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.« less

  7. Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Darren Robert

    This thesis describes a system that, given approximately-centered images of spiral galaxies, produces quantitative descriptions of spiral galaxy structure without the need for per-image human input. This structure information consists of a list of spiral arm segments, each associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs representation allows description of arbitrary spiral galaxy structure: the arms do not need to be symmetric, may have forks or bends, and, more generally, may be arranged in any manner with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined center). Such flexibility is important in order to accommodate the myriad structure variations observed in spiral galaxies. From the arcs produced from our method it is possible to calculate measures of spiral galaxy structure such as winding direction, winding tightness, arm counts, asymmetry, or other values of interest (including user-defined measures). In addition to providing information about the spiral arm "skeleton" of each galaxy, our method can enable analyses of brightness within individual spiral arms, since we provide the pixel regions associated with each spiral arm segment. For winding direction, arm tightness, and arm count, comparable information is available (to various extents) from previous efforts; to the extent that such information is available, we find strong correspondence with our output. We also characterize the changes to (and invariances in) our output as a function of modifications to important algorithm parameters. By enabling generation of extensive data about spiral galaxy structure from large-scale sky surveys, our method will enable new discoveries and tests regarding the nature of galaxies and the universe, and will facilitate subsequent work to automatically fit detailed brightness models of spiral galaxies.

  8. SpArcFiRe: Scalable automated detection of spiral galaxy arm segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Darren R.; Hayes, Wayne B., E-mail: drdavis@uci.edu, E-mail: whayes@uci.edu

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takesmore » about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.« less

  9. Self-perpetuating Spiral Arms in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-01

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  10. OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foyle, K.; Rix, H.-W.; Walter, F.

    2011-07-10

    We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less

  11. Search For Star Cluster Age Gradients Across Spiral Arms of Three LEGUS Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Shabani, F.; Grebel, E. K.; Pasquali, A.; D'Onghia, E.; Gallagher, J. S.; Adamo, A.; Messa, M.; Elmegreen, B. G.; Dobbs, C.; Gouliermis, D. A.; Calzetti, D.; Grasha, K.; Elmegreen, D. M.; Cignoni, M.; Dale, D. A.; Aloisi, A.; Smith, L. J.; Tosi, M.; Thilker, D. A.; Lee, J. C.; Sabbi, E.; Kim, H.; Pellerin, A.

    2018-05-01

    One of the main theories for explaining the formation of spiral arms in galaxies is the stationary density wave theory. This theory predicts the existence of an age gradient across the arms. We use the stellar cluster catalogues of the galaxies NGC 1566, M51a, and NGC 628 from the Legacy Extragalactic UV Survey (LEGUS) program. In order to test for the possible existence of an age sequence across the spiral arms, we quantified the azimuthal offset between star clusters of different ages in our target galaxies. We found that NGC 1566, a grand-design spiral galaxy with bisymmetric arms and a strong bar, shows a significant age gradient across the spiral arms that appears to be consistent with the prediction of the stationary density wave theory. In contrast, M51a with its two well-defined spiral arms and a weaker bar does not show an age gradient across the arms. In addition, a comparison with non-LEGUS star cluster catalogues for M51a yields similar results. We believe that the spiral structure of M51a is not the result of a stationary density wave with a fixed pattern speed. Instead, tidal interactions could be the dominant mechanism for the formation of spiral arms. We also found no offset in the azimuthal distribution of star clusters with different ages across the weak spiral arms of NGC 628.

  12. Stellar complexes in spiral arms of galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  13. Novel Relationship among Spiral Arm Pitch Angles (p) and momentum parameter of the host spiral galaxies

    NASA Astrophysics Data System (ADS)

    Al-Baidhany, Ismaeel; Rashid, Hayfa G.; Chiad, Sami S.; Habubi, Nadir F.; Jandow, Nidhal N.; Jabbar, Wasmaa A.; Abass, khalid H.

    2018-05-01

    In this study, we have found a novel relationship among spiral arm pitch angles (p) and momentum parameter of the host spiral galaxies. In this study, we measured the momentum parameter for specimen of Spitzer/IRAC 3.6 μm images of 41 spiral galaxies evaluated employing a relation(Mbulge σ*/c)where Mbulge is mass of the bulge and σ* is the stellar velocity dispersion. We have taken velocity dispersions (σ*) from the literature. In order to determine the spiral arm pitch angles. The selection of specimen of nearly face-on spiral galaxies and employ IRAF ellipse to indicate the ellipticity and major-axis position angle so as to deproject the images to face-on, employing 2D Fast Fourier Transform decomposition mehtod. The specified bulge mass (Mbulge) using the virial theorem was include.

  14. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi

    2017-02-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.

  15. Arm classification and velocity gradients in spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biviano, A.; Girardi, M.; Giuricin, G.

    1991-08-01

    On the basis of published rotation curves, velocity gradients are compiled for 94 galaxies. A significant correlation is found in this sample of galaxies between their gradients and arm classes (as given by Elmegreen and Elmegreen, 1982); galaxies with steeper curves tend to have a flocculent arm structure, and galaxies with flatter curves tend to have a grand design morphology. The correlation is true, since it is not induced by other correlations. The present result is in agreement with previous suggestions by Whitmore (1984) and with the recent result by Elmegreen and Elmegreen; it is also consistent with the predictionsmore » of density wave theory for the formation of the spiral structure. 89 refs.« less

  16. The nature of arms in spiral galaxies. III. Azimuthal profiles

    NASA Astrophysics Data System (ADS)

    del Rio, M. S.; Cepa, J.

    1998-12-01

    In this paper we analyse the structure of a small sample of galaxies using a set of CCD images in standard photometric bands presented in a previous paper (del Rio & Cepa 1998a, hereafter \\cite{p2}). The galaxies are NGC 157, 753, 895, 4321, 6764, 6814, 6951, 7479 and 7723, and the selected bands were B and I. Seven galaxies are grand design, i.e. they have two long and symmetric arms, second in the classification of \\cite{ee87} (1987), and are the best laboratories for testing the predictions of the spiral density wave (SDW) theory. Two of the galaxies have intermediate arms, i.e., they are not so well defined. They are selected to compare the results with those found in the grand design spirals. Using the method of analyse the azimuthal flux profiles presented by \\cite{c88} (1988) and Beckman & Cepa (1990) (hereafter \\cite{bc90}) and assuming that star formation is triggered by a spiral density wave, we look for evidence of the existence of a corotation radius, as predicted by the SDW theory. We have determined the corotation radius in all but two grand design galaxies, and, tentatively, in the other four. Galaxies with very weak arms (such as NGC 753 and NGC 6951) or arms which are not well defined (such as NGC 6764 and NGC 7723) present difficulties when employing the azimuthal profile method, but even in these cases, the method is powerful enough to give a good estimate of the value of corotation, which must then be confirmed (or discarded) by other independent methods (del Rio & Cepa 1998b, hereafter \\cite{p4}).

  17. Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2013-02-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.

  18. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  19. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  20. The nature of arms in spiral galaxies. IV. Symmetries and asymmetries

    NASA Astrophysics Data System (ADS)

    del Río, M. S.; Cepa, J.

    1999-01-01

    A Fourier analysis of the intensity distribution in the planes of nine spiral galaxies is performed. In terms of the arm classification scheme of \\cite[Elmegreen & Elmegreen (1987)]{ee87} seven of the galaxies have well-defined arms (classes 12 and 9) and two have intermediate-type arms (class 5). The galaxies studied are NGC 157, 753, 895, 4321, 6764, 6814, 6951, 7479 and 7723. For each object Johnson B-band images are available which are decomposed into angular components, for different angular periodicities. No a priori assumption is made concerning the form of the arms. The base function used in the analysis is a logarithmic spiral. The main result obtained with this method is that the dominant component (or mode) usually changes at corotation. In some cases, this change to a different mode persists only for a short range about corotation, but in other cases the change is permanent. The agreement between pitch angles found with this method and by fitting logarithmic spirals to mean arm positions (del Río & Cepa 1998b, hereafter \\cite[Paper III]{p3}) is good, except for those cases where bars are strong and dominant. Finally, a comparison is made with the ``symmetrization'' method introduced by Elmegreen, Elmegreen & Montenegro (1992, hereafter EEM), which also shows the different symmetric components.

  1. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Woo-Young; Kim, Woong-Tae, E-mail: seowy@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factormore » of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.« less

  2. SpArcFiRe: morphological selection effects due to reduced visibility of tightly winding arms in distant spiral galaxies

    NASA Astrophysics Data System (ADS)

    Peng, Tianrui Rae; Edward English, John; Silva, Pedro; Davis, Darren R.; Hayes, Wayne B.

    2018-03-01

    The Galaxy Zoo project has provided a plethora of valuable morphological data on a large number of galaxies from various surveys, and their team have identified and/or corrected for many biases. Here we study a new bias related to spiral arm pitch angles, which first requires selecting a sample of spiral galaxies that show observable structure. One obvious way is to select galaxies using a threshold in spirality, which we define as the fraction of Galaxy Zoo humans who have reported seeing spiral structure. Using such a threshold, we use the automated tool SpArcFiRe (SPiral ARC FInder and REporter) to measure spiral arm pitch angles. We observe that the mean pitch angle of spiral arms increases linearly with redshift for 0.05 < z < 0.085. We hypothesize that this is a selection effect due to tightly-wound arms becoming less visible as image quality degrades, leading to fewer such galaxies being above the spirality threshold as redshift increases. We corroborate this hypothesis by first artificially degrading images of nearby galaxies, and then using a machine learning algorithm trained on Galaxy Zoo data to provide a spirality for each artificially degraded image. We find that SpARcFiRe's ability to accurately measure pitch angles decreases as the image degrades, but that spirality decreases more quickly in galaxies with tightly wound arms, leading to the selection effect. This new bias means one must be careful in selecting a sample on which to measure spiral structure. Finally, we also include a sensitivity analysis of SpArcFiRe's internal parameters.

  3. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  4. Spiral arms and disc stability in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-04-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H I, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  5. Arm structure in normal spiral galaxies, 1: Multivariate data for 492 galaxies

    NASA Technical Reports Server (NTRS)

    Magri, Christopher

    1994-01-01

    Multivariate data have been collected as part of an effort to develop a new classification system for spiral galaxies, one which is not necessarily based on subjective morphological properties. A sample of 492 moderately bright northern Sa and Sc spirals was chosen for future statistical analysis. New observations were made at 20 and 21 cm; the latter data are described in detail here. Infrared Astronomy Satellite (IRAS) fluxes were obtained from archival data. Finally, new estimates of arm pattern radomness and of local environmental harshness were compiled for most sample objects.

  6. The relation between magnetic and material arms in models for spiral galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Beck, R.; Sokoloff, D.; Stepanov, R.; Krause, M.; Arshakian, T. G.

    2013-08-01

    Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not fully axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims: The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) calls for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods: We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results: A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and α-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. These are rather variable entities and their shape changes significantly on timescales of a few 100 Myr. Properties of magnetic arms can be controlled by changing the model parameters. In particular, a lower injection rate of small-scale field makes the magnetic configuration smoother and eliminates distinct magnetic arms. Conclusions: We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and

  7. Pitch angle of galactic spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michiko@mail.doshisha.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fittingmore » formula. This dependence is explained by the swing amplification mechanism.« less

  8. Featured Image: The Birth of Spiral Arms

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    In this figure, the top panels show three spiral galaxies in the Virgo cluster, imaged with the Sloan Digital Sky Survey. The bottom panels provide a comparison with three morphologically similar galaxies generated insimulations. The simulations run by Marcin Semczuk, Ewa okas, and Andrs del Pino (Nicolaus Copernicus Astronomical Center, Poland) were designed to examine how the spiral arms of galaxies like the Milky Way may have formed. In particular, the group exploredthe possibility that so-called grand-design spiral arms are caused by tidal effects as a Milky-Way-like galaxy orbits a cluster of galaxies. The authors show that the gravitational potential of the cluster can trigger the formation of two spiral arms each time the galaxy passes through the pericenter of its orbit around the cluster. Check out the original paper below for more information!CitationMarcin Semczuk et al 2017 ApJ 834 7. doi:10.3847/1538-4357/834/1/7

  9. Catalog of Observed Tangents to the Spiral Arms in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  10. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 meanmore » tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.« less

  11. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L., E-mail: puerari@inaoep.mx

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as amore » function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.« less

  12. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  13. Hubble peeks at a spiral galaxy

    NASA Image and Video Library

    2015-07-10

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. Image credit: ESA/Hubble & NASA, Acknowledgement: Flickr user C. Claude NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Environment Dependence of Disk Morphology of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    2014-02-01

    We analyze the dependence of disk morphology (arm class, Hubble type, bar type) of nearby spiral galaxies on the galaxy environment by using local background density (Σ_{n}), project distance (r_{p}), and tidal index (TI) as measures of the environment. There is a strong dependence of arm class and Hubble type on the galaxy environment, while the bar type exhibits a weak dependence with a high frequency of SB galaxies in high density regions. Grand design fractions and early-type fractions increase with increasing Σ_{n}, 1/r_{p}, and TI, while fractions of flocculent spirals and late-type spirals decrease. Multiple-arm and intermediate-type spirals exhibit nearly constant fractions with weak trends similar to grand design and early-type spirals. While bar types show only a marginal dependence on Σ_{n}, they show a fairly clear dependence on r_{p} with a high frequency of SB galaxies at small r_{p}. The arm class also exhibits a stronger correlation with r_{p} than Σ_{n} and TI, whereas the Hubble type exhibits similar correlations with Σ_{n} and r_{p}. This suggests that the arm class is mostly affected by the nearest neighbor while the Hubble type is affected by the local densities contributed by neighboring galaxies as well as the nearest neighbor.

  15. ARM AND INTERARM STAR FORMATION IN SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foyle, K.; Rix, H.-W.; Walter, F.

    2010-12-10

    We investigate the relationship between spiral arms and star formation in the grand-design spirals NGC 5194 and NGC 628 and in the flocculent spiral NGC 6946. Filtered maps of near-IR (3.6 {mu}m) emission allow us to identify 'arm regions' that should correspond to regions of stellar mass density enhancements. The two grand-design spirals show a clear two-armed structure, while NGC 6946 is more complex. We examine these arm and interarm regions, looking at maps that trace recent star formation-far-ultraviolet (GALEX NGS) and 24 {mu}m emission (Spitzer SINGS)-and cold gas-CO (HERACLES) and H I (THINGS). We find the star formation tracersmore » and CO more concentrated in the spiral arms than the stellar 3.6 {mu}m flux. If we define the spiral arms as the 25% highest pixels in the filtered 3.6 {mu}m images, we find that the majority (60%) of star formation tracers occur in the interarm regions; this result persists qualitatively even when considering the potential impact of finite data resolution and diffuse interarm 24 {mu}m emission. Even with a generous definition of the arms (45% highest pixels), interarm regions still contribute at least 30% to the integrated star formation rate (SFR) tracers. We look for evidence that spiral arms trigger star or cloud formation using the ratios of SFR (traced by a combination of FUV and 24 {mu}m emission) to H{sub 2} (traced by CO) and H{sub 2} to H I. Any enhancement of SFR/M(H{sub 2}) in the arm region is very small (less than 10%) and the grand-design spirals show no enhancement compared to the flocculent target. Arm regions do show a weak enhancement in H{sub 2}/H I compared to the interarm regions, but at a fixed gas surface density there is little clear enhancement in the H{sub 2}/H I ratio in the arm regions. Thus, it seems that spiral arms may only act to concentrate the gas to higher densities in the arms.« less

  16. Large Face on Spiral Galaxy NGC 3344

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the large face on spiral galaxy NGC 3344. The inner spiral arms are wrapped so tightly that they are difficult to distinguish. http://photojournal.jpl.nasa.gov/catalog/PIA07904

  17. Spiral Arm Morphology in Cluster Environment

    NASA Astrophysics Data System (ADS)

    Choi, Isaac Yeoun-Gyu; Ann, Hong Bae

    2011-10-01

    We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z˜0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-Lx clusters (Lx < 0.15×1044erg/s) and high-Lx clusters (Lx > 1.8×1044erg/s). We find that the morphology-clustercentric relation prevails in the cluster envirnment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-Lx clusters are fully virialized while the high-Lx clusters are not.

  18. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  19. Hubble Sees Galaxies Spiraling around Leo

    NASA Image and Video Library

    2014-04-18

    Shown here is a spiral galaxy known as NGC 3455, which lies some 65 million light-years away from us in the constellation of Leo (the Lion). Galaxies are classified into different types according to their structure and appearance. This classification system is known as the Hubble Sequence, named after its creator Edwin Hubble. In this image released 14, April, 2014, NGC 3455 is known as a type SB galaxy — a barred spiral. Barred spiral galaxies account for approximately two thirds of all spirals. Galaxies of this type appear to have a bar of stars slicing through the bulge of stars at their center. The SB classification is further sub-divided by the appearance of a galaxy's pinwheeling spiral arms; SBa types have more tightly wound arms, whereas SBc types have looser ones. SBb types, such as NGC 3455, lie in between. NGC 3455 is part of a pair of galaxies — its partner, NGC 3454, lies out of frame. This cosmic duo belong to a group known as the NGC 3370 group, which is in turn one of the Leo II groups, a large collection of galaxies scattered some 30 million light-years to the right of the Virgo cluster. This image is from Hubble's Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. A Comparison of Galaxy Spiral Arm Pitch Angle Measurements Using Manual and Automated Techniques

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Treuthardt, Patrick

    2018-01-01

    Disk galaxy evolution is dominated by secular processes in the nearby universe. Revealing the morphological characteristics and underlying dynamics of these galaxies is key to understanding their evolution. The arm structure of disk galaxies can generally be described with logarithmic spirals, thereby giving measurements of pitch angle. These measurements are valuable for probing the dynamics and less apparent characteristics of these galaxies (i.e. supermassive black hole mass). Pitch angle measurements are powerful because they can be derived from a single, uncalibrated, broadband image with sufficient contrast, as opposed to more intensive observations. Accurate determination of these measurements can be challenging, however, since pitch angle can vary with radius.There are currently several semi-automated and manual techniques used to determine pitch angle. These are, or will be, used in at least two Zooniverse citizen science projects. The goal of this work is to determine if different, specific techniques return similar pitch angles for the same set of galaxies. We compare the results from a machine vision technique using SPARCFIRE, a non-Euclidean based hand selection of pitch angle, and two methods using 2D Fourier decomposition (i.e. selecting stable regions from the results of direct application to broadband images and application to traced versions of the observed spiral pattern). Each technique is applied to our sample of galaxies and the resulting pitch angles are compared to generated logarithmic spirals to evaluate the match quality.

  1. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose,more » we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.« less

  2. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  3. Gaseous spiral structure and mass drift in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae

    2014-05-01

    We use hydrodynamic simulations to investigate non-linear gas responses to an imposed stellar spiral potential in disc galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the related mass drift rate depend rather sensitively on the arm pattern speed. In models where the arm pattern is rotating slow, the gaseous arms extend across the corotation resonance (CR) all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. In models with a fast rotating pattern, on the other hand, spiral shocks are much more tightly wound than the stellar arms, and cease to exist in the regions near and outside the CR where mathcal {M}_perp /sin p_* gtrsim 25-40, with mathcal {M}_perp denoting the perpendicular Mach number of a rotating gas relative to the arms with pitch angle p*. Inside the CR, the arms drive mass inflows at a rate of ˜0.05-3.0 M⊙ yr-1 to the central region, with larger values corresponding to stronger and slower arms. The contribution of the shock dissipation, external torque, and self-gravitational torque to the mass inflow is roughly 50, 40, and 10 per cent, respectively. We demonstrate that the distributions of line-of-sight velocities and spiral-arm densities can be a useful diagnostic tool to distinguish if the spiral pattern is rotating fast or slow.

  4. Tracing the Arms of our Milky Way Galaxy

    NASA Image and Video Library

    2015-06-03

    Astronomers using data from NASA's Wide-field Infrared Survey Explorer, or WISE, are helping to trace the shape of our Milky Way galaxy's spiral arms. This illustration shows where WISE data revealed clusters of young stars shrouded in dust, called embedded clusters, which are known to reside in spiral arms. The bars represent uncertainties in the data. The nearly 100 clusters shown here were found in the arms called Perseus, Sagittarius-Carina, and Outer -- three of the galaxy's four proposed primary arms. Our sun resides in a spur to an arm, or a minor arm, called Orion Cygnus. http://photojournal.jpl.nasa.gov/catalog/PIA19341

  5. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  6. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin L.; Berrier, J. C.; Shields, D. W.; Kennefick, J.; Kennefick, D.; Seigar, M. S.; Lacy, C. H. S.; Puerari, I.

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing Two-Dimensional Fast Fourier Transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow the precise comparison of spiral galaxy evolution to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques. The authors gratefully acknowledge support for this work from NASA Grant NNX08AW03A.

  7. Global Modeling of Spur Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Ostriker, Eve C.

    2006-08-01

    We investigate the formation of substructure in spiral galaxies using global MHD simulations, including gas self-gravity. Local modeling by Kim & Ostriker previously showed that self-gravity and magnetic fields cause rapid growth of overdensities in spiral arms; differential compression of gas flowing through the arms then results in the formation of sheared structures in the interarms. These sheared structures resemble features described as spurs or feathers in optical and IR observations of many spiral galaxies. Global modeling extends previous local models by including the full effects of curvilinear coordinates, a realistic log-spiral perturbation, self-gravitational contribution from five radial wavelengths of the spiral shock, and variation of density and epicyclic frequency with radius. We show that with realistic Toomre Q-values self-gravity and galactic differential rotation produce filamentary gaseous structures with kiloparsec-scale separations, regardless of the strength-or even presence-of a stellar spiral potential. However, a sufficiently strong spiral potential is required to produce true spurs, consisting of interarm structures emerging from gas concentrations in the main spiral arms. In models where Q is initially constant, filaments due to interarm self-gravity grow mainly in the outer regions, whereas true arm spurs grow only in the inner regions. For models with Q~R, outer regions are intrinsically more stable, so background interarm filaments do not grow, but arm spurs can develop if the spiral potential is strong. Unlike independently growing background filaments, the orientation of arm spurs depends on galactic location. Inside corotation, spurs emanate outward, on the convex side of the arm; outside corotation, spurs grow inward, on the concave side of the arm. Based on orientation and the relation to arm clumps, it is possible to distinguish true spurs that originate as instabilities in the arms from independently growing background

  8. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    NASA Astrophysics Data System (ADS)

    Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.

    2013-02-01

    Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar

  9. The molecular spiral arms of NGC 6946

    NASA Technical Reports Server (NTRS)

    Tacconi, L. J.; Xie, S.

    1990-01-01

    From CO-12(J=1 to 0) observations at 45 seconds resolution Tacconi and Young (1989) have found evidence for enhancements in both the CO emissivity and the massive star formation efficiency (MSFE) on optical spiral arms of the bright spiral galaxy NGC 6946. In the optically luminous and well-defined spiral arm in the NE quadrant, there are enhancements in both the H2 surface density and MSFE relative to the interarm regions. In contrast, a poorly defined arm in the SW shows no arm-interarm contrast in the MSFE. To further investigate the molecular gas content of these two spiral arms, researchers have made CO-12 J=2 to 1 and 3 to 2 observations with the James Clerk Maxwell Telescope. In the J=2 to 1 line, they made observations of the NE and SW spiral arm and interarm regions in 4 x 9 10 seconds spaced grids (36 points per grid). Because of decreased sensitivity in the J=3 to 2 line, they were limited to mapping the two arm regions in 2 x 3 10 seconds spaced grids (6 points per grid). The centers of each of the grids lie 2.4 minutes to the NE and 2.3 minutes to the SW of the nucleus of NGC 6946. With the CO J=2 to 1 data researchers are able to fully resolve the two observed spiral arms in NGC 6946. In both cases the CO emission is largely confined to the optical spiral arm regions with the peak observed T asterisk sub A being up to 4 times higher on the spiral arms than in the interarm regions. Researchers are currently estimating massive star formation efficiencies on and off the spiral arms through direct comparison of the CO maps with an H alpha image. They are also comparing the CO J=2 to 1 data with an HI map made at similar resolution. Thus, they will be able to determine structure in all components of the IS on scales of less than 20 inches.

  10. Feathering instability of spiral arms. II. Parameter study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less

  11. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  12. Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the Spiral Arms of the Galaxy

    NASA Astrophysics Data System (ADS)

    De Biasi, Alice

    2014-01-01

    The Solar System presents a complex dynamical structure and is not isolated from the Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is extremely sensitive to the the galactic environment due to its peripheral collocation inside the Solar System. In this framework, the growing evidences about a possible migration of the Sun open new research scenarios relative to the effects that such kind of migration might induce on the cometary motion. Following several previous studied, we identified the spiral arm structure as the main perturbation that is able to produce an efficient solar migration through the disk. Widening the classical model for the spiral arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the presence of the spiral perturbation and a significant solar motion for an inner Galactic position to the current one, in agreement with the constrains in position, velocity and metallicity due to the present conditions of our star. The main perturbers of the Oort cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected by the variation of Galactic environment that the solar migration entails. Despite that, in order to isolate the effects to the two different perturbators, we decided to focus our attention only on the Galactic tide. The perturbation due to the spiral structure was included in the study on the cometary motion, introducing the solar migration and adding the direct presence of the non-axisymmetric component in the Galactic potential of the tidal field. The results show a significant influence of the spiral arm in particular on cometary objects belonged to the outer shell of the Oort cloud, for which provides an injection rate three times bigger than the integration performed without the spiral arms. The introduction of the spiral perturbation seems to bolster the planar component of the tide, indeed it produces the most significant variation of the

  13. W.W. Morgan and the Discovery of the Spiral Arm Structure of our Galaxy

    NASA Astrophysics Data System (ADS)

    Sheehan, William

    2008-03-01

    William Wilson Morgan was one of the great astronomers of the twentieth century. He considered himself a morphologist, and was preoccupied throughout his career with matters of classification. Though, his early life was difficult, and his pursuit of astronomy as a career was opposed by his father, he took a position at Yerkes Observatory in 1926 and remained there for the rest of his working life. Thematically, his work was also a unified whole. Beginning with spectroscopic studies under Otto Struve at Yerkes Observatory, by the late 1930s he concentrated particularly on the young O and B stars. His work an stellar classification led to the Morgan-Keenan-Kellman [MKK] system of classification of stars, and later - as he grappled with the question of the intrinsic color and brightness of stars at great distances - to the Johnson-Morgan UBV system for measuring stellar colors. Eventually these concerns with classification and method led to his greatest single achievement - the recognition of the nearby spiral arms of our Galaxy by tracing the OB associations and HII regions that outline them. After years of intensive work on the problem of galactic structure, the discovery came in a blinding flash of Archimedean insight as he walked under the night sky between his office and his house in the autumn of 1951. His optical discovery of the spiral arms preceded the radio-mapping of the spiral arms by more than a year. Morgan suffered a nervous breakdown soon after he announced his discovery, however, and so was prevented from publishing a complete account of his work. As a result of that, and the announcement soon afterward of the first radio maps of the spiral arms, the uniqueness of his achievement was not fully appreciated at the time.

  14. Gargantuan Super Spiral Galaxies Loom Large in the Cosmos

    NASA Image and Video Library

    2016-03-17

    In archived NASA data, researchers have discovered "super spiral" galaxies that dwarf our own spiral galaxy, the Milky Way, and compete in size and brightness with the largest galaxies in the universe. The unprecedented galaxies have long hidden in plain sight by mimicking the appearance of typical spirals. Three examples of super spirals are presented here in images taken by the Sloan Digital Sky Survey. The super spiral on the left (Figure 1), catalogued as 2MASX J08542169+0449308, contains two galactic nuclei, instead of just the usual one, and thus looks like two eggs frying in a pan. The central image (Figure 2) shows a super spiral designated 2MASX J16014061+2718161, and it also contains the double nuclei. On the right (Figure 3), a huge galaxy with the moniker SDSS J094700.08+254045.7 stands as one of the biggest and brightest super spirals. The mega-galaxy's starry disk and spiral arms stretch about 320,000 light-years across, or more than three times the breadth of the Milky Way. These double nuclei, which are known to result from the recent merger of two galaxies, could offer a vital hint about the potential origin of super spirals. Researchers speculate that a special merger involving two, gas-rich spiral galaxies could see their pooled gases settle down into a new, larger stellar disk -- presto, a super spiral. The super spirals were discovered using the NASA/IPAC Extragalactic Database, or NED, an online repository containing information on over 100 million galaxies. NED brings together a wealth of data from many different projects, including ultraviolet light observations from the Galaxy Evolution Explorer, visible light from Sloan Digital Sky Survey, infrared light from the 2-Micron All-Sky Survey, and links to data from other missions such as NASA's Spitzer Space Telescope and Wide-Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA20064

  15. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  16. Multiarm spirals on the periphery of disc galaxies

    NASA Astrophysics Data System (ADS)

    Lubov, Spiegel; Evgeny, Polyachenko

    2018-04-01

    Spiral patterns in some disc galaxies have two arms in the centre, and three or more arms on the periphery. The same result is also obtained in numerical simulations of stellar and gaseous discs.We argue that such patterns may occur due to fast cooling of the gas, resulting in formation of giant molecular clouds. The timescale of this process is 50 Myr, the factor of 10 shorter than of ordinary secular instability. The giant molecular clouds give rise to multiarm spirals through the mechanism of swing amplification.

  17. On wave dark matter in spiral and barred galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particlesmore » simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.« less

  18. Spiral structure of M51: Streaming motions across the spiral arms

    NASA Technical Reports Server (NTRS)

    Tilanus, R. P. J.; Allen, R. J.

    1990-01-01

    The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations.

  19. An Investigation of the Ionization Structure of the Carina Spiral Arm with WHAM

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.; Krishnarao, Dhanesh; Haffner, L. Matthew

    2018-01-01

    Recent investigations of the Sagittarius-Carina spiral arm with the Wisconsin H-alpha Mapper (Krishnarao et al 2017) show the presence of ionized gas stretching up to three kiloparsecs above and below the Carina section of this spiral arm. This arm segment, which wraps outside the solar circle in the fourth quadrant of the Galactic disk, seems to be unusual when compared to the other Milky Way spiral arms measured with WHAM. We review the status of what is known about the vertical ionization structure of the spiral arms of the Milky Way Galaxy and relate the properties of this spiral arm section to recent investigations of midplane HII regions and star formation in the Milky Way disk. We discuss potential implications of this star formation and ionization for our understanding of Milky Way Galactic structure.

  20. Large scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within <~60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  1. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang, E-mail: griv@bgu.ac.il

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysismore » of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.« less

  2. Infrared emission and tidal interactions of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small.

  3. Novel kinematic methods to trace Spiral Arms nature using Gaia data

    NASA Astrophysics Data System (ADS)

    Roca-Fàbrega, S.; Figueras, F.; Valenzuela, O.; Romero-Gómez, M.; Antoja, T.; Colín, P.; Pichardo, B.; Velázquez, H.

    2014-07-01

    In this work we shed new light in the nature of spiral arm structures in galaxies. We present a disk kinematic and dynamic study of MW like galaxies using complementary approaches: analytical models, test-particle simulations, pure N-body and cosmological N-body plus hydrodynamic simulations. Using collisionless N-body data we have found that models with strong bar present a flat rotation frequency, i.e. rigid body rotation, whereas in the opposite extreme case, i.e. in unbarred systems, spiral arms are disk corotant (Roca-Fàbrega et al. 2013). Complementary to this work, we discuss how the vertex deviation parameter is a good tracer of corotation (CR) and outer Lindblad resonance radius (OLR) (Roca-Fàbrega et al. 2014). We have succeeded to produce MW like models in fully cosmological N-body plus hydrodynamic simulations with a high resolution (Roca-Fàbrega et al., in preparation). First results concerning disk phase space properties in terms of spiral arm nature using these simulations are presented (http://www.am.ub.edu/ sroca/shared/PosterRocaFabrega.pdf).

  4. Effect of Central Mass Concentration on the Formation of Nuclear Spirals in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Thakur, Parijat; Ann, H. B.; Jiang, Ing-Guey

    2009-03-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  5. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  6. Numerical simulation of the formation of a spiral galaxy

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Nelson, A. H.

    2001-08-01

    A simulation is described in which the numerical galaxy formed compares favourably in every measurable respect with contemporary bright spiral galaxies, including the formation of a distinct stellar bulge and large scale spiral arm shocks in the gas component. This is achieved in spite of the fact that only idealized proto-galactic initial conditions were used, and only simple phenomenological prescriptions for the physics of the interstellar medium (ISM) and star formation were implemented. In light of the emphasis in recent literature on the importance of the link between galaxy formation and models of the universe on cosmological scales, on the details of the physics of the ISM and star formation, and on apparent problems therein, the implications of this result are discussed.

  7. Multiple mechanisms quench passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  8. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  9. Neutrino flux from cosmic ray accelerators in the Cygnus spiral arm of the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anchordoqui, Luis; Halzen, Francis; O'Murchadha, Aongus

    2007-09-15

    Intriguing evidence has been accumulating for the production of cosmic rays in the Cygnus region of the galactic plane. We here show that the IceCube experiment can produce incontrovertible evidence for cosmic ray acceleration by observing the neutrinos from the decay of charged pions accompanying the TeV photon flux observed in the HEGRA, Whipple, Tibet, and Milagro experiments. Our assumption is that the TeV photons observed are the decay products of neutral pions produced by cosmic ray accelerators in the nearby spiral arm of the galaxy. Because of the proximity of the sources, IceCube will obtain evidence at the 5{sigma}more » level in 15 years of observation.« less

  10. GEOMETRIC OFFSETS ACROSS SPIRAL ARMS IN M51: NATURE OF GAS AND STAR FORMATION TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Melissa; Koda, Jin; Egusa, Fumi, E-mail: melissa.louie@stonybrook.edu

    We report measurements of geometric offsets between gas spiral arms and associated star-forming regions in the grand-design spiral galaxy M51. These offsets are a suggested measure of the star formation timescale after the compression of gas at spiral arm entry. A surprising discrepancy, by an order of magnitude, has been reported in recent offset measurements in nearby spiral galaxies. Measurements using CO and H{alpha} emission find large and ordered offsets in M51. On the contrary, small or non-ordered offsets have been found using the H I 21 cm and 24 {mu}m emissions, possible evidence against gas flow through spiral arms,more » and thus against the conventional density-wave theory with a stationary spiral pattern. The goal of this paper is to understand the cause of this discrepancy. We investigate potential causes by repeating those previous measurements using equivalent data, methods, and parameters. We find offsets consistent with the previous measurements and conclude that the difference of gas tracers, i.e., H I versus CO, is the primary cause. The H I emission is contaminated significantly by the gas photodissociated by recently formed stars and does not necessarily trace the compressed gas, the precursor of star formation. The H I gas and star-forming regions coincide spatially and tend to show small offsets. We find mostly positive offsets with substantial scatter between CO and H{alpha}, suggesting that gas flow through spiral arms (i.e., density wave) though the spiral pattern may not necessarily be stationary.« less

  11. Action-based Dynamical Modeling for the Milky Way Disk: The Influence of Spiral Arms

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; Bovy, Jo; D'Onghia, Elena; Rix, Hans-Walter

    2017-04-01

    RoadMapping is a dynamical modeling machinery developed to constrain the Milky Way’s (MW) gravitational potential by simultaneously fitting an axisymmetric parametrized potential and an action-based orbit distribution function (DF) to discrete 6D phase-space measurements of stars in the Galactic disk. In this work, we demonstrate RoadMapping's robustness in the presence of spiral arms by modeling data drawn from an N-body simulation snapshot of a disk-dominated galaxy of MW mass with strong spiral arms (but no bar), exploring survey volumes with radii 500 {pc}≤slant {r}\\max ≤slant 5 {kpc}. The potential constraints are very robust, even though we use a simple action-based DF, the quasi-isothermal DF. The best-fit RoadMapping model always recovers the correct gravitational forces where most of the stars that entered the analysis are located, even for small volumes. For data from large survey volumes, RoadMapping finds axisymmetric models that average well over the spiral arms. Unsurprisingly, the models are slightly biased by the excess of stars in the spiral arms. Gravitational potential models derived from survey volumes with at least {r}\\max =3 {kpc} can be reliably extrapolated to larger volumes. However, a large radial survey extent, {r}\\max ˜ 5 {kpc}, is needed to correctly recover the halo scale length. In general, the recovery and extrapolability of potentials inferred from data sets that were drawn from inter-arm regions appear to be better than those of data sets drawn from spiral arms. Our analysis implies that building axisymmetric models for the Galaxy with upcoming Gaia data will lead to sensible and robust approximations of the MW’s potential.

  12. LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)

  13. Spiral stellar density waves and the flattening of abundance gradients in the warm gas component of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2006-08-01

    Motivated by recent observations of plateaus and minima in the radial abundance distributions of heavy elements in the Milky Way and some other spiral galaxies, we propose a dynamical mechanism for the formation of such features around corotation. Our numerical simulations show that the non-axisymmetric gravitational field of spiral density waves generates cyclone and anticylone gas flows in the vicinity of corotation. The anticyclones flatten the pre-existing negative abundance gradients by exporting many more atoms of heavy elements outside corotation than importing inside it. This process is very efficient and forms plateaus of several kiloparsec in size around corotation after two revolution periods of a galaxy. The strength of anticyclones and, consequently, the sizes of plateaus depend on the pitch angle of spiral arms and are expected to increase along the Hubble sequence.

  14. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  15. Dynamics of ultraharmonic resonances in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1992-01-01

    The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.

  16. The Chemical Evolution Carousel of Spiral Galaxies: Azimuthal Variations of Oxygen Abundance in NGC1365

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Seibert, Mark; Meidt, Sharon E.; Kudritzki, Rolf-Peter; Kobayashi, Chiaki; Groves, Brent A.; Kewley, Lisa J.; Madore, Barry F.; Rich, Jeffrey A.; Schinnerer, Eva; D’Agostino, Joshua; Poetrodjojo, Henry

    2017-09-01

    The spatial distribution of oxygen in the interstellar medium of galaxies is the key to understanding how efficiently metals that are synthesized in massive stars can be redistributed across a galaxy. We present here a case study in the nearby spiral galaxy NGC 1365 using 3D optical data obtained in the TYPHOON Program. We find systematic azimuthal variations of the H II region oxygen abundance imprinted on a negative radial gradient. The 0.2 dex azimuthal variations occur over a wide radial range of 0.3–0.7 R 25 and peak at the two spiral arms in NGC 1365. We show that the azimuthal variations can be explained by two physical processes: gas undergoes localized, sub-kiloparsec-scale self-enrichment when orbiting in the inter-arm region, and experiences efficient, kiloparsec-scale mixing-induced dilution when spiral density waves pass through. We construct a simple chemical evolution model to quantitatively test this picture and find that our toy model can reproduce the observations. This result suggests that the observed abundance variations in NGC 1365 are a snapshot of the dynamical local enrichment of oxygen modulated by spiral-driven, periodic mixing and dilution.

  17. The Nature of Red-Sequence Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  18. Numerical modeling of barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Moore, Elizabeth Mary

    1992-08-01

    A two-component, self-consistent computer code to model spiral galaxies was written and tested and a method of inducing and controlling bar formation is developed. This work presents a departure from former modeling work done at the University of Florida, which depended on the beam scheme, a hydrodynamical code with a number of limitations. In particular, only the gas component could be modeled, no self-gravitational forces were included, and the viscosity inherent to the code could not be controlled easily. These shortcomings are overcome in the new algorithm. Most importantly, an attempt has been made to keep the models self-consistent. No perturbing potentials are imposed or required to excite bar and spiral structure. The code can model both the stellar and the gaseous component of a spiral galaxy. The stellar component feels only gravitational forces, while the gas component feels both gravitational and viscous forces. In addition, a halo force can be imposed for the purpose of stabilizing the disk. The code is a hybrid grid/smooth particle code. The gravitational forces are calculated on a Cartesian grid using a Fast Fourier Transform, while the gas viscous forces are calculated in a smooth particle manner. A mechanism for creating warm, featureless, stable disks is developed by taking moments of the collision less Boltzmann equation. In order to induce and control bar and spiral arm formation, the stabilizing stellar velocity dispersions are reduced in the center of the disk, but maintained in the outer regions. A bar forms naturally in the interior and the rotation of this bar helps maintain spiral structure in the outer gas disk. Realistic-looking spiral features are maintained in the gas component for as long as the models are calculated. A wide variety of bar and spiral structure can be formed by varying the size of the unstable central region, the rate of 'turn on', of the heating and the halo mass. We would like to test the model results by comparing

  19. The spiral arms of the Milky Way: The relative location of each different arm tracer within a typical spiral arm width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca

    2014-07-01

    From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some armsmore » major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).« less

  20. How does a planet excite multiple spiral arms?

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  1. Large-scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  2. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  3. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-07-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  4. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  5. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  6. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    NASA Technical Reports Server (NTRS)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  7. High chemical abundances in stripped Virgo spiral galaxies

    NASA Technical Reports Server (NTRS)

    Skillman, E. D.; Kennicutt, R. C.; Shields, G. A.

    1993-01-01

    Based on a comparison of the oxygen abundances in H 2 regions in field and Virgo cluster late type spiral galaxies, Shields, Skillman, & Kennicutt (1991) suggested that the highly stripped spiral galaxies in the Virgo cluster have systematically higher abundances than comparable field galaxies. In April 1991 and May 1992 we used the blue channel spectrograph on the MMT to obtain new observations of 30 H 2 regions in Virgo spiral galaxies. These spectra cover the wavelength range from (O II) lambda 3727 to (S II) lambda 6731. We now have observed at least 4 H II regions in 9 spiral galaxies in the Virgo cluster. Combining (O II) and (O III) line strengths, we calculate the H II region oxygen abundances based on the empirical calibration of Edmunds & Pagel (1984). These observations show: (1) The stripped, low luminosity Virgo spirals (N4689, N4571) truly have abundances characteristic of much more luminous field spirals; (2) Virgo spirals which show no evidence of stripping (N4651, N4713) have abundances comparable to field galaxies; and (3) Evidence for transition galaxies (e.g., N4254, N4321), with marginally stripped disks and marginal abundance enhancements. The new observations presented here confirm the validity of the oxygen over-abundances in the stripped Virgo spirals. Shields et al. (1991) discussed two different mechanisms for producing the higher abundances in the disks of stripped galaxies in Virgo. The first is the supression of infall of near-primordial material, the second is the suppression of radial inflow of metal-poor gas. Distinguishing between the two cases will require more observations of the Virgo cluster spirals and a better understanding of which parameters determine the variation of abundance with radius in field spirals (cf., Garnett & Shields 1987).

  8. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  9. MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egusa, Fumi; Scoville, Nick; Koda, Jin, E-mail: fegusa@ir.isas.jaxa.jp

    We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy observations toward the nearby grand-design spiral galaxy M51. The angular resolution of 0.''7 corresponds to 30 pc, which is similar to the typical size of giant molecular clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1' field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each giant molecular association (GMA) and more than 90% ofmore » the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion with GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H{alpha} and Pa{alpha} images, most of these cores are found to have nearby star-forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.« less

  10. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  11. On the nature and correction of the spurious S-wise spiral galaxy winding bias in Galaxy Zoo 1

    NASA Astrophysics Data System (ADS)

    Hayes, Wayne B.; Davis, Darren; Silva, Pedro

    2017-04-01

    The Galaxy Zoo 1 catalogue displays a bias towards the S-wise winding direction in spiral galaxies, which has yet to be explained. The lack of an explanation confounds our attempts to verify the Cosmological Principle, and has spurred some debate as to whether a bias exists in the real Universe. The bias manifests not only in the obvious case of trying to decide if the universe as a whole has a winding bias, but also in the more insidious case of selecting which Galaxies to include in a winding direction survey. While the former bias has been accounted for in a previous image-mirroring study, the latter has not. Furthermore, the bias has never been corrected in the GZ1 catalogue, as only a small sample of the GZ1 catalogue was reexamined during the mirror study. We show that the existing bias is a human selection effect rather than a human chirality bias. In effect, the excess S-wise votes are spuriously 'stolen' from the elliptical and edge-on-disc categories, not the Z-wise category. Thus, when selecting a set of spiral galaxies by imposing a threshold T so that max (PS, PZ) > T or PS + PZ > T, we spuriously select more S-wise than Z-wise galaxies. We show that when a provably unbiased machine selects which galaxies are spirals independent of their chirality, the S-wise surplus vanishes, even if humans still determine the chirality. Thus, when viewed across the entire GZ1 sample (and by implication, the Sloan catalogue), the winding direction of arms in spiral galaxies as viewed from Earth is consistent with the flip of a fair coin.

  12. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    NASA Astrophysics Data System (ADS)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  13. The onset of spiral structure in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2014-01-20

    The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is 'woolly' with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, whilemore » another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.« less

  14. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  15. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  16. Rotation curves of spiral galaxies in clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitmore, B.C.

    1990-06-01

    Recent observations of rotation curves of spiral galaxies in clusters made by Rubin et al. (1988), Whitmore et al. (1988) and Forbes and Whitmore (1988) are analyzed. It is found that spiral galaxies in the inner region of clusters appear to have falling rotation curves and M/L gradients which are flatter than for galaxies in the outer regions of clusters. Problems encountered in attempts to construct mass models for cluster galaxies are briefly discussed. 18 refs.

  17. Hubble Spies Charming Spiral Galaxy Bursting with Stars

    NASA Image and Video Library

    2017-12-08

    The NASA/ESA Hubble Space Telescope observes some of the most beautiful galaxies in our skies — spirals sparkling with bright stellar nurseries, violent duos ripping gas and stars away from one another as they tangle together, and ethereal irregular galaxies that hang like flocks of birds suspended in the blackness of space. However, galaxies, like humans, are not all supermodels. This little spiral, known as NGC 4102, has a different kind of appeal, with its tightly-wound spiral arms and understated, but charming, appearance. NGC 4102 lies in the northern constellation of Ursa Major (The Great Bear). It contains what is known as a LINER, or low-ionization nuclear emission-line region, meaning that its nucleus emits particular types of radiation — specifically, emission from weakly-ionized or neutral atoms of certain elements. Even in this sense, NGC 4102 is not special; around one third of all nearby galaxies are thought to be LINER galaxies. Many LINER galaxies also contain intense regions of star formation. This is thought to be intrinsically linked to their centers but just why, is still a mystery for astronomers — either the starbursts pour fuel inwards to fuel the LINERs, or this active central region triggers the starbursts. NGC 4102 does indeed contain a starburst region towards its center, where stars are being created at a rate much more furious than in a normal galaxy. This star formation is taking place within a small rotating disk, around 1000 light-years in diameter and with a mass some three billion times the mass of the sun. This image uses infrared and visible observations taken using Hubble’s Wide Field Planetary Camera 2. Credit: ESA/Hubble, NASA and S. Smartt (Queen's University Belfast) Acknowledgement: Renaud Houdinet NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in

  18. Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.

  19. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  20. The flow in the spiral arms of slowly rotating bar-spiral models

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Tsigaridi, L.

    2017-07-01

    We use response models to study the stellar and gaseous flows in the spiral arm regions of slow rotating barred-spiral potentials. We vary the pattern speed so that the corotation-to bar radius ratios (Rc/Rb) are in the range 2 < Rc/Rb < 3. We find in general two sets of spirals, one inside and one outside corotation, which are reinforced by two different dynamical mechanisms. The bar and the spirals inside corotation are supported by regular orbits, while the spirals beyond corotation are associated with the "chaotic spirals", both in the stellar as well as in the gaseous case. The main difference in the two flows is the larger dispersion of velocities we encounter in the stellar (test-particles) models. The inner and the outer spirals are in general not connected. In most cases we find an oval component inside corotation, that surrounds the inner barred-spiral structure and separates it from the outer spirals. In the gaseous models, clumps of local overdensities are formed along the inner arms as the gas shocks in the spirals region, while clumps in the spirals beyond corotation are formed as the flows along the two outer arms meet and join each other close to the unstable Lagrangian points of the system.

  1. THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, M. S.; Baba, J.; Saitoh, T. R.

    2011-04-01

    It has been believed that spiral arms in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here, we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional N-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3 x 10{sup 6}, multi-armmore » spirals developed in an isolated disk can survive for more than 10 Gyr. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's Q of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by Q, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms and that the self-regulating mechanism in pure stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3 x 10{sup 5}, spiral arms grow faster in the beginning of the simulation (while Q is small) and they cause a rapid increase of Q. As a result, the spiral arms become faint in several Gyr.« less

  2. Magnetic fields in the Perseus Spiral Arm and in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Hoq, Sadia

    2017-04-01

    The magnetic (B) field is ubiquitous throughout the Milky Way. Several fundamental questions about the B-field in the cool, star-forming interstellar medium (ISM) remain unanswered. In this dissertation, near-infrared (NIR) polarimetric observations are used to study the large-scale Galactic B-field in the cool ISM in a spiral arm and to determine the role of B-fields in the formation of Infrared Dark Clouds (IRDCs). NIR polarimetry of 31 star clusters, located in and around the Perseus spiral arm, were obtained to determine the orientation of the plane-of-sky B-field in the outer Galaxy, and whether the presence of a spiral arm influenced B-field properties. Cluster distances, which provide upper limits to the B-field probed by observations, were estimated by developing a maximum likelihood method to fit theoretical stellar isochrones to stars in cluster color-magnitude diagrams (CMDs). Using the distance estimates, the cluster locations relative to the Perseus arm were found. The cluster polarization percentages and orientations were compared between clusters foreground to the arm and clusters inside or behind the arm. The cluster polarization orientations are predominantly parallel to the Galactic plane. Clusters inside and behind the arm have larger polarization percentages, likely a result of more polarizing material along the line of sight. The cluster polarization data were also compared to optical, inner Galaxy NIR, and Planck submm polarimetry data, and showed agreement with all three data sets. The polarimetric properties of one IRDC, G28.23, were determined using deep NIR observations. The polarization orientations relative to the cloud major axis were found to change directions with distance from the cloud axis. The B-field strength was estimated to be 10 to 100microG. Despite these large inferred B-field strengths, the B-field was found not to be the dominant force in the formation of the IRDC, though the B-field morphology was influenced by the cloud

  3. Hubble Explores the Hidden Dark Side of a Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    This shining disk of a spiral galaxy sits approximately 25 million light-years away from Earth in the constellation of Sculptor. Named NGC 24, the galaxy was discovered by British astronomer William Herschel in 1785, and measures some 40,000 light-years across. This picture was taken using the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys, known as ACS for short. It shows NGC 24 in detail, highlighting the blue bursts (young stars), dark lanes (cosmic dust), and red bubbles (hydrogen gas) of material peppered throughout the galaxy’s spiral arms. Numerous distant galaxies can also been seen hovering around NGC 24’s perimeter. However, there may be more to this picture than first meets the eye. Astronomers suspect that spiral galaxies like NGC 24 and the Milky Way are surrounded by, and contained within, extended haloes of dark matter. Dark matter is a mysterious substance that cannot be seen; instead, it reveals itself via its gravitational interactions with surrounding material. Its existence was originally proposed to explain why the outer parts of galaxies, including our own, rotate unexpectedly fast, but it is thought to also play an essential role in a galaxy’s formation and evolution. Most of NGC 24’s mass — a whopping 80 percent — is thought to be held within such a dark halo. Image Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The ultraviolet attenuation law in backlit spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the targetmore » galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  5. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Meidt, Sharon E.; Colombo, Dario; Chandar, Rupali; Dobbs, Clare L.; García-Burillo, Santiago; Hughes, Annie; Leroy, Adam K.; Pety, Jérôme; Querejeta, Miguel; Kramer, Carsten; Schuster, Karl F.

    2017-02-01

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H II regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.

  6. THE B/C AND SUB-IRON/IRON COSMIC RAY RATIOS—FURTHER EVIDENCE IN FAVOR OF THE SPIRAL-ARM DIFFUSION MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.

    The boron to carbon (B/C) and sub-Fe/Fe ratios provide an important clue on cosmic ray (CR) propagation within the Galaxy. These ratios estimate the grammage that the CRs traverse as they propagate from their sources to Earth. Attempts to explain these ratios within the standard CR propagation models require ad hoc modifications and even with those these models necessitate inconsistent grammages to explain both ratios. As an alternative, physically motivated model, we have proposed that CRs originate preferably within the galactic spiral arms. CR propagation from dynamic spiral arms has important imprints on various secondary to primary ratios, such asmore » the B/C ratio and the positron fraction. We use our spiral-arm diffusion model with the spallation network extended up to nickel to calculate the sub-Fe/Fe ratio. We show that without any additional parameters the spiral-arm model consistently explains both ratios with the same grammage, providing further evidence in favor of this model.« less

  7. STRONG EVIDENCE FOR THE DENSITY-WAVE THEORY OF SPIRAL STRUCTURE IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia

    2016-08-10

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range ofmore » wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image ( B -band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μ m) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B -band and 3.6 μ m images have smaller pitch angles than the infrared 8.0 μ m image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer , whose pitch angles agreed with the measurements made at 8 μ m.« less

  8. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  9. Star formation and ISM morphology in tidally induced spiral structures

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.; Keller, Ben W.; Benincasa, Samantha M.

    2017-07-01

    Tidal encounters are believed to be one of the key drivers of galactic spiral structure in the Universe. Such spirals are expected to produce different morphological and kinematic features compared to density wave and dynamic spiral arms. In this work, we present high-resolution simulations of a tidal encounter of a small mass companion with a disc galaxy. Included are the effects of gas cooling and heating, star formation and stellar feedback. The structure of the perturbed disc differs greatly from the isolated galaxy, showing clear spiral features that act as sites of new star formation, and displaying interarm spurs. The two arms of the galaxy, the bridge and tail, appear to behave differently; with different star formation histories and structure. Specific attention is focused on offsets between gas and stellar spiral features which can be directly compared to observations. We find that some offsets do exist between different media, with gaseous arms appearing mostly on the convex side of the stellar arms, though the exact locations appear highly time dependent. These results further highlight the differences between tidal spirals and other theories of arm structure.

  10. Tidal interaction of small satellite galaxies with spiral primaries

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1988-01-01

    The interaction of the disks of spiral galaxies and small companions is discussed. The gravitational drag effects of the disk on small satellites are of particular interest. Studies of the Andromeda Galaxy and its satellites, M32 and NGC 205, reveal the usefulness of few-body test-particle simulations in explaining many features of spiral galaxies and their satellites.

  11. Whirlpool Galaxy

    NASA Image and Video Library

    1999-12-04

    The image from NASA Hubble Telescope shows spiral arms and dust clouds in the nearby Whirlpool galaxy. Visible starlight and light from the emission of glowing hydrogen is seen, which is associated with the most luminous young stars in the spiral arms.

  12. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  13. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  14. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinnerer, Eva; Meidt, Sharon E.; Querejeta, Miguel

    2017-02-10

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure withmore » a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.« less

  15. Can cluster environment modify the dynamical evolution of spiral galaxies?

    NASA Technical Reports Server (NTRS)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  16. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  17. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstablemore » again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.« less

  18. Embedded spiral patterns in the massive galaxy cluster Abell 1835

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Kitayama, T.; Dotani, T.

    2017-10-01

    We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).

  19. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  20. Model for Spiral Galaxys Rotation Curves

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2003-11-01

    A model of spiral galaxy dynamics is proposed. An expression describing the rotation velocity of particles v in a galaxy as a function of the distance from the center r (RC) is developed. The resulting, intrinsic RC of a galaxy is Keplerian in the inner bulge and rising in the disk region without modifying the Newtonian gravitational potential (MOND) and without unknown dark matter. The v^2 is linearly related to r of the galaxy in part of the rapidly rising region of the HI RC (RRRC) and to r^2 in another part of the RRRC. The r to discontinuities in the surface brightness versus r curve is related to the 21 cm line width, the measured mass of the central supermassive black hole (SBH), and the maximum v^2 in the RRRC. The distance to spiral galaxies can be calculated from these relationships that tightly correlates with the distance calculated using Cepheid variables. Differing results in measuring the mass of the SBH from differing measurement procedures are explained. This model is consistent with previously unexplained data, has predicted new relationships, and suggests a new model of the universe. Full text: http://web.infoave.net/ ˜scjh.

  1. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by highermore » BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.« less

  2. Hello to Arms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image highlights the hidden spiral arms (blue) that were discovered around the nearby galaxy NGC 4625 by the ultraviolet eyes of NASA's Galaxy Evolution Explorer.

    The image is composed of ultraviolet and visible-light data, from the Galaxy Evolution Explorer and the California Institute of Technology's Digitized Sky Survey, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red.

    As the image demonstrates, the lengthy spiral arms are nearly invisible when viewed in optical light while bright in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The youthful arms are also very long, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The armless companion galaxy seen below NGC 4625 is called NGC 4618. Astronomers do not know why it lacks arms but speculate that it may have triggered the development of arms in NGC 4625.

  3. Dynamics of the interstellar matter in galaxies : isolated barred spiral galaxies : cloud formation processes

    NASA Astrophysics Data System (ADS)

    Helmuth, Kristen

    1998-12-01

    The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright "super star clusters" (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a "radio supernova". In the [OIII] l 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization

  4. Global enhancement and structure formation of the magnetic field in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  5. Look at my Arms!

    NASA Image and Video Library

    2005-07-25

    This image shows the hidden spiral arms that were discovered around the galaxy called NGC 4625 top by the ultraviolet eyes of NASA Galaxy Evolution Explorer. An armless companion galaxy called NGC 4618 is pictured below.

  6. UIT: Ultraviolet surface photometry of the spiral galaxy M74 (NGC 628)

    NASA Technical Reports Server (NTRS)

    Cornett, Robert H.; O'Connell, Robert W.; Greason, Michael R.; Offenberg, Joel D.; Angione, Ronald J.; Bohlin, Ralph C.; Cheng, K. P.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1994-01-01

    Ultraviolet photometry, obtained from Ultraviolet Imaging Telescope (UIT) images at 1520 A (far-UV; magnitudes m(152)) and 2490 A (near-UV; magnitudes m(249)), of the spiral galaxy M74 (NGC 628) is compared with H-alpha, R, V, and B surface photometry and with models. M74's surface brightness profiles have a central peak with an exponential falloff; the exponential scale lengths of the profiles increase with decreasing wavelength for the broad-band images. The slope of the continuum-subtracted H-alpha profile is intermediate between those of far-UV and near-UV profiles, consistent with the related origins of H-alpha and UV emission in extreme Population I material. M74's color profiles all become bluer with increasing radius. The (m(152) - m(249)) color as measured by UIT averages near 0.0 (the color of an A0 star) over the central 20 sec radius and decreases from approximately -0.2 to approximately -0.4 from 20 sec to 200 sec. The spiral arms are the dominant component of the surface photometry colors; interarm regions are slightly redder. In the UV, M74's nuclear region resembles its disk/spiral arm material in colors and morphology, unlike galaxies such as M81. No UV 'bulge' is apparent. The m(152) - m(249) colors and models of M74's central region clearly demonstrate that there is no significant population of O or B stars present in the central 10 sec. M74's UV morphology and (m(152) - m(249)) color profiles are similar to those of M33, although M74 is approximately 0.5 mag redder. M81 has a smooth UV bulge which is much redder than the nuclear regions of M74 and M33. M74 is approximately 0.4 mag bluer than M81 in its outer disk, although M81 has bright UV sources only in spiral arms more than 5 kpc from its center. We investigate possible explanations for the color profiles of the galaxies and the differences among the galaxies: abundances; reddening due to internal dust; interplanetary magnetic field (IMF) variations, and the history of formation of the

  7. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2012-03-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  8. Hubble Spots a Barred Lynx Spiral

    NASA Image and Video Library

    2017-12-08

    Discovered by British astronomer William Herschel over 200 years ago, NGC 2500 lies about 30 million light-years away in the northern constellation of Lynx. As this NASA/ESA Hubble Space Telescope image shows, NGC 2500 is a particular kind of spiral galaxy known as a barred spiral, its wispy arms swirling out from a bright, elongated core. Barred spirals are actually more common than was once thought. Around two-thirds of all spiral galaxies — including the Milky Way — exhibit these straight bars cutting through their centers. These cosmic structures act as glowing nurseries for newborn stars, and funnel material towards the active core of a galaxy. NGC 2500 is still actively forming new stars, although this process appears to be occurring very unevenly. The upper half of the galaxy — where the spiral arms are slightly better defined — hosts many more star-forming regions than the lower half, as indicated by the bright, dotted islands of light. There is another similarity between NGC 2500 and our home galaxy. Together with Andromeda, Triangulum and many smaller natural satellites, the Milky Way is part of the Local Group of galaxies, a gathering of over 50 galaxies all loosely held together by gravity. NGC 2500 forms a similar group with some of its nearby neighbors, including NGC 2541, NGC 2552, NGC 2537 and the bright, Andromeda-like spiral NGC 2481 (known collectively as the NGC 2841 group). Image Credit: ESA/Hubble/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. High resolution infrared astronomy satellite observations of a selected spiral galaxy

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.

    1991-01-01

    The H I, infrared, CO, H alpha and H beta band observations of M51, the prototypical grand-design spiral galaxy, are used to study the consequences of star formation for the distribution of H I and dust. Using the new Very Large Array (VLA) map of 21 cm emission, the Owens Valley Radio Observatory CO mosaic map, and an H alpha imate, new tests were performed with the idea of Tilanus and Allen that the H I is largely a photodissociation product in star-forming regions. It is confirmed that the H I spiral arms are generally coincident with the H II region arms, and offset downstream from the CO arms. The radial distributions of total gas, H alpha and H I surface density have a simple explanation in the dissociation picture. The distributions also demonstrate how the surface density of H I might be related to the star formation efficiency in molecule-rich galaxies. The large width of the H I regions along the arms compared to that of the giant H II regions can be understood in terms of a simple calculation of the expected size of an H I region associated with a typical giant H II region. The longer lifetime of the stars producing dissociating radiation vs. those producing ionizing radiation and the relatively long molecular formation timescale will also contribute to the greater width of the H I arms if stars are continuously forming on the arms. The lack of detailed coincidence of the H I and H II regions along the inner arms has a variety of possible explanations. Two simple tests were performed to probe the origins of the IRAS emission in M51. First, it was found that the infrared excess (IFE) of M51 is 24, suggesting that a substantial fraction of the infrared emission arises from dust heated by photons which do not originate in massive star-formaing regions. Second, radial cuts through the IRAS bands show that at 12, 25, and 60 microns, the arm-interarm contrast of the IRAS emission is substantially less than that of the H alpha emission, providing further

  10. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  11. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  12. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Ostriker, Eve C.

    2006-07-01

    We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  13. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  14. Characterizing Spiral Arm and Interarm Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Blanc, G. A.; Schinnerer, E.; Groves, B.; Adamo, A.; Hughes, A.; Meidt, S.

    2016-08-01

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Hα maps including detailed corrections for dust extinction and stellar absorption to identify 391 H II regions at 35 pc resolution over 12 kpc2. Using tracers sensitive to the underlying gravitational potential, we associate H II regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H II regions are independent of environment. We calculate the fraction of Hα luminosity due to the background of diffuse ionized gas (DIG) contaminating each H II region, and find the DIG surface brightness to be higher within H II regions than in the surroundings, and slightly higher within arm H II regions. Use of the temperature-sensitive [S II]/Hα line ratio instead of the Hα surface brightness to identify the boundaries of H II regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 109 yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H II regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  15. CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreckel, K.; Schinnerer, E.; Meidt, S.

    2016-08-20

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct H α maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc{sup 2}. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical propertiesmore » (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of H α luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/H α line ratio instead of the H α surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 10{sup 9} yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.« less

  16. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  17. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    NASA Astrophysics Data System (ADS)

    Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.

    2017-01-01

    Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a

  18. spiral galaxy M83

    NASA Image and Video Library

    2017-12-08

    JANUARY 9, 2014: The vibrant magentas and blues in this Hubble image of the barred spiral galaxy M83 reveal that the galaxy is ablaze with star formation. The galactic panorama unveils a tapestry of the drama of stellar birth and death. The galaxy, also known as the Southern Pinwheel, lies 15 million light-years away in the constellation Hydra. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgement: W. Blair (STScI/Johns Hopkins University) and R. O'Connell (University of Virginia) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565

    NASA Technical Reports Server (NTRS)

    Sukumar, S.; Allen, R. J.

    1991-01-01

    Results are presented, at a resolution of 20 arcsec, of observations of the distribution of radio continuum intensity and linear polarization with the VLA in two nearby edge-on spiral galaxies, NGC 891 and NGC 4565, at 6 and 20 cm, respectively. A unified model is presented to account for the main features of the radio polarization in these two galaxies. The model geometry is determined from recent observations of face-on galaxies where the polarized emission is found to be strongest in the dark inter-arm and outer parts of the disks. A substantial Z-thickness is ascribed to this polarized emission. It is shown that the exceptionally strong wavelength dependence of this type of Faraday depolarization can result in edge-on galaxies becoming rapidly 'Faraday thick' at decimeter wavelengths, thereby obliterating the polarization from regions on the dark side of the disk. The degree of polarization observed in both galaxies increases strongly with increasing Z-distance from the plane.

  20. Imaging and spectroscopic observations of a strange elliptical bubble in the northern arm of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yuri N.; Moiseev, Alexei V.

    2016-09-01

    NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended H I halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (˜300 pc in size) Red Ellipse, named according to a strong contamination of the Hα emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster is seen inside these features. The complicated combination of arcs seems to be unique; it is only a bit similar to some SNRs. However, the long-slit spectral data obtained with the Russian 6-m telescope did not confirm the origin of the nebula as a result of a single SN outburst. The emission-line spectrum corresponds to the photoionization by young hot stars with a small contribution of shock ionization. The most likely explanation of the Red Ellipse is a superbubble created by a collective feedback of massive stars in the star cluster located in the NE side of the Red Ellipse. However, the very regular elliptical shape of the nebulae seems strange.

  1. Kinematics of symmetric Galactic longitudes to probe the spiral arms of the Milky Way with Gaia

    NASA Astrophysics Data System (ADS)

    Antoja, T.; Roca-Fàbrega, S.; de Bruijne, J.; Prusti, T.

    2016-05-01

    certain giant stars, and up to ~2-4 kpc and better kinematic precision (≲0.5 km s-1) for certain sub-giants and dwarfs. These are enough to measure the typical signatures seen in the models. Conclusions: The Gaia catalogue will allow us to use the presented approach successfully and improve significantly upon current studies of the dynamics of the spiral arms of our Galaxy. We also show that a similar strategy can be used with line-of-sight velocities, which could be applied to Gaia data and to upcoming spectroscopic surveys.

  2. Efficient star formation in the spiral arms of M51

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.; Young, Judith S.

    1990-01-01

    The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.

  3. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  4. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  5. Spiral Galaxy Lensing: A Model with Twist

    NASA Astrophysics Data System (ADS)

    Bell, Steven R.; Ernst, Brett; Fancher, Sean; Keeton, Charles R.; Komanduru, Abi; Lundberg, Erik

    2014-12-01

    We propose a single galaxy gravitational lensing model with a mass density that has a spiral structure. Namely, we extend the arcsine gravitational lens (a truncated singular isothermal elliptical model), adding an additional parameter that controls the amount of spiraling in the structure of the mass density. An important feature of our model is that, even though the mass density is sophisticated, we succeed in integrating the deflection term in closed form using a Gauss hypergeometric function. When the spiraling parameter is set to zero, this reduces to the arcsine lens.

  6. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  7. A misbehaving spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting pretty in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192 to have intense radio jets spewing out from its centre! The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos.

  8. Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Smith, Beverly J.; Rosado, Margarita; Beckman, John E.; Bitsakis, Theodoros; Camps-Fariña, Artemi; Font, Joan; Cox, Isaiah S.

    2018-02-01

    We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.

  9. Barred Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Barred Spiral Galaxy NGC 1300 Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  10. Are Elias 2-27's Spiral Arms Driven by Self-gravity, or by a Companion? A Comparative Spiral Morphology Study

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.; Ilee, John D.; Meru, Farzana

    2018-06-01

    The spiral waves detected in the protostellar disk surrounding Elias 2-27 have been suggested as evidence of the disk being gravitationally unstable. However, previous work has shown that a massive, stable disk undergoing an encounter with a massive companion are also consistent with the observations. We compare the spiral morphology of smoothed particle hydrodynamic simulations modeling both cases. The gravitationally unstable disk produces symmetric, tightly wound spiral arms with constant pitch angle, as predicted by the literature. The companion disk’s arms are asymmetric, with pitch angles that increase with radius. However, these arms are not well-fitted by standard analytic expressions, due to the high disk mass and relatively low companion mass. We note that differences (or indeed similarities) in morphology between pairs of spirals is a crucial discriminant between scenarios for Elias 2-27, and hence future studies must fit spiral arms individually. If Elias 2-27 continues to show symmetric tightly wound spiral arms in future observations, then we posit that it is the first observed example of a gravitationally unstable protostellar disk.

  11. The alignment of molecular cloud magnetic fields with the spiral arms in M33.

    PubMed

    Li, Hua-bai; Henning, Thomas

    2011-11-16

    The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds. ©2011 Macmillan Publishers Limited. All rights reserved

  12. Hydrodynamical simulations of the barred spiral galaxy NGC 1300. Dynamical interpretation of observations

    NASA Astrophysics Data System (ADS)

    Lindblad, P. A. B.; Kristen, H.

    1996-09-01

    We perform two-dimensional time dependent hydrodynamical simulations of the barred spiral galaxy NGC 1300. The input potential is divided into an axisymmetric part mainly derived from the observed rotation curve, and a perturbing part obtained from near infrared surface photometry of the bar and spiral structure. Self-gravitation of the gas is not taken into account in our modeling. A pure bar perturbed model is unable to reproduce the observations. It was found necessary to add a weak spiral potential to the perturbation, thus suggesting the presence of massive spiral arms in NGC 1300. We find two models, differing mainly in pattern speed, which are able to reproduce the essentials of NGC 1300. The high pattern speed model has {OMEGA}_p_=20km/s/kpc, corresponding to a corotation radius at R_CR_~104"=1.3R_bar_. Furthermore, the adopted rotation curve for this model supports one ILR at R_ILR_~26" and an OLR at R_OLR_~188". The low pattern speed model has {OMEGA}_p_=12km/s/kpc, corresponding to a corotation radius at R_ CR_~190"=2.4R_bar_. The adopted rotation curve for this model, which differs from the fast pattern speed model, supports one ILR at R_ILR_~25" and an OLR at R_OLR_~305". Morphological features, like spiral arms and offset dust lanes, are basically reproduced by both models. They are driven by orbit crowding effects across various resonances, leading to density enhancements. The general velocity structure, as described by HI data and optical long slit measurements, is fairly consistent with the model velocities.

  13. Dissection of a Galaxy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor.

    This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside.

    Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms.

    The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved.

    This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  14. Dissection of a Galaxy

    NASA Image and Video Library

    2004-05-11

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor. This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside. Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms. The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved. This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05879

  15. Discovery of Super-Thin Disks in Nearby Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Schechtman-Rook, A.; Bershady, M. A.

    2014-03-01

    We report the identification of a super-thin disk (hz˜ 60 pc) in the edge-on spiral galaxy NGC 891. This component is only apparent after we perform a physically motivated attenuation correction, based on detailed radiation transfer models, to our sub-arcsecond resolution near-infrared imaging. In addition to the super-thin disk, we also find several structural features near the center of NGC 891, including an inner disk truncation at ˜3 kpc. Inner disk truncations may be commonplace among massive spiral galaxies, possibly due to the effects of instabilities, such as bars. Having successfully demonstrated our methods, we are poised to apply them to a small sample of nearby edge-on galaxies, consisting both of massive and low-mass spirals.

  16. Classic Galaxy with Glamour

    NASA Image and Video Library

    2005-04-11

    Young hot blue stars dominate the outer spiral arms of nearby galaxy NGC 300, while the older stars congregate in the nuclear regions which appear yellow-green in this image from NASA Galaxy Evolution Explorer.

  17. Constraints on the Efficiency of Radial Migration in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2015-01-01

    A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential

  18. Hubble Spies Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Spiral galaxy NGC 3274 is a relatively faint galaxy located over 20 million light-years away in the constellation of Leo (The Lion). This NASA/ESA Hubble Space Telescope image comes courtesy of Hubble's Wide Field Camera 3 (WFC3), whose multi-color vision allows astronomers to study a wide range of targets, from nearby star formation to galaxies in the most remote regions of the cosmos. This image combines observations gathered in five different filters, bringing together ultraviolet, visible and infrared light to show off NGC 3274 in all its glory. NGC 3274 was discovered by Wilhelm Herschel in 1783. The galaxy PGC 213714 is also visible on the upper right of the frame, located much farther away from Earth. Image Credit: ESA/Hubble & NASA, D. Calzetti NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Hubble's Glittering Frisbee Galaxy

    NASA Image and Video Library

    2017-12-08

    This image from Hubble’s Wide Field Camera 3 (WFC3) shows a section of NGC 1448, a spiral galaxy located about 50 million light-years from Earth in the little-known constellation of Horologium (The Pendulum Clock). We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What’s going on? Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure — a great example from Hubble is the telescope’s view of Messier 51, otherwise known as the Whirlpool Galaxy. However, the NGC 1448 frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from NGC 1448’s dense core, can just about be seen. Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy’s core, with those on the inside making the orbit faster than those sitting further out. This makes the formation and continued existence of a spiral galaxy’s arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on — but this is not what we see. This is known as the winding problem. Credit: ESA/Hubble & NASA #nasagoddard #space #science #Hubble #star NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  1. Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    2006-06-01

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  2. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  3. Discovery of a low-luminosity spiral DRAGN

    NASA Astrophysics Data System (ADS)

    Mulcahy, D. D.; Mao, M. Y.; Mitsuishi, I.; Scaife, A. M. M.; Clarke, A. O.; Babazaki, Y.; Kobayashi, H.; Suganuma, R.; Matsumoto, H.; Tawara, Y.

    2016-11-01

    Standard galaxy formation models predict that large-scale double-lobed radio sources, known as DRAGNs, will always be hosted by elliptical galaxies. In spite of this, in recent years a small number of spiral galaxies have also been found to host such sources. These so-called spiral DRAGNs are still extremely rare, with only 5 cases being widely accepted. Here we report on the serendipitous discovery of a new spiral DRAGN in data from the Giant Metrewave Radio Telescope (GMRT) at 322 MHz. The host galaxy, MCG+07-47-10, is a face-on late-type Sbc galaxy with distinctive spiral arms and prominent bulge suggesting a high black hole mass. Using WISE infra-red and GALEX UV data we show that this galaxy has a star formation rate of 0.16-0.75 M⊙ yr-1, and that the radio luminosity is dominated by star-formation. We demonstrate that this spiral DRAGN has similar environmental properties to others of this class, but has a comparatively low radio luminosity of L1.4 GHz = 1.12 × 1022 W Hz-1, two orders of magnitude smaller than other known spiral DRAGNs. We suggest that this may indicate the existence of a previously unknown low-luminosity population of spiral DRAGNS. FITS cutout image of the observed spiral DRAGN MCG+07-47- 10 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L8

  4. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  5. A Unified Scaling Law in Spiral Galaxies.

    PubMed

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega0<1) and high-expansion (h>0.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  6. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  7. The local spiral structure of the Milky Way

    PubMed Central

    Xu, Ye; Reid, Mark; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu

    2016-01-01

    The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy’s major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms. PMID:27704048

  8. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  9. Theory of spiral structure.

    NASA Technical Reports Server (NTRS)

    Lin, C. C.

    1971-01-01

    The question whether the galactic spiral arms are material objects or wave patterns is discussed. A semiempirical approach is adopted in presenting the concept of density waves. The theory of density waves is considered, giving attention to a survey of theoretical developments by analytical methods, the implication of a spiral pattern of density waves, spirals with moderately small pitch angle, and the origin and permanence of galactic spirals. The theoretical aspects discussed are tested against more detailed observations in the Milky Way system. It is pointed out that the density wave concept introduced by Lindblad, including the material concentration of both gas and stars, is the essential basis for the spiral structure of disk-shaped galaxies.

  10. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  11. The spatial variation of the infrared-to-radio ratio in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.; Helou, G.

    1995-01-01

    We have produced two-dimensional maps of the intensity ratio, Q(sub 60), of 60 micron infrared to 20 cm radio continuum emission, for a set of 25 nearby galaxies, mostly spirals. The ratio maps were obtained from infrared images made using IRAS data with the maximum correlation method, and radio images made using VLA data. Before taking the ratio, the radio images were processed so as to have the same resolution properties as the infrared images; the final spatial resolution in all cases is approximately 1 min, corresponding to 1 - 2 kpc for most galaxies. This resolution represents a significant improvement over previous studies. Our new high-resolution maps confirm the slow decrease of Q(sub 60) with increasing radial distance from the nucleus, but show additional structure which is probably associated with separate sites of active star formation in the spiral arms. The maps show Q(sub 60) to be more closely related to infrared surface brightness than to the radial distance r in the galaxy disk. We note also that the Q(sub 60) gradients are absent (or at least reduced) for the edge-on galaxies, a property which can be attributed to the dilution of contrast due to the averaging of the additional structure along the line of sight. The results are all in qualitative agreement with the suggestion that the radio image represents a smeared version of the infrared image, as would be expected on the basis of current models in which the infrared-radio correlation is driven by the formation of massive stars, and the intensity distribution of radio emission is smeared as a result of the propagation of energetic electrons accelerated during the supernova phase.

  12. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < -19.5 mag at 0.02 ≤z< 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al. (2011) who performed two-dimensional bulge+disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  13. Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments

    NASA Astrophysics Data System (ADS)

    Nikiforov, I. I.; Veselova, A. V.

    2018-02-01

    We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center ( R 0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R 0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R 0 in the sense that an increase in R 0 leads to a growth in the absolute values of the pitch angles.

  14. Mapping the gas-to-dust ratio in the edge-on spiral galaxy IC2531

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Gentile, Gianfranco; Allaert, Flor; Kuno, Nario; Verstappen, Joris

    2012-04-01

    The gas-to-dust ratio is an important diagnostic of the chemical evolution of galaxies, but unfortunately, there are only a few unbiased studies of the gas-to-dust ratio within galaxies and among different galaxies. We want to take advantage of the revolutionary capabilities of the Herschel Space Observatory and the special geometry of edge-on spiral galaxies to derive accurate gas and dust mass profiles in the edge-on spiral galaxy IC2531, the only southern galaxy from a sample of large edge-on spirals observed with Herschel. We already have a wealth of ancillary data and detailed radiative transfer modelling at our disposal for this galaxy, and now request CO observations to map the molecular gas distribution. With our combined dataset, we will investigate the radial behaviour of the gas-to-dust ratio, compare it with the properties of the stellar population and the dark matter distribution, and test the possibility to use the far-infrared emission from dust to determine the total ISM mass in galaxies.

  15. Can we detect Galactic spiral arms? 3D dust distribution in the Milky Way

    NASA Astrophysics Data System (ADS)

    Rezaei Kh., Sara; Bailer-Jones, Coryn A. L.; Fouesneau, Morgan; Hanson, Richard

    2018-04-01

    We present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the ``fingers of God'' effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.

  16. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  17. KINEMATIC ANALYSIS OF NUCLEAR SPIRALS: FEEDING THE BLACK HOLE IN NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Ven, Glenn; Fathi, Kambiz, E-mail: glenn@mpia.d, E-mail: kambiz@astro.su.s

    2010-11-01

    We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear star-forming ring of NGC 1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms is well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with an inferred pitch angle of 52{sup 0} {+-} 4{sup 0}. This interpretation predicts a two-arm spiral distortion in the surfacemore » brightness, as hinted by the dust structures in central images of NGC 1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionized gas. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission-line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 M{sub sun} yr{sup -1} at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10{sup -3} of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity can not only provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a constraint on the mass inflow rate as a function of radius.« less

  18. Variations in Metallicity and Gas Content in Spiral Galaxies: Accidents of Infall

    NASA Astrophysics Data System (ADS)

    Shields, Gregory A.; Robertson, P.; Dave, R.; Blanc, G. A.; Wright, A.

    2013-01-01

    Oxygen abundances are elevated in hydrogen deficient spirals in the Virgo and Pegasus clusters (Robertson et al. 2012, ApJ 748:48, and references therein). We confirm the relationship between O/H and H I deficiency "DEF" for an additional set of cluster spirals. In addition, we find that field spirals show a similar increase in O/H with DEF. Thus, the relationship is not uniquely the result of environmental processes in clusters. Cosmological simulations of galaxy formation predict a qualitatively similar trend of O/H with DEF for field spirals. This reflects excursions of gas content and metallicity above and below the mean mass-metallicity relationship as galaxies evolve. These excursions result from the stochastic effects of mergers and merger-free periods during the evolution.

  19. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  20. How Bright are Planet-induced Spiral Arms in Scattered Light?

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey

    2017-01-01

    Recently, high angular resolution imaging instruments such as SPHERE and GPI have discovered many spiral-arm-like features in near-infrared scattered-light images of protoplanetary disks. Theory and simulations have suggested that these arms are most likely excited by planets forming in the disks; however, a quantitative relation between the arm-to-disk brightness contrast and planet mass is still missing. Using 3D hydrodynamics and radiative transfer simulations, we examine the morphology and contrast of planet-induced arms in disks. We find a power-law relation for the face-on arm contrast (δmax) as a function of planet mass ({M}{{p}}) and disk aspect ratio (h/r): {δ }\\max ≈ {({({M}{{p}}/{M}{{J}})/(h/r)}1.38)}0.22. With current observational capabilities, at a 30 au separation, the minimum planet mass for driving detectable arms in a disk around a 1 Myr, 1 {M}ȯ star at 140 pc at low inclinations is around Saturn mass. For planets more massive than Neptune masses, they typically drive multiple arms. Therefore, in observed disks with spirals, it is unlikely that each spiral arm originates from a different planet. We also find that only massive perturbers with at least multi-Jupiter masses are capable of driving bright arms with {δ }\\max ≳ 2 as found in SAO 206462, MWC 758, and LkHα 330, and these arms do not follow linear wave propagation theory. Additionally, we find that the morphology and contrast of the primary and secondary arms are largely unaffected by a modest level of viscosity with α ≲ 0.01. Finally, the contrast of the arms in the SAO 206462 disk suggests that the perturber SAO 206462 b at ∼100 au is about 5{--}10 {M}{{J}} in mass.

  1. The Anatomy of the Perseus Spiral Arm: 12 CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.

    1998-01-01

    Panoramic images of 12CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H I 21 cm line emission images provide an approximate 1' resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg. arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T* (sub R). Relative surface densities of the molecular (28:1) and atomic (2.5:1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km s (exp. -1) over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H I 21 cm line emission. The enhanced UV (Ultraviolet) radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 micrometers and 47% at 100 micrometers) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  2. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  3. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less

  4. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  5. Hubble Finds Misbehaving Spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192, even though it is a spiral galaxy, to have intense radio jets spewing out from its center. The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos. Image credit: ESA/Hubble & NASA; acknowledgement, Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The CO-to-H2 Conversion Factor Within GMCs in Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, Jennifer; Koda, J.

    2012-01-01

    Much of what is known about the evolution of the interstellar medium in spiral galaxies has been learned by analyzing the properties of giant molecular clouds (GMCs). However, these clouds are composed primarily of molecular hydrogen, which is difficult to observe directly since the temperature of the gas in GMCs is too low to excite H2 line emission. As a result, molecular tracers - the most common of which being the lower rotational transitions of the CO molecule - are typically observed instead, requiring a well-calibrated conversion factor between CO flux and H2 mass (Xco). To investigate GMC evolution within galactic disks, I have created high fidelity images of nearby spiral galaxies with a variety of morphologies by combining CO (J=1-0) observations from the Nobeyama 45-meter single dish telescope and the CARMA interferometer in the uv-plane. These images, created as part of the CO Survey of Nearby Galaxies being completed at Stony Brook, utilize the new rms-weighting technique described in Koda et al. (2011). In Donovan Meyer et al. (2011), we deconvolve the CO emission of the nearby spiral galaxy NGC 6946 into the largest sample to date of resolved GMCs in a substantial spiral galaxy other than the Milky Way and derive virial masses and Xco within individual GMCs. Extending this work to three other nearby galaxies from the survey for which we can achieve the most resolved measurements (beam sizes less than 65 pc), we find that the sizes and velocity dispersions of GMCs continue to be largely consistent from galaxy to galaxy. However, while the conversion factor remains within a factor of two compared to the Galactic value, there is an indication that it varies systematically between galaxies.

  7. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger starmore » formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.« less

  8. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  9. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    NASA Astrophysics Data System (ADS)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  10. Southern Pinwheel Galaxy M83

    NASA Image and Video Library

    2005-05-05

    Ultraviolet images such as this one from NASA's Galaxy Evolution Explorer suggest the M83 has unusual pockets of star formation separated by large distances from the spiral arms in the main disk of the galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA07903

  11. Most Massive Spiral Galaxy Known in the Universe

    NASA Astrophysics Data System (ADS)

    2000-12-01

    The VLT Observes Rapid Motion in Distant Object Summary The most massive spiral galaxy known so far in the Universe has been discovered by a team of astronomers from Garching, Padova, Leiden, ESO and London [1]. They base their conclusion on recent observations with ISAAC , an infrared-sensitive, multi-mode instrument on ESO's Very Large Telescope at the Paranal Observatory. This galaxy has been designated ISOHDFS 27 and is located at a distance of approx. 6 billion light-years (the redshift is 0.58). Its measured mass is more than 1000 billion times that of the Sun [2]. It is thus about four times more massive than our own galaxy, the Milky Way, and twice as heavy as the heaviest spiral galaxy known so far. The determination of the mass of ISOHDFS 27 is based on a unique measurement of the motions of its stars and nebulae around the center. The faster the motion is, the greater is the mass. It is, in essence, the same method that allows determining the mass of the Earth from the orbital speed and distance of the Moon. This is the first time a "rotation curve" has been observed in such a distant galaxy by means of infrared observations, allowing a very detailed dynamical study. Other observations by the team concern a pair of distant, interacting galaxies that were also found to possess comparably high masses. They also have observations of a third galaxy at a distance of about 10 billion light-years, with a mass that approaches that of ISOHDFS 27 . The new result has important cosmological implications, as it demonstrates that very heavy structures had already been formed in the Universe at a comparatively early epoch . PR Photo 33a/00 : ISOHDFS 27 , the heaviest spiral galaxy known. PR Photo 33b/00 : The "raw" ISAAC spectrum of ISOHDFS 27 . PR Photo 33c/00 : H-alpha profile of ISOHDFS 27 . Star formation in young galaxies It is of fundamental importance to current cosmological studies to understand how stars evolve within galaxies and how the galaxies themselves

  12. Dependence of Nebular Heavy-element Abundance on H I Content for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Davé, Romeel; Blanc, Guillermo A.; Wright, Audrey

    2013-08-01

    We analyze the galactic H I content and nebular log (O/H) for 60 spiral galaxies in the Moustakas et al. (2006a) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log (O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.

  13. The Anatomy of the Perseus Spiral ARM: (sup 12)CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.; Oliversen, R. (Technical Monitor)

    1998-01-01

    Panoramic images of (sup l2)CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H (sub I) 21 cm line emission images provide an approx. 1 min resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T(sup *)(sub R). Relative surface densities of the molecular (28:1) and atomic (2.5: 1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km/s over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H (sub I) 21 cm line emission. The enhanced UV radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 microns and 47% at 100 microns) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  14. GIANT MOLECULAR CLOUDS AND STAR FORMATION IN THE NON-GRAND DESIGN SPIRAL GALAXY NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebolledo, David; Wong, Tony; Leroy, Adam

    We present high spatial resolution observations of giant molecular clouds (GMCs) in the eastern part of the nearby spiral galaxy NGC 6946 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have observed CO(1 {yields} 0), CO(2 {yields} 1) and {sup 13}CO(1 {yields} 0), achieving spatial resolutions of 5.''4 Multiplication-Sign 5.''0, 2.''5 Multiplication-Sign 2.''0, and 5.''6 Multiplication-Sign 5.''4, respectively, over a region of 6 Multiplication-Sign 6 kpc. This region extends from 1.5 kpc to 8 kpc galactocentric radius, thus avoiding the intense star formation in the central kpc. We have recovered short-spacing u-v components by using singlemore » dish observations from the Nobeyama 45 m and IRAM 30 m telescopes. Using the automated CPROPS algorithm, we identified 45 CO cloud complexes in the CO(1 {yields} 0) map and 64 GMCs in the CO(2 {yields} 1) maps. The sizes, line widths, and luminosities of the GMCs are similar to values found in other extragalactic studies. We have classified the clouds into on-arm and inter-arm clouds based on the stellar mass density traced by the 3.6 {mu}m map. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Although the star formation efficiency shows no systematic trend with galactocentric radius, some on-arm clouds-which are more luminous and more massive compared to inter-arm GMCs-are also forming stars more efficiently than the rest of the identified GMCs. We find that these structures appear to be located in two specific regions in the spiral arms. One of them shows a strong velocity gradient, suggesting that this region of high star formation efficiency may be the result of gas flow convergence.« less

  15. Star Formation in the Central Regions of Galaxies

    NASA Astrophysics Data System (ADS)

    Tsai, Mengchun

    2015-08-01

    Seyfert galaxy with inner structure as an example. In this thesis, we present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1-0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 micron dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.

  16. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  17. Spiral-like star-forming patterns in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 <μr mag/□″< 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified I+, is a two-radial-zone structure, with the inner zone that displays faint (EW(Hα) ≃ 1 Å) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3 Å

  18. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  19. The observed spiral structure of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hou, L. G.; Han, J. L.

    2014-09-01

    Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims: We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods: We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s-1, and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s-1, after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers. Results: The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed, which not only delineates the tracer distribution, but also matches the observed tangential directions. Appendix A is available in electronic form at http://www.aanda.orgFull Tables A.1-A.3 are only

  20. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  1. Hot and Cold in the M100 Galaxy

    NASA Image and Video Library

    2012-08-15

    The galaxy Messier 100, or M100, shows its swirling spiral in this infrared image from NASA Spitzer Space Telescope. The arcing spiral arms of dust and gas that harbor star forming regions glow vividly when seen in the infrared.

  2. Neutral hydrogen survey of andromeda galaxy.

    PubMed

    Brundage, W D; Kraus, J D

    1966-07-22

    A neutral hydrogen survey of the Andromeda galaxy (M31) has been conducted with the 260-foot (80m) Ohio State University radio telescope. The neutral hydrogen is concentrated in the spiral arm regions, with but relatively small amounts near the center of the galaxy. Similar deficiencies have been found near the center of M33 and our galaxy, suggesting similar evolutionary processes in the three galaxies.

  3. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  4. A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets?

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Dong, Ruobing; Esposito, Thomas M.; Pueyo, Laurent; Debes, John H.; Poteet, Charles A.; Choquet, Élodie; Benisty, Myriam; Chiang, Eugene; Grady, Carol A.; Hines, Dean C.; Schneider, Glenn; Soummer, Rémi

    2018-04-01

    Large-scale spiral arms have been revealed in scattered light images of a few protoplanetary disks. Theoretical models suggest that such arms may be driven by and corotate with giant planets, which has called for remarkable observational efforts to look for them. By examining the rotation of the spiral arms for the MWC 758 system over a 10 year timescale, we are able to provide dynamical constraints on the locations of their perturbers. We present reprocessed Hubble Space Telescope (HST)/NICMOS F110W observations of the target in 2005, and the new Keck/NIRC2 L‧-band observations in 2017. MWC 758's two well-known spiral arms are revealed in the NICMOS archive at the earliest observational epoch. With additional Very Large Telescope (VLT)/SPHERE data, our joint analysis leads to a pattern speed of 0\\buildrel{\\circ}\\over{.} {6}-0\\buildrel{\\circ\\over{.} 6}+3\\buildrel{\\circ\\over{.} 3} {yr}}-1 at 3σ for the two major spiral arms. If the two arms are induced by a perturber on a near-circular orbit, its best-fit orbit is at 89 au (0.″59), with a 3σ lower limit of 30 au (0.″20). This finding is consistent with the simulation prediction of the location of an arm-driving planet for the two major arms in the system.

  5. Unstable spiral modes in disk-shaped galaxies

    PubMed Central

    Lau, Y. Y.; Lin, C. C.; Mark, James W.-K.

    1976-01-01

    The mechanisms for the maintenance and the excitation of trailing spiral modes of density waves in diskshaped galaxies, as proposed by Lin in 1969 and by Mark recently, are substantiated by an analysis of the gas-dynamical model of the galaxy. The self-excitation of the unstable mode in caused by waves propagating outwards from the corotation circle, which carry away angular momentum of a sign opposite to that contained in the wave system inside that circle. Specifically, a simple dispersion relationship is given as a definite integral, which allows the immediate determination of the pattern frequency and the amplification rate, once the basic galactic model is known. PMID:16592313

  6. Hubble Catches a Spiral in the Air Pump

    NASA Image and Video Library

    2017-12-08

    Lying more than 110 million light-years away from Earth in the constellation of Antlia (The Air Pump) is the spiral galaxy IC 2560, shown here in an image from NASA/ESA Hubble Space Telescope. At this distance it is a relatively nearby spiral galaxy, and is part of the Antlia cluster — a group of over 200 galaxies held together by gravity. This cluster is unusual; unlike most other galaxy clusters, it appears to have no dominant galaxy within it. In this image, it is easy to spot IC 2560's spiral arms and barred structure. This spiral is what astronomers call a Seyfert-2 galaxy, a kind of spiral galaxy characterized by an extremely bright nucleus and very strong emission lines from certain elements — hydrogen, helium, nitrogen, and oxygen. The bright center of the galaxy is thought to be caused by the ejection of huge amounts of super-hot gas from the region around a central black hole. There is a story behind the naming of this quirky constellation — Antlia was originally named antlia pneumatica by French astronomer Abbé Nicolas Louis de Lacaille, in honor of the invention of the air pump in the 17th century. Credit: Hubble/European Space Agency and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Elegant spiral hides a hungry monster

    NASA Image and Video Library

    2015-10-12

    NGC 4639 is a beautiful example of a type of galaxy known as a barred spiral. It lies over 70 million light-years away in the constellation of Virgo and is one of about 1500 galaxies that make up the Virgo Cluster. In this image, taken by the NASA/ESA Hubble Space Telescope, one can clearly see the bar running through the bright, round core of the galaxy. Bars are found in around two thirds of spiral galaxies, and are thought to be a natural phase in their evolution. The galaxy’s spiral arms are sprinkled with bright regions of active star formation. Each of these tiny jewels is actually several hundred light-years across and contains hundreds or thousands of newly formed stars. But NGC 4639 also conceals a dark secret in its core — a massive black hole that is consuming the surrounding gas. This is known as an active galactic nucleus (AGN), and is revealed by characteristic features in the spectrum of light from the galaxy and by X-rays produced close to the black hole as the hot gas plunges towards it. Most galaxies are thought to contain a black hole at the centre. NGC 4639 is in fact a very weak example of an AGN, demonstrating that AGNs exist over a large range of activity, from galaxies like NGC 4639 to distant quasars, where the parent galaxy is almost completely dominated by the emissions from the AGN.

  8. GHASP: an H α kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry

    NASA Astrophysics Data System (ADS)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-07-01

    We present the mass distribution of a sample of 121 nearby galaxies with high-quality optical velocity fields and available infrared Wide-field Infrared Survey Explorer(WISE) 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased towards late-type galaxies. These galaxies are part of the Fabry-Perot kinematical Gassendi HAlpha survey of SPirals survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter (DM) halo mass distribution in the optical regions of those galaxies. DM models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the mass-to-light ratio (M/L) of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 colour) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; and (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  9. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  10. S0 galaxies are faded spirals: clues from their angular momentum content

    NASA Astrophysics Data System (ADS)

    Rizzo, Francesca; Fraternali, Filippo; Iorio, Giuliano

    2018-05-01

    The distribution of galaxies in the stellar specific angular momentum versus stellar mass plane (j⋆ - M⋆) provides key insights into their formation mechanisms. In this paper, we determine the location in this plane of a sample of 10 field/group unbarred lenticular (S0) galaxies from the Calar Alto Legacy Integral Field Area survey. We performed a bulge-disc decomposition both photometrically and kinematically to study the stellar specific angular momentum of the disc components alone and understand the evolutionary links between S0s and other Hubble types. We found that eight of our S0 discs have a distribution in the j⋆ - M⋆ plane that is fully compatible with that of spiral discs, while only two have values of j⋆ lower than the spirals. These two outliers show signs of recent merging. Our results suggest that merger and interaction processes are not the dominant mechanisms in S0 formation in low-density environments. Instead, S0s appear to be the result of secular processes and the fading of spiral galaxies after the shutdown of star formation.

  11. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    NASA Astrophysics Data System (ADS)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  12. Hubble Peers at the Heart of a Spiral Galaxy

    NASA Image and Video Library

    2014-03-21

    This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe. NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings. This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term "masers" comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum. Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun. Credit: NASA, ESA, and E. Perlman (Florida Institute of Technology) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Revealing the Physical Properties of GMC Complexes in the Spiral Arms of NGC 6946

    NASA Astrophysics Data System (ADS)

    Topal, Selçuk; Bayet, Estelle; Bureau, Martin; Walsh, Wilfred; Davis, Timothy A.

    2013-03-01

    In this study, we probe for the first time the molecular gas physical properties of several star forming regions located in the arms and inter-arms of the spiral galaxy NGC 6946. Combining our observations with additional data found in the literature, we provide in this study the most complete CO ladder ever obtained in these inter-arm and arm regions, i.e. the CO(1-0, 2-1, 3-2, 4-3, 6-5) and 13CO(1-0, 2-1) transitions. For each region studied, we use more precisely the large velocity gradient (LVG) assumption in order to derive the beam-averaged molecular gas physical properties. Namely, we obtained the gas kinetic temperature (i.e. 'best' T K), volume number gas density (i.e. 'best' n(H2)) and CO column density (i.e. 'best' N(CO)) which best reproduce the data for 8 regions investigated. Optical depths were also estimated for a large variety of CO lines in these regions. To identify the best values found, we used two complementary theoretical approaches when comparing the model predictions with the observations, i.e. the χ2 minimisation and the likelihood. Very different physical conditions for the molecular gas from a region to another have been obtained: T K ranges from 10 to 250 K, n(H2) ranges from 102.3 to 107.0 cm-3 and N(CO) ranges from 1015.0 to 1019.3 cm-2 among the arm and inter-arm regions. For each region probed, we also published for the first time the CO spectral line energy distribution (SLED) from CO(1-0) to CO(10-9) for this galaxy, mixing observations and model predictions which provide an essential insight for future follow-up observational programmes. Finally, in this work, we discuss the physical properties we obtained for each region in relation with the presence of young stellar population characteristics such as supernovae remnants (SNRs), Hi holes, Hii regions.

  14. Nature of the wiggle instability of galactic spiral shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less

  15. The massive halos of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Zaritsky, Dennis; White, Simon D. M.

    1994-01-01

    We use a sample of satellite galaxies to demonstrate the existence of extended massive dark halos around spiral galaxies. Isolated spirals with rotation velocities near 250 km/s have a typical halo mass within 200 kpc of 1.5-2.6 x 10(exp 12) solar mass (90% confidence range for H(sub 0) = 75 km/s/Mpc). This result is most easily derived using standard mass estimator techniques, but such techniques do not account for the strong observational selection effects in the sample, nor for the extended mass distributions that the data imply. These complications can be addressed using scale-free models similar to those previously employed to study binary galaxies. When satellite velocities are assumed isotropic, both methods imply massive and extended halos. However, the derived masses depend sensitively on the assumed shape of satellite orbits. Furthermore, both methods ignore the fact that many of the satellites in the sample have orbital periods comparable to the Hubble time. The orbital phases of such satellites cannot be random, and their distribution in radius cannot be freely adjusted; rather these properties reflect ongoing infall onto the outer halos of their primaries. We use detailed dynamical models for halo formation to evaluate these problems, and we devise a maximum likelihood technique for estimating the parameters of such models from the data. The most strongly constrained parameter is the mass within 200-300 kpc, giving the confidence limits quoted above. The eccentricity, e, of satellite orbits is also strongly constrained, 0.50 less than e less than 0.88 at 90% confidence, implying a near-isotropic distribution of satellite velocities. The cosmic density parameter in the vicinity of our isolated halos exceeds 0.13 at 90% confidence, with preferred values exceeding 0.3.

  16. Stellar orbits in the Galaxy and mass extinctions on the Earth: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lepine, J.; Lorenzo-Oliveira, D.; Kazu, R. S.

    2014-03-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms (Dias & Lepine 2005). Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions (Bailer-Jones 2009). Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment (Clube & Napier 1982); a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages (Gies & Helsel 2005); and the destruction of Earth's ozone layer posed by supernova explosions (Gehrels et al 2003). We present detailed calculations of the history of spiral arm passages for all 212 solartype stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 million years, when the spiral arm position can be traced with good accuracy. There is a very large diversity of stellar orbits amongst solar neighborhood solar-type stars, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 40% of its lifetime crossing the spiral arms, more than nearly all nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass

  17. HUBBLE REVEALS THE HEART OF THE WHIRLPOOL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images from NASA's Hubble Space Telescope are helping researchers view in unprecedented detail the spiral arms and dust clouds of a nearby galaxy, which are the birth sites of massive and luminous stars. The Whirlpool galaxy, M51, has been one of the most photogenic galaxies in amateur and professional astronomy. Easily photographed and viewed by smaller telescopes, this celestial beauty is studied extensively in a range of wavelengths by large ground- and space-based observatories. This Hubble composite image shows visible starlight as well as light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms. M51, also known as NGC 5194, is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of this image. The companion's gravitational pull is triggering star formation in the main galaxy, as seen in brilliant detail by numerous, luminous clusters of young and energetic stars. The bright clusters are highlighted in red by their associated emission from glowing hydrogen gas. This Wide Field Planetary Camera 2 image enables a research group, led by Nick Scoville (Caltech), to clearly define the structure of both the cold dust clouds and the hot hydrogen and link individual clusters to their parent dust clouds. Team members include M. Polletta (U. Geneva); S. Ewald and S. Stolovy (Caltech); R. Thompson and M. Rieke (U. of Arizona). Intricate structure is also seen for the first time in the dust clouds. Along the spiral arms, dust 'spurs' are seen branching out almost perpendicular to the main spiral arms. The regularity and large number of these features suggests to astronomers that previous models of 'two-arm' spiral galaxies may need to be revisited. The new images also reveal a dust disk in the nucleus, which may provide fuel for a nuclear black hole. The team is also studying this galaxy at near-infrared wavelengths with the NICMOS instrument onboard Hubble. At these

  18. RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu

    2012-09-10

    From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less

  19. Simulations of the flocculent spiral M33: what drives the spiral structure?

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pettitt, A. R.; Corbelli, E.; Pringle, J. E.

    2018-05-01

    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined Q (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of Qstars with most of these models, however, because Qstars stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.

  20. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  1. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  2. Molecular gas mass and star formation of 12 Virgo spiral galaxies along the ram pressure time sequence

    NASA Astrophysics Data System (ADS)

    Chung, Eun Jung; Kim, S.

    2014-01-01

    The ram pressure stripping is known as one of the most efficient mechanisms to deplete the ISM of a galaxy in the clusters of galaxies. As being affected continuously by ICM pressure, a galaxy may lose their gas that is the fuel of star formation, and consequently star formation rate would be changed. We select twelve Virgo spiral galaxies according to their stage of the ram pressure stripping event to probe possible consequences of star formation of spiral galaxies in the ram pressure and thus the evolution of galaxies in the Virgo cluster. We investigate the molecular gas properties, star formation activity, and gas depletion time along the time from the ram pressure peak. We also discussed the evolution of galaxies in the cluster.

  3. H II Regions in the Disks of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rozas, M.

    1997-06-01

    The objective of the research presented in the thesis is to use photometrically calibrated high quality images in \\ha\\ of the disks of spiral galaxies to study their global star forming properties. In the first part of the study we catalog and study statistically the \\hii\\ regions in a set of spirals, imaged in \\ha\\ . The observed parameters of each region are its fluxes and diameters, from which we can also derive the mean surface brightness and its internal radial gradient (the latter for the largest most luminous regions). Plotting the luminosity function (LF) for a given galaxy (the number of regions versus \\ha\\ flux) we find a characteristic discontinuity: a peak accompanied by a change in gradient of the function, at a luminosity of 10$^{38.6}$ erg s$^{-1}$ per region. We attribute this to the change from ionization-bounded \\hii\\ regions, at luminosities below the transition, to density-bounded regions above the transition, and explain with a quantitative model based on this assumption why the transition takes place at a well-defined luminosity, and one which varies very little from galaxy to galaxy. In the six galaxies observed and analyzed in this way, the variance is 0.07 mag., making the transition a good prima facie candidate to be a powerful standard candle for accurate extragalactic distance measurements. Confirmation of the nature of the transition is provided by measurements of the internal brightness gradients, which show a jump from a constant value (predicted for ionization bounded regions) below the transition to a larger and increasing value above the transition. The theoretical model which can account for the transition was used to show how the gradients of the LF in the ionization bounded and the density bounded regimes can be used to derive the mass function of the ionizing stars in regions close to the transition luminosity, yielding a mean value for the slope of the MF in the galaxies observed of -2.4; the brightest stars in these

  4. Radio Map of the Andromeda Galaxy.

    PubMed

    Macleod, J M

    1964-07-24

    The University of Illinois radio telescope has resolved the 610.5 Mcy/sec disk component of radio emission from the large galaxy M 31 into several discrete concentrations. In two cases, these correspond to the crossing of the optical major axis by spiral arms. A spur of emission extends southeast from the galaxy near the minor axis.

  5. The distribution of mass for spiral galaxies in clusters and in the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, D.A.; Whitmore, B.C.

    1989-04-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense thatmore » mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs.« less

  6. The Near-Infrared Ca II Triplet-σ Relation for Bulges of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Peletier, Reynier F.; Vazdekis, Alexandre; Balcells, Marc

    2003-05-01

    We present measurements of the near-infrared Ca II triplet (CaT, CaT*), Paschen (PaT), and magnesium (Mg I) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decrease with central velocity dispersion σ with small scatter. This dependence is similar to that recently found by Cenarro for elliptical galaxies, implying a uniform CaT*-σ relation that applies to galaxies from ellipticals to intermediate-type spirals. The decrease of CaT and CaT* with σ contrasts with the well-known increase of another α-element index, Mg2, with σ. We discuss the role of Ca underabundance ([Ca/Fe]<0) and initial mass function variations in the onset of the observed relations.

  7. Kinematic classification of non-interacting spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wiegert, Theresa; English, Jayanne

    2014-01-01

    Using neutral hydrogen (HI) rotation curves of 79 galaxies, culled from the literature, as well as measured from HI data, we present a method for classifying disk galaxies by their kinematics. In order to investigate fundamental kinematic properties we concentrate on non-interacting spiral galaxies. We employ a simple parameterized form for the rotation curve in order to derive the three parameters: the maximum rotational velocity, the turnover radius and a measure of the slope of the rotation curve beyond the turnover radius. Our approach uses the statistical Hierarchical Clustering method to guide our division of the resultant 3D distribution of galaxies into five classes. Comparing the kinematic classes in this preliminary classification scheme to a number of galaxy properties, we find that our class containing galaxies with the largest rotational velocities has a mean morphological type of Sb/Sbc while the other classes tend to later types. Other trends also generally agree with those described by previous researchers. In particular we confirm correlations between increasing maximum rotational velocity and the following observed properties: increasing brightness in B-band, increasing size of the optical disk (D25) and increasing star formation rate (as derived using radio continuum data). Our analysis also suggests that lower velocities are associated with a higher ratio of the HI mass over the dynamical mass. Additionally, three galaxies exhibit a drop in rotational velocity amplitude of ≳20% after the turnover radius. However recent investigations suggest that they have interacted with minor companions which is a common cause for declining rotation curves.

  8. Fingerprints of nucleosynthesis in the local spiral arm

    NASA Technical Reports Server (NTRS)

    Knoedlseder, J.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Oberlack, U.; Ryan, J.; Schoenfelder, V.; vonBallmoos, P.

    1997-01-01

    The local spiral arm with its inherent massive star population is a natural site of recent nucleosynthesis activity. The features found in 1.8 MeV observation of candidate Al-26 sources situated in this structure are discussed. The emphasis is on Loop 1, a nearby superbubble which is possibly the site of a recent supernova explosion.

  9. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    NASA Technical Reports Server (NTRS)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  10. XMM-NEWTON DETECTS A HOT GASEOUS HALO IN THE FASTEST ROTATING SPIRAL GALAXY UGC 12591

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Xinyu; Anderson, Michael E.; Bregman, Joel N.

    2012-08-20

    We present our XMM-Newton observation of the fastest rotating spiral galaxy UGC 12591. We detect hot gas halo emission out to 80 kpc from the galaxy center, and constrain the halo gas mass to be smaller than 4.5 Multiplication-Sign 10{sup 11} M{sub Sun }. We also measure the temperature of the hot gas as T = 0.64 {+-} 0.03 keV. Combining our x-ray constraints and the near-infrared and radio measurements in the literature, we find a baryon mass fraction of 0.03-0.05 in UGC 12591, suggesting a missing baryon mass of 70% compared with the cosmological mean value. Combined with anothermore » recent measurement in NGC 1961, the result strongly argues that the majority of missing baryons in spiral galaxies do not reside in their hot halos. We also find that UGC 12591 lies significantly below the baryonic Tully-Fisher relationship. Finally, we find that the baryon fractions of massive spiral galaxies are similar to those of galaxy groups with similar masses, indicating that the baryon loss is ultimately controlled by the gravitational potential well. The cooling radius of this gas halo is small, similar to NGC 1961, which argues that the majority of the stellar mass of this galaxy is not assembled as a result of cooling of this gas halo.« less

  11. DOES THE MILKY WAY OBEY SPIRAL GALAXY SCALING RELATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licquia, Timothy C.; Newman, Jeffrey A.; Bershady, Matthew A., E-mail: tcl15@pitt.edu, E-mail: janewman@pitt.edu, E-mail: mab@astro.wisc.edu

    2016-12-20

    It is crucial to understand how the Milky Way (MW), the galaxy we can study in the most intimate detail, fits in among other galaxies. Key considerations include the Tully–Fisher relation (TFR)—i.e., the tight correlation between luminosity ( L ) and rotational velocity ( V {sub rot})—and the three-dimensional luminosity–velocity–radius ( LVR ) scaling relation. Several past studies have characterized the MW as a 1–1.5 σ outlier to the TFR. This study re-examines such comparisons using new estimates of MW properties that are robust to many of the systematic uncertainties that have been a problem in the past and aremore » based on assumptions consistent with those used for other spiral galaxies. Comparing to scaling relations derived from modern extragalactic data, we find that our Galaxy’s properties are in excellent agreement with TFRs defined using any Sloan Digital Sky Survey-filter absolute magnitude, stellar mass, or baryonic mass as the L proxy. We next utilize disk scale length ( R {sub d}) measurements to extend this investigation to the LVR relation. Here we find that our Galaxy lies farther from the relation than ∼90% of other spiral galaxies, yielding ∼9.5 σ evidence that it is unusually compact for its L and V {sub rot} (based on MW errors alone), a result that holds for all of the L proxies considered. The expected R {sub d} for the MW from the LVR relation is ∼5 kpc, nearly twice as large as the observed value, with error estimates placing the two in tension at the ∼1.4 σ level. The compact scale length of the Galactic disk could be related to other ways in which the MW has been found to be anomalous.« less

  12. Does the Milky Way Obey Spiral Galaxy Scaling Relations?

    NASA Astrophysics Data System (ADS)

    Licquia, Timothy C.; Newman, Jeffrey A.; Bershady, Matthew A.

    2016-12-01

    It is crucial to understand how the Milky Way (MW), the galaxy we can study in the most intimate detail, fits in among other galaxies. Key considerations include the Tully-Fisher relation (TFR)—I.e., the tight correlation between luminosity (L) and rotational velocity (V rot)—and the three-dimensional luminosity-velocity-radius (LVR) scaling relation. Several past studies have characterized the MW as a 1-1.5σ outlier to the TFR. This study re-examines such comparisons using new estimates of MW properties that are robust to many of the systematic uncertainties that have been a problem in the past and are based on assumptions consistent with those used for other spiral galaxies. Comparing to scaling relations derived from modern extragalactic data, we find that our Galaxy’s properties are in excellent agreement with TFRs defined using any Sloan Digital Sky Survey-filter absolute magnitude, stellar mass, or baryonic mass as the L proxy. We next utilize disk scale length (R d) measurements to extend this investigation to the LVR relation. Here we find that our Galaxy lies farther from the relation than ˜90% of other spiral galaxies, yielding ˜9.5σ evidence that it is unusually compact for its L and V rot (based on MW errors alone), a result that holds for all of the L proxies considered. The expected R d for the MW from the LVR relation is ˜5 kpc, nearly twice as large as the observed value, with error estimates placing the two in tension at the ˜1.4σ level. The compact scale length of the Galactic disk could be related to other ways in which the MW has been found to be anomalous.

  13. A molecular gas ridge offset from the dust lane in a spiral arm of M83

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.; Kenney, Jeffrey D. P.

    1991-01-01

    A high-resolution interferometric map of the CO emission on the eastern spiral arm of M83 is presented. The detected emission originates in about five unresolved components located parallel but about 300 pc downstream from the dust lane which lies along the inner edge of the spiral arm. All the CO components in the map but one are located within 130 pc of an H II region and may represent emission from locally heated gas. The lack of CO emission on the dust lane indicates that the dense molecular gas does not pile up here in M83. Remarkable differences between the molecular gas distributions in M83 and the spiral arms or M51, where CO emission peaks on the dust lane, is attributed to the difference in the strength of their density waves. The observations of M83 are consistent with the model of Elmegreen in which diffuse gas is compressed at the shock front, producing the dust lane at the inner edge of the spiral arm while dense giant molecular clouds pass through the front and form a broad distribution on the arm.

  14. Chemical evolution in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Torres-Peimbert, S.

    1986-01-01

    A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.

  15. AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2016-01-01

    Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the ∼1.7 M{sub ⊙} Herbig star HD 100453. A ∼0.3 M{sub ⊙} M dwarf companion, HD 100453 B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at ∼45 AU in scattered light images, and excites two spiral arms in themore » remaining (circumprimary) disk with a near m = 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle ∼5°), and that the entire disk-companion system rotates counterclockwise on the sky. The HD 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems.« less

  16. Multi-wavelength observations of barred, flocculent galaxies

    NASA Astrophysics Data System (ADS)

    Ratay, Douglas Lee

    Although it is generally accepted that large galaxies form through the assemblage of smaller objects, an explanation for the morphology of galaxies is not available. Any complete theory of galaxy morphology must include production and dissolution mechanisms for galactic bars, rings, nuclear bars, spiral arms, and companions. This theory does not exist because of the lack of detailed data from many types of galaxies in different environments. We have defined a new sample of galaxies which are simultaneously flocculent, barred, and isolated. We have performed optical, near-infrared, and radio (HI) observations of the galaxies in this sample. We measured properties of our galaxies including bar length, bar axis ratio, HI diameter, HI mass, and dynamical mass. We found that our sample group is heterogeneous, and compares well to a standard samples of galaxies. We found two of our galaxies to possess companions, and two others to show evidence of current interactions. This is consistent with other observations indicating that local isolated galaxies do not possess a large number of small companions. We cannot rule out the possibility of very small companions. We find that as a group our sample is slightly less luminous than normal galaxies and may be more likely to be involved in interactions. We conclude that the bar and spiral arm features in our sample are due to processes internal to the galaxies, likely involving the interaction between the galactic disk and halo. We defined a control sample of barred, grand design galaxies to further determine the acceptability of barred, flocculent galaxies as a physically meaningful subset of galaxies.

  17. A Study of Interstellar Medium Components of the Ohio State University Bright Spiral Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Butner, Melissa; Deustua, S. E.; Conti, A.; Smtih, J.

    2011-01-01

    Multi-wavelength data can be used to provide information on the interstellar medium of galaxies, as well as on their stellar populations. We use the Ohio State University Bright Spiral Galaxy Survey (OSBSGS) to investigate the distribution and properties of the interstellar medium in a set of nearby galaxies. The OSBSGS consists of B, V, R, J, H and K band images for a over 200 nearby spiral galaxies. These data allow us to probe the dust temperatures and distribution using color maps. When combined with a pixel based analysis, it may be possible to tease out, perhaps better constraining, the heating mechanism for the ISM, as well as constrain dust models. In this paper we will discuss our progress in understanding, in particular, the properties of dust in nearby galaxies. Melissa Butner was a participant in the STScI Summer Student Program supported by the STScI Director's Discretionary Research Fund. MB also acknowledges support and computer cluster access via NSF grant 07-22890.

  18. A study of the H I and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars

    NASA Astrophysics Data System (ADS)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.

    2018-06-01

    We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.

  19. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor aremore » positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.« less

  20. Photometric Properties of Face-on Isolated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bahr, Alexander; Epstein, P.; Durbala, A.

    2011-05-01

    We want to quantify the relative role of nature versus nurture in defining the observed properties of galaxies. In simpler terms we would like to disentangle the ``genetic'’ and the environmental influences in shaping the morphology of galaxies. In order to do that one needs to firstly define a zero-order baseline, i.e., a sample of galaxies that have been minimally perturbed by neighbors in the last few billion years of their existence. Such a sample has been produced and refined in different stages in the context of the AMIGA international project (www.iaa.es/AMIGA.html). The recent catalogue ``The All-Sky Catalog of Isolated Galaxies Selected from 2MASS'’ (Karachentseva, V. E. et al. 2010) allows us to complete and enrich the initial sample constructed within AMIGA with new objects, thus enhancing the statistical relevance of our study. Our focus is to define a subset of isolated disk spiral galaxies. We constrain the sample selection by: 1) orientation, restricting to almost face-on galaxies and 2) availability of good photometric images in SDSS. The goal is to ``dissect'’ (decompose) these galaxies in major components (disk, bulge, bars, etc.) and to study the properties of the components in a statistical context. Having a reasonable representation of all morphological types, we aim to test the bimodality of bulges and bars. We present a progress report of our work.

  1. Environmental Variations in the Atomic and Molecular Gas Radial Profiles of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine; JCMT Nearby Galaxies Legacy Survey

    2017-01-01

    We present an analysis of the radial profiles of a sample of 43 HI-flux selected spiral galaxies from the Nearby Galaxies Legacy Survey (NGLS) with resolved James Clerk Maxwell Telescope (JCMT) CO J= 3-2 and/or Very Large Array (VLA) HI maps. Comparing the Virgo and non-Virgo populations, we confirm that the HI disks are truncated in the Virgo sample, even for these relatively HI-rich galaxies. On the other hand, the H2 distribution is enhanced for Virgo galaxies near their centres, resulting in higher H2 to HI ratios and steeper H2 and total gas radial profiles. This is likely due to the effects of moderate ram pressure stripping in the cluster environment, which would preferentially remove low density gas in the outskirts while enhancing higher density gas near the centre. Combined with Hα star formation rate data, we find that the star formation efficiency (SFR/H2) is relatively constant with radius for both samples, but Virgo galaxies have a ˜40% lower star formation efficiency than non-Virgo galaxies. These results suggest that the environment of spiral galaxies can play an important role in the formation of molecular gas and the star formation process.

  2. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  3. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    PubMed

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  4. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    NASA Astrophysics Data System (ADS)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  5. The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander

    2013-04-01

    New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.

  6. DETECTION OF A HOT GASEOUS HALO AROUND THE GIANT SPIRAL GALAXY NGC 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael E.; Bregman, Joel N., E-mail: michevan@umich.edu, E-mail: jbregman@umich.edu

    2011-08-10

    Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We used the ACIS-I instrument on board Chandra to search for diffuse X-ray emission around an ideal candidate galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully subtracting background and point-source emission, and found diffuse emission that appears to extend to 40-50 kpc. We fit {beta}-models to the emission and estimate a hot halo massmore » within 50 kpc of 5 x 10{sup 9} M{sub sun}. When this profile is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1-3 x 10{sup 11} M{sub sun}. These mass estimates assume a gas metallicity of Z = 0.5 Z{sub sun}. This galaxy's hot halo is a large reservoir of gas, but falls significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75% of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 M{sub sun} yr{sup -1}, more than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of this halo for galaxy formation models.« less

  7. Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2013-04-01

    All galaxies began as spiral galaxies. The early universe began with sets of two or more pre-galactic arms orbiting each other. As gravitational attraction between the arms took effect, the fore-sections of the arms tangentially collided forming spiral galaxies when they attached with the orbital motion of the arms being converted to the rotational motion of the newly formed spiral galaxies or (Iφ)arm1+ (Iφ)arm2+ ...+ (Iφ)armn= (Iφ)galaxy. If the centripetal force on the arms is more than the gravitational force on the arms, the spiral galaxy remains a spiral galaxy i.e. mv^2/r>=Gmarmmgalaxy/r^2. If the galaxy is slowly rotating, the spiral arms collapse into the body of the galaxy because the gravitational force is greater than the centripetal force on the arms and an elliptical galaxy is formed i.e. mv^2/r < Gmarmsmgalaxy/r^2.

  8. New velocimetry and revised cartography of the spiral arms in the Milky Way—a consistent symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.vallee@cnrc.gc.ca

    Recent advances in the determinations of the positions (pitch angle, shape, numbers, interarm separation) and velocities (rotation curve) of the spiral arms are evaluated and compared to previous determinations. Based on these results, an average cartographic model is developed that fits the means of basic input data and provides predictions for the locations of the arms in the Milky Way, for each galactic quadrant. For each spiral arm segment in each galactic quadrant, the LSR radial velocities are calculated for the radial distance as well as for its galactic longitude. From our velocimetric model, arm intercepts (between line of sightsmore » and spiral arms) are indicated in velocity space and may be used to find the distance and velocity to any arm, in a given longitude range. Velocity comparisons between model predictions and published CO velocity distribution are done for each galactic quadrant, with good results. Our velocimetric model is not hydromagnetic in character, nor is it a particle-simulation scheme, yet it is simple to use for comparisons with the observations and it is in symbiosis and consistent with our cartographic model (itself simple to use for comparisons with observations). A blending in velocity of the Perseus and Cygnus arms is further demonstrated, as well as an apparent longitude-velocity blending of the starting points of the four spiral arms near 4 kpc (not a physical ring). An integrated (distance, velocity) model for the mass in the disk is employed, to yield the total mass of 3.0 × 10{sup 11} M{sub ☉} within a galactic radius of 28 kpc.« less

  9. The galaxy NGC 1566 - Distribution and kinematics of the ionized gas

    NASA Astrophysics Data System (ADS)

    Comte, G.; Duquennoy, A.

    1982-10-01

    H-alpha narrowband observations are the basis of a study of ionized hydrogen in the large spiral galaxy NGC 1566 which has yielded a catalog of 418 H II regions covering the main body of the galaxy, supplemented by 59 positions and estimated H-alpha luminosities for regions located in the pseudo-outer ring where no H-alpha plate is available. A discussion of luminosity function, diameter distribution and spiral structure notes evidence for a double two-armed spiral pattern. The plane of the galaxy appears warped, and the efficiency of the two different spiral patterns in star formation is different. A preliminary radial velocity field is determined from three interferograms in H-alpha light, and is found to be acceptably fitted by a simple bulge-plus-disk dynamical model in which the apparent disk mass-to-light ratio sharply increases from center to edge.

  10. REVIEWS OF TOPICAL PROBLEMS: Prediction and discovery of new structures in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, Aleksei M.

    2007-02-01

    A review is given of the last 20 years of published research into the nature, origin mechanisms, and observed features of spiral-vortex structures found in galaxies. The so-called rotating shallow water experiments are briefly discussed, carried out with a facility designed by the present author and built at the Russian Scientific Center 'Kurchatov Institute' to model the origin of galactic spiral structures. The discovery of new vortex-anticyclone structures in these experiments stimulated searching for them astronomically using the RAS Special Astrophysical Observatory's 6-meter BTA optical telescope, formerly the world's and now Europe's largest. Seven years after the pioneering experiments, Afanasyev and the present author discovered the predicted giant anticyclones in the galaxy Mrk 1040 by using BTA. Somewhat later, the theoretical prediction of giant cyclones in spiral galaxies was made, also to be verified by BTA afterwards. To use the observed line-of-sight velocity field for reconstructing the 3D velocity vector distribution in a galactic disk, a method for solving a problem from the class of ill-posed astrophysical problems was developed by the present author and colleagues. In addition to the vortex structure, other new features were discovered — in particular, slow bars (another theoretical prediction), for whose discovery an observational test capable of distinguishing them from their earlier-studied normal (fast) counterparts was designed.

  11. Spiral Structure Dynamics in Pure Stellar Disk Models

    NASA Astrophysics Data System (ADS)

    Valencia-Enríquez, D.; Puerari, I.

    2014-03-01

    In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion (σR,0) and the disk scale height (zd). We analyzed the growth of spiral structures using 1D and 2D Fourier Transform (FT1D and FT2D respectively). The FT1D was used to obtain the angular velocities of non-axisymmetric structures which grow in the stellar disks. In all of our simulations the measured angular velocity of spiral patterns are well confined by the resonances given by the curves Ω±κ/m. The FT2D gives the amplitude of a particular spiral structure represented by two Fourier frequencies: m, number of arms; and p, related to the pitch angle as atan(-m/p). We present, for the first time, plots of the Fourier amplitude |A(p,m)| as a function of time which clearly demonstrates the swing amplification mechanism in the simulated stellar disks. In our simulations, the spiral waves appear as leading spiral structures evolving towards open trailing patterns and fade out as tightly wound spirals.

  12. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less

  13. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  14. Dust energy balance study of two edge-on spiral galaxies in the Herschel-ATLAS survey

    NASA Astrophysics Data System (ADS)

    De Geyter, Gert; Baes, Maarten; De Looze, Ilse; Bendo, George J.; Bourne, Nathan; Camps, Peter; Cooray, Asantha; De Zotti, Gianfranco; Dunne, Loretta; Dye, Simon; Eales, Steve A.; Fritz, Jacopo; Furlanetto, Cristina; Gentile, Gianfranco; Hughes, Thomas M.; Ivison, Rob J.; Maddox, Steve J.; Michałowski, Michał J.; Smith, Matthew W. L.; Valiante, Elisabetta; Viaene, Sébastien

    2015-08-01

    Interstellar dust in galaxies can be traced either through its extinction effects on the star light or through its thermal emission at infrared wavelengths. Recent radiative transfer studies of several nearby edge-on galaxies have found an apparent inconsistency in the dust energy balance: the radiative transfer models that successfully explain the optical extinction underestimate the observed fluxes by an average factor of 3. We investigate the dust energy balance for IC 4225 and NGC 5166, two edge-on spiral galaxies observed by the Herschel Space Observatory in the frame of the H-ATLAS survey. We start from models which were constrained from optical data and extend them to construct the entire spectral energy distribution of our galaxies. These predicted values are subsequently compared to the observed far-infrared fluxes. We find that including a young stellar population in the modelling is necessary as it plays a non-negligible part in the heating of the dust grains. While the modelling approach for both galaxies is nearly identical, we find two very different results. As is often seen in other edge-on spiral galaxies, the far-infrared emission of our radiative transfer model of IC 4225 underestimates the observed fluxes by a factor of about 3. For NGC 5166 on the other hand, we find that both the predicted spectral energy distribution as well as the simulated images match the observations particularly well. We explore possible reasons for this difference and conclude that it is unlikely that one single mechanism is the cause of the dust energy balance problem in spiral galaxies. We discuss the different approaches that can be considered in order to get a conclusive answer on the origin this discrepancy.

  15. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, H. B.

    2016-08-01

    We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.

  16. Uncovering the origins of spiral structure through the measurement of pattern speeds and their radial variation

    NASA Astrophysics Data System (ADS)

    Meidt, Sharon E.

    At the intersection of galactic dynamics, evolution and global structure, unresolved issues in the nature and origin of spirals can be addressed through the characterization of the angular speeds of the patterns and their possible radial variation. In this thesis I describe the development, testing, and application of the Radial Tremaine-Weinberg (TWR) Method, a generalized version of the continuity-based TW method wherein the pattern speed is allowed to vary arbitrarily with radius. I will address the utility of, and caveats in applying, the TWR calculation together with a standard regularization technique in a series of tests on N- body simulations. The regularization, which smooths otherwise intrinsically noisy solutions based on a priori assumptions for the radial dependence of the pattern speed, proves to be essential for achieving the radial precision necessary for accurate measurement. I also present results from applications of the TWR method to observations of real galaxies, where the possible sources and sinks in the continuity equation are well understood. Using CO observations of the grand design galaxy M51, the TWR method reveals a heretofore un-measured inner spiral pattern speed for the bright two-armed spiral structure, with a value significantly higher than conventional estimates. In addition, the radial dependence implied in the TWR solution suggests a possible resonant link between the inner and outer regions of the bright spiral arms. These findings signify an advance in observational investigations into the nature and origin of grand-design spiral structure. By analyzing high-quality HI and CO data cubes available for four other spiral galaxies, the characteristic signatures of the processes that drive spiral structure are likewise identifiable; within this small sample, the first direct evidence for the presence of resonant coupling of multiple distinct patterns is found in some galaxies, while a simple single pattern speed is measured in

  17. Two-component gravitational instability in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Marchuk, A. A.; Sotnikova, N. Y.

    2018-04-01

    We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.

  18. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag.more » We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.« less

  19. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  20. Hubble Sees Elegant Spiral Hiding a Hungry Monster

    NASA Image and Video Library

    2017-12-08

    NGC 4639 is a beautiful example of a type of galaxy known as a barred spiral. It lies over 70 million light-years away in the constellation of Virgo and is one of about 1,500 galaxies that make up the Virgo Cluster. In this image, taken by the NASA/ESA Hubble Space Telescope, one can clearly see the bar running through the bright, round core of the galaxy. Bars are found in around two-thirds of spiral galaxies, and are thought to be a natural phase in their evolution. The galaxy’s spiral arms are sprinkled with bright regions of active star formation. Each of these tiny jewels is actually several hundred light-years across and contains hundreds or thousands of newly formed stars. But NGC 4639 also conceals a dark secret in its core — a massive black hole that is consuming the surrounding gas. This is known as an active galactic nucleus (AGN), and is revealed by characteristic features in the spectrum of light from the galaxy and by X-rays produced close to the black hole as the hot gas plunges towards it. Most galaxies are thought to contain a black hole at the center. NGC 4639 is in fact a very weak example of an AGN, demonstrating that AGNs exist over a large range of activity, from galaxies like NGC 4639 to distant quasars, where the parent galaxy is almost completely dominated by the emissions from the AGN. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The relationship between the carbon monoxide intensity and the radio continuum emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Lo, K. Y.; Allen, Ronald J.

    1991-01-01

    The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.

  2. Hubble Views 'Third Kind' of Galaxy

    NASA Image and Video Library

    2017-12-08

    The subject of this image is NGC 6861, a galaxy discovered in 1826 by the Scottish astronomer James Dunlop. Almost two centuries later we now know that NGC 6861 is the second brightest member of a group of at least a dozen galaxies called the Telescopium Group — otherwise known as the NGC 6868 Group — in the small constellation of Telescopium (The Telescope). This NASA/ESA Hubble Space Telescope view shows some important details of NGC 6861. One of the most prominent features is the disk of dark bands circling the centre of the galaxy. These dust lanes are a result of large clouds of dust particles obscuring the light emitted by the stars behind them. Dust lanes are very useful for working out whether we are seeing the galaxy disk edge-on, face-on or, as is the case for NGC 6861, somewhat in the middle. Dust lanes like these are typical of a spiral galaxy. The dust lanes are embedded in a white oval shape, which is made up of huge numbers of stars orbiting the center of the galaxy. This oval is, rather puzzlingly, typical of an elliptical galaxy. So which is it — spiral or elliptical? The answer is neither! NGC 6861 does not belong to either the spiral or the elliptical family of galaxies. It is a lenticular galaxy, a family which has features of both spirals and ellipticals. The relationships between these three kinds of galaxies are not yet well understood. A lenticular galaxy could be a faded spiral that has run out of gas and lost its arms, or the result of two galaxies merging. Being part of a group increases the chances for galactic mergers, so this could be the case for NGC 6861. Credit: ESA/Hubble & NASA; acknowledgement: J. Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  3. Diagnostics of dust content in spiral galaxies: Numerical simulations of radiative transfer

    NASA Technical Reports Server (NTRS)

    Byun, Y. I.; Freeman, K. C.; Kylafis, N. D.

    1994-01-01

    In order to find the best observable diagnostics for the amount of internal extinction within spiral galaxies, we have constructed realistic models for disk galaxies with immersed dust layers. The radiative transfer including both scattering and absorption has been computed for a range of model galaxies in various orientations. Standard galaxy surface photometry techniques were then applied to the numerical data to illustrate how different observables such as total magnitude, color and luminosity distribution behave under given conditions of dust distribution. This work reveals a set of superior diagnostics for the dust in the disk. These include not only the integrated parameters, but also the apparent disk structural parameters, the amplitude of the asymmetry between the near and far sides of the galaxy as divided by the apparent major axis and their dependence on the orientation of the galaxy with respect to the observer. Combining the above diagnostics with our impressions of real galaxies, we arrive at the qualitative conclusion that galaxy disks are generally optically thin. Quantitative conclusions will appear in subsequent work.

  4. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  5. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  6. Evolution in the Dust Lane Fraction of Edge-on L* V Spiral Galaxies Since z = 0.8

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Dalcanton, J. J.; Radburn-Smith, D.; de Jong, R. S.; Guhathakurta, P.; Koekemoer, A.; Allen, R. J.; Böker, T.

    2012-07-01

    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z ~ 1 extracted from the COSMOS survey, we identify the fraction of massive (L* V ) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, and cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L* V disks with dust lanes in COSMOS is consistent with the local fraction (≈80%) out to z ~ 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.

  7. Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1988-01-01

    Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.

  8. Clues to the Formation of Spiral Structure in M51 from the Ages and Locations of Star Clusters

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali; Chien, L.-H.; Meidt, Sharon; Querejeta, Miguel; Dobbs, Clare; Schinnerer, Eva; Whitmore, Bradley C.; Calzetti, Daniela; Dinino, Daiana; Kennicutt, Robert C.; Regan, Michael

    2017-08-01

    We determine the spatial distributions of star clusters at different ages in the grand-design spiral galaxy M51 using a new catalog based on multi-band images taken with the Hubble Space Telescope (HST). These distributions, when compared with the spiral structure defined by molecular gas, dust, young and old stars, show the following sequence in the inner arms: dense molecular gas (and dust) defines the inner edge of the spiral structure, followed by an overdensity of old stars and then young stellar clusters. The offset between gas and young clusters in the inner arms is consistent with the expectations for a density wave. Clusters as old as a few hundred Myr remain concentrated close to the spiral arms, although the distributions are broader than those for the youngest clusters, which is also consistent with predictions from density wave simulations. The outermost portion of the west arm is different from the rest of the spiral structure in that it contains primarily intermediate-age (≈ 100{--}400 {Myr}) clusters; we believe that this is a “material” arm. We have identified four “feathers,” stellar structures beyond the inner arms that have a larger pitch angle than the arms. We do not find age gradients along any of the feathers, but the least coherent feathers appear to have the largest range of cluster ages.

  9. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  10. GHASP: an Hα kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry.

    NASA Astrophysics Data System (ADS)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-04-01

    We present the mass distribution of a sample of 121 nearby galaxies with high quality optical velocity fields and available infra-red WISE 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased toward late-type galaxies. These galaxies are part of the Fabry-Perot kinematical GHASP survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter halo mass distribution in the optical regions of those galaxies. Dark matter (DM) models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the M/L of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 color) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  11. A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744

    NASA Astrophysics Data System (ADS)

    Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.

    2018-03-01

    We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.

  12. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  13. Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation-stellar mass relation of spiral galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.

    2014-02-01

    We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.

  14. Quasar Probing Galaxies: New Constraints on Cold Gas Accretion at Z=0.2

    NASA Astrophysics Data System (ADS)

    Ho, Stephanie H.

    2017-07-01

    Galactic disks grow by accreting cooling gas from the circumgalactic medium, and yet direct observations of inflowing gas remain sparse. We observed quasars behind star-forming galaxies and measured the kinematics of circumgalactic absorption. Near the galaxy plane, the Mg II Doppler shifts share the same sign as the galactic rotation, which implies the gas co-rotates with the galaxy disk. However, a rotating disk model fails to explain the observed broad velocity range. Gas spiraling inward near the disk plane offers a plausible explanation for the lower velocity gas. We will discuss the sizes of these circumgalactic disks, the properties of their host galaxies, and predictions for the spiral arms. Our results provide direct evidence for cold gas accretion at redshift z=0.2.

  15. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas

  16. Beyond the Borders of a Galaxy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms.

    The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms.

    Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy.

    In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to

  17. EVOLUTION IN THE DUST LANE FRACTION OF EDGE-ON L*{sub V} SPIRAL GALAXIES SINCE z = 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holwerda, B. W.; Boeker, T.; Dalcanton, J. J.

    2012-07-01

    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z {approx} 1 extracted from the COSMOS survey, we identify the fraction of massive (L*{sub V}) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, andmore » cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L*{sub V} disks with dust lanes in COSMOS is consistent with the local fraction ( Almost-Equal-To 80%) out to z {approx} 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short

  18. M/L, Hα Rotation Curves, and H I Gas Measurements for 329 Nearby Cluster and Field Spirals. III. Evolution in Fundamental Galaxy Parameters

    NASA Astrophysics Data System (ADS)

    Vogt, Nicole P.; Haynes, Martha P.; Giovanelli, Riccardo; Herter, Terry

    2004-06-01

    We have conducted a study of optical and H I properties of spiral galaxies (size, luminosity, Hα flux distribution, circular velocity, H I gas mass) to investigate causes (e.g., nature vs. nurture) for variation within the cluster environment. We find H I-deficient cluster galaxies to be offset in fundamental plane space, with disk scale lengths decreased by a factor of 25%. This may be a relic of early galaxy formation, caused by the disk coalescing out of a smaller, denser halo (e.g., higher concentration index) or by truncation of the hot gas envelope due to the enhanced local density of neighbors, although we cannot completely rule out the effect of the gas stripping process. The spatial extent of Hα flux and the B-band radius also decreases, but only in early-type spirals, suggesting that gas removal is less efficient within steeper potential wells (or that stripped late-type spirals are quickly rendered unrecognizable). We find no significant trend in stellar mass-to-light ratios or circular velocities with H I gas content, morphological type, or clustercentric radius, for star-forming spiral galaxies throughout the clusters. These data support the findings of a companion paper that gas stripping promotes a rapid truncation of star formation across the disk and could be interpreted as weak support for dark matter domination over baryons in the inner regions of spiral galaxies.

  19. Comparison of stellar and gasdynamics of a barred galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contopoulos, G.; Gottesman, S.T.; Hunter, J.H. Jr.

    1989-08-01

    The stellar and gas dynamics of several models of barred galaxies were studied, and results for some representative cases are reported for galaxies in which the stars and gas respond to the same potentials. Inside corotation there are two main families of periodic orbits, designated x1 and 4/1. Close to the center, the x1 orbits are like elongated ellipses. As the 4/1 resonance is approached, these orbits become like lozenges, with apices along the bar and perpendicular to it. The family 4/1 consists of orbits like parallelograms which produce the boxy component of the bar. The orbits in spirals outsidemore » corotation enhance the spiral between the outer -4/1 resonance and the outer Lindblad resonance. Between corotation and the -4/1 resonance in strong spirals, the orbits are mostly stochastic and fill almost circular rings. A spiral field must be added to gasdynamical models to obtain gaseous arms extending from the end of a bar. 38 refs.« less

  20. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  1. Magnetohydrodynamic Simulations of the Wiggle Instability in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Tanaka, Minoru; Wada, Keiichi; Machida, Mami; Matsumoto, Ryoji; Miyaji, Shigeki

    2005-09-01

    We studied the stability of galactic spiral shocks through two dimensional global magnetohydrodynamic simulations. Recently, Wada & Koda (2003) showed, using global hydrodynamic simulations, that galactic gas flows behind a spiral shock becomes unstable against a perturbation parallel to the shock front and form spur-like density structures. They attributed the origin of this wiggle instability to the Kelvin-Helmholtz (K-H) instability triggered by the acceleration of the gas behind the shock. We carried out global simulations including galactic magnetic fields. The initial magnetic field is assumed to be either uniform or purely toroidal. We found that although the magnetic field reduces the growth rate of the K-H instability, wiggle instability develops even in galaxies with μG magnetic fields. We also present the results of local simulations to demonstrate the dependence of the growth rate of the instability with the wavelength. The interval of spurs is determined by the most unstable wavelength of the wiggle instability.

  2. Hubble Sees Spiral Bridge of Young Stars Between Two Ancient Galaxies

    NASA Image and Video Library

    2014-07-11

    NASA's Hubble Space Telescope has photographed the dense galaxy cluster SDSS J1531+3414 in the northern constellation Corona Borealis. Made up primarily of giant elliptical galaxies with a few spirals and irregular galaxies thrown in for good measure, the cluster's powerful gravity warps the image of background galaxies into blue streaks and arcs. At the center of the bull's-eye of blue, gravitationally lensed filaments lies a pair of elliptical galaxies that are also exhibiting some interesting features. A 100,000-light-year-long structure that looks like a string of pearls twisted into a corkscrew shape winds around the cores of the two massive galaxies. The "pearls" are superclusters of blazing, blue-white, newly born stars. These super star clusters are evenly spaced along the chain at separations of 3,000 light-years from one another. Read more: 1.usa.gov/1ztQvL9 Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. The frequency and nature of `cloud-cloud collisions' in galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pringle, J. E.; Duarte-Cabral, A.

    2015-02-01

    We investigate cloud-cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales <5 Myr most clouds undergo no change, and mergers and splits are found to be typically two-body processes, but evolution over longer time-scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8-10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud-cloud interactions in our results, including synthetic CO maps. We would expect cloud-cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds' typical geometries, and moderate velocity dispersions, cloud-cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.

  4. A comparison of UV surface brightness and HI surface densities for spiral galaxies

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Strom, C.

    1990-01-01

    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies.

  5. On the far-IR and sub-mm spectra of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Stark, A. A.; Davidson, J. A.; Harper, D. A.; Pernic, R.; Loewenstein, R.

    1989-01-01

    Photometric measurements of three Virgo cluster spirals (NGC4254, NGC4501, and NGC4654) at 160-microns (far-infrared) and 360-microns (submillimeter) wavelengths are compared with theoretical models and observations at other wavelengths. It is shown that the data at the observed wavelengths do not fit any of interstellar dust grain models very well; four possibilities are given in order to explain discrepancies: the observed wavelength points are incorrect; previously observed data is incorrect; both data are incorrect; and the premise of the analysis is incorrect - a composite far-infrared spectrum of normal spiral galaxies is meaningless because they vary considerably in their far-infrared properties. It is also noted that the observed data are inconsistent with models having large cold grains.

  6. The soft x ray halo of the spiral galaxy NGC4631

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene A. M.; Steakley, Michael F.; Wang, Q. Daniel; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT PSPC observations of the close to edge-on spiral galaxy NGC4631 are presented. This vigorously star forming galaxy shows extented x ray emission perpendicular to the plane, out to about 6 to 8 kpc. The spatial extent is largest at soft x ray energies. The total x ray luminosity of hot gas can be easily supplied by star formation in the disk, and it is likely that the halo is due to outflow of hot gas from the inner disk. Spectral analysis of the x ray data shows that part of the halo emission may be quite cool, well below 10(exp 6)K. Implications of these results are briefly discussed.

  7. A CO J = 3-2 map of M51 with HARP-B: radial properties of the spiral structure

    NASA Astrophysics Data System (ADS)

    Vlahakis, C.; van der Werf, P.; Israel, F. P.; Tilanus, R. P. J.

    2013-08-01

    We present the first complete CO J = 3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ˜600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disc and out to the companion NGC 5195, with CO J = 3-2 emission detected over an area of ˜9 arcmin × 6 arcmin (˜21 × 14 kpc). We describe the CO J = 3-2 integrated intensity map and combine our results with maps of CO J = 2-1, CO J = 1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kiloparsec scales. We find that for the CO J = 3-2 and CO J = 2-1 transitions, there is a clear difference between the variation of arm and interarm emission with galactocentric radius, with the interarm emission relatively constant with radius and the contrast between arm and interarm emission decreasing with radius. For the CO J = 1-0 line and H I emission, the variation with radius shows a similar trend for the arm and interarm regions, and the arm-interarm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J = 3-2/2-1, J = 2-1/1-0 and J = 3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J = 3-2/J = 2-1 line ratios are found in the central ˜1 kiloparsec and in the spiral arms and the lowest line ratios in the interarm regions. We find no clear evidence of a trend with radius for the spiral arms, but for the interarm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J = 3-2 intensity to stellar-continuum-subtracted 8 μm PAH surface brightness and the CO J = 3-2 intensity that appears to vary with

  8. Spiral galaxy HI models, rotation curves and kinematic classifications

    NASA Astrophysics Data System (ADS)

    Wiegert, Theresa B. V.

    Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional "tilted-ring'' method RCs. The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a

  9. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined

  10. The void in the Sculptor group spiral galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.

    2014-10-01

    The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.

  11. Chandra and Hubble Composite Image of Spiral Galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  12. DAMPING OF THE MILKY WAY BAR BY MANIFOLD-DRIVEN SPIRALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Łokas, Ewa L.

    2016-10-10

    We describe a new phenomenon of “bar damping” that may have played an important role in shaping the Milky Way bar and bulge as well as its spiral structure. We use a collisionless N -body simulation of a Milky Way–like galaxy initially composed of a dark matter halo and an exponential disk with a Toomre parameter slightly above unity. In this configuration, dominated by the disk in the center, a bar forms relatively quickly, after 1 Gyr of evolution. This is immediately followed by the formation of two manifold-driven spiral arms and the outflow of stars that modifies the potentialmore » in the vicinity of the bar, apparently shifting the position of the L {sub 1}/ L {sub 2} Lagrange points. This modification leads to the shortening of the bar and the creation of a next generation of manifold-driven spiral arms at a smaller radius. The process repeats itself a few times over the next 0.5 Gyr resulting in further substantial weakening and shortening of the bar. The time when the damping comes to an end coincides with the first buckling episode in the bar that rebuilds the orbital structure so that no more new spiral arms are formed. The morphology of the bar and the spiral structure at this time show remarkable similarity to the present properties of the Milky Way. Later on, the bar starts to grow rather steadily again, weakened only by subsequent buckling episodes occurring at more distant parts of the disk.« less

  13. HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Solomon, Philip M.

    2004-05-01

    We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.

  14. REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.; Bruzual A, Gustavo

    2017-01-20

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms.more » The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.« less

  15. A SUBSTRUCTURE INSIDE SPIRAL ARMS, AND A MIRROR IMAGE ACROSS THE GALACTIC MERIDIAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.p.vallee@gmail.com

    2016-04-10

    Though the galactic density wave theory is over 50 years old and is well known in science, it has been difficult to say whether it fits our own Milky Way disk. Here we show a substructure inside the spiral arms. This substructure is reversing with respect to the Galactic Meridian (longitude zero), and crosscuts of the arms at negative longitudes appear as mirror images of crosscuts of the arms at positive longitudes. Four lanes are delineated: a mid-arm (extended {sup 12}CO gas at the mid-arm, H i atoms), an in-between offset by about 100 pc (synchrotron, radio recombination lines), anmore » in-between offset by about 200 pc (masers, colder dust), and an inner edge (hotter dust seen in mid-IR and near-IR)« less

  16. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The captivating appearance of this image of the starburst galaxy NGC 1313, taken with the FORS instrument at ESO's Very Large Telescope, belies its inner turmoil. The dense clustering of bright stars and gas in its arms, a sign of an ongoing boom of star births, shows a mere glimpse of the rough times it has seen. Probing ever deeper into the heart of the galaxy, astronomers have revealed many enigmas that continue to defy our understanding. ESO PR Photo 43a/06 ESO PR Photo 43a/06 The Topsy-Turvy Galaxy NGC 1313 This FORS image of the central parts of NGC 1313 shows a stunning natural beauty. The galaxy bears some resemblance to some of the Milky Way's closest neighbours, the Magellanic Clouds. NGC 1313 has a barred spiral shape, with the arms emanating outwards in a loose twist from the ends of the bar. The galaxy lies just 15 million light-years away from the Milky Way - a mere skip on cosmological scales. The spiral arms are a hotbed of star-forming activity, with numerous young clusters of hot stars being born continuously at a staggering rate out of the dense clouds of gas and dust. Their light blasts through the surrounding gas, creating an intricately beautiful pattern of light and dark nebulosity. But NGC 1313 is not just a pretty picture. A mere scratch beneath the elegant surface reveals evidence of some of the most puzzling problems facing astronomers in the science of stars and galaxies. Starburst galaxies are fascinating objects to study in their own right; in neighbouring galaxies, around one quarter of all massive stars are born in these powerful engines, at rates up to a thousand times higher than in our own Milky Way Galaxy. In the majority of starbursts the upsurge in star's births is triggered when two galaxies merge, or come too close to each other. The mutual attraction between the galaxies causes immense turmoil in the gas and dust, causing the sudden 'burst' in star formation. ESO PR Photo 43b/06 ESO PR Photo 43b/06 Larger View of NGC 1313

  17. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions

  18. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent

  19. Only marginal alignment of disc galaxies

    NASA Astrophysics Data System (ADS)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  20. The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.

    NASA Astrophysics Data System (ADS)

    Bárcenas, J.; Sanchez, S. F.

    2016-06-01

    Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.

  1. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  2. Hubble Views a Young Elliptical Galaxy

    NASA Image and Video Library

    2017-12-08

    At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes (lines radiating from bright light sources in reflecting telescope images) that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disk. This is very unusual, as disks are one of the main distinguishing features of a spiral galaxy. And the disk in NGC 3610 is remarkably bright. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat disks and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disk galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disk implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge

  3. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen

    2017-02-01

    We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{I}\\prime ) versus ({I}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.

  4. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  5. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less

  6. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  7. The structure and evolution of galacto-detonation waves - Some analytic results in sequential star formation models of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Rybicki, G. B.

    1982-01-01

    Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.

  8. New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Bianchi, S.; Baes, M.; de Jong, R. S.; Dalcanton, J. J.; Radburn-Smith, D.; Gordon, K.; Xilouris, M.

    2012-08-01

    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.

  9. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer), while the gradients for most massive galaxies are negative. The metallicity gradients show a clear peak around velocity dispersion log10 σe ≈ 2.0, which corresponds to the critical mass ˜3 × 1010 M⊙ of the break in the mass-size relation. Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  10. Hubble Sees NGC 3447: 2 Galaxies in a Cosmic Dance Defy Conventions

    NASA Image and Video Library

    2017-12-08

    Two galaxies in a cosmic dance defy conventions. 60 million light-years away in the constellation of Leo, the more diffuse and patchy blue glow covering the right side of the frame is known as NGC 3447B, while the smaller clump to the upper left is NGC 3447A. Known together as NGC 3447, we’re unsure what each looked like before they began to tear one another apart. So close that they are strongly influenced and distorted by the gravitational forces between them, the galaxies to twist themselves into the unusual and unique shapes seen here. NGC 3447A appears to display the remnants of a central bar structure and some disrupted spiral arms, both properties characteristic of certain spiral galaxies. Some identify NGC 3447B as a former spiral galaxy, while others categorize it as being an irregular galaxy. Credit: NASA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Explosions in Majestic Spiral Beauties

    NASA Astrophysics Data System (ADS)

    2004-12-01

    Images of beautiful galaxies, and in particular of spiral brethren of our own Milky Way, leaves no-one unmoved. It is difficult indeed to resist the charm of these impressive grand structures. Astronomers at Paranal Observatory used the versatile VIMOS instrument on the Very Large Telescope to photograph two magnificent examples of such "island universes", both of which are seen in a southern constellation with an animal name. But more significantly, both galaxies harboured a particular type of supernova, the explosion of a massive star during a late and fatal evolutionary stage. The first image (PR Photo 33a/04) is of the impressive spiral galaxy NGC 6118 [1], located near the celestial equator, in the constellation Serpens (The Snake). It is a comparatively faint object of 13th magnitude with a rather low surface brightness, making it pretty hard to see in small telescopes. This shyness has prompted amateur astronomers to nickname NGC 6118 the "Blinking Galaxy" as it would appear to flick into existence when viewed through their telescopes in a certain orientation, and then suddenly disappear again as the eye position shifted. There is of course no such problem for the VLT's enormous light-collecting power and ability to produce sharp images, and this magnificent galaxy is here seen in unequalled detail. The colour photo is based on a series of exposures behind different optical filters, obtained with the VIMOS multi-mode instrument on the 8.2-m VLT Melipal telescope during several nights around August 21, 2004. About 80 million light-years away, NGC 6118 is a grand-design spiral seen at an angle, with a very small central bar and several rather tightly wound spiral arms (it is classified as of type "SA(s)cd" [2]) in which large numbers of bright bluish knots are visible. Most of them are active star-forming regions and in some, very luminous and young stars can be perceived. Of particular interest is the comparatively bright stellar-like object situated directly

  12. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  13. Ultraviolet Imaging Telescope observations of the ScI galaxy NGC 628 (M74)

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.; Cornett, Robert H.; Roberts, Morton S.; Bohlin, Ralph C.; Neff, Susan G.; O'Connell, Robert W.; Parise, Ronald A.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    Ultraviolet images of NGC 628 at 1520 and 2490 A show that the nucleus has an oblong appearance and that the arms and disk exhibit features not seen in blue or H-alpha images. Aperture photometry of the nucleus gives results that are compatible with observations in other bandpasses and with models. The spiral arms appear more symmetrical in the UV than in other colors; in particular, two gaps are seen on either side of the nucleus. Combined UV and radio data appear to support a large-scale collective phenomenon, perhaps a quasi-static spiral structure mechanism, as being the dominant mode of spiral formation in this galaxy. We report the detection of a low surface brightness object at a distance of 7.6 arcmin southwest of the nucleus.

  14. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  15. Interaction of multiarmed spirals in bistable media.

    PubMed

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  16. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  17. Hubble Peers at a Distinctly Disorganized Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    Despite being less famous than their elliptical and spiral galactic cousins, irregular dwarf galaxies, such as the one captured in this NASA/ESA Hubble Space Telescope image, are actually one of the most common types of galaxy in the universe. Known as UGC 4459, this dwarf galaxy is located approximately 11 million light-years away in the constellation of Ursa Major (The Great Bear), a constellation that is also home to the Pinwheel Galaxy (M101), the Owl Nebula (M97), Messier 81, Messier 82 and several other galaxies all part of the M81 group. UGC 4459’s diffused and disorganized appearance is characteristic of an irregular dwarf galaxy. Lacking a distinctive structure or shape, irregular dwarf galaxies are often chaotic in appearance, with neither a nuclear bulge — a huge, tightly packed central group of stars — nor any trace of spiral arms — regions of stars extending from the center of the galaxy. Astronomers suspect that some irregular dwarf galaxies were once spiral or elliptical galaxies, but were later deformed by the gravitational pull of nearby objects. Rich with young blue stars and older red stars, UGC 4459 has a stellar population of several billion. Though seemingly impressive, this is small when compared to the 200 to 400 billion stars in the Milky Way! Observations with Hubble have shown that because of their low masses of dwarf galaxies like UGC 4459, star formation is very low compared to larger galaxies. Only very little of their original gas has been turned into stars. Thus, these small galaxies are interesting to study to better understand primordial environments and the star formation process. Image Credit: ESA/Hubble and NASA; Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific

  18. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  19. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    NASA Astrophysics Data System (ADS)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  20. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Hua; Ho, Luis C.

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxymore » Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.« less

  1. Hubble Peers Into the Center of a Spiral

    NASA Image and Video Library

    2017-12-08

    This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as a picture from ESO’s MPG/ESO 2.2-meter telescope. The northern part of NGC 247’s disc hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length. There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disk has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy. Image Credit: NASA/ESA

  2. Cold Gas Content and Morphology: Scaling Relationships and Gas Deficiencies

    NASA Astrophysics Data System (ADS)

    Zhang, Helen; Crocker, Alison

    2018-01-01

    Spiral arms are a key feature of spiral galaxies. They are areas of higher gas density, and thus more stars are actively being formed in these regions. Two armed spirals are commonly referred to as ‘grand design’ spirals. In constrast, many armed spirals have three or more arms that are often less distinct. Here we present the cold gas mass per unit of stellar mass (cold gas fraction) in grand design spirals versus many armed spiral galaxies using Galaxy Zoo 2 for our morphological classifications. The masses of HI and H2 gas are taken from the COLDGASS survey, which included nondetections in the form of upper limits. Through our analysis, we found that grand design galaxies have a lower cold gas fraction of both HI and H2. This is a surprising result, given that earlier studies have shown that they have comparable rates of star formation. Combined with our result, this means that grand design galaxies must be more efficient at converting H2 gas to stars.

  3. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less

  4. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  5. Evidence for azimuthal variations of the oxygen-abundance gradient tracing the spiral structure of the galaxy HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, F. P. A.; Pérez, E.; Dopita, M. A.; Verdes-Montenegro, L.; Borthakur, S.

    2017-05-01

    Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize these systems' formation and evolution. This tool is, however, complex to use in practice, as galaxies are subject to a range of simultaneous physical processes active from pc to kpc scales. This renders observations of the full optical extent of galaxies down to sub-kpc scales essential. Aims: Using the WiFeS integral field spectrograph, we previously detected abrupt and localized variations in the gas-phase oxygen abundance of the spiral galaxy HCG 91c. Here, we follow-up on these observations to map HCG 91c's disk out to 2 Re at a resolution of 600 pc, and characterize the non-radial variations of the gas-phase oxygen abundance in the system. Methods: We obtained deep MUSE observations of the target under 0.6 arcsec seeing conditions. We perform both a spaxel-based and aperture-based analysis of the data to map the spatial variations of 12 +log (O/H) across the disk of the galaxy. Results: We confirm the presence of rapid variations of the oxygen abundance across the entire extent of the galaxy previously detected with WiFeS, for all azimuths and radii. The variations can be separated in two categories: a) localized and associated with individual H II regions; and b) extended over kpc scales, and occurring at the boundaries of the spiral structures in the galaxy. Conclusions: Our MUSE observations suggest that the enrichment of the interstellar medium in HGC 91c has proceeded preferentially along spiral structures, and less efficiently across them. Our dataset highlights the importance of distinguishing individual star-forming regions down to scales of a few 100 pc when using integral field spectrographs to spatially resolve the distribution of oxygen abundances in a given system, and accurately characterize azimuthal variations and intrinsic scatter. The movie associated to Fig. 8 is available at http://www.aanda.org

  6. The JCMT Nearby Galaxies Legacy Survey - XI. Environmental variations in the atomic and molecular gas radial profiles of nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Knapen, J. H.; Sánchez-Gallego, J. R.; Brinks, E.; Rosolowsky, E.

    2017-06-01

    We present an analysis of the radial profiles of a sample of 43 H I-flux selected spiral galaxies from the Nearby Galaxies Legacy Survey (NGLS) with resolved James Clerk Maxwell Telescope (JCMT) CO J = 3 - 2 and/or Very Large Array (VLA) H I maps. Comparing the Virgo and non-Virgo populations, we confirm that the H I discs are truncated in the Virgo sample, even for these relatively H I-rich galaxies. On the other hand, the H2 distribution is enhanced for the Virgo galaxies near their centres, resulting in higher H2 to H I ratios and steeper H2 and total gas radial profiles. This is likely due to the effects of moderate ram pressure stripping in the cluster environment, which would preferentially remove low-density gas in the outskirts while enhancing higher density gas near the centre. Combined with Hα star formation rate data, we find that the star formation efficiency (SFR/H2) is relatively constant with radius for both samples, but the Virgo galaxies have an ˜40 per cent lower star formation efficiency than the non-Virgo galaxies.

  7. Observations of three QSOs lying in the spiral arms of NGC 1073

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Junkkarinen, V.; Koski, A. T.

    1979-01-01

    Spectrophotometric observations of three QSOs lying in the field of the spiral galaxy NGC 1073 are presented. These objects have been reported by Arp and Sulentic (1979), who obtained redshifts for two of them. The present observations, made with the Shane telescope at Lick Observatory, extend the wavelength coverage, show L-alpha in BSO 1 at z = 1.945, yield a firm redshift of z = 0.599 for BSO 2, and confirm the redshift z = 1.41 of RSO obtained by Arp and Sulentic (1979).

  8. Spiral Microstrip Antenna with Resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  9. The radio-far infrared correlation: Spiral and blue compact dwarf galaxies opposed

    NASA Technical Reports Server (NTRS)

    Klein, U.; Wunderlich, E.

    1987-01-01

    The recently established correlation between radio continuum and far infrared emission in galaxies was further investigated by comparing normal spiral and blue compact dwarf galaxies. The puzzling result is that the ratio of radio to far infrared luminosity and its dispersion is the same for both samples, although their ratios of blue to far infrared luminosity, their radio spectral indices and their dust temperatures exhibit markedly different mean values and dispersions. This suggests that the amount of energy radiated in the two regimes is enhanced in the same way although the mechanisms responsible for the two components are rather different and complex. The fact that the blue light does not increase at the same proportion shows that both the radio and the far infrared emission are connected with the recent star formation history.

  10. Hα kinematics of S4G spiral galaxies - III. Inner rotation curves

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija; Querejeta, Miguel; Muñoz-Mateos, Juan Carlos; Athanassoula, E.; Bosma, Albert; Comerón, Sebastien; Elmegreen, Bruce G.; Martínez-Valpuesta, Inma

    2016-05-01

    We present a detailed study of the shape of the innermost part of the rotation curves of a sample of 29 nearby spiral galaxies, based on high angular and spectral resolution kinematic Hα Fabry-Perot observations. In particular, we quantify the steepness of the rotation curve by measuring its slope dRvc(0). We explore the relationship between the inner slope and several galaxy parameters, such as stellar mass, maximum rotational velocity, central surface brightness (μ0), bar strength and bulge-to-total ratio. Even with our limited dynamical range, we find a trend for low-mass galaxies to exhibit shallower rotation curve inner slopes than high-mass galaxies, whereas steep inner slopes are found exclusively in high-mass galaxies. This trend may arise from the relationship between the total stellar mass and the mass of the bulge, which are correlated among them. We find a correlation between the inner slope of the rotation curve and the morphological T-type, complementary to the scaling relation between dRvc(0) and μ0 previously reported in the literature. Although we find that the inner slope increases with the Fourier amplitude A2 and decreases with the bar torque Qb, this may arise from the presence of the bulge implicit in both A2 and Qb. As previously noted in the literature, the more compact the mass in the central parts of a galaxy (more concretely, the presence of a bulge), the steeper the inner slopes. We conclude that the baryonic matter dominates the dynamics in the central parts of our sample galaxies.

  11. Hierarchical star formation across the grand-design spiral NGC 1566

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Cignoni, Michele; Gallagher, John S., III; Kennicutt, Robert C.; Klessen, Ralf S.; Sabbi, Elena; Thilker, David; Ubeda, Leonardo; Aloisi, Alessandra; Adamo, Angela; Cook, David O.; Dale, Daniel; Grasha, Kathryn; Grebel, Eva K.; Johnson, Kelsey E.; Sacchi, Elena; Shabani, Fayezeh; Smith, Linda J.; Wofford, Aida

    2017-06-01

    We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.

  12. Redshift--Independent Distances of Spiral Galaxies: II. Internal Extinction at I Band

    NASA Astrophysics Data System (ADS)

    Giovanelli, R.; Haynes, M. P.; Salzer, J. J.; Wegner, G.; Dacosta, L. N.; Freudling, W.; Chamaraux, P.

    1993-12-01

    We analyze the photometric properties of a sample of 1450 Sbc--Sc galaxies with known redshifts, single--dish HI profiles and CCD I band images to derive laws that relate the measured isophotal radius at mu_I =23.5, magnitude, scale length and HI flux to the face--on aspect. Our results show that the central regions of spiral galaxies are substantially less transparent than most previous determinations suggest, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modelling exercise that utilizes the ``triplex'' model of Disney et al. (1989). Within the framework of that model, late spiral disks at I band have central optical depths on the order of tau_I ~ 5 and dust absorbing layers with scale heights on the order of half that of the stellar component. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully--Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO--Uppsala) are nearly proportional to face--on isophotal diameters.

  13. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  14. Spiral microstrip antenna with resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1994-01-01

    The present invention relates to microstrip antennas, and more particularly to wide bandwidth spiral antennas with resistive loading. A spiral microstrip antenna having resistor element embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  15. A new model of spiral galaxies based on propagating star formation

    NASA Astrophysics Data System (ADS)

    Sleath, John

    1996-01-01

    -lived two-armed grand-design spirals, which have not resulted from any of the previous propagating star formation models. The spiral density wave orders the star formation, but does not simply result in the star formation tracing directly the potential minima - it is found that the pitch angles of the imposed and observed spiral patterns differ significantly. Moreover, the pitch angle of the observed pattern exhibits a maximum value equal to the maximum pitch angle observed in late-type spirals. To compare the results of this, and other, models of galactic structure with observed galaxies, we require some way of classifying the appearance of the data sets. There already exist a number of schemes, but they are all somewhat subjective, and a reliable, quantitative approach would form a valuable addition. I have investigated a number of schemes, namely Fourier transforms, minimal spanning tree edge-length spectra and multifractal dimensions, and considered their application to both simulated and observed data. The results of the analysis are encouraging, particularly for the multifractals, although it is not as yet possible to calculate a single, unique number which fully characterises the morphology.

  16. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    of the image is clearly demonstrated by the remarkable number of background galaxies seen, as well as the huge numbers of individual stars that can be counted within NGC 55. The second image shows another galaxy belonging to the Sculptor group. This is NGC 7793, which has a chaotic spiral structure, unlike the class of grand-design spiral galaxies to which our Milky Way belongs. The image shows how difficult it is to identify any particular spiral arm in these chaotic structures, although it is possible to guess at a general rotating pattern. NGC 7793 is located slightly further away than NGC 55, about 12.5 million light-years from us, and is about half the size of NGC 55. NGC 7793 was observed with one of the workhorses of the ESO Paranal Observatory, the FORS instrument, attached to the Very Large Telescope.

  17. The Norma arm region Chandra survey catalog: X-ray populations in the spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasini, Francesca M.; Tomsick, John A.; Bodaghee, Arash

    2014-12-01

    We present a catalog of 1415 X-ray sources identified in the Norma Arm Region Chandra Survey (NARCS), which covers a 2° × 0.°8 region in the direction of the Norma spiral arm to a depth of ≈20 ks. Of these sources, 1130 are point-like sources detected with ≥3σ confidence in at least one of three energy bands (0.5-10, 0.5-2, and 2-10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. We analyze stackedmore » spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in our survey. We find that ∼50% of our sources are foreground sources located within 1-2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux and near Norma arm, while 30% are more distant, in the proximity of the far Norma arm or beyond. We argue that a mixture of magnetic and nonmagnetic cataclysmic variables dominates the Scutum-Crux and near Norma arms, while intermediate polars and high-mass stars (isolated or in binaries) dominate the far Norma arm. We also present the cumulative number count distribution for sources in our survey that are detected in the hard energy band. A population of very hard sources in the vicinity of the far Norma arm and active galactic nuclei dominate the hard X-ray emission down to f{sub X} ≈ 10{sup –14} erg cm{sup –2} s{sup –1}, but the distribution curve flattens at fainter fluxes. We find good agreement between the observed distribution and predictions based on other surveys.« less

  18. A reevaluation of the infrared-radio correlation for spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Eales, Stephen A.

    1989-01-01

    The infrared radio correlation has been reexamined for a sample of 237 optically bright spiral galaxies which range from 10 to the 8th to 10 to the 11th solar luminosities in far-infrared luminosity. The slope of the correlation is not unity. A simple model in which dust heating by both star formation and the interstellar radiation field contribute to the far-infrared luminosity can account for the nonunity slope. The model differs from previous two component models, however, in that the relative contribution of the two components is independent of far-infrared color temperature, but is dependent on the far-infrared luminosity.

  19. THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2015-11-10

    Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three-dimensional (3D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the nonlinear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is alsomore » excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3D hydrodynamical models than images based on two-dimensional models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companion’s position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companion’s mass.« less

  20. Pressure from dark matter annihilation and the rotation curve of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wechakama, M.; Ascasibar, Y.

    2011-05-01

    The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).

  1. The First VLBI Detection of a Spiral DRAGN Core

    NASA Astrophysics Data System (ADS)

    Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian

    2018-05-01

    We present the first observation of 0313-192, the archetypal spiral DRAGN, at VLBI resolutions. Spiral DRAGNs are Double Radio Sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X-bands using the VLBA, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the South-West of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 degrees. The VLBI-detected radio jet components are extremely well-aligned with the larger-scale radio source suggested little to no jet disruption or interaction with the ISM of the host galaxy.

  2. The ratio of molecular to atomic gas in spiral galaxies as a function of morphological type

    NASA Technical Reports Server (NTRS)

    Knezek, Patricia M.; Young, Judith S.

    1990-01-01

    In order to gain an understanding of the global processes which influence cloud and star formation in disk galaxies, it is necessary to determine the relative amounts of atomic, molecular, and ionized gas both as a function of position in galaxies and from galaxy to galaxy. With observations of the CO distributions in over 200 galaxies now completed as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey (Young et al. 1989), researchers are finally in a position to determine the type dependence of the molecular content of spiral galaxies, along with the ratio of molecular to atomic gas as a function of type. Do late type spirals really have more gas than early types when the molecular gas content is included. Researchers conclude that there is more than an order of magnitude decrease in the ratio of molecular to atomic gas mass as a function of morphological type from Sa-Sd; an average Sa galaxy has more molecular than atomic gas, and an average Sc has less. Therefore, the total interstellar gas mass to blue luminosity ratio, M sub gas/L sub B, increases by less than a factor of two as a function of type from Sa-Sd. The dominant effect found is that the phase of the gas in the cool interstellar medium (ISM) varies along the Hubble sequence. Researchers suggest that the more massive and centrally concentrated galaxies are able to achieve a molecular-dominated ISM through the collection of more gas in the potential. That gas may then form molecular clouds when a critical density is exceeded. The picture which these observations support is one in which the conversion of atomic gas to molecular gas is a global process which depends on large scale dynamics (cf Wyse 1986). Among interacting and merging systems, researchers find considerable scatter in the M(H2)/M(HI) ratio, with the mean ratio similar to that in the early type galaxies. The high global ratio of molecular to atomic gas could result from the removal of HI gas, the enhanced

  3. IRAS observations of Shapley-Ames galaxies

    NASA Technical Reports Server (NTRS)

    De Jong, T.; Clegg, P. E.; Rowan-Robinson, M.; Soifer, B. T.; Habing, H. J.; Houck, J. R.; Aumann, H. H.; Raimond, E.

    1984-01-01

    A preliminary discussion of the infrared properties of a representative subsample of galaxies in the Revised Shapley-Ames Catalog (B less than about 13 mag) is presented. Of the 165 galaxies in the sample, 108 predominantly spiral galaxies, are detected in the infrared by IRAS. None of the elliptical galaxies and only about 25 percent of the lenticular galaxies scanned were detected. The range of infrared-to-blue luminosity ratios, a measure of the infrared excess of galaxies, is large, varying from roughly 0.1 to roughly 5. The data suggest that weakly infrared emitting galaxies are cool (100-60 micron color temperatures of about 25 K), while the more infrared luminous ones tend to be warmer (about 50 K). The rate of star formation in barred spiral galaxies is apparently higher than in normal spirals. About 1 solar mass/year of interstellar matter is converted into massive stars in the typical spiral galaxy.

  4. Band-notched spiral antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Jae; Chang, John

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  5. Spiral Arms, Infall, and Misalignment of the Circumbinary Disk from the Circumstellar Disks in the Protostellar Binary System L1551 NE

    NASA Astrophysics Data System (ADS)

    Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki; Saito, Masao; Lim, Jeremy; Hanawa, Tomoyuki; Yen, Hsi-Wei; Ho, Paul T. P.

    2017-03-01

    We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C18O (3-2), 13CO (3-2), SO (78-67), and CS (7-6) emission. At 0.″18 (=25 au) resolution, ˜4 times higher than that of our Cycle 0 observations, the circumbinary disk (CBD) as seen in the 0.9 mm emission is shown to be composed of a northern and a southern spiral arm, with the southern arm connecting to the circumstellar disk (CSD) around Source B. The western parts of the spiral arms are brighter than the eastern parts, suggesting the presence of an m = 1 spiral mode. In the C18O emission, the infall gas motions in the interarm regions and the outward gas motions in the arms are identified. These observed features are well reproduced with our numerical simulations, where gravitational torques from the binary system impart angular momenta to the spiral-arm regions and extract angular momenta from the interarm regions. Chemical differentiation of the CBD is seen in the four molecular species. Our Cycle 2 observations have also resolved the CSDs around the individual protostars, and the beam-deconvolved sizes are 0.″29 × 0.″19 (=40 × 26 au) (P.A. = 144°) and 0.″26 × 0.″20 (=36 × 27 au) (P.A. = 147°) for Sources A and B, respectively. The position and inclination angles of these CSDs are misaligned with those of the CBD. The C18O emission traces the Keplerian rotation of the misaligned disk around Source A.

  6. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  7. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  8. Variation in GMC Association Properties across the Bars, Spiral Arms, Inter-arms, and Circumnuclear Region of M100 (NGC 4321) Extracted from ALMA Observations

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Kuno, Nario

    2017-04-01

    We study the physical properties of giant molecular cloud associations (GMAs) in M100 (NGC 4321) using the ALMA Science Verification feathered (12 m+ACA) data in 12CO (1-0). To examine the environmental dependence of their properties, GMAs are classified based on their locations in various environments as circumnuclear ring (CNR), bar, spiral, and inter-arm GMAs. The CNR GMAs are massive and compact, while the inter-arm GMAs are diffuse, with low surface density. GMA mass and size are strongly correlated, as suggested by Larson. However, the diverse power-law index of the relation implies that the GMA properties are not uniform among the environments. The CNR and bar GMAs show higher velocity dispersion than those in other environments. We find little evidence for a correlation between GMA velocity dispersion and size, which indicates that the GMAs are in diverse dynamical states. Indeed, the virial parameter of the GMAs spans nearly two orders of magnitude. Only the spiral GMAs are generally self-gravitating. Star formation activity decreases in order over the CNR, spiral, bar, and inter-arm GMAs. The diverse GMA and star formation properties in different environments lead to variations in the Kennicutt-Schmidt relation. A combination of multiple mechanisms or gas phase change is necessary to explain the observed slopes. Comparisons of GMA properties acquired with the use of the 12 m array observations with those from the feathered data are also presented. The results show that the missing flux and extended emission cannot be neglected for the study of environmental dependence.

  9. STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer

    We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less

  10. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  11. The Galaxy Menagerie from WISE

    NASA Image and Video Library

    2011-05-25

    A colorful collection of galaxy specimens from NASA Wide-field Infrared Survey Explorer mission showcases galaxies of several types, from elegant grand design spirals to more patchy flocculent spirals.

  12. The first VLBI detection of a spiral DRAGN core

    NASA Astrophysics Data System (ADS)

    Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian

    2018-07-01

    We present the first observation of 0313-192, the archetypal spiral DRAGN, at very long baseline interferometry (VLBI) resolutions. Spiral DRAGNs are Double-lobed Radio sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X bands using the Very Long Baseline Array, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the south-west of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 deg. The VLBI-detected radio jet components are extremely well aligned with the larger scale radio source suggesting little to no jet disruption or interaction with the interstellar medium of the host galaxy.

  13. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  14. Testing hydrodynamics schemes in galaxy disc simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  15. Development of a hot intergalactic medium in spiral-rich galaxy groups: the example of HCG 16

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Zezas, Andreas; Mamon, Gary; Ponman, Trevor J; Raychaudhury, Somak

    2014-08-01

    Galaxy groups provide the environment in which the majority of galaxies evolve, with low velocity dispersions and small galaxy separations that are conducive to tidal interactions and mergers between group members. X-ray observations reveal the frequent presence of hot gas in groups, with larger quantities linked to early-type galaxies, whereas cold gas is common in spiral-dominated groups. Clarification of the origin and role of the hot medium is central to the understanding of the evolution of the galaxy population and of all phases of the IGM.We here report on the nuclear activity, star formation and the high luminosity X-ray binary populations of the spiral-dominated, likely not yet virialized, group HCG 16, as well as on its intra-group medium, based principally on deep (150 ks) Chandra X-ray observations of the group, as well as new Giant Metrewave Radio Telescope (GMRT) 610 MHz radio data. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify what may be a previously unrecognized nuclear source in NGC 838; all are variable. NGC 838 and NGC 839 are both starburst-dominated systems, with galactic superwinds that show X-ray and radio evidence of IGM interaction, but only weak nuclear activity; NGC 848 is also dominated by emission from its starburst.We confirm the existence of a faint, extended low-temperature (0.3 keV) intra-group medium, a subject of some uncertainty in earlier studies. The diffuse emission is strongest in a ridge linking the four principal galaxies, and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We conclude that starburst winds and shock-heating of stripped HI may play an important role in the early stages of IGM formation, with galactic winds contributing 20-40% of the observed hot gas in the system.

  16. Dark matter and MOND dynamical models of the massive spiral galaxy NGC 2841

    NASA Astrophysics Data System (ADS)

    Samurović, S.; Vudragović, A.; Jovanović, M.

    2015-08-01

    We study dynamical models of the massive spiral galaxy NGC 2841 using both the Newtonian models with Navarro-Frenk-White (NFW) and isothermal dark haloes, as well as various MOND (MOdified Newtonian Dynamics) models. We use the observations coming from several publicly available data bases: we use radio data, near-infrared photometry as well as spectroscopic observations. In our models, we find that both tested Newtonian dark matter approaches can successfully fit the observed rotational curve of NGC 2841. The three tested MOND models (standard, simple and, for the first time applied to another spiral galaxy than the Milky Way, Bekenstein's toy model) provide fits of the observed rotational curve with various degrees of success: the best result was obtained with the standard MOND model. For both approaches, Newtonian and MOND, the values of the mass-to-light ratios of the bulge are consistent with the predictions from the stellar population synthesis (SPS) based on the Salpeter initial mass function (IMF). Also, for Newtonian and simple and standard MOND models, the estimated stellar mass-to-light ratios of the disc agree with the predictions from the SPS models based on the Kroupa IMF, whereas the toy MOND model provides too low a value of the stellar mass-to-light ratio, incompatible with the predictions of the tested SPS models. In all our MOND models, we vary the distance to NGC 2841, and our best-fitting standard and toy models use the values higher than the Cepheid-based distance to the galaxy NGC 2841, and the best-fitting simple MOND model is based on the lower value of the distance. The best-fitting NFW model is inconsistent with the predictions of the Λ cold dark matter cosmology, because the inferred concentration index is too high for the established virial mass.

  17. Creating lenticular galaxies with mergers

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    2017-03-01

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  18. Molecular clouds in the Carina arm

    NASA Technical Reports Server (NTRS)

    Grabelsky, D. A.

    1986-01-01

    Results from the first large-scale survey in the CO(J = 1 to 0) line of the Vela-Carina-Centaurus region of the Southern Milky Way are reported. The observations, made with the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, were spaced every beamwidth (0.125 deg) in the range 270 deg is less than or = l is less than or = 300 deg and -1 deg less than or = b less then or = 1 deg, with latitude extensions to cover all Carina arm emission beyond absolute b = 1 deg. In a concurrent survey made with the same telescope, every half-degree in latitude and longitude was sampled. Both surveys had a spectral coverage of 330 km/s with a resolution of 1.3 km/s. The Carina arm is the dominant feature in the data. Its abrupt tangent at l is approx. = 280 deg and characteristic loop in the l,v diagram are unmistakable evidence for CO spiral structure. When the emission is integrated over velocity and latitude, the height of the step seen in the tangent direction suggests that the arm-interarm contrast is at least 13:1. Comparison of the CO and H I data shows close agreement between these two species in a segment of the arm lying outside the solar circle. The distribution of the molecular layer about the galactic plane in the outer Galaxy is determined. Between R = 10.5 and 12.5 kpc, the average CO midplane dips from z = -48 to -167 pc below the b = 0 deg plane, following a similar well-known warping of the H I layer. In the same range of radii the half-thickness of the CO layer increases from 112 to 182 pc. Between l = 270 deg and 300 deg, 27 molecular clouds are identified and cataloged along with heliocentric distances and masses. An additional 16 clouds beyond 300 deg are cataloged from an adjoining CO survey made with the same telescope. The average mass for the Carina arm clouds is 1.4x 10(6)M (solar), and the average intercloud spacing along the arm is 700 pc. Comparison of the distribution of the Carina arm clouds with that of similarly massive

  19. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with resultsmore » in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.« less

  20. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  1. Variation in GMC Association Properties across the Bars, Spiral Arms, Inter-arms, and Circumnuclear Region of M100 (NGC 4321) Extracted from ALMA Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hsi-An; Kuno, Nario, E-mail: hapan@asiaa.sinica.edu.tw

    2017-04-20

    We study the physical properties of giant molecular cloud associations (GMAs) in M100 (NGC 4321) using the ALMA Science Verification feathered (12 m+ACA) data in {sup 12}CO (1–0). To examine the environmental dependence of their properties, GMAs are classified based on their locations in various environments as circumnuclear ring (CNR), bar, spiral, and inter-arm GMAs. The CNR GMAs are massive and compact, while the inter-arm GMAs are diffuse, with low surface density. GMA mass and size are strongly correlated, as suggested by Larson. However, the diverse power-law index of the relation implies that the GMA properties are not uniform amongmore » the environments. The CNR and bar GMAs show higher velocity dispersion than those in other environments. We find little evidence for a correlation between GMA velocity dispersion and size, which indicates that the GMAs are in diverse dynamical states. Indeed, the virial parameter of the GMAs spans nearly two orders of magnitude. Only the spiral GMAs are generally self-gravitating. Star formation activity decreases in order over the CNR, spiral, bar, and inter-arm GMAs. The diverse GMA and star formation properties in different environments lead to variations in the Kennicutt–Schmidt relation. A combination of multiple mechanisms or gas phase change is necessary to explain the observed slopes. Comparisons of GMA properties acquired with the use of the 12 m array observations with those from the feathered data are also presented. The results show that the missing flux and extended emission cannot be neglected for the study of environmental dependence.« less

  2. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  3. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  4. Formation des etoiles massives dans les galaxies spirales

    NASA Astrophysics Data System (ADS)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R < R25) de dix galaxies mais aussi à leur périphérie (R ≥ R 25). De façon générale, la répartition des régions HII ne montre aucune évidence de structure morphologique à R < R25 (bras spiraux, anneau, barre) à moins de limiter l'analyse aux régions HII les plus grosses ou les plus lumineuses. La répartition des régions HII, de même que leur taille et leur luminosité, sont toutefois sujettes à de forts effets de sélection qui dépendent de la distance des galaxies et qu'il faut corriger en ramenant l'échantillon à une résolution spatiale commune. Les fonctions de luminosité montrent que les régions HII les plus brillantes ont tendance à se former dans la portion interne du disque. De plus, l'analyse des pentes révèle une forte corrélation linéaire par rapport au type morphologique. Aucun pic n'est observé dans les fonctions de luminosité à log L-37 qui révèlerait la transition entre les régions HII bornées par l'ionisation et par la densité. Une relation cubique est obtenue entre la taille et la luminosité des régions HII, cette relation variant toutefois de façon significative entre le disque interne et la périphérie d'une même galaxie. La densité et la dynamique du gaz et des étoiles pourraient influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue

  5. Dust lanes in backlit galaxies: first results from the STARSMOG survey

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Bradford, Sarah; Holwerda, Benne; Conselice, Christopher; Baldry, Ivan; Bland-Hawthorn, Jonathan; Driver, Simon P.; Dunne, Loretta; Liske, Jochen; Robotham, Aaron; Tuffs, Richard

    2017-01-01

    STARSMOG is an HST WFC3 snapshot survey of dust attenuation in overlapping backlit galaxies, planned to span the range of morphological type and luminosity of dust-rich galaxies. The target list came from the Galaxy Zoo and GAMA catalogs, imposing a minimum redshift difference to guarantee large line-of-sight separations, virtually eliminating scattering corrections and avoiding potentially distorted interacting systems. These include the first flocculent spirals studied with the occulting-galaxy approach. We present results from the geometrically most favorable subset of 9 pairs from the 54 observed STARSMOG systems. The data quality and intensity of background light let us map dust features with attenuations of only a few per cent in the red F606W band. Organized dust lanes show sharp outer boundaries in disks, and are absent in galaxies of late Hubble type. Many Sb-Sc disks show a dusty web of criss-crossing lanes, some nearly at right angles to the overall spiral pattern. Particularly favorable cases constraint the scale height of starlight in the foreground disks, through comparison of the light loss in regions with and without background light. The covering fraction of dust at various attenuation levels is consistent between barred and nonbarred spirals, although dust features may be more concentrated in azimuth when a bar is present (and concentrated in an annulus when a stellar resonance ring is seen). Together with our previous data on much more limited samples or at lower resolution,these results add to a picture where galaxies of similar morphology may have quite different attenuation patterns with radius for both arm and interarm dust.

  6. On the unity of activity in galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan-Robinson, M.

    1977-05-01

    A scheme is presented which unites quasars, radio galaxies, N galaxies, and Seyfert galaxies into a single picture of activity in galaxies. Probability functions are given for optical and radio cores, and extended radio sources (in the case of ellipticals), for both spirals and ellipticals. Activity occurs in galaxies of all luminosities, but the strength of it is made proportional to galaxy luminosity. It is assumed that there is dust surrounding the optical cores, to explain the strong infrared emission in Seyferts.Quasars may, in this picture, occur in both spirals and ellipticals, and in fact most optically selected QSOs aremore » predicted to be in spirals.« less

  7. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  8. Forming Spirals From Shadows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  9. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  10. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals weremore » analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.« less

  11. Nuclear Spiral Shocks and Induced Gas Inflows in Weak Oval Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Elmegreen, Bruce G., E-mail: wkim@astro.snu.ac.kr, E-mail: bge@us.ibm.com

    Nuclear spirals are ubiquitous in galaxy centers. They exist not only in strong barred galaxies but also in galaxies without noticeable bars. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like and oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in largemore » mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies as well as to drive supersonic turbulence at small radii.« less

  12. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  13. Star Formation Driven Outflows In Edge-On Spiral Galaxies Based on HST/ACS Observations

    NASA Astrophysics Data System (ADS)

    Rossa, Joern; Dahlem, M.; Dettmar, R.; van der Marel, R. P.

    2007-12-01

    We present new results on extraplanar diffuse ionized gas (eDIG) in four late-type, actively star-forming edge-on spirals. The high spatial resolution narrowband imaging observations were obtained with ACS on-board HST. Our H-alpha observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05", corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC4634 and NGC5775), whereas the other two (NGC4700 and NGC7090) show a much more complex morphology with intricate filaments, bubbles and supershells. We discuss how the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, depends on physical parameters such as galaxy mass and SF activity and other tracers as well as the galactic environment. Support for proposal 10416 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. On the local standard of rest. [comoving with young objects in gravitational field of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Yuan, C.

    1983-01-01

    Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a spiral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars. Previously announced in STAR as N83-24443

  15. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  16. Hubble Chases a Small Stellar Galaxy in the Hunting Dog

    NASA Image and Video Library

    2017-12-08

    On a clear evening in April of 1789, the renowned astronomer William Herschel continued his unrelenting survey of the night sky, hunting for new cosmic objects — and found cause to celebrate! He spotted this bright spiral galaxy, named NGC 4707, lurking in the constellation of Canes Venatici or The Hunting Dog. NGC 4707 lies roughly 22 million light-years from Earth. Over two centuries later, the NASA/ESA Hubble Space Telescope is able to "chase down" and view the same galaxy in far greater detail than Herschel could, allowing us to appreciate the intricacies and characteristics of NGC 4707 as never before. This striking image comprises observations from Hubble’s Advanced Camera for Surveys (ACS), one of a handful of high-resolution instruments currently aboard the space telescope. Herschel himself reportedly described NGC 4707 as a “small, stellar” galaxy; while it is classified as a spiral (type Sm), its overall shape, center, and spiral arms are very loose and undefined, and its central bulge is either very small or non-existent. It instead appears as a rough sprinkling of stars and bright flashes of blue on a dark canvas. The blue smudges seen across the frame highlight regions of recent or ongoing star formation, with newborn stars glowing in bright, intense shades of cyan and turquoise. Image credit: ESA/Hubble & NASA

  17. Understanding the physical processes driving galaxy evolution in clusters : a case study of two z~0.5 galaxy clusters

    NASA Astrophysics Data System (ADS)

    Moran, Sean M.

    Clusters of galaxies represent the largest laboratories in the universe for testing the incredibly chaotic physics governing the collapse of baryons into the stars, galaxies, groups, and diffuse clouds that we see today. Within the cluster environment, there are a wide variety of physical processes that may be acting to transform galaxies.In this thesis, we combine extensive Keck spectroscopy with wide-field HST imaging to perform a detailed case study of two intermediate redshift galaxy clusters, Cl 0024+1654 (z=0.395) and MS 0451-03 (z=0.540). Leveraging a comprehensive multiwavelength data set that spans the X-ray to infrared, and with spectral-line measurements serving as the key to revealing both the recent star-formation histories and kinematics of infalling galaxies, we aim to shed light on the environmental processes that could be acting to transform galaxies in clusters.We adopt a strategy to make maximal use of our HST-based morphologies by splitting our sample of cluster galaxies according to morphological type, characterizing signs of recent evolution in spirals and early types separately. This approach proves to be powerful in identifying galaxies that are currently being altered by an environmental interaction: early-type galaxies that have either been newly transformed or prodded back into an active phase, and spiral galaxies where star formation is being suppressed or enhanced all stand out in our sample.We begin by using variations in the early-type galaxy population as indicators of recent activity. Because ellipticals and S0s form such a homogeneous class in the local universe, we are sensitive to even very subtle signatures of recent and current environmental interactions. This study has yielded two key results: By constructing the Fundamental Plane (FP) of Cl 0024, we observe that elliptical and S0 galaxies exhibit a high scatter in their FP residuals, which occurs only among galaxies in the cluster core, suggesting a turbulent assembly history

  18. Spiral density waves in a young protoplanetary disk.

    PubMed

    Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-09-30

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.

  19. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less

  20. GalMod: the last frontier of Galaxy population synthesis models

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Kollmeier, Juna; Grebel, Eva K.; chiosi, cesare

    2018-01-01

    We present a novel Galaxy population synthesis model: GalMod (Pasetto et al. 2016, 2017a,b) is the only star-count model featuring an asymmetric bar/bulge as well as spiral arms as directly obtained by applying linear perturbative theory to self-consistent distribution function of the Galaxy stellar populations. Compared to previous literature models (e.g., Besancon, Trilegal), GalMod allows to generate full-sky mock catalogue, M31 surveys and provides a better match to observed Milky Way (MW) stellar fields.The model can generate synthetic mock catalogs of visible portions of the MW, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely bulge/bar, disk, halo. The disk population is itself the sum of subpopulations: spiral arms, thin disk, thick disk, and gas component, while the halo is modeled as the sum of a stellar component, a hot coronal gas, and a dark matter component. The Galactic potential is computed from these subpopulations' density profiles and used to generate detailed kinematics by considering the first few moments of the Boltzmann collisionless equation for all the stellar subpopulations. The same density profiles are then used to define the observed color-magnitude diagrams within an input field of view from an arbitrary solar location. Several photometric systems have been included and made available on-line, e.g., SDSS, Gaia, 2MASS, HST WFC3, and others. Finally, we model the extinction with advanced ray tracing solutions.The model's web page (and tutorial) can be accessed at www.GalMod.org.

  1. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, W.; Ostriker, E. C.

    2010-01-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.

  2. The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647

    NASA Astrophysics Data System (ADS)

    Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.

    2006-10-01

    We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.

  3. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    NASA Astrophysics Data System (ADS)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  4. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  5. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Abdurro'uf; Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Junichi; Saitoh, Takayuki R.; Wada, Keiichi, E-mail: babajn@geo.titech.ac.jp

    In order to understand the physical mechanisms underlying non-steady stellar spiral arms in disk galaxies, we analyzed the growing and damping phases of their spiral arms using three-dimensional N-body simulations. We confirmed that the spiral arms are formed due to a swing amplification mechanism that reinforces density enhancement as a seeded wake. In the damping phase, the Coriolis force exerted on a portion of the arm surpasses the gravitational force that acts to shrink the portion. Consequently, the stars in the portion escape from the arm, and subsequently they form a new arm at a different location. The time-dependent naturemore » of the spiral arms originates in the continual repetition of this nonlinear phenomenon. Since a spiral arm does not rigidly rotate, but follows the galactic differential rotation, the stars in the arm rotate at almost the same rate as the arm. In other words, every single position in the arm can be regarded as the corotation point. Due to interaction with their host arms, the energy and angular momentum of the stars change, thereby causing radial migration of the stars. During this process, the kinetic energy of random motion (random energy) of the stars does not significantly increase, and the disk remains dynamically cold. Owing to this low degree of disk heating, short-lived spiral arms can recurrently develop over many rotational periods. The resultant structure of the spiral arms in the N-body simulations is consistent with the observational nature of spiral galaxies. We conclude that the formation and structure of spiral arms in isolated disk galaxies can be reasonably understood by nonlinear interactions between a spiral arm and its constituent stars.« less

  7. The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Pezzulli, Gabriele; Fraternali, Filippo; Binney, James

    2017-05-01

    Massive and diffuse haloes of hot gas (coronae) are important intermediaries between cosmology and galaxy evolution, storing mass and angular momentum acquired from the cosmic web until eventual accretion on to star-forming discs. We introduce a method to reconstruct the rotation of a galactic corona, based on its angular momentum distribution (AMD). This allows us to investigate in what conditions the angular momentum acquired from tidal torques can be transferred to star-forming discs and explain observed galaxy-scale processes, such as inside-out growth and the build-up of abundance gradients. We find that a simple model of an isothermal corona with a temperature slightly smaller than virial and a cosmologically motivated AMD is in good agreement with galaxy evolution requirements, supporting hot-mode accretion as a viable driver for the evolution of spiral galaxies in a cosmological context. We predict moderately sub-centrifugal rotation close to the disc and slow rotation close to the virial radius. Motivated by the observation that the Milky Way has a relatively hot corona (T ≃ 2 × 106 K), we also explore models with a temperature larger than virial. To be able to drive inside-out growth, these models must be significantly affected by feedback, either mechanical (ejection of low angular momentum material) or thermal (heating of the central regions). However, the agreement with galaxy evolution constraints becomes, in these cases, only marginal, suggesting that our first and simpler model may apply to a larger fraction of galaxy evolution history.

  8. The VIRUS-P Exploration of Nearby Galaxies (VENGA): spatially resolved gas-phase metallicity distributions in barred and unbarred spirals

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle F.; Jogee, Shardha; Kewley, Lisa; Blanc, Guillermo A.; Weinzirl, Tim; Song, Mimi; Drory, Niv; Luo, Rongxin; van den Bosch, Remco C. E.

    2016-10-01

    We present a study of the excitation conditions and metallicity of ionized gas (Zgas) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median ˜387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600-6800 Å), and medium spectral resolution (˜120 km s-1 at 5000 Å). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3-10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter q, star formation rate, and Zgas using common strong line diagnostics. We find that isolated barred and unbarred spirals exhibit similarly shallow Zgas profiles from the inner kpc out to large radii (7-10 kpc or 0.5-1.0 R25). This implies that if profiles had steeper gradients at earlier epochs, then the present-day bar is not the primary driver flattening gradients over time. This result contradicts earlier claims, but agrees with recent IFU studies. (3) The Zgas gradients in our z ˜ 0 massive spirals are markedly shallower, by ˜0.2 dex kpc-1, than published gradients for lensed lower mass galaxies at z ˜ 1.5-2.0. Cosmologically motivated hydrodynamical simulations best match this inferred evolution, but the match is sensitive to adopted stellar feedback prescriptions.

  9. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  10. Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1998-01-01

    Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.

  11. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  12. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  13. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  14. Hubble Sees a Dwarf Galaxy Shaped by a Grand Design

    NASA Image and Video Library

    2014-06-20

    The subject of this Hubble image is NGC 5474, a dwarf galaxy located 21 million light-years away in the constellation of Ursa Major (The Great Bear). This beautiful image was taken with Hubble's Advanced Camera for Surveys (ACS). The term "dwarf galaxy" may sound diminutive, but don't let that fool you — NGC 5474 contains several billion stars! However, when compared to the Milky Way with its hundreds of billions of stars, NGC 5474 does indeed seem relatively small. NGC 5474 itself is part of the Messier 101 Group. The brightest galaxy within this group is the well-known spiral Pinwheel Galaxy (also known as Messier 101). This galaxy's prominent, well-defined arms classify it as a "grand design galaxy," along with other spirals Messier 81 and Messier 74. Also within this group are Messier 101's galactic neighbors. It is possible that gravitational interactions with these companion galaxies have had some influence on providing Messier 101 with its striking shape. Similar interactions with Messier 101 may have caused the distortions visible in NGC 5474. Both the Messier 101 Group and our own Local Group reside within the Virgo Supercluster, making NGC 5474 something of a neighbor in galactic terms. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Comparison between two scalar field models using rotation curves of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  16. The structure and environment of young stellar clusters in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.

    2004-03-01

    A search for stellar clusters has been carried out in 18 nearby spiral galaxies, using archive images from the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. All of the galaxies have previously been imaged from the ground in UBVI. A catalogue of structural parameters, photometry and comments based on visual inspection of the clusters is compiled and used to investigate correlations between cluster structure, environment, age and mass. Least-squares fits to the data suggest correlations between both the full-width at half-maximum (FWHM) and half-light radius (Reff) of the clusters and their masses (M) at about the 3σ level. Although both relations show a large scatter, the fits have substantially shallower slopes than for a constant-density relation (size ∝ M1/3). However, many of the youngest clusters have extended halos which make the Reff determinations uncertain. There is no evidence for galaxy-to-galaxy variations in the mean cluster sizes. In particular, the mean sizes do not appear to depend on the host galaxy star formation rate surface density. Many of the youngest objects (age < 107 years) are located in strongly crowded regions, and about 1/3-1/2 of them are double or multiple sources. The HST images are also used to check the nature of cluster candidates identified in a previous ground-based survey. The contamination rate in the ground-based sample is generally less than about 20%, but some cluster identifications remain ambiguous because of crowding even with HST imaging, especially for the youngest objects. Full Tables \\ref{tab:all}-\\ref{tab:hstphot}, and \\ref{tab:gb} are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/537 Based on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in

  17. HUBBLE OBSERVES SPIRAL GAS DISK IN ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope image of a spiral-shaped disk of hot gas in the core of active galaxy M87. HST measurements show the disk is rotating so rapidly it contains a massive black hole at its hub. A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system. Now that astronomers have seen the signature of the tremendous gravitational field at the center of M87, it is clear that the region contains only a fraction of the number of stars that would be necessary to create such a powerful attraction. The giant elliptical galaxy M87 is located 50 million light-years away in the constellation Virgo. Earlier observations suggested the black hole was present, but were not decisive. A brilliant jet of high- speed electrons that emits from the nucleus (diagonal line across image) is believed to be produced by the black hole 'engine.' The image was taken with HST's Wide Field Planetary Camera 2 Credit: Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle. NASA PHOTO CAPTION STScI-PR94-23a

  18. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  19. Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.; Klessen, Ralf S.

    2018-04-01

    The escape of ultraviolet photons from the densest regions of the interstellar medium (ISM) - giant molecular clouds (GMCs) - is a poorly constrained parameter which is vital to understanding the ionization of the ISM and the intergalactic medium. We characterize the escape fraction, fesc,GMC, from a suite of individual GMC simulations with masses in the range 104-6 M⊙ using the adaptive-mesh refinement code FLASH. We find significantly different fesc,GMC depending on the GMC mass that can reach >90 per cent in the evolution of 5 × 104 and 105 M⊙ clouds or remain low at ˜5 per cent for most of the lifetime of more massive GMCs. All clouds show fluctuations over short, sub-Myr time-scales produced by flickering H II regions. We combine our results to calculate the total escape fraction (fesc,tot) from GMC populations in dwarf starburst and spiral galaxies by randomly drawing clouds from a GMC mass distribution (dN/dM ∝ Mα, where α is either -1.5 or -2.5) over fixed time intervals. We find typical fesc,tot values of 8 per cent for both the dwarf and spiral models. The fluctuations of fesc,tot, however, are much larger for the dwarf models with values as high as 90 per cent. The photons escaping from the 5 × 104 and 105 M⊙ GMCs are the dominant contributors to fesc,tot in all cases. We also show that the accompanying star formation rates (SFRs) of our model (˜2 × 10-2 and 0.73 M⊙yr-1) are consistent with observations of SFRs in dwarf starburst and spiral galaxies, respectively.

  20. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  1. Hubble’s Hunting Dog Galaxy

    NASA Image and Video Library

    2017-12-08

    Tucked away in the small northern constellation of Canes Venatici (The Hunting Dogs) is the galaxy NGC 4242, shown here as seen by the NASA/ESA Hubble Space Telescope. The galaxy lies some 30 million light-years from us. At this distance from Earth, actually not all that far on a cosmic scale, NGC 4242 is visible to anyone armed with even a basic telescope, as British astronomer William Herschel found when he discovered the galaxy in 1788. This image shows the galaxy’s bright center and the surrounding dimmer and more diffuse “fuzz.” Despite appearing to be relatively bright in this image, studies have found that NGC 4242 is actually relatively dim (it has a moderate-to-low surface brightness and low luminosity) and also supports a low rate of star formation. The galaxy also seems to have a weak bar of stars cutting through its asymmetric center, and a very faint and poorly-defined spiral structure throughout its disk. But if NGC 4242 is not all that remarkable, as with much of the Universe, it is still a beautiful and ethereal sight. Credit: ESA/Hubble & NASA

  2. Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758

    NASA Astrophysics Data System (ADS)

    Reggiani, M.; Christiaens, V.; Absil, O.; Mawet, D.; Huby, E.; Choquet, E.; Gomez Gonzalez, C. A.; Ruane, G.; Femenia, B.; Serabyn, E.; Matthews, K.; Barraza, M.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Habraken, S.; Jolivet, A.; Karlsson, M.; Orban de Xivry, G.; Piron, P.; Surdej, J.; Vargas Catalan, E.; Wertz, O.

    2018-03-01

    Context. Transition disks offer the extraordinary opportunity to look for newly born planets and to investigate the early stages of planet formation. Aim. In this context we observed the Herbig A5 star MWC 758 with the L'-band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Methods: Our high-contrast imaging observations show a bright (ΔL' = 7.0 ± 0.3 mag) point-like emission south of MWC 758 at a deprojected separation of 20 au (r = 0.''111 ± 0.''004) from the central star. We also recover the two spiral arms (southeast and northwest), already imaged by previous studies in polarized light, and discover a third arm to the southwest of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.''6 from the star. Results: We propose that the bright L'-band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A74

  3. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Technical Reports Server (NTRS)

    Klaric, Mario; Byrd, Gene G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  4. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  5. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  6. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  7. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  8. Galaxy And Mass Assembly (GAMA): blue spheroids within 87 Mpc

    NASA Astrophysics Data System (ADS)

    Mahajan, Smriti; Drinkwater, Michael J.; Driver, S.; Hopkins, A. M.; Graham, Alister W.; Brough, S.; Brown, Michael J. I.; Holwerda, B. W.; Owers, Matt S.; Pimbblet, Kevin A.

    2018-03-01

    In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 < z < 0.02 (8-87 Mpc) with panchromatic data from the Galaxy and Mass Assembly survey. We find that BSph galaxies are structurally (mean effective surface brightness, effective radius) very similar to their passively evolving red counterparts. However, their star formation and other properties such as colour, age, and metallicity are more like star-forming spirals than spheroids (ellipticals and lenticulars). We show that BSph galaxies are statistically distinguishable from other spheroids as well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use H I data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.

  9. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  10. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible

  11. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies basedmore » on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.« less

  12. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  13. Spirals, Bridges and Tails: Star Formation and the Disturbed ISM in Colliding Galaxies before Merger.

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly

    2004-09-01

    We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.

  14. Mapping spiral structure on the far side of the Milky Way

    NASA Astrophysics Data System (ADS)

    Sanna, Alberto; Reid, Mark J.; Dame, Thomas M.; Menten, Karl M.; Brunthaler, Andreas

    2017-10-01

    Direct measurements of distances to astronomical sources rely on parallax, which can usually only be measured for relatively nearby objects. The far side of the Milky Way has been impossible to measure accurately, because the parallax is very small and interstellar dust blocks optical light from those regions. Sanna et al. used radio interferometry to directly determine the parallax distance to a star-forming region on the far side of the Galaxy. They also used a method of inferring distances from transverse motions, which produced the same answer. This allowed them to trace one of the Milky Way's spiral arms through almost an entire rotation.

  15. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  16. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  17. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  18. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  19. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  20. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    NASA Astrophysics Data System (ADS)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  1. A SINFONI view of circum-nuclear star-forming rings in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Böker, Torsten; Schinnerer, Eva; Knapen, Johan H.; Ryder, Stuart

    2008-07-01

    We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brγ) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring (‘Pearls on a string’ scenario), although models of stochastically distributed star formation (‘Popcorn’ model) cannot be completely ruled out.

  2. Effects of Cluster Environment on Chemical Abundances in Virgo Cluster Spirals

    NASA Astrophysics Data System (ADS)

    Kennicutt, R. C.; Skillman, E. D.; Shields, G. A.; Zaritsky, D.

    1995-12-01

    We have obtained new chemical abundance measurements of HII regions in Virgo cluster spiral galaxies, in order to test whether the cluster environment has significantly influenced the gas-phase abundances and chemical evolution of spiral disks. The sample of 9 Virgo spirals covers a narrow range of morphological type (Sbc - Sc) but shows broad ranges in HI deficiencies and radii in the cluster. This allows us to compare the Virgo sample as a whole to field spirals, using a large sample from Zaritsky, Kennicutt, & Huchra, and to test for systematic trends with HI content and location within the cluster. The Virgo spirals show a wide dispersion in mean disk abundances and abundance gradients. Strongly HI deficient spirals closest to the cluster core show anomalously high oxygen abundances (by 0.3 to 0.5 dex), while outlying spirals with normal HI content show abundances similar to those of field spirals. The most HI depleted spirals also show weaker abundance gradients on average, but the formal significance of this trend is marginal. We find a strong correlation between mean abundance and HI/optical diameter ratio that is quite distinct from the behavior seen in field galaxies. This suggests that dynamical processes associated with the cluster environment are more important than cluster membership in determining the evolution of chemical abundances and stellar populations in spiral galaxies. Simple chemical evolution models are calculated to predict the magnitude of the abundance enhancement expected if ram-pressure stripping or curtailment of infall is responsible for the gas deficiencies. The increased abundances of the spirals in the cluster core may have significant effects on their use as cosmological standard candles.

  3. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, containsmore » a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.« less

  4. Chemical enrichment in isolated barred spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Carles, Christian; Robichaud, Fidéle; Ellison, Sara L.; Williamson, David J.

    2018-04-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and AGN feedback models. The presence of a bar drives a substantial amount of gas toward the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  5. HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Vogelsberger, Mark

    2013-08-01

    Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-staticmore » gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.« less

  6. Star Formation Rates of dS galaxies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Vega-Acevedo, I.; Magaña-Serrano, M. A.

    2014-10-01

    The Star Formation Rate of a sample of nine dwarf spiral galaxies and ten late-type Sm is determined from the Hα luminosity. The main interest was to check if these two kind of late-type galaxies have similar SFR or not. The images were acquired at the 1.5m telescope of the SPM-OAN and they were reduced with the software MIDAS. The values of the SFR are very similar for both type of galaxies and also similar to other Sm galaxies. The main result is that the dwarf spiral galaxies are more efficient when forming stars than the Sm galaxies because the SFR per are are lower for the latter with the same gas density than for dwarf spirals. However, the SFRs are larger in the Sm galaxies. In addition, the SFR per area were compared with global properties of the galaxies. There is only a relationship between the SFR and the surface brightness as well as with the absolute blue magnitude, but no relationship with the optical radius. A larger sample is needed in order to obtain a more conclusive answer.

  7. On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe

    NASA Astrophysics Data System (ADS)

    Bait, Omkar; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    Using multiwavelength data, from ultraviolet to optical to near-infrared to mid-infrared, for ˜6000 galaxies in the local Universe, we study the dependence of star formation on the morphological T-types for massive galaxies (log M*/M⊙ ≥ 10). We find that, early-type spirals (Sa-Sbc) and S0s predominate in the green valley, which is a transition zone between the star forming and quenched regions. Within the early-type spirals, as we move from Sa to Sbc spirals the fraction of green valley and quenched galaxies decreases, indicating the important role of the bulge in the quenching of galaxies. The fraction of early-type spirals decreases as we enter the green valley from the blue cloud, which coincides with the increase in the fraction of S0s. These points towards the morphological transformation of early-type spiral galaxies into S0s, which can happen due to environmental effects such as ram-pressure stripping, galaxy harassment or tidal interactions. We also find a second population of S0s that are actively star forming and are present in all environments. Since morphological T-type, specific star formation rate (sSFR), and environmental density are all correlated with each other, we compute the partial correlation coefficient for each pair of parameters while keeping the third parameter as a control variable. We find that morphology most strongly correlates with sSFR, independent of the environment, while the other two correlations (morphology-density and sSFR-environment) are weaker. Thus, we conclude that, for massive galaxies in the local Universe, the physical processes that shape their morphology are also the ones that determine their star-forming state.

  8. A galactic sunflower

    NASA Image and Video Library

    2015-09-07

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in a new image from the NASA/ESA Hubble Space Telescope, recall the pattern at the centre of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars, readily seen in this Hubble image.

  9. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy.

    PubMed

    Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng

    2016-04-29

    In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.

  10. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  11. The GALEX/S4G UV-IR Color-Color Diagram: Catching Spiral Galaxies Away from the Blue Sequence

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Boissier, Samuel; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Zaritsky, Dennis; Laine, Jarkko; Gallego, Jesús; Peletier, Reynier F.; Röck, Benjamin R.; Knapen, Johan H.

    2015-02-01

    We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for \\gt 2000 galaxies, available for 90% of the S4G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, at (NUV-[3.6]) \\gt 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by {{M}[3.6]}) since both massive ({{M}\\star }\\gt {{10}11}{{M}⊙ }) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 108 yr.

  12. Chemical enrichment in isolated barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Carles, Christian; Robichaud, Fidèle; Ellison, Sara L.; Williamson, David J.

    2018-07-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and active galactic nucleus (AGN) feedback models. The presence of a bar drives a substantial amount of gas towards the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  13. Hubble Spotlight on Irregular Galaxy

    NASA Image and Video Library

    2017-12-08

    This delicate blue group of stars — actually an irregular galaxy named IC 3583 — sits some 30 million light-years away in the constellation of Virgo (The Virgin). It may seem to have no discernable structure, but IC 3583 has been found to have a bar of stars running through its center. These structures are common throughout the Universe, and are found within the majority of spiral, many irregular, and some lenticular galaxies. Two of our closest cosmic neighbors, the Large and Small Magellanic Clouds, are barred, indicating that they may have once been barred spiral galaxies that were disrupted or torn apart by the gravitational pull of the Milky Way. Researchers at the University of Leicester, England note there are two types of irregular galaxy. Type I's are usually single galaxies of peculiar appearance. They contain a large fraction of young stars, and show the luminous nebulae that are also visible in spiral galaxies. Type II irregulars include the group known as interacting or disrupting galaxies, in which the strange appearance is due to two or more galaxies colliding, merging or otherwise interacting gravitationally. Something similar might be happening with IC 3583. This small galaxy is thought to be gravitationally interacting with one of its neighbors, the spiral Messier 90. Together, the duo form a pairing known as Arp 76. It’s still unclear whether these flirtations are the cause of IC 3583’s irregular appearance — but whatever the cause, the galaxy makes for a strikingly delicate sight in this NASA/ESA Hubble Space Telescope image, glimmering in the blackness of space. Image Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  14. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    NASA Astrophysics Data System (ADS)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  15. Effect of dark matter halo on global spiral modes in a collisionless galactic disk

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2017-07-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.

  16. M 101: The Pinwheel Galaxy

    NASA Image and Video Library

    2011-07-21

    A large spiral galaxy dominates this view from NASA Wide-field Infrared Survey Explorer. The galaxy, often called the Pinwheel galaxy, was designated object 101 in astronomer Charles Messier catalog of fuzzy things in the sky that are not comets.

  17. Triple Scoop from Galaxy Hunter

    NASA Image and Video Library

    2006-07-28

    Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky as seen in this edge-on view from NASA Galaxy Evolution Explorer.

  18. Giant Radio Jet Coming From Wrong Kind of Galaxy

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Giant jets of subatomic particles moving at nearly the speed of light have been found coming from thousands of galaxies across the Universe, but always from elliptical galaxies or galaxies in the process of merging -- until now. Using the combined power of the Hubble Space Telescope, the Very Large Array (VLA) and the 8-meter Gemini-South Telescope, astronomers have discovered a huge jet coming from a spiral galaxy similar to our own Milky Way. Radio-optical view of galaxy Combined HST and VLA image of the galaxy 0313-192. Optical HST image shows the galaxy edge-on; VLA image, shown in red, reveals giant jet of speeding particles. For more images, see this link below. CREDIT: Keel, Ledlow & Owen; STScI,NRAO/AUI/NSF, NASA "We've always thought spirals were the wrong kind of galaxy to generate these huge jets, but now we're going to have to re-think some of our ideas on what produces these jets," said William Keel, a University of Alabama astronomer who led the research team. Keel worked with Michael Ledlow of Gemini Observatory and Frazer Owen of the National Radio Astronomy Observatory. The scientists reported their findings at the American Astronomical Society's meeting in Seattle, Washington. "Further study of this galaxy may provide unique insights on just what needs to happen in a galaxy to produce these powerful jets of particles," Keel said. In addition, Owen said, "The loose-knit nature of the cluster of galaxies in which this galaxy resides may play a part in allowing this particular spiral to produce jets." Astronomers believe such jets originate at the cores of galaxies, where supermassive black holes provide the tremendous gravitational energy to accelerate particles to nearly the speed of light. Magnetic fields twisted tightly by spinning disks of material being sucked into the black hole are presumed to narrow the speeding particles into thin jets, like a nozzle on a garden hose. Both elliptical and spiral galaxies are believed to harbor supermassive

  19. On the dynamical basis of the classification of normal galaxies

    PubMed Central

    Haass, J.; Bertin, G.; Lin, C. C.

    1982-01-01

    Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200

  20. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  1. The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Wagner, Kevin; Dong, Ruobing; Sheehan, Patrick; Apai, Dániel; Kasper, Markus; McClure, Melissa; Morzinski, Katie M.; Close, Laird; Males, Jared; Hinz, Phil; Quanz, Sascha P.; Fung, Jeffrey

    2018-02-01

    HD 100453AB is a 10 ± 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.″05, or ∼108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary’s orbit to a = 1.″06 ± 0.″09, e = 0.17±0.07, and i = 32.°5 ± 6.°5. We utilized publicly available ALMA 12CO data to constrain the inclination of the disk, {i}{{disk}}∼ 28^\\circ , which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star’s rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.

  2. Galaxy NGC 4013

    NASA Image and Video Library

    1999-12-15

    An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.

  3. An atlas of ultraviolet spectra of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.

    1993-01-01

    A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.

  4. Mass Extinction and the Structure of the Milky Way

    NASA Astrophysics Data System (ADS)

    Filipovic, M. D.; Horner, J.; Crawford, E. J.; Tothill, N. F. H.; White, G. L.

    2013-12-01

    We use the most up-to-date Milky Way model and solar orbit data in order to test the hypothesis that the Sun's galactic spiral arm crossings cause mass extinction events on Earth. To do this, we created a new model of the Milky Way's spiral arms by combining a large quantity of data from several surveys. We then combined this model with a recently derived solution for the solar orbit to determine the timing of the Sun's historical passages through the Galaxy's spiral arms. Our new model was designed with a symmetrical appearance, with the major alteration being the addition of a spur at the far side of the Galaxy. A correlation was found between the times at which the Sun crosses the spiral arms and six known mass extinction events. Furthermore, we identify five additional historical mass extinction events that might be explained by the motion of the Sun around our Galaxy. These five additional significant drops in marine genera that we find include significant reductions in diversity at 415, 322, 300, 145 and 33~Myr ago. Our simulations indicate that the Sun has spent ˜60 per cent of its time passing through our Galaxy's various spiral arms. Also, we briefly discuss and combine previous work on the Galactic Habitable Zone with the new Milky Way model.

  5. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  6. Cannibalization of Dwarf Galaxies by the Milky Way: Distance to the Leading Arm of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew

    2016-01-01

    Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.

  7. Selection of Multiarmed Spiral Waves in a Regular Network of Neurons

    PubMed Central

    Hu, Bolin; Ma, Jun; Tang, Jun

    2013-01-01

    Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966

  8. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  9. J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source

    NASA Technical Reports Server (NTRS)

    Mao, Minnie Y.; Owen, Frazer; Duffin, Ryan; Keel, Bill; Lacy, Mark; Momjian, Emmanuel; Morrison, Glenn; Mroczkowski, Tony; Neff, Susan; Norris, Ray P.; hide

    2014-01-01

    We report the discovery of a grand-design spiral galaxy associated with a double-lobed radio source. J1649+2635 (z = 0.0545) is a red spiral galaxy with a prominent bulge that it is associated with a L(1.4GHz) is approximately 10(exp24) W Hz(exp-1) double-lobed radio source that spans almost 100 kpc. J1649+2635 has a black hole mass of M(BH) is approximately 3-7 × 10(exp8) Solar mass and SFR is approximately 0.26 - 2.6 solar mass year(exp-1). The galaxy hosts a approximately 96 kpc diffuse optical halo, which is unprecedented for spiral galaxies. We find that J1649+2635 resides in an overdense environment with a mass of M(dyn) = 7.7(+7.9/-4.3) × 10(exp13) Solar mass, likely a galaxy group below the detection threshold of the ROSAT All-Sky Survey. We suggest one possible scenario for the association of double-lobed radio emission from J1649+2635 is that the source may be similar to a Seyfert galaxy, located in a denser-than-normal environment. The study of spiral galaxies that host large-scale radio emission is important because although rare in the local Universe, these sources may be more common at high-redshifts.

  10. Dynamics of the Interstellar Matter in Galaxies

    NASA Astrophysics Data System (ADS)

    Kristen, H.

    The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI~extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright ``super star clusters'' (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a ``radio supernova''. In the [OIII] 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization

  11. Gemini Spectra of Star Clusters in the Spiral Galaxy M101

    NASA Astrophysics Data System (ADS)

    Simanton-Coogan, Lesley A.; Chandar, Rupali; Miller, Bryan; Whitmore, Bradley C.

    2017-12-01

    We present low resolution, visible light spectra of 41 star clusters in the spiral galaxy M101, taken with the Gemini/GMOS instrument. We measure Lick indices for each cluster and compare with BaSTI models to estimate their ages and metallicities. We also measure the line-of-sight velocities. We find that 25 of the clusters are fairly young massive clusters (YMCs) with ages of hundreds of millions of years, and 16 appear to be older, globular clusters (GCs). There are at least four GCs with best-fit ages of ≈1–3 Gyr and eight with best-fit ages of ≈5–10 Gyr. The mean metallicity of the YMCs is [Fe/H] ≈ ‑0.1 and for the GCs is [Fe/H] ≈ ‑0.9. We find a near-continuous spread in both age and metallicity for our sample, which may indicate that M101 had a more-or-less continuous history of cluster and star formation. From the kinematics, we find that the YMCs rotate with the H I gas fairly well, while the GCs do not. We cannot definitively say whether the GCs sampled here lie in an inner halo, thick disk, or bulge/psuedobulge component, although given the very small bulge in M101, the last seems unlikely. The kinematics and ages of the YMCs suggest that M101 may have undergone heating of its disk or possibly a continuous merger/accretion history for the galaxy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending onmore » the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.« less

  13. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  14. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  15. Hubble Eyes Galaxy as Flat as a Pancake

    NASA Image and Video Library

    2017-12-08

    Located some 25 million light-years away, this new Hubble image shows spiral galaxy ESO 373-8. Together with at least seven of its galactic neighbors, this galaxy is a member of the NGC 2997 group. We see it side-on as a thin, glittering streak across the sky, with all its contents neatly aligned in the same plane. We see so many galaxies like this — flat, stretched-out pancakes — that our brains barely process their shape. But let us stop and ask: Why are galaxies stretched out and aligned like this? Try spinning around in your chair with your legs and arms out. Slowly pull your legs and arms inwards, and tuck them in against your body. Notice anything? You should have started spinning faster. This effect is due to conservation of angular momentum, and it’s true for galaxies, too. This galaxy began life as a humungous ball of slowly rotating gas. Collapsing in upon itself, it spun faster and faster until, like pizza dough spinning and stretching in the air, a disc started to form. Anything that bobbed up and down through this disk was pulled back in line with this motion, creating a streamlined shape. Angular momentum is always conserved — from a spinning galactic disk 25 million light-years away from us, to any astronomer, or astronomer-wannabe, spinning in an office chair. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-04-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  17. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-05-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  18. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  19. Radial migration in numerical simulations of Milky-Way sized galaxies

    NASA Astrophysics Data System (ADS)

    Grand, R. J. J.; Kawata, D.

    2016-09-01

    We show that in ßrm N-body simulations of isolated spiral discs, spiral arms appear to transient, recurring features that co-rotate with the stellar disc stars at all radii. As a consequence, stars around the spiral arm continually feel a tangential force from the spiral and gain/lose angular momentum at all radii where spiral structure exists, without gaining significant amounts of random energy. We demonstrate that the ubiquitous radial migration in these simulations can be seen as outward (inward) systematic streaming motions along the trailing (leading) side of the spiral arms. We characterise these spiral induced peculiar motions and compare with those of the Milky Way obtained from APOGEE red clump data. We find that transient, co-rotating spiral arms are consistent with the data, in contrast with density wave-like spirals which are qualitatively inconsistent. In addition, we show that, in our simulations, radial migration does not change the radial metallicity gradient significantly, and broadens the metallicity distribution function at all radii, similar to some previous studies.

  20. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory

  1. Spiral tectonics

    NASA Astrophysics Data System (ADS)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  2. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  3. Mapping IR Enhancements in Closely Interacting Spiral-Spiral Pairs: I. ISO CAM and ISO SWS Observations

    NASA Technical Reports Server (NTRS)

    Xu, C.; Gao, Y.; Mazzarella, J.; Lu, N.; Sulentic, J.; Domingue, D.

    2000-01-01

    Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission.

  4. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  5. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  6. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  7. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    , NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team

  8. GETTING TO THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269

  9. NEW EVIDENCE SUPPORTING MEMBERSHIP FOR TW NOR IN LYNGA 6 AND THE CENTAURUS SPIRAL ARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majaess, Daniel; Turner, David; Moni Bidin, Christian

    2011-11-10

    The putative association between the 10{sub .}{sup d}8 classical Cepheid TW Nor and the open cluster Lynga 6 has generated considerable debate in the literature. New JHK{sub s} photometry in tandem with existing radial velocities for Lynga 6 stars implies cluster membership for TW Nor and establishes the variable as a high-weight calibrator for classical Cepheid relations. Fundamental mean parameters determined for Lynga 6 are: d = 1.91 {+-} 0.10 kpc, E(J - H) = 0.38 {+-} 0.02, and log {tau} = 7.9 {+-} 0.1. The Benedict et al./Turner Galactic VI{sub c} Wesenheit function was revised using TW Nor's newmore » parameters: W{sub VI,0} (- 3.37 {+-} 0.08)log P{sub 0} - 2.48 {+-} 0.08. TW Nor/Lynga 6 lie beyond the Sagittarius-Carina spiral arm and occupy the Centaurus arm, along with innumerable young Cepheids and clusters (e.g., VW Cen and VVV CL070).« less

  10. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  11. Natural selection in the colloid world: active chiral spirals.

    PubMed

    Zhang, Jie; Granick, Steve

    2016-10-06

    We present a model system in which to study natural selection in the colloid world. In the assembly of active Janus particles into rotating pinwheels when mixed with trace amounts of homogeneous colloids in the presence of an AC electric field, broken symmetry in the rotation direction produces spiral, chiral shapes. Locked into a central rotation point by the centre particle, the spiral arms are found to trail rotation of the overall cluster. To achieve a steady state, the spiral arms undergo an evolutionary process to coordinate their motion. Because all the particles as segments of the pinwheel arms are self-propelled, asymmetric arm lengths are tolerated. Reconfiguration of these structures can happen in various ways and various mechanisms of this directed structural change are analyzed in detail. We introduce the concept of VIP (very important particles) to express that sustainability of active structures is most sensitive to only a few particles at strategic locations in the moving self-assembled structures.

  12. Resolved Giant Molecular Clouds in Nearby Spiral Galaxies: Insights from the CANON CO (1-0) Survey

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, Jennifer; Koda, Jin; Momose, Rieko; Mooney, Thomas; Egusa, Fumi; Carty, Misty; Kennicutt, Robert; Kuno, Nario; Rebolledo, David; Sawada, Tsuyoshi; Scoville, Nick; Wong, Tony

    2013-08-01

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 × 105 M ⊙ in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and 12CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H2 mass (or X CO) for each galaxy is 1-2 × 1020 cm-2 (K km s-1)-1, all within a factor of two of the Milky Way disk value (~2 × 1020 cm-2 (K km s-1)-1). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X CO trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.

  13. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  14. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  15. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  16. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    NASA Astrophysics Data System (ADS)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  17. Hubble Eyes Galaxy as it Gets a Cosmic Hair Ruffling

    NASA Image and Video Library

    2014-08-01

    From objects as small as Newton's apple to those as large as a galaxy, no physical body is free from the stern bonds of gravity, as evidenced in this stunning picture captured by the Wide Field Camera 3 and Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope. Here we see two spiral galaxies engaged in a cosmic tug-of-war — but in this contest, there will be no winner. The structures of both objects are slowly distorted to resemble new forms, and in some cases, merge together to form new, super galaxies. This particular fate is similar to that of the Milky Way Galaxy, when it will ultimately merge with our closest galactic partner, the Andromeda Galaxy. There is no need to panic however, as this process takes several hundreds of millions of years. Not all interacting galaxies result in mergers though. The merger is dependent on the mass of each galaxy, as well as the relative velocities of each body. It is quite possible that the event pictured here, romantically named 2MASX J06094582-2140234, will avoid a merger event altogether, and will merely distort the arms of each spiral without colliding — the cosmic equivalent of a hair ruffling! These galactic interactions also trigger new regions of star formation in the galaxies involved, causing them to be extremely luminous in the infrared part of the spectrum. For this reason, these types of galaxies are referred to as LIRGs, or Luminous Infrared Galaxies. This image was taken as part of as part of a Hubble survey of the central regions of LIRGs in the local Universe, which also used the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument. Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific

  18. THE GALEX/S{sup 4}G UV–IR COLOR–COLOR DIAGRAM: CATCHING SPIRAL GALAXIES AWAY FROM THE BLUE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Gallego, Jesús

    We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for >2000 galaxies, available for 90% of the S{sup 4}G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV–NUV) versus (NUV–[3.6]) color–color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, atmore » (NUV–[3.6]) > 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M{sub [3.6]}) since both massive (M{sub ⋆}>10{sup 11}M{sub ⊙}) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10{sup 8} yr.« less

  19. The velocity field of the barred spiral galaxy NGC 1300 revisited.

    NASA Astrophysics Data System (ADS)

    Lindblad, P. A. B.; Kristen, H.; Joersaeter, S.; Hoegbom, J.

    1997-01-01

    The re-reduction, described in Joersaeter & van Moorsel (1995AJ....110.2037J), of NGC 1300 VLA HI observations, originally obtained by M. England, motivates a new analysis of the velocity field and rotation curve. Fitting tilted ring models to the HI velocity data, we find the new values for the orientation parameters of NGC 1300 to be PA_lon_=267+/-2deg and i=35+/-5deg. Subsequently, the HI rotation curve is extracted, and a residual velocity map constructed. The HI velocity residuals in the bar region are found to be consistent with elliptical motion aligned with the bar major axis. Further out the residual velocities correlate with the position of the HI spiral arms. We use 16 optical long slit emission line spectra, covering mainly the nuclear, bar, and inner arm region, to resolve the inner part of the velocity field. Three new spectra are presented in this investigation, and the remaining 13 are found in the literature. The optical velocities reveal a sharply rising rotation curve in the inner R<10", not seen in the HI data due to beam-smearing. The optical velocity field is weighted together with the HI velocities to produce a combined velocity field. This velocity field is interpreted using hydrodynamical models in a subsequent paper by Lindblad & Kristen (1996A&A...313..733L).

  20. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  1. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  2. HUBBLE'S NEW IMPROVED OPTICS PROBE THE CORE OF A DISTANT GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This comparison image of the core of the galaxy M100 shows the dramatic improvement in Hubble Space Telescope's view of the universe. The new image was taken with the second generation Wide Field and Planetary Camera (WFPC-2) which was installed during the STS-61 Hubble Servicing Mission. The picture beautifully demonstrates that the corrective optics incorporated within the WFPC-2 compensate fully for optical aberration in Hubble's primary mirror. The new camera will allow Hubble to probe the universe with unprecedented clarity and sensitivity, and to fulfill many of the most important scientific objectives for which the telescope was originally built. [ Right ] The core of the grand design spiral galaxy M100, as imaged by Hubble Space Telescope's Wide Field Planetary Camera 2 in its high resolution channel. The WFPC-2 contains modified optics that correct for Hubble's previously blurry vision, allowing the telescope for the first time to cleanly resolve faint structure as small as 30 light-years across in a galaxy which is tens of millions of light years away. The image was taken on December 31, 1993. [Left ] For comparison, a picture taken with the WFPC-1 camera in wide field mode, on November 27, 1993, just a few days prior to the STS-61 servicing mission. The effects of optical aberration in HST's 2.4-meter primary mirror blur starlight, smear out fine detail, and limit the telescope's ability to see faint structure. Both Hubble images are 'raw;' they have not been subject to computer image reconstruction techniques commonly used in aberrated images made before the servicing mission. TARGET INFORMATION: M100 The galaxy M100 (100th object in the Messier Catalog of non-stellar objects) is one of the brightest members of the Virgo Cluster of galaxies. The galaxy is in the spring constellation Coma Berenices and can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The

  3. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  4. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    PubMed

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  5. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  6. RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1-0) SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan Meyer, Jennifer; Koda, Jin; Mooney, Thomas

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 Multiplication-Sign 10{sup 5} M{sub Sun} in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and {sup 12}CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H{sub 2} mass (or X{sub CO})more » for each galaxy is 1-2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, all within a factor of two of the Milky Way disk value ({approx}2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X{sub CO} trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.« less

  7. The first detection of neutral hydrogen in emission in a strong spiral lens

    NASA Astrophysics Data System (ADS)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  8. Our Milky Way Gets a Makeover

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Fully Annotated Version Click on image for Poster Version

    Like early explorers mapping the continents of our globe, astronomers are busy charting the spiral structure of our galaxy, the Milky Way. Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars. Previously, our galaxy was thought to possess four major arms.

    This artist's concept illustrates the new view of the Milky Way, along with other findings presented at the 212th American Astronomical Society meeting in St. Louis, Mo. The galaxy's two major arms (Scutum-Centaurus and Perseus) can be seen attached to the ends of a thick central bar, while the two now-demoted minor arms (Norma and Sagittarius) are less distinct and located between the major arms. The major arms consist of the highest densities of both young and old stars; the minor arms are primarily filled with gas and pockets of star-forming activity.

    The artist's concept also includes a new spiral arm, called the 'Far-3 kiloparsec arm,' discovered via a radio-telescope survey of gas in the Milky Way. This arm is shorter than the two major arms and lies along the bar of the galaxy.

    Our sun lies near a small, partial arm called the Orion Arm, or Orion Spur, located between the Sagittarius and Perseus arms.

  9. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass surface densities (Σdyn). By subtracting our observed atomic and inferred molecular gas mass surface densities from Σdyn, we derived the stellar mass surface densities (Σ∗), and thus have absolute measurements of all dominant baryonic components of the galaxies. Using K-band surface brightness profiles (IK), we calculated the K-band mass-to-light ratio of the stellar disks (Υ∗ = Σ∗/IK) and adopted the radial mean (overline{mls}) for each galaxy to extrapolate Σ∗ beyond the outermost kinematic measurement. The derived overline{mls} of individual galaxies are consistent with all galaxies in the sample having equal Υ∗. We find a sample average and scatter of mlab overline{mls}mrab = 0.31 ± 0.07. Rotation curves of the baryonic components were calculated from their deprojected mass surface densities. These were used with circular-speed measurements to derive the structural parameters of the dark-matter halos, modeled as either a pseudo-isothermal sphere (pISO) or a Navarro-Frenk-White (NFW) halo. In addition to our dynamically determined mass decompositions, we also performed alternative rotation-curve decompositions by adopting the traditional maximum-disk hypothesis. However, the galaxies in our sample are submaximal, such that at 2.2 disk scale lengths (hR) the ratios between the baryonic and total rotation curves (Fb2.2hR) are less than 0.75. We find this ratio to be nearly constant between 1-6hR within individual galaxies. We find a sample average and scatter of mlab Fb2.2hRmrab = 0.57 ± 0.07, with trends of larger Fb2.2hR for more luminous and higher-surface-brightness galaxies. To enforce these being maximal, we need to scale Υ∗ by a factor 3.6 on

  10. Color Profile Trends of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location. Furthermore, color trends reveal information about possible stellar population changes at the breaks. Here we show color trends for the four profile types from a large multi-wavelength photometric study of dwarf disk galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  11. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    NASA Astrophysics Data System (ADS)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  12. Controllable Growth and Formation Mechanisms of Dislocated WS2 Spirals.

    PubMed

    Fan, Xiaopeng; Zhao, Yuzhou; Zheng, Weihao; Li, Honglai; Wu, Xueping; Hu, Xuelu; Zhang, Xuehong; Zhu, Xiaoli; Zhang, Qinglin; Wang, Xiao; Yang, Bin; Chen, Jianghua; Jin, Song; Pan, Anlian

    2018-06-13

    Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS 2 spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.

  13. Collisionless relaxation in spiral galaxy models

    NASA Technical Reports Server (NTRS)

    Hohl, F.

    1974-01-01

    The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.

  14. New Images Show Unprecedented Detail of Neighbor Galaxy's Gas

    NASA Astrophysics Data System (ADS)

    2001-01-01

    also includes our own Milky Way and the Andromeda Galaxy. With a diameter of about 60,000 light-years, it is roughly half the size of the Milky Way. Under vary dark skies, people with excellent vision can see M33 with the unaided eye. With common amateur telescopes, its spiral arms can be seen. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Galaxies Near and Far Artist Concept

    NASA Image and Video Library

    2011-06-30

    This artist concept shows how a normal spiral galaxy around our local universe left might have looked back in the distant universe, when astronomers think galaxies would have been filled with larger populations of hot, bright stars right.

  16. Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    NASA Astrophysics Data System (ADS)

    Rodríguez-Baras, M.; Díaz, A. I.; Rosales-Ortega, F. F.; Sánchez, S. F.

    2018-01-01

    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk H ii regions, despite the known differences between inner and outer regions. Aims: Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer H ii regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods: We analyzed a sample of 725 inner H ii regions and a sample of 671 outer H ii regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results: We find that inner H ii regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [N ii] λ6583/Hα and [O ii] λ3727/[O iii] λ5007 emission-line ratios, indicating higher metallicities and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although MionMphot is slighty higher for the outer regions. Conclusions: This work shows important observational differences between inner and outer H ii regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm. Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A102

  17. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE PAGES

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon; ...

    2017-07-10

    Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  18. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo.more » The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  19. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon

    Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  20. A Galaxy at the Center of the Hubble Tuning Fork

    NASA Image and Video Library

    2017-12-08

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is a good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. Credit: ESA/Hubble & NASA and N. Gorin (STScI), Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram