Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
The critical density for star formation in HII galaxies
NASA Technical Reports Server (NTRS)
Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.
1993-01-01
The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.
NASA Astrophysics Data System (ADS)
Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.
2016-12-01
We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.
THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Bolatto, Alberto; Drory, Niv
2013-02-20
In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies inmore » our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.« less
Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2
NASA Astrophysics Data System (ADS)
Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon
2017-03-01
We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.
Extended Schmidt law holds for faint dwarf irregular galaxies
NASA Astrophysics Data System (ADS)
Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong
2017-12-01
Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations of stars set the pressure in the interstellar medium and affect ongoing star formation, are promising candidates for explaining the ESL. We also confirm that ESL is an independent relation and not a form of a relation between star formation efficiency and metallicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi
The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less
The disk averaged star formation relation for Local Volume dwarf galaxies
NASA Astrophysics Data System (ADS)
López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.
2018-05-01
Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.
NASA Astrophysics Data System (ADS)
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
Photometric properties of galaxies in the SDSS
NASA Astrophysics Data System (ADS)
Hogg, D. W.; Blanton, M.; SDSS Collaboration
2001-12-01
We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Hughes, Annie; Schruba, Andreas
2016-11-01
The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue thatmore » our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.« less
A comparison of UV surface brightness and HI surface densities for spiral galaxies
NASA Technical Reports Server (NTRS)
Federman, S. R.; Strom, C.
1990-01-01
Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies.
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric
CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 kmmore » s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.« less
Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T
2017-07-10
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.
Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed
NASA Astrophysics Data System (ADS)
Bothun, G.; Impey, C.; McGaugh, S.
1997-07-01
In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)
Star Formation-Driven Winds in the Early Universe
NASA Astrophysics Data System (ADS)
Peek, Matthew; Lundgren, Britt; Brammer, Gabriel
2018-01-01
Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.
Confusion-limited galaxy fields. I - Simulated optical and near-infrared images
NASA Technical Reports Server (NTRS)
Chokshi, Arati; Wright, Edward L.
1988-01-01
Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.
Gravitational star formation thresholds and gas density in three galaxies
NASA Technical Reports Server (NTRS)
Oey, M. S.; Kennicutt, R. C., Jr.
1990-01-01
It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is required to verify this result, and the authors are currently undertaking a high-resolution study of the nearby spiral M33 and other galaxies to further investigate this problem.
The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841
NASA Astrophysics Data System (ADS)
Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven
2018-03-01
Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.
Surface term effects on mass estimators
NASA Astrophysics Data System (ADS)
Membrado, M.; Pacheco, A. F.
2016-05-01
Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims: We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods: We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results: Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 ± 2.8) × 1011 M⊙ for the Milky Way - M 31; (12.5 ± 2.5) × 1011 M⊙ for M 81 - NGC 2403; (21.5 ± 7.7) × 1011 M⊙. for Cantaurs A - M 83; and (7.9 ± 2.6) × 1011 M⊙. for IC 324 - Maffei. Conclusions: The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the cosmological constant. We have also seen that, if mass density were proportional to luminosity density on different scales in the Universe, the 5 Mpc sphere would have a mean density close to that of the sphere region containing galaxies and systems of galaxies; thus, the rest of the sphere could contain regions of low-mass dark halos with similar mass density. This mass density would be about 4.5 times greater than that of the matter background of the Universe at present.
The global star formation law of galaxies revisited in the radio continuum
NASA Astrophysics Data System (ADS)
Liu, LiJie; Gao, Yu
2012-02-01
We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 L⊙), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter ˜0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (˜0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from ˜1 when only normal spirals are considered, to ˜1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Debra Meloy; Putko, Joseph; Dewberry, Janosz
2012-05-10
Tadpole galaxies have a giant star-forming region at the end of an elongated intensity distribution. Here we use Sloan Digital Sky Survey data to determine the ages, masses, and surface densities of the heads and tails in 14 local tadpoles selected from the Kiso and Michigan surveys of UV-bright galaxies, and we compare them to tadpoles previously studied in the Hubble Ultra Deep Field. The young stellar mass in the head scales linearly with rest-frame galaxy luminosity, ranging from {approx}10{sup 5} M{sub Sun} at galaxy absolute magnitude U = -13 mag to 10{sup 9} M{sub Sun} at U = -20more » mag. The corresponding head surface density increases from several M {sub Sun} pc{sup -2} locally to 10-100 M{sub Sun} pc{sup -2} at high redshift, and the star formation rate (SFR) per unit area in the head increases from {approx}0.01 M{sub Sun} yr{sup -1} kpc{sup -2} locally to {approx}1 M{sub Sun} yr{sup -1} kpc{sup -2} at high z. These local values are normal for star-forming regions, and the increases with redshift are consistent with other cosmological SFRs, most likely reflecting an increase in gas abundance. The tails in the local sample look like bulge-free galaxy disks. Their photometric ages decrease from several Gyr to several hundred Myr with increasing z, and their surface densities are more constant than the surface densities of the heads. The far-outer intensity profiles in the local sample are symmetric and exponential. We suggest that most local tadpoles are bulge-free galaxy disks with lopsided star formation, perhaps from environmental effects such as ram pressure or disk impacts, or from a Jeans length comparable to half the disk size.« less
The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa
2018-01-01
The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.
Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.
1996-07-01
The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús
2018-02-01
We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
Visualization of Sources in the Universe
NASA Astrophysics Data System (ADS)
Kafatos, M.; Cebral, J. R.
1993-12-01
We have begun to develop a series of visualization tools of importance to the display of astronomical data and have applied these to the visualization of cosmological sources in the recently formed Institute for Computational Sciences and Informatics at GMU. One can use a three-dimensional perspective plot of the density surface for three dimensional data and in this case the iso-level contours are three- dimensional surfaces. Sophisticated rendering algorithms combined with multiple source lighting allow us to look carefully at such density contours and to see fine structure on the surface of the density contours. Stereoscopic and transparent rendering can give an even more sophisticated approach with multi-layered surfaces providing information at different levels. We have applied these methods to looking at density surfaces of 3-D data such as 100 clusters of galaxies and 2500 galaxies in the CfA redshift survey. Our plots presented are based on three variables, right ascension, declination and redshift. We have also obtained density structures in 2-D for the distribution of gamma-ray bursts (where distances are unknown) and the distribution of a variety of sources such as clusters of galaxies. Our techniques allow for correlations to be done visually.
Exploring Properties of HI Clouds in Dwarf Irregular Galaxies
NASA Astrophysics Data System (ADS)
Berger, Clara; Hunter, Deidre Ann
2018-01-01
Dwarf Irregular galaxies form stars and maintain exponential stellar disks at extremely low gas densities. One proposed method of maintaining such regular outer disks is scattering stars off of HI clouds. In order to understand the processes present in dwarf irregular stellar disks, we present a survey of atomic hydrogen clouds in and around a subset of representative galaxies from the LITTLE THINGS survey. We apply a cloud identification program to the 21 cm HI line emission cubes and extract masses, radii, surface densities, and distances from the center of the galaxy in the plane of the galaxy of each cloud. Our data show a wide range of clouds characterized by low surface densities but varied in mass and size. The number of clouds found and the mass of the most massive cloud show no correlation to integrated star forming rates or luminosity in these galaxies. However, they will be used as input for models of stars scattering off of HI clouds to better understand the regular stellar disks in dwarf Irregular galaxies.We acknowledge support from the National Science Foundation grant AST-1461200 to Northern Arizona University for Research Experiences for Undergraduates summer internships.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
A wide-field survey of satellite galaxies around the spiral galaxy M106
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.
2011-04-01
We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.
Inversion method applied to the rotation curves of galaxies
NASA Astrophysics Data System (ADS)
Márquez-Caicedo, L. A.; Lora-Clavijo, F. D.; Sanabria-Gómez, J. D.
2017-07-01
We used simulated annealing, Montecarlo and genetic algorithm methods for matching both numerical data of density and velocity profiles in some low surface brigthness galaxies with theoretical models of Boehmer-Harko, Navarro-Frenk-White and Pseudo Isothermal Profiles for galaxies with dark matter halos. We found that Navarro-Frenk-White model does not fit at all in contrast with the other two models which fit very well. Inversion methods have been widely used in various branches of science including astrophysics (Charbonneau 1995, ApJS, 101, 309). In this work we have used three different parametric inversion methods (MonteCarlo, Genetic Algorithm and Simmulated Annealing) in order to determine the best fit of the observed data of the density and velocity profiles of a set of low surface brigthness galaxies (De Block et al. 2001, ApJ, 122, 2396) with three models of galaxies containing dark mattter. The parameters adjusted by the inversion methods were the central density and a characteristic distance in the Boehmer-Harko BH (Boehmer & Harko 2007, JCAP, 6, 25), Navarro-Frenk-White NFW (Navarro et al. 2007, ApJ, 490, 493) and Pseudo Isothermal Profile PI (Robles & Matos 2012, MNRAS, 422, 282). The results obtained showed that the BH and PI Profile dark matter galaxies fit very well for both the density and the velocity profiles, in contrast the NFW model did not make good adjustments to the profiles in any analized galaxy.
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
Infrared galaxies in the IRAS minisurvey
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Rowan-Robinson, M.; Clegg, P. E.; Emerson, J. P.; Houck, J. R.; De Jong, T.; Aumann, H. H.; Beichman, C. A.; Boggess, N.
1984-01-01
A total of 86 galaxies have been detected at 60 microns in the high galactic latitude portion of the IRAS minisurvey. The surface density of detected galaxies with flux densities greater than 0.5 Jy is 0.25 sq deg. Virtually all the galaxies detected are spiral galaxies and have an infrared to blue luminosity ratio ranging from 50 to 0.5. For the infrared-selected sample, no obvious correlation exists between infrared excess and color temperature. The infrared flux from 10 to 100 microns contributes approximately 5 percent of the blue luminosity for galaxies in the magnitude range 14 less than m(pg) less than 18 mag. The fraction of interacting galaxies is between one-eighth and one-fourth of the sample.
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.
2017-07-01
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.
The spatially resolved star formation history of CALIFA galaxies. Cosmic time scales
NASA Astrophysics Data System (ADS)
García-Benito, R.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Cortijo-Ferrero, C.; López Fernández, R.; de Amorim, A. L.; Lacerda, E. A. D.; Vale Asari, N.; Sánchez, S. F.
2017-12-01
This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5 m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4 to 1012M⊙ and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology (E, S0, Sa, Sb, Sc, and Sd) and six bins of stellar mass and stellar mass surface density. We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, stellar mass surface density, and morphology. Our main results are as follows: (a) the innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given stellar mass (M⋆), stellar mass surface density (Σ⋆), or Hubble type, including the lowest mass systems in our sample. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ⋆ and Hubble type in the lower-mass range (108.4 to 1010.4), but a very mild dependence in higher-mass bins. (c) The lowest half mass radius (HMR) to half light radius (HLR) ratio is found for galaxies between 1010.4 and 1011.1M⊙, where galaxies are 25% smaller in mass than in light. Low-mass galaxies show the largest ratio with HMR/HLR 0.89. Sb and Sbc galaxies present the lowest HMR/HLR ratio (0.74). The ratio HMR/HLR is always, on average, below 1, indicating that galaxies grow faster in mass than in light. (d) All galaxies show negative ⟨log age⟩ M gradients in the inner 1 HLR. The profile flattens (slope less negative) with increasing values of Σ⋆. There is no significant dependence on M⋆ within a particular Σ⋆ bin, except for the lowest bin, where the gradients becomes steeper. (e) Downsizing is spatially preserved as a function of M⋆ and Σ⋆, but it is broken for E and SO where the outer parts are assembled in later epochs than Sa galaxies. These results suggest that independently of their stellar mass, stellar mass surface density, and morphology, galaxies form inside-out on average.
GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.
2013-03-01
We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar radiation field.
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration
2018-01-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.
Galaxy Selection and the Surface Brightness Distribution
NASA Astrophysics Data System (ADS)
McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.
1995-08-01
Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.
The SAMI Galaxy Survey: spatially resolving the main sequence of star formation
NASA Astrophysics Data System (ADS)
Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus
2018-04-01
We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
Winds of change: reionization by starburst galaxies
NASA Astrophysics Data System (ADS)
Sharma, Mahavir; Theuns, Tom; Frenk, Carlos; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop
2017-06-01
We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the 'Evolution and Assembly of Galaxies and their Environments' (eagle) cosmological hydrodynamical simulations. We obtain the evolution of the escape fraction of ionizing photons in galaxies assuming that galactic winds create channels through which 20 per cent of photons escape when the local surface density of star formation is greater than 0.1 M⊙ yr-1 kpc-2. Such threshold behaviour for the generation of winds is observed, and the rare local objects that have such high star formation surface densities exhibit high escape fractions of ˜10 per cent. In our model, the luminosity-weighted mean escape fraction increases with redshift as \\bar{f}_esc=0.045 ((1+z)/4)^{1.1} at z > 3, and the galaxy number weighted mean as
N-body experiments and missing mass in clusters of galaxies
NASA Technical Reports Server (NTRS)
Smith, H.; Hintzen, P.; Sofia, S.; Oegerle, W.; Scott, J.; Holman, G.
1979-01-01
It is commonly assumed that the distributions of surface density and radial-velocity dispersion in clusters of galaxies are sensitive tracers of the underlying distribution of any unseen mass. N-body experiments have been used to test this assumption. Calculations with equal-mass systems indicate that the effects of the underlying mass distribution cannot be detected by observations of the surface-density or radial-velocity distributions, and the existence of an extended binding mass in all well-studied clusters would be consistent with available observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oohama, N.; Okamura, S.; Fukugita, M.
A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less
The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies
NASA Astrophysics Data System (ADS)
Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.
2013-09-01
We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass surface densities (Σdyn). By subtracting our observed atomic and inferred molecular gas mass surface densities from Σdyn, we derived the stellar mass surface densities (Σ∗), and thus have absolute measurements of all dominant baryonic components of the galaxies. Using K-band surface brightness profiles (IK), we calculated the K-band mass-to-light ratio of the stellar disks (Υ∗ = Σ∗/IK) and adopted the radial mean (overline{mls}) for each galaxy to extrapolate Σ∗ beyond the outermost kinematic measurement. The derived overline{mls} of individual galaxies are consistent with all galaxies in the sample having equal Υ∗. We find a sample average and scatter of mlab overline{mls}mrab = 0.31 ± 0.07. Rotation curves of the baryonic components were calculated from their deprojected mass surface densities. These were used with circular-speed measurements to derive the structural parameters of the dark-matter halos, modeled as either a pseudo-isothermal sphere (pISO) or a Navarro-Frenk-White (NFW) halo. In addition to our dynamically determined mass decompositions, we also performed alternative rotation-curve decompositions by adopting the traditional maximum-disk hypothesis. However, the galaxies in our sample are submaximal, such that at 2.2 disk scale lengths (hR) the ratios between the baryonic and total rotation curves (Fb2.2hR) are less than 0.75. We find this ratio to be nearly constant between 1-6hR within individual galaxies. We find a sample average and scatter of mlab Fb2.2hRmrab = 0.57 ± 0.07, with trends of larger Fb2.2hR for more luminous and higher-surface-brightness galaxies. To enforce these being maximal, we need to scale Υ∗ by a factor 3.6 on average. In general, the dark-matter rotation curves are marginally better fit by a pISO than by an NFW halo. For the nominal-Υ∗ (submaximal) case, we find that the derived NFW-halo parameters have values consistent with ΛCDM N-body simulations, suggesting that the baryonic matter in our sample of galaxies has only had a minor effect on the dark-matter distribution. In contrast, maximum-Υ∗ decompositions yield halo-concentration parameters that are too low compared to the ΛCDM simulations. Appendix is available in electronic form at http://www.aanda.org
A first determination of the surface density of galaxy clusters at very low x-ray fluxes
NASA Technical Reports Server (NTRS)
Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo
1995-01-01
We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.
NASA Astrophysics Data System (ADS)
Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu
2018-04-01
We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.
Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Freeman, K. C.
2016-02-01
Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter
2016-10-01
We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.
The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products
NASA Astrophysics Data System (ADS)
Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team
2017-01-01
The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.
A UNIVERSAL NEUTRAL GAS PROFILE FOR NEARBY DISK GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigiel, F.; Blitz, L., E-mail: bigiel@uni-heidelberg.de
2012-09-10
Based on sensitive CO measurements from HERACLES and H I data from THINGS, we show that the azimuthally averaged radial distribution of the neutral gas surface density ({Sigma}{sub HI}+ {Sigma}{sub H2}) in 33 nearby spiral galaxies exhibits a well-constrained universal exponential distribution beyond 0.2 Multiplication-Sign r{sub 25} (inside of which the scatter is large) with less than a factor of two scatter out to two optical radii r{sub 25}. Scaling the radius to r{sub 25} and the total gas surface density to the surface density at the transition radius, i.e., where {Sigma}{sub HI} and {Sigma}{sub H2} are equal, as wellmore » as removing galaxies that are interacting with their environment, yields a tightly constrained exponential fit with average scale length 0.61 {+-} 0.06 r{sub 25}. In this case, the scatter reduces to less than 40% across the optical disks (and remains below a factor of two at larger radii). We show that the tight exponential distribution of neutral gas implies that the total neutral gas mass of nearby disk galaxies depends primarily on the size of the stellar disk (influenced to some degree by the great variability of {Sigma}{sub H2} inside 0.2 Multiplication-Sign r{sub 25}). The derived prescription predicts the total gas mass in our sub-sample of 17 non-interacting disk galaxies to within a factor of two. Given the short timescale over which star formation depletes the H{sub 2} content of these galaxies and the large range of r{sub 25} in our sample, there appears to be some mechanism leading to these largely self-similar radial gas distributions in nearby disk galaxies.« less
Ultraviolet luminosity density of the universe during the epoch of reionization
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-01-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033
Ultraviolet luminosity density of the universe during the epoch of reionization
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Local stability of galactic discs in modified dynamics
NASA Astrophysics Data System (ADS)
Shenavar, Hossein; Ghafourian, Neda
2018-04-01
The local stability of stellar and fluid discs, under a new modified dynamical model, is surveyed by using WKB approximation. The exact form of the modified Toomre criterion is derived for both types of systems and it is shown that the new model is, in all situations, more locally stable than Newtonian model. In addition, it has been proved that the central surface density of the galaxies plays an important role in the local stability in the sense that low surface brightness (LSB) galaxies are more stable than high surface brightness (HSBs). Furthermore, the growth rate in the new model is found to be lower than the Newtonian one. We found that, according to this model, the local instability is related to the ratio of surface density of the disc to a critical surface density Σcrit. We provide observational evidence to support this result based on star formation rate in HSBs and LSBs.
Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure
NASA Astrophysics Data System (ADS)
Henderson, Benjamin; Bekki, Kenji
2016-05-01
We show for the first time that H2 formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H I and H2 components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H I caused by RP increases H2 formation in disk galaxies before RP rapidly strips H I, cutting off the fuel supply and causing a drop in H2 density. We also find that the level of this H2 formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H I and H2 mass in disk galaxies under strong RP. We discuss how the correlation between H2 fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H2 densities.
NASA Technical Reports Server (NTRS)
Bell, Eric F.; VanDerWel, Arjen; Papovich, Casey; Kocevski, Dale; Lotz, Jennifer; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Faber, S. M.; Ferguson, Harry; Koekemoer, Anton;
2011-01-01
We use HST/WFC3 imaging from the CANDELS multicyc1e treasury survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses > 3 x 10(exp 10) Solar Mass from Z= 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and the structural parameters of galaxies as determined from parametric fits to the surface brightness profiles of galaxies. We confirm the dramatic evolution from z= 2.2 to the present day in the number density of non-star-forming galaxies above 3 x 10(exp 10) Solar Mass reported by other authors. We find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, mass divided by radius (a proxy for velocity dispersion), and stellar surface density. Quiescence correlates poorly with stellar mass at all z < 2.2 (given the approx < 0.2 dex scatter between halo mass and stellar mass at z approximates 0 inferred by More et al, this argues against halo mass being the only factor determining quiescence). Quiescence correlates better with Sersic index, 'velocity dispersion' and stellar surface density, where Sersic index correlates the best (increasingly so at lower redshift). Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and, perhaps by association, a supermassive black hole) is a necessary but not sufficient condition for quenching star formation on galactic scales over the last 10 Gyr; such a result is qualitatively consistent with the expectations of the AGN feedback paradigm.
High resolution imaging of galaxy cores
NASA Technical Reports Server (NTRS)
Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.
1993-01-01
Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.
Can Low-Luminosity Galaxies Reionize the Universe?
NASA Astrophysics Data System (ADS)
Ferguson, Harry
2017-08-01
The prevailing wisdom is that low-luminosity galaxies are responsible for cosmic reionization. If this is true, then low-luminosity galaxies at high redshift have to be different from most of the low-luminosity galaxies studied to date at low redshift, which absorb too much of their ionizing radiation. While it is possible that high-z dwarf galaxies have the same metallicity at fixed mass and star-formation rate as low-redshift galaxies, they are different in one key respect. At fixed dark-halo mass, they are probably much denser (having collapsed earlier). This could lead to higher star-formation surface densities more capable of creating cavities in the ISM. But the denser halos of surrounding gas could be harder to clear. There is a critical need for further observations to validate and test physical models for the trends of escaping ionizing continuum with redshift, luminosity, and surface density. JWST will not be able to measure ionizing radiation during the epoch of reionization because the IGM absorbs most of the photons. To prepare for JWST, we need to use the ultraviolet capabilities of HST to measure diverse samples of galaxies at z<3, where we can see the photons and quantify the trends with other galaxy properties. As a complement to other studies, we propose to constrain the Lyman-continuum emission from 8 relatively low-luminosity strongly-lensed galaxies at 1
NASA Astrophysics Data System (ADS)
Huang, Song; Leauthaud, Alexie; Greene, Jenny E.; Bundy, Kevin; Lin, Yen-Ting; Tanaka, Masayuki; Miyazaki, Satoshi; Komiyama, Yutaka
2018-04-01
Massive galaxies display extended light profiles that can reach several hundreds of kiloparsecs. We use data from the Hyper Suprime-Cam (HSC) survey that is simultaneously wide (˜100 deg2) and deep (>28.5 mag arcsec-2 in i band) to study the stellar haloes of a sample of ˜7000 massive galaxies at z ˜ 0.4. The depth of the HSC data enables us to measure surface mass density profiles to 100 kpc for individual galaxies without stacking. As in previous work, we find that more massive galaxies exhibit more extended outer profiles than smaller galaxies. When this extended light is not properly accounted for (because of shallow imaging and/or inadequate profile modelling), the derived stellar mass function can be significantly underestimated at the high-mass end. Across our sample, the ellipticity of outer light profile increases substantially with radius. We show for the first time that these ellipticity gradients steepen dramatically as a function of galaxy mass, but we detect no mass dependence in outer colour gradients. Our results support the two-phase formation scenario for massive galaxies in which outer envelopes are built up at a later time from a series of merging events. We provide surface mass density profiles in a convenient tabulated format to facilitate comparisons with predictions from numerical simulations of galaxy formation.
VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies
NASA Astrophysics Data System (ADS)
Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
MACS: The impact of environment on galaxy evolution at z>0.5
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun
2010-08-01
In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and/or tidal destruction are central to the evolution of galaxies clusters, and that wide-field spectroscopic surveys around clusters are essential to distinguish between competing physical effects driving galaxy evolution in different environments.
Cross-correlation of the X-ray background with nearby galaxies
NASA Technical Reports Server (NTRS)
Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer
1991-01-01
The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.
Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2
NASA Astrophysics Data System (ADS)
Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff
2018-06-01
We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.
KDG218, a nearby ultra-diffuse galaxy
NASA Astrophysics Data System (ADS)
Karachentsev, I. D.; Makarova, L. N.; Sharina, M. E.; Karachentseva, V. E.
2017-10-01
We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈 D〉 = 5.1 Mpc, 〈 A e 〉 = 4.8 kpc, and 〈 SB B ( e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.
NASA Astrophysics Data System (ADS)
Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.
2009-03-01
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.
SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Benjamin; Bekki, Kenji
We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2}more » density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.« less
SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence
NASA Astrophysics Data System (ADS)
Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.
2017-12-01
We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.
SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au
2016-02-01
Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, Lea M. Z.; Hagen, Alex; Seibert, Mark
We provide evidence that UGC 1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy that rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC 1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ∼38 kpc and an extrapolated central surface brightness of ∼26 mag arcsec{sup 2}. Both components have a combinedmore » stellar mass of ∼8 × 10{sup 10} M {sub ⊙}, and are embedded in a massive (10{sup 10} M {sub ⊙}) low-density (<3 M {sub ⊙} pc{sup 2}) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2 × 10{sup 12} M {sub ⊙}. Although possibly part of a small group, its low-density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC 1382 has UV–optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion timescale of ∼10{sup 11} years suggests that UGC 1382 may be a very-long-term resident of the green valley. We find that the formation and evolution of the LSB disk in UGC 1382 is best explained by the accretion of gas-rich LSB dwarf galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.
2015-02-20
We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less
Properties of an H I-selected galaxy sample
NASA Technical Reports Server (NTRS)
Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.
1994-01-01
We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.
Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering
NASA Astrophysics Data System (ADS)
Ford, Jes; VanderPlas, Jake
2016-12-01
We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
NASA Astrophysics Data System (ADS)
Thilker, David A.; Vinsen, K.; Galaxy Properties Key Project, PS1
2014-01-01
To measure resolved galactic physical properties unbiased by the mask of recent star formation and dust features, we are conducting a citizen-scientist enabled nearby galaxy survey based on the unprecedented optical (g,r,i,z,y) imaging from Pan-STARRS1 (PS1). The PS1 Optical Galaxy Survey (POGS) covers 3π steradians (75% of the sky), about twice the footprint of SDSS. Whenever possible we also incorporate ancillary multi-wavelength image data from the ultraviolet (GALEX) and infrared (WISE, Spitzer) spectral regimes. For each cataloged nearby galaxy with a reliable redshift estimate of z < 0.05 - 0.1 (dependent on donated CPU power), publicly-distributed computing is being harnessed to enable pixel-by-pixel spectral energy distribution (SED) fitting, which in turn provides maps of key physical parameters such as the local stellar mass surface density, crude star formation history, and dust attenuation. With pixel SED fitting output we will then constrain parametric models of galaxy structure in a more meaningful way than ordinarily achieved. In particular, we will fit multi-component (e.g. bulge, bar, disk) galaxy models directly to the distribution of stellar mass rather than surface brightness in a single band, which is often locally biased. We will also compute non-parametric measures of morphology such as concentration, asymmetry using the POGS stellar mass and SFR surface density images. We anticipate studying how galactic substructures evolve by comparing our results with simulations and against more distant imaging surveys, some of which which will also be processed in the POGS pipeline. The reliance of our survey on citizen-scientist volunteers provides a world-wide opportunity for education. We developed an interactive interface which highlights the science being produced by each volunteer’s own CPU cycles. The POGS project has already proven popular amongst the public, attracting about 5000 volunteers with nearly 12,000 participating computers, and is growing rapidly.
The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies
NASA Astrophysics Data System (ADS)
de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.
2017-11-01
The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.
Ultraviolet luminosity density of the universe during the epoch of reionization.
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-08
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
A high-dispersion molecular gas component in nearby galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin
2013-12-01
We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H Imore » surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk
We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2018-04-01
We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.
NASA Astrophysics Data System (ADS)
Lei, Feng-Jie; Wu, Hong; Du, Wei; Zhu, Yi-Nan; Lam, Man-I.; Zhou, Zhi-Min; He, Min; Jin, Jun-Jie; Cao, Tian-Wen; Zhao, Pin-Song; Yang, Fan; Wu, Chao-Jian; Li, Hong-Bin; Ren, Juan-Juan
2018-03-01
We present the observed Hα flux and derived star formation rates (SFRs) for a fall sample of low-surface-brightness galaxies (LSBGs). The sample is selected from the fall sky region of the 40% ALFALFA H I Survey–SDSS DR7 photometric data, and all the Hα images were obtained using the 2.16 m telescope, operated by the National Astronomy Observatories, Chinese Academy of Sciences. A total of 111 LSBGs were observed and Hα flux was measured in 92 of them. Though almost all the LSBGs in our sample are H I-rich, their SFRs, derived from the extinction and filter-transmission-corrected Hα flux, are less than 1 M ⊙ yr‑1. LSBGs and star-forming galaxies have similar H I surface densities, but LSBGs have much lower SFRs and SFR surface densities than star-forming galaxies. Our results show that LSBGs deviate from the Kennicutt–Schmidt law significantly, which indicates that they have low star formation efficiency. The SFRs of LSBGs are close to average SFRs in Hubble time and support previous arguments that most of the LSBGs are stable systems and they tend to seldom contain strong interactions or major mergers in their star formation histories.
Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata
2007-02-01
We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities <~0.1-0.3 Mpc-2. The dearth of E+A galaxies in dense environments confirms that E+A galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. We see a tentative peak in the number of E+A galaxies at Σ10 ~ 0.1-0.3 Mpc-2, which may represent the local galaxy density at which the rate of galaxy-galaxy merging or interaction rate peaks. Analysis of the spectra of our early-type galaxies with young stellar populations suggests that they have a stellar component dominated by F stars, ~1-4 Gyr old, together with a mature, metal-rich population characteristic of `typical' early-type galaxies. The young stars represent >~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.
NASA Astrophysics Data System (ADS)
D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.
2018-05-01
We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.
Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe
NASA Astrophysics Data System (ADS)
Kang, Hoyoung; Ricotti, Massimo
2016-01-01
We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.
The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485
NASA Astrophysics Data System (ADS)
Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.
2016-12-01
We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.
Two-component gravitational instability in spiral galaxies
NASA Astrophysics Data System (ADS)
Marchuk, A. A.; Sotnikova, N. Y.
2018-04-01
We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.
Forming Disc Galaxies In Major Mergers: Radial Density Profiles And Angular Momentum
NASA Astrophysics Data System (ADS)
Peschken, Nicolas; Athanassoula, E.; Rodionov, S. A.; Lambert, J. C.
2017-06-01
In Athanassoula et al. (2016), we used high resolution N-body hydrodynamical simulations to model the major merger between two disc galaxies with a hot gaseous halo each, and showed that the remnant is a spiral galaxy. The two discs are destroyed by the collision, but after the merger, accretion from the surrounding gaseous halo allows the building of a new disc in the remnant galaxy. In Peschken et al. (2017), we used these simulations to study the radial surface density profiles of the remnant galaxies with downbending profiles (type II), i.e. composed of an inner and an outer exponential disc separated by a break. We analyzed the effect of angular momentum on these profiles, and found that the inner and outer disc scalelengths, as well as the break radius, all increase linearly with the total angular momentum of the initial merging system. Following the angular momentum redistribution in our simulations, we find that the disc angular momentum is acquired via accretion from the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile.
A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruba, Andreas; Walter, Fabian; Dumas, Gaelle
2011-08-15
We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using 21 cm line atomic hydrogen (H I) data, mostly from THINGS, we predict the local mean CO velocity based on the mean H I velocity. By re-normalizing the CO velocity axis so that zero corresponds to the local mean H I velocity we are able to stack spectra coherently over large regions. This enables us to measure CO intensities with high significance as low as I{sub CO} {approx} 0.3 K km s{sup -1} ({Sigma}{sub H{sub 2}}{approx}1 M{sub sun} pc{supmore » -2}), an improvement of about one order of magnitude over previous studies. We detect CO out to galactocentric radii r{sub gal} {approx} r{sub 25} and find the CO radial profile to follow a remarkably uniform exponential decline with a scale length of {approx}0.2 r{sub 25}. Here we focus on stacking as a function of radius, comparing our sensitive CO profiles to matched profiles of H I, H{alpha}, far-UV (FUV), and Infrared (IR) emission at 24 {mu}m and 70 {mu}m. We observe a tight, roughly linear relationship between CO and IR intensity that does not show any notable break between regions that are dominated by molecular gas ({Sigma}{sub H{sub 2}}>{Sigma}{sub H{sub i}}) and those dominated by atomic gas ({Sigma}{sub H{sub 2}}<{Sigma}{sub H{sub i}}). We use combinations of FUV+24 {mu}m and H{alpha}+24 {mu}m to estimate the recent star formation rate (SFR) surface density, {Sigma}{sub SFR}, and find approximately linear relations between {Sigma}{sub SFR} and {Sigma}{sub H{sub 2}}. We interpret this as evidence of stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H{sub 2} ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relationships between CO and SFR tracers measured at large scales. The variations have the sense that less massive galaxies exhibit larger ratios of SFR-to-CO than massive galaxies. Unlike the SFR-to-CO ratio, the balance between atomic and molecular gas depends strongly on the total gas surface density and galactocentric radius. It must also depend on additional parameters. Our results reinforce and extend to lower surface densities, a picture in which star formation in galaxies can be separated into two processes: the assembly of star-forming molecular clouds and the formation of stars from H{sub 2}. The interplay between these processes yields a total gas-SFR relation with a changing slope, which has previously been observed and identified as a star formation threshold.« less
NASA Astrophysics Data System (ADS)
Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.
2018-02-01
We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.
Testing star formation laws in a starburst galaxy at redshift 3 resolved with ALMA
NASA Astrophysics Data System (ADS)
Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.
2018-07-01
Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyse the star formation rate (SFR), gas content, and kinematics in SDP 81, a gravitationally lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} M_{⊙} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane of the sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight. Our measurements of the gas surface density, freefall time, and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt-Schmidt (KS) relation predicts an SFR surface density of ΣSFR, KS = 52 ± 17 M⊙ yr-1 kpc-2, the single-freefall model by Krumholz, Dekel, and McKee (KDM) predicts ΣSFR, KDM = 106 ± 37 M⊙ yr-1 kpc-2. In contrast, the multifreefall (turbulence) model by Salim, Federrath, and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} M_{⊙} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.
Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.
1982-01-01
X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.
Large-Scale Star Formation-Driven Outflows at 1
NASA Astrophysics Data System (ADS)
Lundgren, Britt; Brammer, G.; Van Dokkum, P. G.; Bezanson, R.; Franx, M.; Fumagalli, M.; Momcheva, I. G.; Nelson, E.; Skelton, R.; Wake, D.; Whitaker, K. E.; da Cunha, E.; Erb, D.; Fan, X.; Kriek, M.; Labbe, I.; Marchesini, D.; Patel, S.; Rix, H.; Schmidt, K.; van der Wel, A.
2013-01-01
We present evidence of large-scale outflows from three low-mass star-forming galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W>0.8A) MgII absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 solar mass / yr / kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.65
Large-scale Star-formation-driven Outflows at 1 < z < 2 in the 3D-HST Survey
NASA Astrophysics Data System (ADS)
Lundgren, Britt F.; Brammer, Gabriel; van Dokkum, Pieter; Bezanson, Rachel; Franx, Marijn; Fumagalli, Mattia; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Wake, David; Whitaker, Katherine; da Cunha, Elizabete; Erb, Dawn K.; Fan, Xiaohui; Kriek, Mariska; Labbé, Ivo; Marchesini, Danilo; Patel, Shannon; Rix, Hans Walter; Schmidt, Kasper; van der Wel, Arjen
2012-11-01
We present evidence of large-scale outflows from three low-mass (log(M */M ⊙) ~ 9.75) star-forming (SFR > 4 M ⊙ yr-1) galaxies observed at z = 1.24, z = 1.35, and z = 1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W λ2796 r >~ 0.8 Å) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the Hα emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well exceeds 0.1 M ⊙ yr-1 kpc-2, the typical threshold for starburst galaxies in the local universe. From a small but complete parallel census of the 0.65 < z < 2.6 galaxies with H 140 <~ 24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the Wr > 0.8 Å Mg II covering fraction of star-forming galaxies at 1 < z < 2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of Wr > 0.4 Å Mg II absorbing gas around star-forming galaxies may evolve from z ~ 2 to the present, consistent with recent observations of an increasing collimation of star-formation-driven outflows with time from z ~ 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro
2015-03-15
Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less
Dark energy and extended dark matter halos
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2012-03-01
The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even an overdense region, with a low density contrast ~1.
A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5
NASA Astrophysics Data System (ADS)
Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.
2013-12-01
We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.
A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5
NASA Technical Reports Server (NTRS)
Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia;
2013-01-01
We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.
Comparison between two scalar field models using rotation curves of spiral galaxies
NASA Astrophysics Data System (ADS)
Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh
2018-04-01
Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.
Statistical Measures of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard
1993-12-01
\\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.
A population of faint low surface brightness galaxies in the Perseus cluster core
NASA Astrophysics Data System (ADS)
Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James
2017-09-01
We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.
Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution
NASA Astrophysics Data System (ADS)
Brough, S.; Croom, S.; Sharp, R.; Hopkins, A. M.; Taylor, E. N.; Baldry, I. K.; Gunawardhana, M. L. P.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Foster, C.; Kelvin, L. S.; Lara-Lopez, M. A.; López-Sánchez, Á. R.; Loveday, J.; Owers, M.; Pimbblet, K. A.; Prescott, M.
2013-11-01
We present observations of 18 galaxies from the Galaxy And Mass Assembly (GAMA) survey made with the SPIRAL optical integral field unit (IFU) on the Anglo-Australian Telescope. The galaxies are selected to have a narrow range in stellar mass (6 × 109 < M* < 2 × 1010 M⊙) in order to focus on the effects of environment. Local galaxy environments are measured quantitatively using fifth nearest neighbour surface densities. We find that the total star formation rates (SFR) measured from the IFU data are consistent with total SFRs measured from aperture correcting either GAMA or Sloan Digital Sky Survey single-fibre observations. The mean differences are SFRGAMA/SFRIFU = 1.26 ± 0.23, σ = 0.90 and for the Sloan Digital Sky Survey we similarly find SFRBrinchmann/SFRIFU = 1.34 ± 0.17, σ = 0.67. Examining the relationships with environment, we find that off-centre and clumpy Hα emission is not significantly dependent on environment, being present in 2/7 (29^{+20}_{-11} per cent) galaxies in high-density environments (>0.77 Mpc-2), and 5/11 (45^{+15}_{-13} per cent) galaxies in low-density environments (<0.77 Mpc-2). We find a weak but not significant relationship of the total SFRs of star-forming galaxies with environment. Due to the size of our sample and the scatter observed we do not draw a definitive conclusion about a possible SFR dependence on environment. Examining the spatial distribution of the Hα emission, we find no evidence for a change in shape or amplitude of the radial profile of star-forming galaxies with environment. If these observations are borne out in larger samples, this would infer that any environment-driven star formation suppression must either act very rapidly (the `infall-and-quench' model) or that galaxies must evolve in a density-dependent manner (an `in situ evolution' model).
Weighing the galactic disc using the Jeans equation: lessons from simulations
NASA Astrophysics Data System (ADS)
Candlish, G. N.; Smith, R.; Moni Bidin, C.; Gibson, B. K.
2016-03-01
Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the `Solar' radius. Our simulation data set includes galaxies formed in a cosmological context using state-of-the-art high-resolution cosmological zoom simulations, and other idealized models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed double exponential density distribution, and the scalelength of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally, we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scalelengths may help reconcile conflicting estimates of the local dark matter density in the literature.
NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.
2018-07-01
We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dokkum, Pieter G.; Merritt, Allison; Abraham, Roberto
2014-02-20
We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 diskmore » scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.« less
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi
2017-12-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.
High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0
NASA Astrophysics Data System (ADS)
Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.
2015-08-01
We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.
Equilibrium star formation in a constant Q disc: model optimization and initial tests
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.
2013-10-01
We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
Must Star-forming Galaxies Rapidly Get Denser before They Quench?
NASA Astrophysics Data System (ADS)
Abramson, L. E.; Morishita, T.
2018-05-01
Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.
Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles
NASA Astrophysics Data System (ADS)
Dalcanton, Julianne J.; Stilp, Adrienne M.
2010-09-01
Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds lsim75 km s-1 but are unlikely to be significant in higher-mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in real or simulated galaxies. Thus, while pressure support may help to alleviate possible tensions between rotation curve observations and ΛCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.
Local Volume Hi Survey: the far-infrared radio correlation
NASA Astrophysics Data System (ADS)
Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister
2018-06-01
In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* < 109 M⊙), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.
NASA Astrophysics Data System (ADS)
Peschken, N.; Athanassoula, E.; Rodionov, S. A.
2017-06-01
We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.
Stellar feedback in galaxies and the origin of galaxy-scale winds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2012-04-01
Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.
A massive core for a cluster of galaxies at a redshift of 4.3
NASA Astrophysics Data System (ADS)
Miller, T. B.; Chapman, S. C.; Aravena, M.; Ashby, M. L. N.; Hayward, C. C.; Vieira, J. D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Chen, Chian-Chou; Cunningham, D. J. M.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Harnett, J.; Hezaveh, Y.; Lacaille, K.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, D. P.; Morningstar, W.; Murphy, E. J.; Narayanan, D.; Pass, E.; Perry, R.; Phadke, K. A.; Rennehan, D.; Rotermund, K. M.; Simpson, J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M. L.; Strom, A. L.
2018-04-01
Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters—termed `protoclusters'—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.
A massive core for a cluster of galaxies at a redshift of 4.3.
Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L
2018-04-01
Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs 1-3 . The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter 4-6 . Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts 8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.
Resolving the disc-halo degeneracy - I: a look at NGC 628
NASA Astrophysics Data System (ADS)
Aniyan, S.; Freeman, K. C.; Arnaboldi, M.; Gerhard, O. E.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.; Ponomareva, A. A.
2018-05-01
The decomposition of the rotation curve of galaxies into contribution from the disc and dark halo remains uncertain and depends on the adopted mass-to-light ratio (M/L) of the disc. Given the vertical velocity dispersion of stars and disc scale height, the disc surface mass density and hence the M/L can be estimated. We address a conceptual problem with previous measurements of the scale height and dispersion. When using this method, the dispersion and scale height must refer to the same population of stars. The scale height is obtained from near-infrared (IR) studies of edge-on galaxies and is weighted towards older kinematically hotter stars, whereas the dispersion obtained from integrated light in the optical bands includes stars of all ages. We aim to extract the dispersion for the hotter stars, so that it can then be used with the correct scale height to obtain the disc surface mass density. We use a sample of planetary nebulae (PNe) as dynamical tracers in the face-on galaxy NGC 628. We extract two different dispersions from its velocity histogram - representing the older and younger PNe. We also present complementary stellar absorption spectra in the inner regions of this galaxy and use a direct pixel fitting technique to extract the two components. Our analysis concludes that previous studies, which do not take account of the young disc, underestimate the disc surface mass density by a factor of ˜2. This is sufficient to make a maximal disc for NGC 628 appear like a submaximal disc.
ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G., E-mail: bge@us.ibm.com
2015-12-01
A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less
Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06
NASA Astrophysics Data System (ADS)
Baldry, I. K.; Driver, S. P.; Loveday, J.; Taylor, E. N.; Kelvin, L. S.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Brough, S.; Hopkins, A. M.; Bamford, S. P.; Peacock, J. A.; Bland-Hawthorn, J.; Conselice, C. J.; Croom, S. M.; Jones, D. H.; Parkinson, H. R.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Tuffs, R. J.
2012-03-01
We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a density-corrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0= 70 km s-1 Mpc-1, the GSMF is well described between 108 and 1011.5 M⊙ using a double Schechter function with ?, ?, α1=-0.35, ? and α2=-1.47. This result is more robust to uncertainties in the flow-model corrected redshifts than from the shallower Sloan Digital Sky Survey main sample (r < 17.8 mag). The upturn in the GSMF is also seen directly in the i-band and K-band galaxy luminosity functions. Accurately measuring the GSMF below 108 M⊙ is possible within the GAMA survey volume but as expected requires deeper imaging data to address the contribution from low surface-brightness galaxies.
NASA Astrophysics Data System (ADS)
Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.
2012-07-01
The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk. Appendices are available in electronic form http://www.aanda.org
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael
2017-07-01
Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
NASA Astrophysics Data System (ADS)
van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.
2018-05-01
Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.
SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.
2016-04-20
The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less
MOIRCS Deep Survey. I: DRG Number Counts
NASA Astrophysics Data System (ADS)
Kajisawa, Masaru; Konishi, Masahiro; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka; Katsuno; Yoshikawa, Tomohiro; Akiyama, Masayuki; Ichikawa, Takashi; Ouchi, Masami; Omata, Koji; Tanaka, Ichi; Nishimura, Tetsuo; Yamada, Toru
2006-12-01
We use very deep near-infrared imaging data taken with Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We have observed a 4x7 arcmin^2 field in the Great Observatories Origins Deep Survey North (GOODS-N), and our data reach J=24.6 and K=23.2 (5sigma, Vega magnitude). The surface density of DRGs selected by J-K>2.3 is 2.35+-0.31 arcmin^-2 at K<22 and 3.54+-0.38 arcmin^-2 at K<23, respectively. These values are consistent with those in the GOODS-South and FIRES. Our deep and wide data suggest that the number counts of DRGs turn over at K~22, and the surface density of the faint DRGs with K>22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 2
NASA Astrophysics Data System (ADS)
Watson, Linda C.; Martini, Paul; Lisenfeld, Ute; Böker, Torsten; Schinnerer, Eva
2016-01-01
Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) discs, which often contain star-forming regions with lower Hα-to-far-UV (FUV) flux ratios compared to inner disc star-forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analysed published CO measurements and upper limits for 15 star-forming regions in the XUV or outer disc of three nearby spiral galaxies and a new CO upper limit from the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope in one star-forming region at r = 3.4r25 in the XUV disc of NGC 4625. We found that the star-forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Hα or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular-hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Hα-to-FUV flux ratios in XUV discs.
The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip
NASA Astrophysics Data System (ADS)
Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.
2012-10-01
We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend between outflow velocity and SFR. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both SFR and SFR surface density predicted by theory. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, Maurilio; Gabasch, Armin; Drory, Niv
2009-08-10
The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less
Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA
NASA Astrophysics Data System (ADS)
Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.
2018-04-01
Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.
Structure of merger remnants. I - Bulgeless progenitors
NASA Technical Reports Server (NTRS)
Hernquist, Lars
1992-01-01
The study examines mergers of identical galaxies consisting of self-gravitating disks and halos in the context of the suggestion that such events may form elliptical galaxies. It is shown that the luminous remnants of such mergers do indeed share many common properties with observed ellipticals. Specifically, the end states of the simulations considered rotate slowly in regions of relatively high surface density, having typical values of less than about 0.2 there. Morphologically, the remnants display a variety of structures, including shells and loops comprising loosely bound material and boxy and disky isophotes. The luminous matter is well-fitted by ellipsoidal generalizations of Hernquists's (1990, 1992) model for elliptical galaxies, implying that the surface brightness profiles are essentially de Vaucouleurs-like over a large radial interval. It is proposed that mergers of pure stellar disks do not represent an attractive mechanism for the production of massive elliptical galaxies.
Self-regulating galaxy formation. Part 1: HII disk and Lyman alpha pressure
NASA Technical Reports Server (NTRS)
Cox, D. P.
1983-01-01
Assuming a simple but physically based prototype for behavior of interstellar material during formation of a disk galaxy, coupled with the lowest order description of infall, a scenario is developed for self-regulated disk galaxy formation. Radiation pressure, particularly that of Lyman depha (from fluorescence conversion Lyman continuum), is an essential component, maintaining an inflated disk and stopping infall when only a small fraction of the overall perturbation has joined the disk. The resulting galaxies consist of a two dimensional family whose typical scales and surface density are expressable in terms of fundamental constants. The model leads naturally to galaxies with a rich circumgalactic environment and flat rotation curves (but is weak in its analysis of the subsequent evolution of halo material).
Comparing Stellar Populations Across the Hubble Sequence
NASA Astrophysics Data System (ADS)
Loeffler, Shane; Kaleida, Catherine C.; Parkash, Vaishali
2015-01-01
Previous work (Jansen et al., 2000, Taylor et al., 2005) has revealed trends in the optical wavelength radial profiles of galaxies across the Hubble Sequence. Radial profiles offer insight into stellar populations, metallicity, and dust concentrations, aspects which are deeply tied to the individual evolution of a galaxy. The Nearby Field Galaxy Survey (NFGS) provides a sampling of nearby galaxies that spans the range of morphological types, luminosities, and masses. Currently available NFGS data includes optical radial surface profiles and spectra of 196 nearby galaxies. We aim to look for trends in the infrared portion of the spectrum for these galaxies, but find that existing 2MASS data is not sufficiently deep. Herein, we expand the available data for the NGFS galaxy IC1639 deeper into the infrared using new data taken with the Infrared Sideport Imager (ISPI) on the 4-m Blanco Telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Images taken in J, H, and Ks were reduced using standard IRAF and IDL procedures. Photometric calibrations were completed by using the highest quality (AAA) 2MASS stars in the field. Aperture photometry was then performed on the galaxy and radial profiles of surface brightness, J-H color, and H-Ks color were produced. For IC1639, the new ISPI data reveals flat color gradients and surface brightness gradients that decrease with radius. These trends reveal an archetypal elliptical galaxy, with a relatively homogeneous stellar population, stellar density decreasing with radius, and little-to-no obscuration by dust. We have obtained ISPI images for an additional 8 galaxies, and further reduction and analysis of these data will allow for investigation of radial trends in the infrared for galaxies across the Hubble Sequence.
Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew
2018-06-01
We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.
STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer
We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less
Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population
NASA Astrophysics Data System (ADS)
Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.
2017-11-01
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.
Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution
NASA Astrophysics Data System (ADS)
Díaz-García, S.; Salo, H.; Laurikainen, E.
2016-12-01
Context. Models of galaxy formation in a cosmological framework need to be tested against observational constraints, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. Aims: We use 3.6 μm photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z ≈ 0) with total stellar masses 108.5 ≲ M∗/M⊙ ≲ 1011 and mid-IR Hubble types - 3 ≤ T ≤ 10. We characterize the stellar density profiles (Σ∗), the stellar contribution to the rotation curves (V3.6 μm), and the m = 2 Fourier amplitudes (A2) as a function of M∗ and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. Methods: For 1154 S4G galaxies with disk inclinations lower than 65°, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M∗ and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. Results: For M∗ ≥ 109M⊙, we find a significant difference in the stellar density profiles of barred and non-barred systems: (I) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses (Σ°); (II) the mean surface brightness profiles (Σ∗) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation; and (III) the central mass concentration of barred galaxies is higher (by almost a factor 2 when T ≤ 5) than in their non-barred counterparts. The averaged Σ∗ profiles follow an exponential slope down to at least 10 M⊙ pc-2, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (≥1010M⊙) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6 μm. Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0 ≤ T< 5) have intrinsically narrower bars than later types and S0s, whose bars are oval-shaped. We show a clear agreement between galaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies than in the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Conclusions: Using near-IR wavelengths (S4G 3.6 μm), we provide observational constraints that galaxy formation models can be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for bar-induced secular evolution of disk galaxies in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts. The FITS files of the synthetic images and the tabulated radial profiles of the mean (and dispersion of) stellar mass density, 3.6 μm surface brightness, Fourier amplitudes, gravitational force, and the stellar contribution to the circular velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A84
On the Appearance of Thresholds in the Dynamical Model of Star Formation
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.
2018-02-01
The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.
SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilly, Simon J.; Carollo, C. Marcella
2016-12-10
There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken intomore » account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.« less
SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties
NASA Astrophysics Data System (ADS)
Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting
2018-02-01
The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.
NASA Astrophysics Data System (ADS)
Vulcani, B.; Treu, T.; Schmidt, K. B.; Poggianti, B. M.; Dressler, A.; Fontana, A.; Bradač, M.; Brammer, G. B.; Hoag, A.; Huang, K.; Malkan, M.; Pentericci, L.; Trenti, M.; von der Linden, A.; Abramson, L.; He, J.; Morris, G.
2016-06-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, and compare to a field control sample, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation (Vulcani et al. 2015, Vulcani et al. in prep). The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extent of the star formation rate. I will show that both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. I will also correlate the properties of the Hα maps to the cluster global properties, such as the hot gas density, and the surface mass density. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu
2016-12-01
We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Barcos-Muñoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Díaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.
2017-07-01
We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.″07-0.″67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., {{{Σ }}}{SFR}33 {GHz}≤slant {10}4.1 {M}⊙ {{yr}}-1 {{kpc}}-2). At least 13 sources appear Compton thick ({N}{{H}}33 {GHz}≥slant {10}24 {{cm}}-2). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 μm deficits, consistent with the suggestion that high energy densities drive this phenomenon.
THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacki, Brian C.; Thompson, Todd A.; Quataert, Eliot, E-mail: lacki@astronomy.ohio-state.ed
2010-07-01
The far-infrared (FIR) and radio luminosities of star-forming galaxies are linearly correlated over a very wide range in star formation rate, from normal spirals like the Milky Way to the most intense starbursts. Using one-zone models of cosmic ray (CR) injection, cooling, and escape in star-forming galaxies, we attempt to reproduce the observed FIR-radio correlation (FRC) over its entire span. The normalization and linearity of the FRC, together with constraints on the CR population in the Milky Way, have strong implications for the CR and magnetic energy densities in star-forming galaxies. We show that for consistency with the FRC, {approx}2%more » of the kinetic energy from supernova explosions must go into high-energy primary CR electrons and that {approx}10%-20% must go into high-energy primary CR protons. Secondary electrons and positrons are likely comparable to or dominate primary electrons in dense starburst galaxies. We discuss the implications of our models for the magnetic field strengths of starbursts, the detectability of starbursts by Fermi, and CR feedback. Overall, our models indicate that both CR protons and electrons escape from low surface density galaxies, but lose most of their energy before escaping dense starbursts. The FRC is caused by a combination of the efficient cooling of CR electrons (calorimetry) in starbursts and a conspiracy of several factors. For lower surface density galaxies, the decreasing radio emission caused by CR escape is balanced by the decreasing FIR emission caused by the low effective UV dust opacity. In starbursts, bremsstrahlung, ionization, and inverse Compton cooling decrease the radio emission, but they are countered by secondary electrons/positrons and the dependence of synchrotron frequency on energy, both of which increase the radio emission. Our conclusions hold for a broad range of variations in our fiducial model, such as those including winds, different magnetic field strengths, and different diffusive escape times.« less
Simulating the dust content of galaxies: successes and failures
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark; Hayward, Christopher C.; Marinacci, Federico
2017-06-01
We present full-volume cosmological simulations, using the moving-mesh code arepo to study the coevolution of dust and galaxies. We extend the dust model in arepo to include thermal sputtering of grains and investigate the evolution of the dust mass function, the cosmic distribution of dust beyond the interstellar medium and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well described by a Schechter fit and lies closest to observations at z = 0. The radial scaling of projected dust surface density out to distances of 10 Mpc around galaxies with magnitudes 17 < I < 21 is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalization. At z = 0, the predicted dust density of Ωdust ≈ 1.3 × 10-6 lies in the range of Ωdust values seen in low-redshift observations. We find that the dust-to-stellar mass ratio anticorrelates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the 850 μm number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at z = 0. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in Ωdust from z = 2 to 0, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.
The Morphology-Density Relationship: Looking Back, Thinking Back
NASA Astrophysics Data System (ADS)
Dressler, A.
The work I did in the late 1970s leading to the morphology-density relation was done in a time of rising interest in how galaxies acquired different morphological types. I describe briefly here how I contributed to this effort by adding a large number of morphologies for galaxies in rich clusters and the field. The strong correlation that I discovered between galaxy type and local galaxy density ran counter to ideas at the time that emphasized processes tied to the global cluster environment. Instead, it provided some of the first evidence for a hierarchical picture - one in which the density of the environment into which a galaxy was born would be its lifetime legacy. Though often cited as a relation between galaxy morphology and the influence of present-epoch environment, the morphology-density relation was interpreted by me, from the first, as the influence of the early environment of galaxy formation, passed down by the hierarchical growth of structure. In fact, it seems increasingly likely that the more fundamental correlation of galaxy morphology is with galaxy mass, and that the morphology-density relation is basically an expression of the prevalence of more massive galaxies in regions of higher galaxy density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, B. E.; Wilson, C. D.; Sinukoff, E.
2010-05-01
We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less
The formation of the massive galaxies in the SSA22 z = 3.1 protocluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, M.; Uchimoto, Y. K.; Yamada, T.
We study the properties of K-band-selected galaxies (K {sub AB} < 24) in the z = 3.09 SSA22 protocluster field. 430 galaxies at 2.6 < z {sub phot} < 3.6 are selected as potential protocluster members in a 112 arcmin{sup 2} area based on their photometric redshifts. We find that ≈20% of the massive galaxies with stellar masses >10{sup 11} M {sub ☉} at z {sub phot} ∼ 3.1 have colors consistent with those of quiescent galaxies with ages >0.5 Gyr. This fraction increases to ≈50% after correcting for unrelated foreground/background objects. We also find that 30% of the massivemore » galaxies are heavily reddened, dusty, star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24 μm sources at z {sub phot} ∼ 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band-selected protocluster galaxies hosting active galactic nuclei (AGNs) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24 μm sources, and the X-ray AGNs show clustering around a density peak of z = 3.1 Lyα emitters. A significant fraction of the massive galaxies have already become quiescent, while dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies in the centers of the predecessors to present-day rich galaxy clusters.« less
Does the galaxy-halo connection vary with environment?
NASA Astrophysics Data System (ADS)
Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.
2018-05-01
(Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.
ALMA Resolves the Molecular Gas in a Young Low-metallicity Starburst Galaxy at z = 1.7
NASA Astrophysics Data System (ADS)
González-López, Jorge; Barrientos, L. Felipe; Gladders, M. D.; Wuyts, Eva; Rigby, Jane; Sharon, Keren; Aravena, Manuel; Bayliss, Matthew B.; Ibar, Eduardo
2017-09-01
We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission of the source RCSGA 032727-132609, a young z = 1.7 low-metallicity starburst galaxy. The CO(3-2) and CO(6-5) lines and continuum at rest-frame 450 μm are detected and show a resolved structure in the image plane. We use the corresponding lensing model to obtain a source plane reconstruction of the detected emissions revealing an intrinsic flux density of {S}450μ {{m}}={23.5}-8.1+26.8 μJy and intrinsic CO luminosities {L}{CO(3-2)}{\\prime }={2.90}-0.23+0.21 × {10}8 {{K}} {km} {{{s}}}-1 {{pc}}2 and {L}{CO(6-5)}{\\prime }={8.0}-1.3+1.4× {10}7 {{K}} {km} {{{s}}}-1 {{pc}}2. We used the resolved properties in the source plane to obtain molecular gas and star formation rate surface densities of {{{Σ }}}{{H}2}={16.2}-3.5+5.8 {M}⊙ {{pc}}-2 and {{{Σ }}}{SFR}={0.54}-0.27+0.89 {M}⊙ {{yr}}-1 {{kpc}}-2, respectively. The intrinsic properties of RCSGA 032727-132609 show an enhanced star formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the ongoing merger-starburst phase scenario. RCSGA 032727-132609 also appears to be a low-density starburst galaxy similar to local blue compact dwarf galaxies, which have been suggested as local analogs to high-redshift low-metallicity starburst systems. Finally, the CO excitation level in the galaxy is consistent with having the peak at J˜ 5, with a higher excitation concentrated in the star-forming clumps.
Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations
NASA Astrophysics Data System (ADS)
Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.
2012-07-01
We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.
Stellar Disk Truncations: HI Density and Dynamics
NASA Astrophysics Data System (ADS)
Trujillo, Ignacio; Bakos, Judit
2010-06-01
Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.
Interactions of galaxies outside clusters and massive groups
NASA Astrophysics Data System (ADS)
Yadav, Jaswant K.; Chen, Xuelei
2018-06-01
We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.
Dust-obscured star-forming galaxies in the early universe
NASA Astrophysics Data System (ADS)
Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter
2018-02-01
Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.
First Characterization of the Neutral ISM in Two Local Volume Dwarf Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bralts-Kelly, Lilly; Bulatek, Alyssa M.; Chinski, Sarah
We present the first H i spectral-line images of the nearby, star-forming dwarf galaxies UGC 11411 and UGC 8245, acquired as part of the “Observing for University Classes” program with the Karl G. Jansky Very Large Array (VLA). These low-resolution images localize the H i gas and reveal the bulk kinematics of each system. Comparing with Hubble Space Telescope ( HST ) broadband and ground-based H α imaging, we find that the ongoing star formation in each galaxy is associated with the highest H i mass surface density regions. UGC 8245 has a much lower current star formation rate thanmore » UGC 11411, which harbors very high surface brightness H α emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST . We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the H i and stellar masses of the sources are similar. We show that UGC 8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC 11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.« less
NASA Astrophysics Data System (ADS)
Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.
2018-03-01
Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.
2016-02-10
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less
The RSA survey of dwarf galaxies, 1: Optical photometry
NASA Technical Reports Server (NTRS)
Vader, J. Patricia; Chaboyer, Brian
1994-01-01
We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.
THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.
2016-04-20
We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less
NASA Astrophysics Data System (ADS)
Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.
2017-07-01
The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.
NASA Astrophysics Data System (ADS)
Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne
2018-05-01
We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.
NASA Astrophysics Data System (ADS)
Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Vulcani, Benedetta; Schmidt, Kasper B.; Dressler, Alan; Poggianti, Bianca M.; Malkan, Matthew A.; Wang, Xin; Huang, Kuang-Han; Trenti, Michele; Bradač, Maruša; Hoag, Austin
2017-02-01
Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Survey from Space, we study 2200 cluster and 1748 field galaxies at 0.2≤slant z≤slant 0.7 to determine the impact of environment on galaxy size and structure at stellar masses {log}{M}* /{M}⊙ > 7.8, an unprecedented limit at these redshifts. Based on simple assumptions—{r}e=f({M}* )—we find no significant differences in half-light radii (re) between equal-mass cluster or field systems. More complex analyses—{r}e=f({M}* ,U-V,n,z,{{Σ }})—reveal local density (Σ) to induce only a 7% ± 3% (95% confidence) reduction in re beyond what can be accounted for by U - V color, Sérsic index (n), and redshift (z) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-re correlation in low-mass passive cluster galaxies ({log}{M}* /{M}⊙ < 9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-re low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation). Conversely, ˜20% of small-re low-mass passive cluster galaxies appear to have been in place since z≳ 3. Given the consistency of the small-re galaxies’ stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms mainly restricted to the lowest masses.
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.
2018-06-01
Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thilker, David A.; Bianchi, Luciana; Schiminovich, David
We have discovered recent star formation in the outermost portion ((1-4) x R {sub 25}) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring,more » the average star formation rate (SFR) surface density ({Sigma}{sub SFR}) is {approx}2.2 x 10{sup -5} M {sub sun} yr{sup -1} kpc{sup -2}. Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10{sup -3} M {sub sun} yr{sup -1}. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to {approx}1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.« less
NASA Astrophysics Data System (ADS)
Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.
2018-03-01
The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.
Discovery of a large-scale clumpy structure around the Lynx supercluster at z~ 1.27
NASA Astrophysics Data System (ADS)
Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Ueda, Yoshihiro; Yagi, Masafumi; Yasuda, Naoki
2005-03-01
We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z= 1.26 and 1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multicolour imaging, 26.4 × 24.1 arcmin2 in VRi'z' bands with the Suprime-Cam on the 8.2-m Subaru telescope. This unique, deep and wide-field imaging data set allows us for the first time to map out the galaxy distribution in the highest-redshift supercluster known. We apply a photometric redshift technique to extract plausible cluster members at z~ 1.27 down to i'= 26.15 (5σ) corresponding to ~M*+ 2.5 at this redshift. From the two-dimensional distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters. These candidates show clear red colour-magnitude sequences consistent with a passive evolution model, which suggests the existence of additional high-density regions around the Lynx superclusters.
Near-identical star formation rate densities from Hα and FUV at redshift zero
NASA Astrophysics Data System (ADS)
Audcent-Ross, Fiona M.; Meurer, Gerhardt R.; Wong, O. I.; Zheng, Z.; Hanish, D.; Zwaan, M. A.; Bland-Hawthorn, J.; Elagali, A.; Meyer, M.; Putman, M. E.; Ryan-Weber, E. V.; Sweet, S. M.; Thilker, D. A.; Seibert, M.; Allen, R.; Dopita, M. A.; Doyle-Pegg, M. T.; Drinkwater, M.; Ferguson, H. C.; Freeman, K. C.; Heckman, T. M.; Kennicutt, R. C.; Kilborn, V. A.; Kim, J. H.; Knezek, P. M.; Koribalski, B.; Smith, R. C.; Staveley-Smith, L.; Webster, R. L.; Werk, J. K.
2018-06-01
For the first time both Hα and far-ultraviolet (FUV) observations from an H I-selected sample are used to determine the dust-corrected star formation rate density (SFRD: \\dot{ρ }) in the local Universe. Applying the two star formation rate indicators on 294 local galaxies we determine log(\\dot{ρ } _{Hα }) = -1.68 ^{+0.13}_{-0.05} [M⊙ yr-1 Mpc-3] and log(\\dot{ρ }_{FUV}) = -1.71 ^{+0.12}_{-0.13} [M⊙ yr-1 Mpc-3]. These values are derived from scaling Hα and FUV observations to the H I mass function. Galaxies were selected to uniformly sample the full H I mass (M_{H I}) range of the H I Parkes All-Sky Survey (M_{H I} ˜ 107 to ˜1010.7 M⊙). The approach leads to relatively larger sampling of dwarf galaxies compared to optically-selected surveys. The low H I mass, low luminosity and low surface brightness galaxy populations have, on average, lower Hα/FUV flux ratios than the remaining galaxy populations, consistent with the earlier results of Meurer. The near-identical Hα- and FUV-derived SFRD values arise with the low Hα/FUV flux ratios of some galaxies being offset by enhanced Hα from the brightest and high mass galaxy populations. Our findings confirm the necessity to fully sample the H I mass range for a complete census of local star formation to include lower stellar mass galaxies which dominate the local Universe.
The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.
Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M
2006-08-17
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.
Star Formation Rates of dS galaxies
NASA Astrophysics Data System (ADS)
Hidalgo-Gámez, A. M.; Vega-Acevedo, I.; Magaña-Serrano, M. A.
2014-10-01
The Star Formation Rate of a sample of nine dwarf spiral galaxies and ten late-type Sm is determined from the Hα luminosity. The main interest was to check if these two kind of late-type galaxies have similar SFR or not. The images were acquired at the 1.5m telescope of the SPM-OAN and they were reduced with the software MIDAS. The values of the SFR are very similar for both type of galaxies and also similar to other Sm galaxies. The main result is that the dwarf spiral galaxies are more efficient when forming stars than the Sm galaxies because the SFR per are are lower for the latter with the same gas density than for dwarf spirals. However, the SFRs are larger in the Sm galaxies. In addition, the SFR per area were compared with global properties of the galaxies. There is only a relationship between the SFR and the surface brightness as well as with the absolute blue magnitude, but no relationship with the optical radius. A larger sample is needed in order to obtain a more conclusive answer.
IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega
NASA Technical Reports Server (NTRS)
Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.
1993-01-01
A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.
The faint galaxy contribution to the diffuse extragalactic background light
NASA Technical Reports Server (NTRS)
Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph
1992-01-01
Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.
New lessons from the H I size-mass relation of galaxies
NASA Astrophysics Data System (ADS)
Wang, Jing; Koribalski, Bärbel S.; Serra, Paolo; van der Hulst, Thijs; Roychowdhury, Sambit; Kamphuis, Peter; Chengalur, Jayaram N.
2016-08-01
We revisit the H I size-mass (D_{H I}-MH I) relation of galaxies with a sample of more than 500 nearby galaxies covering over five orders of magnitude in H I mass and more than 10 B-band magnitudes. The relation is remarkably tight with a scatter σ ˜ 0.06 dex, or 14 per cent. The scatter does not change as a function of galaxy luminosity, H I richness or morphological type. The relation is linked to the fact that dwarf and spiral galaxies have a homogeneous radial profile of H I surface density in the outer regions when the radius is normalized by DH I. The early-type disc galaxies typically have shallower H I radial profiles, indicating a different gas accretion history. We argue that the process of atomic-to-molecular gas conversion or star formation cannot explain the tightness of the DH I-MH I relation. This simple relation puts strong constraints on simulation models for galaxy formation.
Properties of Dwarf Ellipticals in Low-Density Environments
NASA Astrophysics Data System (ADS)
Sur, Debnil; Guhathakurta, P.; Toloba, E.
2013-01-01
Dwarf elliptical galaxies have been studied only in dense cluster environments, where they are the most common type of object. While this suggests that their location affects their formation and evolution, the role of distance is not fully understood. Thus, to investigate the physical processes that shape these galaxies, we have conducted a study of dwarf elliptical galaxies (dEs) in low-density environments to compare their properties with those in clusters. Catalogs of such objects have not been created; thus, we have developed a novel objective method to find new dEs through comparing photometric properties with those of galaxies in the Virgo Cluster Catalog. This method utilizes optical colors, surface brightness and ellipticity, and it confirms smoothness through visual classification. In this last step, we found a very low contamination rate, which suggests the procedure’s utility in finding dEs. Through the NSA Sloan Atlas, we have analyzed the spectrophotometric properties of the dE candidates as a function of distance to the nearest massive galaxy, which we refer to as their host. We have found that these dEs are younger and more actively forming stars than dEs in denser regions. This is consistent with a transformation scenario in which low luminosity spiral galaxies are affected by the environment and transformed into quiescent galaxies. This low density regime contains objects in an intermediate state between the spiral galaxy and the classical dE in Virgo, where no star formation is ongoing. The correlation of the studied properties with the distance to the host galaxy provides new evidence that the dEs are created by a process called ram-pressure stripping: the interstellar medium of a host galaxy removes the gas of a smaller star-forming galaxy and provokes its quenching. We are currently analysing Keck/DEIMOS spectroscopy of some of the dE candidates from our catalog to explore in more detail their connection to cluster dEs. Possible similarities include their kinematic behaviour, stellar populations and chemical abundances. This research was supported by the Science Internship Program (SIP) at UCSC and the National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.
2014-02-01
The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceedsmore » that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.« less
A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang.
Walter, Fabian; Riechers, Dominik; Cox, Pierre; Neri, Roberto; Carilli, Chris; Bertoldi, Frank; Weiss, Axel; Maiolino, Roberto
2009-02-05
The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z = 6.42, when the Universe was less than a billion years old) has an infrared luminosity of 2.2 x 10(13) times that of the Sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies, such as Arp 220, the burst of star formation is concentrated in a relatively small central region of <100 pc radius. It is not known on which scales stars are forming in active galaxies in the early Universe, at a time when they are probably undergoing their initial burst of star formation. We do know that at some early time, structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [C ii] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star-forming gas is distributed over a radius of about 750 pc around the centre. The surface density of the star formation rate averaged over this region is approximately 1,000 year(-1) kpc(-2). This surface density is comparable to the peak in Arp 220, although about two orders of magnitude larger in area. This vigorous star-forming event is likely to give rise to a massive spheroidal component in this system.
Drivers of Turbulence in the Neutral Interstellar Medium of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Stilp, Adrienne M.
The cause of HI velocity dispersions in the interstellar medium (ISM) of galaxies is often attributed to star formation, but recent evidence has shown these two quantities are not connected in regions of low star formation. This lack of connection is most apparent in dwarf galaxies and the outer disks of spiral galaxies. However, unique data sets have recently been collected that can help address this discrepancy. The ACS Nearby Survey Treasury Project (ANGST) has measured time-resolved star formation histories (SFHs) in ˜ 70 nearby galaxies. The followup Very Large Array-ANGST survey (VLA-ANGST) provides complementary HI observations of a subset of ANGST galaxies. In this thesis, I explore the connection between star formation and HI kinematics in a number of nearby dwarf galaxies. I first present the Very Large Array-ACS Nearby Galaxy Survey Treasury Project (ANGST). VLA-ANGST was designed to provide high spatial and velocity resolution observations of the HI component of the interstellar medium (ISM) in ANGST galaxies. I describe the data calibration and imaging procedures, and then present the publicly-available data products. The observations from this survey and from The HI Nearby Galaxy Survey (THINGS) comprise the majority of data in my thesis. Using VLA-ANGST and THINGS data, I present a method to measure the average HI kinematics in a number of nearby dwarf galaxies by co-adding individual line-of-sight profiles. These "superprofiles" are composed of a central narrow peak (˜ 6-10 km s-1) with higher velocity wings to either side. When scaled to the same half-width half-maximum, the shapes of the superprofiles are very similar. I interpret the central peak as representative of the average turbulent motion; the wings are then due to HI moving faster than expected compared to the average kinematics. I then compare the superprofile parameters to physical properties such as mass surface density and star formation intensity. The average velocity dispersion correlate most strongly with HI surface density, and do not show correlations with star formation intensity unless higher mass galaxies were included. The properties of the wings are more connected with star formation. By applying energy arguments, I determine that star formation can provide enough energy to drive the HI kinematics over ˜ 10 Myr timescales, while a gravitational instability cannot. I then extend this analysis to spatially-resolved scales in these galaxies, and generated superprofiles in regions determined by radius or by star formation intensity. These superprofiles provide a more direct comparison between H I kinematics and local ISM properties compared to the analysis on global scales. The spatially-resolved superprofiles indicate that star formation does not uniquely determine the HI velocity dispersion, but it does appear to provide a lower floor below which velocity dispersions cannot fall. I also find that the coupling efficiency between star formation and HI kinematics decreases with increasing star formation surface density, which may indicate that star formation energy couples more consistently to other phases of the ISM. I finally explore the timescale over which HI responds to star formation using a combination of VLA-ANGST, THINGS, and ANGST data. Using time-resolved SFHs from ANGST, I measure the average star formation rate as a function of time and compared it to present-day HI kinematics. I find that the HI kinematics are most strongly correlated with star formation that occurred ˜ 30 -- 40 Myr ago, which supports the idea that supernova explosions are one driver of HI kinematics even in low star formation systems.
Environment of Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hou, K.-c.; Chen, L.-w.
2013-10-01
To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.
Gravitational lensing by an ensemble of isothermal galaxies
NASA Technical Reports Server (NTRS)
Katz, Neal; Paczynski, Bohdan
1987-01-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
Characterizing gravitational instability in turbulent multicomponent galactic discs
NASA Astrophysics Data System (ADS)
Agertz, Oscar; Romeo, Alessandro B.; Grisdale, Kearn
2015-05-01
Gravitational instabilities play an important role in galaxy evolution and in shaping the interstellar medium (ISM). The ISM is observed to be highly turbulent, meaning that observables like the gas surface density and velocity dispersion depend on the size of the region over which they are measured. In this work, we investigate, using simulations of Milky Way-like disc galaxies with a resolution of ˜ 9 pc, the nature of turbulence in the ISM and how this affects the gravitational stability of galaxies. By accounting for the measured average turbulent scalings of the density and velocity fields in the stability analysis, we can more robustly characterize the average level of stability of the galaxies as a function of scale, and in a straightforward manner identify scales prone to fragmentation. Furthermore, we find that the stability of a disc with feedback-driven turbulence can be well described by a `Toomre-like' Q stability criterion on all scales, whereas the classical Q can formally lose its meaning on small scales if violent disc instabilities occur in models lacking pressure support from stellar feedback.
LINER galaxy properties and the local environment
NASA Astrophysics Data System (ADS)
Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria
2018-05-01
We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.
The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter G.
2005-12-01
We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0
Star Formation in a Complete Spectroscopic Survey of Galaxies
NASA Astrophysics Data System (ADS)
Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.
2001-10-01
The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number density decreases. Whether a galaxy forms stars or not is strongly correlated with the surrounding galaxy density averaged over a scale of a few Mpc. This dependence reflects, in large part, the morphology-density relation. However, for galaxies forming stars, the stellar birthrate parameter is remarkably insensitive to the galaxy density. This conclusion suggests that the triggering of star formation occurs on a smaller spatial scale.
When feedback fails: the scaling and saturation of star formation efficiency
NASA Astrophysics Data System (ADS)
Grudić, Michael Y.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Kereš, Dušan
2018-04-01
We present a suite of 3D multiphysics MHD simulations following star formation in isolated turbulent molecular gas discs ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way giant molecular clouds (GMCs) ({˜ } 10^2 {M_{\\odot } pc^{-2}}) and extreme ultraluminous infrared galaxy environments ({˜ } 10^4 {M_{\\odot } pc^{-2}}) so as to map out the scaling of the cloud-scale star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous per-freefall (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas discs form stars until a critical stellar surface density has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is a good predictor of ɛint, as suggested by analytic force balance arguments from previous works. SFE eventually saturates to ˜1 at high surface density. We also find a proportional relationship between ɛff and ɛint, implying that star formation is feedback-moderated even over very short time-scales in isolated clouds. These results have implications for star formation in galactic discs, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff with surface density is not consistent with the notion that ɛff is always ˜ 1 per cent on the scale of GMCs, but our predictions recover the ˜ 1 per cent value for GMC parameters similar to those found in spiral galaxies, including our own.
NASA Astrophysics Data System (ADS)
Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl
2017-06-01
Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros
NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being drivenmore » out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.« less
Ellipticities of Elliptical Galaxies in Different Environments
NASA Astrophysics Data System (ADS)
Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming
2016-10-01
We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.
Collision Tomography: Physical Properties of Possible Progenitors of the Andromeda Stellar Stream
NASA Astrophysics Data System (ADS)
Miki, Yohei; Mori, Masao; Rich, R. Michael
2016-08-01
To unveil a progenitor of the Andromeda Giant Stellar Stream, we investigate the interaction between an accreting satellite galaxy and the Andromeda Galaxy using an N-body simulation. We perform a comprehensive exploration of the properties of the progenitor dwarf galaxy, using 247 models of varying mass, mass distribution, and size. We show that the binding energy of the progenitor is the crucial parameter in reproducing the Andromeda Giant Stellar Stream and the shell-like structures surrounding the Andromeda Galaxy. As a result of the simulations, the progenitor must satisfy a simple scaling relation between the core radius, the total mass and the tidal radius. Using this relation, we successfully constrain the physical properties of the progenitors to have masses ranging from 5× {10}8{M}⊙ to 5× {10}9{M}⊙ and central surface densities around {10}3 {M}⊙ {{pc}}-2. A detailed comparison between our result and the nearby observed galaxies indicates that possible progenitors of the Andromeda Giant Stellar Stream include a dwarf elliptical galaxy, a dwarf irregular galaxy, and a small spiral galaxy.
The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population
NASA Astrophysics Data System (ADS)
Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea
2018-03-01
We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.
NASA Astrophysics Data System (ADS)
Toft, S.; van Dokkum, P.; Franx, M.; Labbe, I.; Förster Schreiber, N. M.; Wuyts, S.; Webb, T.; Rudnick, G.; Zirm, A.; Kriek, M.; van der Werf, P.; Blakeslee, J. P.; Illingworth, G.; Rix, H.-W.; Papovich, C.; Moorwood, A.
2007-12-01
We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genzel, R.; Tacconi, L. J.; Kurk, J.
We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similarmore » and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.« less
Satellite accretion on to massive galaxies with central black holes
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael; Ma, Chung-Pei
2007-02-01
Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect the properties of the remnants.
ISM stripping from cluster galaxies and inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1990-01-01
Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.
HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen
NASA Astrophysics Data System (ADS)
Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.
2003-12-01
We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.
The Role Of Environment In Stellar Mass Growth
NASA Astrophysics Data System (ADS)
Thomas, Daniel
2017-06-01
In this talk I give a brief summary of methods to measure galaxy environment. I then discuss the dependence of stellar population properties on environmental density: it turns out that the latter are driven by galaxy mass, and galaxy environment only plays a secondary role, mostly at late times in low-mass galaxies. I show that this evidence has now been extended to stellar population gradients using the IFU survey SDSS/MaNGA that again turn out to be independent of environment, including central-satellite classification. Finally I present results from the DES, where the dependence of the stellar mass function with redshift and environmental density is explored. It is found that the fraction of massive galaxies is larger in high density environments than in low density environments. The low density and high density components converge with increasing redshift up to z 1.0 where the shapes of the mass function components are indistinguishable. This study shows how high density structures build up around massive galaxies through cosmic time, which sets new valuable constraints on galaxy formation models.
NASA Astrophysics Data System (ADS)
Simin, A. A.; Fridman, A. M.; Haud, U. A.
1991-09-01
A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.
Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-03-01
We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.
First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.
2017-04-01
Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
Discovery of a large-scale clumpy structure of the Lynx supercluster at z[similar]1.27
NASA Astrophysics Data System (ADS)
Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Yagi, Masafumi; Yasuda, Naoki
2004-07-01
We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z=1.26 and z=1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multi-colour imaging with the Suprime-Cam on the 8.2 m Subaru telescope. We apply a photometric redshift technique to extract plausible cluster members at z˜1.27 down to ˜ M*+2.5. From the 2-D distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters, comprising the largest most distant supercluster ever identified.
Kennicutt-Schmidt Law in the Central Region of NGC 4321 as Seen by ALMA
Azeez, Jazeel H.; Hwang, C.-Y.; Abidin, Zamri Z.; Ibrahim, Zainol A.
2016-01-01
We present the Atacama Large Millimeter/Sub-millimeter Array (ALMA) cycle-0 science verification data of the CO(1–0) line emission in the central region of NGC 4321 (also known as M100) at the distance of 17.1 Mpc and VLA, L-band data of HI of the same galaxy. We have drawn the center area of M100 in the 12CO(J = 1–0) line with the resolution of (3.87″ × 2.53″) as viewed by ALMA, along with HI and Spitzer 8 and 3.6 μm data. The relationship between the surface density of molecular gas mass ∑H2 and that of star formation rate ∑SFR has been investigated, in addition to the relationship between the surface density of the neutral atomic hydrogen mass and that of ∑SFR (Kennicutt–Schmidt law) in this galaxy with a high spatial resolution. The results indicate that a significant correlation exists between the SFR surface density and the molecular gas mass density in the ~2 kpc region. The power-law index has been determined for three regions: center, upper and lower arms. The value of this index in the center region is 1.13, which follows the traditional (K-S) law and indicates that the molecular gas is affected by star formation. PMID:27247251
Luminosity function of faint galaxies with ultraviolet continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanyan, D.A.
1985-05-01
The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less
Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G
2015-04-17
Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.
The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647
NASA Astrophysics Data System (ADS)
Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.
2006-10-01
We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.
Faint blue counts from formation of dwarf galaxies at z approximately equals 1
NASA Technical Reports Server (NTRS)
Babul, Arif; Rees, Martin J.
1993-01-01
The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.
Contribution of HI-bearing ultra-diffuse galaxies to the cosmic number density of galaxies
NASA Astrophysics Data System (ADS)
Jones, M. G.; Papastergis, E.; Pandya, V.; Leisman, L.; Romanowsky, A. J.; Yung, L. Y. A.; Somerville, R. S.; Adams, E. A. K.
2018-06-01
We estimate the cosmic number density of the recently identified class of HI-bearing ultra-diffuse sources (HUDs) based on the completeness limits of the ALFALFA survey. These objects have HI masses approximately in the range 8.5 < logMHI/M⊙ < 9.5, average r-band surface brightnesses fainter than 24 mag arcsec-2, half-light radii greater than 1.5 kpc, and are separated from neighbours by at least 350 kpc. In this work we demonstrate that they contribute at most 6% of the population of HI-bearing dwarfs detected by ALFALFA (with similar HI masses), have a total cosmic number density of (1.5 ± 0.6) × 10-3 Mpc-3, and an HI mass density of (6.0 ± 0.8) × 105 M⊙ Mpc-3. We estimate that this is similar to the total cosmic number density of ultra-diffuse galaxies (UDGs) in groups and clusters, and conclude that the relation between the number of UDGs hosted in a halo and the halo mass must have a break below M200 1012 M⊙ in order to account for the abundance of HUDs in the field. The distribution of the velocity widths of HUDs rises steeply towards low values, indicating a preference for slow rotation rates compared to the global HI-rich dwarf population. These objects were already included in previous measurements of the HI mass function, but have been absent from measurements of the galaxy stellar mass function owing to their low surface brightness. However, we estimate that due to their low number density the inclusion of HUDs would constitute a correction of less than 1%. Comparison with the Santa Cruz semi-analytic model shows that it produces HI-rich central UDGs that have similar colours to HUDs, but that these UDGs are currently produced in a much greater number. While previous results from this sample have favoured formation scenarios where HUDs form in high spin-parameter halos, comparisons with recent results which invoke that formation mechanism reveal that this model produces an order of magnitude more field UDGs than we observe in the HUD population, and these have an occurrence rate (relative to other dwarfs) that is approximately double what we observe. In addition, the colours of HUDs are bluer than predicted, although we suspect this is due to a systematic problem in reproducing the star formation histories of low-mass galaxies rather than being specific to the ultra-diffuse nature of these sources.
Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies
NASA Astrophysics Data System (ADS)
Kun, E.; Keresztes, Z.; Simkó, A.; Szűcs, G.; Gergely, L. Á.
2017-12-01
Context. We assemble a database of 15 high surface brightness (HSB) and 15 low surface brightness (LSB) galaxies, for which surface brightness density and spectroscopic rotation curve data are both available and representative for various morphologies. We use this dataset to test the Navarro-Frenk-White, the Einasto, and the pseudo-isothermal sphere dark matter models. Aims: We investigate the compatibility of the pure baryonic model and baryonic plus one of the three dark matter models with observations on the assembled galaxy database. When a dark matter component improves the fit with the spectroscopic rotational curve, we rank the models according to the goodness of fit to the datasets. Methods: We constructed the spatial luminosity density of the baryonic component based on the surface brightness profile of the galaxies. We estimated the mass-to-light (M/L) ratio of the stellar component through a previously proposed color-mass-to-light ratio relation (CMLR), which yields stellar masses independent of the photometric band. We assumed an axissymetric baryonic mass model with variable axis ratios together with one of the three dark matter models to provide the theoretical rotational velocity curves, and we compared them with the dataset. In a second attempt, we addressed the question whether the dark component could be replaced by a pure baryonic model with fitted M/L ratios, varied over ranges consistent with CMLR relations derived from the available stellar population models. We employed the Akaike information criterion to establish the performance of the best-fit models. Results: For 7 galaxies (2 HSB and 5 LSB), neither model fits the dataset within the 1σ confidence level. For the other 23 cases, one of the models with dark matter explains the rotation curve data best. According to the Akaike information criterion, the pseudo-isothermal sphere emerges as most favored in 14 cases, followed by the Navarro-Frenk-White (6 cases) and the Einasto (3 cases) dark matter models. We find that the pure baryonic model with fitted M/L ratios falls within the 1σ confidence level for 10 HSB and 2 LSB galaxies, at the price of growing the M/Ls on average by a factor of two, but the fits are inferior compared to the best-fitting dark matter model.
Gravitational lens effects of a cosmological density of compact objects
NASA Technical Reports Server (NTRS)
Canizares, C. R.
1983-01-01
Amplification of quasar light by a cosmological density of compact objects causes significant effects on many quasars in magnitude-limited samples. For lens masses solar mass less than 100,000 solar mass the continuum would be amplified by a magnitude or more but the line emission would not. Examination of the UV selected sample of Marshall et al. (1983) gives limits to more than 90 percent statistical confidence of Omega(c) less than 0.1 for a mass between 200 and 100,000 solar mass, where Omega(c) is the mean density of objects of mass M relative to the closure density. Preliminary results from an X-ray selected sample may probe to more than 0.1 solar mass and give a value for Omega(c) of less than one. These limits indicate that the remnants of an early population of massive stars cannot make a cosmologically significant contribution to the mass density of the universe. On a separate topic, recent work on the enhanced surface density of quasars near galaxies due to lensing by stars in the galaxy halos is reviewed.
1.4 GHz continuum sources in the Cancer cluster
NASA Technical Reports Server (NTRS)
Salpeter, E. E.; Dickey, J. M.
1987-01-01
Results of 1.4-GHz continuum observations are presented for 11 VLA fields, using the D-configuration, which contain the A group of the Cnc cluster (CC). Sixteen Zwicky spiral galaxies in the CC were detected, but no ellipticals, confirming the finding that spiral galaxies with close companions tend to have enhanced radio emission. Over 200 continuum sources beyond the CC are tabulated. The spectral index (relative to 610 MHz) is given for many of the sources, including some of the Zwicky galaxies. There is a suggestion for a nonuniform number surface-density distribution of the sources, not correlated with the CC. Possible predictions of such nonuniformities, from assumptions on 'super-superclusters', are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, D. F.; Salzano, V.; Capozziello, S.
We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Resultsmore » show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.« less
NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda
2018-06-01
A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-04-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-07-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
HERSCHEL-ATLAS: TOWARD A SAMPLE OF {approx}1000 STRONGLY LENSED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.
2012-04-10
While the selection of strongly lensed galaxies (SLGs) with 500 {mu}m flux density S{sub 500} > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of {approx_equal} 1.5-2 deg{sup -2}, i.e., a factor ofmore » about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to {approx}1000 candidate SLGs (with amplifications {mu} {approx}> 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field ({approx_equal} 14.4 deg{sup 2}) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a {approx_equal} 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density ({approx_equal} 1.45 deg{sup -2}) can be reached with a {approx}70% efficiency.« less
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
NASA Astrophysics Data System (ADS)
Wellons, Sarah; Torrey, Paul
2017-06-01
Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.
Stationary orbits of satellites of disk galaxies
NASA Technical Reports Server (NTRS)
Polyachenko, Valerij L.
1990-01-01
The satellite of an S-galaxy will experience opposing dynamical-friction forces from the stars of the disk and the halo. If these forces are in balance, the satellite may travel in a stable, near-circular orbit whose radius, for a wide range of physical parameters, should be limited to a zone 1.2 to 1.4 times the disk radius, much as is observed. The idea is very simple. The dynamical friction acting on a small satellite, moving through a stellar galactic halo, makes this satellite slow down. On the other hand, a stellar disk, rotating faster than a satellite, makes it speed up. But the density distributions in radius for disk's and halo's stars in real flat galaxies are quite different (respectively, exponential and power-law). Moreover, the observational data show that the exponential profile for disk's surface density drops abruptly at some radius (r sub d). So it is natural to expect that a stationary orbit could be near the edge of a disk (where two effects are mutually compensated).
Dust-Corrected Star Formation Rates in Galaxies with Outer Rings
NASA Astrophysics Data System (ADS)
Kostiuk, I.; Silchenko, O.
2018-03-01
The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.
NASA Astrophysics Data System (ADS)
Malavasi, Nicola; Pozzetti, Lucia; Cucciati, Olga; Bardelli, Sandro; Ilbert, Olivier; Cimatti, Andrea
2017-09-01
Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the galaxy stellar mass function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z ˜ 3, on physical scales from 0.3 to 2 Mpc, down to masses of M ˜ 1010 M⊙. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z ˜ 2 with the high-mass end (M ≳ 1011 M⊙) being enhanced in high-density environments. On the contrary, for star-forming galaxies, a difference between the GSMF in high- and low-density environments is present for masses M ≲ 1011 M⊙. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z < 1.5. Differences in the shape of the GSMF are not visible anymore at z > 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes that are preferentially in high-density environments.
THE IONIZED GAS IN NEARBY GALAXIES AS TRACED BY THE [NII] 122 AND 205 μm TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera-Camus, R.; Bolatto, A.; Wolfire, M.
2016-08-01
The [N ii] 122 and 205 μ m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ∼1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ∼0.6–6 range, which corresponds to electron gas densities of n {sub e} ∼ 1–300 cm{sup −3}, with a median value of n {sub e} = 30 cm{sup −3}. Variations in the electron densitymore » within individual galaxies can be as high as a factor of ∼50, frequently with strong radial gradients. We find that n {sub e} increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (Σ{sub SFR}). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and Σ{sub SFR} can be understood as a property of the n {sub e} distribution. For regions with n {sub e} close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n {sub e} by comparing our observations to predictions from the MAPPINGS-III code.« less
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...
2016-12-20
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
NASA Astrophysics Data System (ADS)
Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.
2006-12-01
Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.
ALMA resolves extended star formation in high-z AGN host galaxies
NASA Astrophysics Data System (ADS)
Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian
2016-03-01
We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (I.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.
Determining the Nature of Late Gunn–Peterson Troughs with Galaxy Surveys
NASA Astrophysics Data System (ADS)
Davies, Frederick B.; Becker, George D.; Furlanetto, Steven R.
2018-06-01
Recent observations have discovered long (up to ∼110 Mpc/h), opaque Gunn–Peterson troughs in the z ∼ 5.5 Lyα forest, which are challenging to explain with conventional models of the post-reionization intergalactic medium. Here, we demonstrate that observations of the galaxy populations in the vicinity of the deepest troughs can distinguish two competing models for these features: deep voids where the ionizing background is weak due to fluctuations in the mean free path of ionizing photons would show a deficit of galaxies, while residual temperature variations from extended, inhomogeneous reionization would show an overdensity of galaxies. We use large (∼550 Mpc/h) semi-numerical simulations of these competing explanations to predict the galaxy populations in the largest of the known troughs at z ∼ 5.7. We quantify the strong correlation of Lyα effective optical depth and galaxy surface density in both models, and estimate the degree to which realistic surveys can measure such a correlation. While a spectroscopic galaxy survey is ideal, we also show that a relatively inexpensive narrowband survey of Lyα-emitting galaxies is ∼90% likely to distinguish between the competing models.
NASA Astrophysics Data System (ADS)
Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.
2018-04-01
We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.
The impact of stellar feedback on the density and velocity structure of the interstellar medium
NASA Astrophysics Data System (ADS)
Grisdale, Kearn; Agertz, Oscar; Romeo, Alessandro B.; Renaud, Florent; Read, Justin I.
2017-04-01
We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ˜4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed H I in local spiral galaxies from THINGS (The H I Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS H I density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k-2) on scales below the thickness of the H I layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-06-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-01-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin
2017-03-01
Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utomo, Dyas; Blitz, Leo; Davis, Timothy
We present a high spatial resolution (≈20 pc) of {sup 12}CO(2 −1) observations of the lenticular galaxy NGC 4526. We identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion σ{sub v}, and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC 4526 is gravitationally bound, with a virial parameter α ∼ 1. The mass distribution, dN/dM ∝ M{sup −2.39±0.03}, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size–linemore » width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larson’s relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density Σ of GMCs is not approximately constant, as previously believed, but varies by ∼3 orders of magnitude. We also show that the size and velocity dispersion of the GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e., σ{sub v} R{sup −1/2} ∝ Σ{sup 1/2}.« less
The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers
NASA Astrophysics Data System (ADS)
Gargiulo, Adriana; Vipers Team
2017-06-01
At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.
Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies
NASA Astrophysics Data System (ADS)
Sun孙, Jiayi嘉懿; Leroy, Adam K.; Schruba, Andreas; Rosolowsky, Erik; Hughes, Annie; Kruijssen, J. M. Diederik; Meidt, Sharon; Schinnerer, Eva; Blanc, Guillermo A.; Bigiel, Frank; Bolatto, Alberto D.; Chevance, Mélanie; Groves, Brent; Herrera, Cinthya N.; Hygate, Alexander P. S.; Pety, Jérôme; Querejeta, Miguel; Usero, Antonio; Utomo, Dyas
2018-06-01
We measure the velocity dispersion, σ, and surface density, Σ, of the molecular gas in nearby galaxies from CO spectral line cubes with spatial resolution 45–120 pc, matched to the size of individual giant molecular clouds. Combining 11 galaxies from the PHANGS-ALMA survey with four targets from the literature, we characterize ∼30,000 independent sightlines where CO is detected at good significance. Σ and σ show a strong positive correlation, with the best-fit power-law slope close to the expected value for resolved, self-gravitating clouds. This indicates only a weak variation in the virial parameter α vir ∝ σ 2/Σ, which is ∼1.5–3.0 for most galaxies. We do, however, observe enormous variation in the internal turbulent pressure P turb ∝ Σσ 2, which spans ∼5 dex across our sample. We find Σ, σ, and P turb to be systematically larger in more massive galaxies. The same quantities appear enhanced in the central kiloparsec of strongly barred galaxies relative to their disks. Based on sensitive maps of M31 and M33, the slope of the σ–Σ relation flattens at Σ ≲ 10 M ⊙ pc‑2, leading to high σ for a given Σ and high apparent α vir. This echoes results found in the Milky Way and likely originates from a combination of lower beam-filling factors and a stronger influence of local environment on the dynamical state of molecular gas in the low-density regime.
The formation of disc galaxies in high-resolution moving-mesh cosmological simulations
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker
2014-01-01
We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.
COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.
We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less
NASA Technical Reports Server (NTRS)
Ly, Chun; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Hayashi, Masao
2013-01-01
Using deep narrow-band (NB) imaging and optical spectroscopy from the Keck telescope and the Multi Mirror Telescope (MMT), we identify a sample of 20 emission-line galaxies (ELGs) at z = 0.065-0.90 where the weak auroral emission line, [O iii] lambda4363, is detected at >=3sigma. These detections allow us to determine the gas-phase metallicity using the "direct" method. With electron temperature measurements, and dust attenuation corrections from Balmer decrements, we find that 4 of these low-mass galaxies are extremely metal-poor with 12+log(O/H) <= 7.65 or one-tenth solar. Our most metal-deficient galaxy has 12+log(O/H)= 7.24(+0.45 / -0.30) (95% confidence), similar to some of the lowest metallicity galaxies identified in the local universe. We find that our galaxies are all undergoing significant star formation with average specific star formation rate (SFR) of (100 Myra)(exp -1), and that they have high central SFR surface densities (average of 0.5 Solar M / yr/ sq. kpc). In addition, more than two-thirds of our galaxies have between one and four nearby companions within a projected radius of 100 kpc, which we find is an excess among star-forming galaxies at z =0.4 -- 0.85. We also find that the gas-phase metallicities for a given stellar mass and SFR lie systematically lower than the local stellar M-Z-(SFR) relation by approx. = 0.2 dex (2 sigma significance). These results are partly due to selection effects, since galaxies with strong star formation and low metallicity are more likely to yield [O iii] lambda4363 detections. Finally, the observed higher ionization parameter and high electron density suggest that they are lower redshift analogs to typical z approx. > 1 galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, D. M.; Young, L. M.
We present an analysis of new and archival Very Large Array H I observations of a sample of 11 early-type galaxies rich in CO, with detailed comparisons of CO and H I distributions and kinematics. The early-type sample consists of both lenticular and elliptical galaxies in a variety of environments. A range of morphologies and environments were selected in order to give a broader understanding of the origins, distribution, and fate of the cold gas in early-type galaxies. Six of the eleven galaxies in the sample are detected in both H I and CO. The H{sub 2} to H Imore » mass ratios for this sample range from 0.2 to 120. The H I morphologies of the sample are consistent with that of recent H I surveys of early-type galaxies, which also find a mix of H I morphologies and masses, low H I peak surface densities, and a lack of H I in early-type galaxies that reside in high-density environments. The HI-detected galaxies have a wide range of H I masses (1.4 Multiplication-Sign 10{sup 6} to 1.1 Multiplication-Sign 10{sup 10} M{sub Sun }). There does not appear to be any correlation between the H I mass and morphology (E versus S0). When H I is detected, it is centrally peaked-there are no central kiloparsec-scale central H I depressions like those observed for early-type spiral galaxies at similar spatial resolutions and scales. A kinematic comparison between the H I and CO indicates that both cold gas components share the same origin. The primary goal of this and a series of future papers is to better understand the relationship between the atomic and molecular gas in early-type galaxies, and to compare the observed relationships with those of spiral galaxies where this relationship has been studied in depth.« less
Galaxy growth from redshift 5 to 0 at fixed comoving number density
NASA Astrophysics Data System (ADS)
van de Voort, Freeke
2016-10-01
Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.
NASA Technical Reports Server (NTRS)
Deguchi, Shuji; Watson, William D.
1988-01-01
Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es
2012-03-01
In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X}more » {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.« less
The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3
NASA Astrophysics Data System (ADS)
Costa-Duarte, M. V.; Viola, M.; Molino, A.; Kuijken, K.; , L. Sodré, Jr.; Bilicki, M.; Brouwer, M. M.; Buddelmeijer, H.; Grado, A.; de Jong, J. T. A.; Napolitano, N.; Puddu, E.; Radovich, M.; Vakili, M.
2018-04-01
We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions (PDFs) of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centers when compared to blue galaxy ones. In addition, distinct group center definitions are used to show that our results are insensitive to center definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.
Identifying Nearby Galaxy Outliers Using Neutral Hydrogen Scaling Relations
NASA Astrophysics Data System (ADS)
Mohammed, Steven; Schiminovich, D.
2013-01-01
Galaxies appear to be divided into two distinct families: blue, star-forming, gas-rich, spiral galaxies and red, gas-deficient, elliptical galaxies. However, the transition between these two families is not well understood. A galaxy's gas content could be a good indicator of processes that affect this transition. We assembled a catalog of physical properties for 535 nearby massive galaxies (redshifts 0.025 < z < 0.05; stellar masses M* > 108 solar masses) from various existing surveys to examine their neutral hydrogen (HI) gas content. We obtained HI data (e.g., HI masses and HI radii) from several surveys; other properties (e.g., stellar masses, light radii and star formation rates) were derived from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX). Our goal is to identify any outliers from scaling relations derived from galaxies in the GALEX Arecibo SDSS Survey (GASS) in hope that these outliers can provide us with insight into processes relevant to the blue-to-red-galaxy transition. Results indicate that our heterogeneous selection yields a sample that shows similar scaling relations as the GASS galaxies. For example, the atomic HI gas fraction (MHI/M*) decreases strongly as both stellar mass and stellar mass surface density increase. Here, we show recent work that investigates the HI distribution maps of our galaxies to identify environmental effects that might cause outliers to exist.
GHOSTS: The Stellar Populations in the Outskirts of Massive Disk Galaxies
NASA Astrophysics Data System (ADS)
De Jong, Roelof; Radburn-Smith, D. J.; Seth, A. C.; GHOSTS Team
2007-12-01
In recent years we have started to appreciate that the outskirts of galaxies contain valuable information about the formation process of galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are thought to be the result of accretion of minor satellites, predominantly in the earlier assembly phases. The size, metallicity, and amount of substructure in current day halos are therefore directly related to issues like the small scale properties of the primordial power spectrum of density fluctuations and the suppression of star formation in small dark matter halos. I will show highlights from our ongoing HST/ACS/WFPC2 GHOSTS survey of the resolved stellar populations of 14 nearby, massive disk galaxies. I will show that the smaller galaxies (Vrot 100 km/s) have very small halos, but that most massive disk galaxies (Vrot 200 km/s) have very extended stellar envelopes. The luminosity of these envelopes seems to correlate with Hubble type and bulge-to-disk ratio, calling into question whether these are very extended bulge populations or inner halo populations. The amount of substructure varies strongly between galaxies. Finally, I will present the stellar populations of a very low surface brightness stream around M83, showing that it is old and fairly metal rich.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi
2014-07-01
We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven bymore » the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.« less
CGM Evolution of a Simulated Dwarf Galaxy
NASA Astrophysics Data System (ADS)
Sheehan-Klenk, Patrick; Christensen, Charlotte
2018-06-01
The circumgalactic medium (CGM), which is fed by galactic outflows, is intrinsically connected to star formation and galactic evolution. We followed the evolution of the CGM of a simulated dwarf galaxy of mass 4.75 × 1010 solar masses., through five timesteps corresponding to z = 3, 2, 1, 0.5, 0.15. The simulation includes metal line cooling, metal diffusion, and supernova feedback, and the resulting galaxy has a realistic stellar mass and metallicity. We measured the surface densities of HI, CIV and OVI in the CGM gas composition and analyzed their trends in relation to the galaxy's evolution. Additionally, we created mock absorption line spectra, which we used to find the mean equivalent width for sight lines spaced 0.1R/Rvir apart. From this analysis, we saw there was high metallicity at large radii, and over time the CGM cooled and became more ordered. We note the impact of a merger with a smaller galaxy at z = 0.5. We compare these results to observations.
A study of the formation and dynamics of galaxies
NASA Astrophysics Data System (ADS)
Fillmore, J. A.
The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.
The Cancer Cluster - An unbound collection of groups
NASA Technical Reports Server (NTRS)
Geller, M. J.; Beers, T. C.; Bothun, G. D.; Huchra, J. P.
1983-01-01
A surface density contour map of the Cancer Cluster derived from galaxy counts in the Zwicky catalog is presented. The contour map shows that the galaxy distribution is clumpy. When this spatial distribution is combined with nearly complete velocity information, the clumps stand out more clearly; there are significant differences in the mean velocities of the clumps which exceed their internal velocity dispersions. The Cancer Cluster is not a proper 'cluster' but is a collection of discrete groups, each with a velocity dispersion of approximately 300 km/s, separating from one another with the cosmological flow. The mass-to-light ratio for galaxies in the main concentration is approximately 320 solar masses/solar luminosities (H sub 0 = 100 km/s Mpc).
NASA Astrophysics Data System (ADS)
Ebeling, H.; Barrett, E.; Donovan, D.
2004-07-01
We report the detection of a 4 h-170 Mpc long large-scale filament leading into the massive galaxy cluster MACS J0717.5+3745. The extent of this object well beyond the cluster's nominal virial radius (~2.3 Mpc) rules out prior interaction between its constituent galaxies and the cluster and makes it a prime candidate for a genuine filament as opposed to a merger remnant or a double cluster. The structure was discovered as a pronounced overdensity of galaxies selected to have V-R colors close to the cluster red sequence. Extensive spectroscopic follow-up of over 300 of these galaxies in a region covering the filament and the cluster confirms that the entire structure is located at the cluster redshift of z=0.545. Featuring galaxy surface densities of typically 15 Mpc-2 down to luminosities of 0.13L*V, the most diffuse parts of the filament are comparable in density to the clumps of red galaxies found around A851 in the only similar study carried out to date (Kodama et al.). Our direct detection of an extended large-scale filament funneling matter onto a massive distant cluster provides a superb target for in-depth studies of the evolution of galaxies in environments of greatly varying density and supports the predictions from theoretical models and numerical simulations of structure formation in a hierarchical picture. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNP (Brazil), and CONICET (Argentina).
The Growth of the Disk Galaxy UGC8802
NASA Astrophysics Data System (ADS)
Chang, R. X.; Shen, S. Y.; Hou, J. L.
2012-07-01
The disk galaxy UGC8802 has high neutral gas content and a flat profile of star formation rate compared to other disk galaxies with similar stellar mass. It also shows a steep metallicity gradient. We construct a chemical evolution model to explore its growth history by assuming its disk grows gradually from continuous gas infall, which is shaped by a free parameter—the infall-peak time. By adopting the recently observed molecular surface density related star formation law, we show that a late infall-peak time can naturally explain the observed high neutral gas content, while an inside-out disk formation scenario can fairly reproduce the steep oxygen abundance gradient. Our results show that most of the observed features of UGC8802 can be well reproduced by simply "turning the knob" on gas inflow with one single parameter, which implies that the observed properties of gas-rich galaxies could also be modeled in a similar way.
Studies of the Virgo cluster. VI - Morphological and kinematical structure of the Virgo cluster
NASA Technical Reports Server (NTRS)
Binggeli, Bruno; Tammann, G. A.; Sandage, Allan
1987-01-01
The structure of the Virgo cluster is analyzed on the basis of the positions, Hubble types, and radial velocities of 1277 Virgo cluster galaxies. The surface distribution of galaxies is considered according to type, and is discussed using maps, isopleths, strip counts, and radial-density distributions. It is found that the Virgo cluster shows pronounced double structure. The main concentration has a large velocity dispersion and is made up predominantly of early-type galaxies, while the secondary concentration has a much smaller velocity dispersion and contains late types. There is a strong spatial segregation of the Hubble types, the early-type galaxies being more concentrated toward the cluster center. There is significant substructure in the cluster core. The irregularity of the Virgo cluster in both configuration and velocity space shows that the core and the envelope are still forming, and hence that the cluster is young.
GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee
2015-02-20
We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin
2018-05-01
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
The Metallicity of Void Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.
2015-01-01
The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
Etherington, J.; Thomas, D.; Maraston, C.; ...
2016-01-04
Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less
Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies
NASA Astrophysics Data System (ADS)
Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.
2007-05-01
We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.
Scaling Relations between Gas and Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Bigiel, Frank; Leroy, Adam; Walter, Fabian
2011-04-01
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.
Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function
NASA Astrophysics Data System (ADS)
Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.
2011-05-01
We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.
Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys
NASA Astrophysics Data System (ADS)
Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.; Hopkins, Andrew M.; Kuijken, Konrad
2017-11-01
We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 < R/(h- 1 Mpc) < 2, and for five logarithmically equispaced stellar mass bins in the range 10.3 < log10(Mstar/ M⊙) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Galaxy And Mass Assembly (GAMA) survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimize contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5-2 h- 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection.
NASA Astrophysics Data System (ADS)
Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj
2018-06-01
We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 < M*/M⊙ < 1011.6 that cover a large radial range of 0.1-4.0 effective radii. We combine SLUGGS and ATLAS3D data sets to model the total-mass profiles of a sample of 21 fast-rotator galaxies, utilizing a hyperparameter method to combine the two independent data sets. The total-mass density profile slope values derived for these galaxies are consistent with those measured in the inner regions of galaxies by other studies. Furthermore, the total-mass density slopes (γtot) appear to be universal over this broad stellar mass range, with an average value of γtot = -2.24 ± 0.05 , i.e. slightly steeper than isothermal. We compare our results to model galaxies from the Magneticum and EAGLE cosmological hydrodynamic simulations, in order to probe the mechanisms that are responsible for varying total-mass density profile slopes. The simulated-galaxy slopes are shallower than the observed values by ˜0.3-0.5, indicating that the physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1979-01-01
The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.
Excitation of the molecular gas in the nuclear region of M 82
NASA Astrophysics Data System (ADS)
Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.
2010-10-01
We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.
NASA Astrophysics Data System (ADS)
Tamburri, S.; Saracco, P.; Longhetti, M.; Gargiulo, A.; Lonoce, I.; Ciocca, F.
2014-10-01
Aims: There are two aims to our analysis. On the one hand we are interested in addressing whether a sample of morphologically selected early-type galaxies (ETGs) differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density, and, the stellar mass density for different morphological types change over the redshift range 0.6 ≤ z ≤ 2.5. Methods: From the 1302 galaxies brighter than Ks(AB) = 22 selected from the GOODS-MUSIC catalogue, we classified the ETGs, i.e. elliptical (E) and spheroidal galaxies (E/S0), on the basis of their morphology and the passive galaxies on the basis of their specific star formation rate (sSFR ≤ 10-11 yr-1). Since the definition of a passive galaxy depends on the model parameters assumed to fit the spectral energy distribution of the galaxy, in addition to the assumed sSFR threshold, we probed the dependence of this definition and selection on the stellar initial mass function (IMF). Results: We find that spheroidal galaxies cannot be distinguished from the other morphological classes on the basis of their low star formation rate, irrespective of the IMF adopted in the models. In particular, we find that a large fraction of passive galaxies (>30%) are disc-shaped objects and that the passive selection misses a significant fraction (~26%) of morphologically classified ETGs. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and non-spheroidal galaxies (LTGs), we find that the fraction of these two morphological classes is constant over the redshift range 0.6 ≤ z ≤ 2.5, being 20-30% the fraction of ETGs and 70-80% the fraction of LTGs. However, at z < 1 these fractions change among the population of the most massive (M∗ ≥ 1011 M⊙) galaxies, with the fraction of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing to 60%. Parallel to this trend, we find that the number density and the stellar mass density of the whole population of massive galaxies increase by almost a factor of ~10 between 0.6 ≤ z ≤ 2.5, with a faster increase of these densities for the ETGs than for the LTGs. Finally, we find that the number density of the highest-mass galaxies both ETGs and LTGs (M∗> 3-4 × 1011 M⊙) does not increase from z ~ 2.5, contrary to the lower mass galaxies. This suggests that the most massive galaxies formed at z> 2.5-3 and that the assembly of such high-mass galaxies is not effective at lower redshift.
Quasar outflows at z ≥ 6: the impact on the host galaxies
NASA Astrophysics Data System (ADS)
Barai, Paramita; Gallerani, Simona; Pallottini, Andrea; Ferrara, Andrea; Marconi, Alessandro; Cicone, Claudia; Maiolino, Roberto; Carniani, Stefano
2018-01-01
We investigate quasar outflows at z ≥ 6 by performing zoom-in cosmological hydrodynamical simulations. By employing the smoothed particle hydrodynamics code GADGET-3, we zoom in the 2R200 region around a 2 × 1012 M⊙ halo at z = 6, inside a (500 Mpc)3 comoving volume. We compare the results of our active galactic nuclei (AGN) runs with a control simulation in which only stellar/SN feedback is considered. Seeding 105 M⊙ black holes (BHs) at the centres of 109 M⊙ haloes, we find the following results. BHs accrete gas at the Eddington rate over z = 9-6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 M⊙. Fast (vr > 1000 km s-1), powerful (\\dot{M}_out ˜ 2000 M_{⊙} yr-1) outflows of shock-heated low-density gas form at z ∼ 7, and propagate up to hundreds kpc. Star formation is quenched over z = 8-6, and the total star formation rate (SFR surface density near the galaxy centre) is reduced by a factor of 5 (1000). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at z = 6. The inflowing gas mass fraction is reduced by ∼ 12 per cent, the high-density gas fraction is lowered by ∼ 13 per cent, and ∼ 20 per cent of the gas outflows at a speed larger than the escape velocity (500 km s-1). We conclude that quasar-host galaxies at z ≥ 6 are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.
NASA Technical Reports Server (NTRS)
Stefanon, Mauro; Marchesini, Danilo; Rudnick, Gregory H.; Brammer, Gabriel B.; Tease, Katherine Whitaker
2013-01-01
Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z 2, implying that the SFRs for all of these galaxies must be much lower by z 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening 1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z 3 that are compact (Re < 1.4 kpc) and have stellar mass M* > 1010.6M; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z 2 that are consistent with the observed number density. Better agreement with the observed number density of CMQGs at z 2 is obtained if merging is included in the analysis and better still if star formation quenching is assumed to shortly follow the merging event, as implied by recent models of the formation of MQGs.
Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy
NASA Astrophysics Data System (ADS)
Higgs, C. R.; McConnachie, A. W.; Irwin, M.; Bate, N. F.; Lewis, G. F.; Walker, M. G.; Côté, P.; Venn, K.; Battaglia, G.
2016-05-01
We introduce the Solitary Local dwarfs survey (Solo), a wide-field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multiband imaging from Canada-France-Hawaii Telescope/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than MV ≃ -18 situated beyond the nominal virial radius of the Milky Way and M31 (≳300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius dwarf irregular galaxy (Sag DIG), one of the most isolated, low-mass galaxies, located at the edge of the Local Group. We analyse its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag arcsec-2. Sag DIG is well described by a highly elliptical (disc-like) system following a single component Sérsic model. However, a low-level distortion is present at the outer edges of the galaxy that, were Sag DIG not so isolated, would likely be attributed to some kind of previous tidal interaction. Further, we find evidence of an extremely low level, extended distribution of stars beyond ˜5 arcmin (>1.5 kpc) that suggests Sag DIG may be embedded in a very low-density stellar halo. We compare the stellar and H I structures of Sag DIG, and discuss results for this galaxy in relation to other isolated, dwarf irregular galaxies in the Local Group.
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; ...
2017-03-10
In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less
NASA Astrophysics Data System (ADS)
Leung, Tsz Kuk Daisy; Riechers, Dominik A.; Clements, David; Cooray, Asantha; Ivison, Rob; Perez-Fournon, Ismael; Wardlow, Julie
2018-01-01
Dusty star-forming galaxies (SFG) at high redshifts are the main contributors to the comoving star formation rate (SFR) density, which peaks between the redshift of z=1-3 (``Cosmic Noon''). Yet, new insights into their gas dynamics, and thus, structural evolution are awaiting spatially resolved observations. I will present the latest results from our kpc-scale [CII] imaging and multi-J CO line observations obtained with ALMA, CARMA, PdBI, and the VLA in one of the most massive ``main-sequence'' disk galaxy known. XMM03 (z=2.9850) is an extremely IR-luminous galaxy with a SFR of ~3000 Msun/yr, but its molecular gas excitation is surprisingly similar to the Milky Way up to J=5, which is in stark contrast with most high-z galaxies studied to date. The monotonic velocity gradient seen in the [CII] line emission suggest that it is a rotating disk galaxy. Based on the molecular gas surface density and the far-UV radiation flux determined from photo-dissociation region (PDR) modeling, the star-forming environment of XMM03 is similar to nearby SFGs. These findings together with the ~1100 km/s wide CO(1-0) line across the entire disk of ~8 kpc in radius showcase the different interstellar medium (ISM) environment that we are probing at the most massive end of galaxies in the early Universe. With a stellar mass of M*~10^12, its specific SFR is consistent with an extrapolation of the ``star-forming main-sequence'' up to M*~10^12 Msun at z~3. Our findings therefore confirm the prevalence of disk-wide star formation responsible for assembling most of the stellar masses toward the ``Cosmic Noon''.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo
In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less
SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA
NASA Astrophysics Data System (ADS)
Greene, J. E.; Leauthaud, A.; Emsellem, E.; Goddard, D.; Ge, J.; Andrews, B. H.; Brinkman, J.; Brownstein, J. R.; Greco, J.; Law, D.; Lin, Y.-T.; Masters, K. L.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Yan, R.; Drory, N.
2017-12-01
The “kinematic” morphology–density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses {10}12.5< {M}{halo}< {10}14.5 {h}-1 {M}ȯ observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.
Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III
NASA Astrophysics Data System (ADS)
Chen, Yen-Chi; Ho, Shirley; Mandelbaum, Rachel; Bahcall, Neta A.; Brownstein, Joel R.; Freeman, Peter E.; Genovese, Christopher R.; Schneider, Donald P.; Wasserman, Larry
2017-04-01
We study the effects of filaments on galaxy properties in the Sloan Digital Sky Survey (SDSS) Data Release 12 using filaments from the 'Cosmic Web Reconstruction' catalogue, a publicly available filament catalogue for SDSS. Since filaments are tracers of medium- to high-density regions, we expect that galaxy properties associated with the environment are dependent on the distance to the nearest filament. Our analysis demonstrates that a red galaxy or a high-mass galaxy tends to reside closer to filaments than a blue or low-mass galaxy. After adjusting the effect from stellar mass, on average, early-forming galaxies or large galaxies have a shorter distance to filaments than late-forming galaxies or small galaxies. For the main galaxy sample, all signals are very significant (>6σ). For the LOWZ and CMASS sample, the stellar mass and size are significant (>2σ). The filament effects we observe persist until z = 0.7 (the edge of the CMASS sample). Comparing our results to those using the galaxy distances from redMaPPer galaxy clusters as a reference, we find a similar result between filaments and clusters. Moreover, we find that the effect of clusters on the stellar mass of nearby galaxies depends on the galaxy's filamentary environment. Our findings illustrate the strong correlation of galaxy properties with proximity to density ridges, strongly supporting the claim that density ridges are good tracers of filaments.
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoville, N.; Benson, A.; Fu, Hai
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-03-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-07-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.
NASA Astrophysics Data System (ADS)
Cristiano Amorisco, Nicola; Martinez-Delgado, David
2015-08-01
Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies.Refs.[1] Arp, 1976, ApJ, 207[2] Higdon & Wallin, 2003, ApJ, 585[3] Galianni et al., 2010, A&A, 521[4] Diemer & Kravtsov, 2014, ApJ, 789
Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies
NASA Astrophysics Data System (ADS)
Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.
2017-09-01
Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.
Detailed photometric analysis of young star groups in the galaxy NGC 300
NASA Astrophysics Data System (ADS)
Rodríguez, M. J.; Baume, G.; Feinstein, C.
2016-10-01
Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values obtained from the size distribution are both 25 pc, in agreement with the value for the Local Group and nearby galaxies. Additionally, we found an average PDMF slope that is compatible with the Salpeter value. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A34
Stellar Surface Brightness Profiles of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, Kimberly A.; LITTLE THINGS Team
2012-01-01
Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. We have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2006, 2004). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and H-alpha from ground-based observations, and 3.6 and 4.5 microns from Spitzer. In this talk, I will highlight results from a semi-automatic fitting of this data set, including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 41 dwarfs of the LITTLE THINGS subsample. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
NASA Astrophysics Data System (ADS)
Miller, Christopher J. Miller
2012-03-01
There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations of galaxy clusters will be at locations of the peaks in the true underlying (mostly) dark matter density field. Kaiser (1984) [19] called this the high-peak model, which we demonstrate in Figure 16.1. We show a two-dimensional representation of a density field created by summing plane-waves with a predetermined power and with random wave-vector directions. In the left panel, we plot only the largest modes, where we see the density peaks (black) and valleys (white) in the combined field. In the right panel, we allow for smaller modes. You can see that the highest density peaks in the left panel contain smaller-scale, but still high-density peaks. These are the locations of future galaxy clusters. The bottom panel shows just these cluster-scale peaks. As you can see, the peaks themselves are clustered, and instead of just one large high-density peak in the original density field (see the left panel), the smaller modes show that six peaks are "born" within the broader, underlying large-scale density modes. This exemplifies the "bias" or amplified structure that is traced by galaxy clusters [19]. Clusters are rare, easy to find, and their member galaxies provide good distance estimates. In combination with their amplified clustering signal described above, galaxy clusters are considered an efficient and precise tracer of the large-scale matter density field in the Universe. Galaxy clusters can also be used to measure the baryon content of the Universe [43]. They can be used to identify gravitational lenses [38] and map the distribution of matter in clusters. The number and spatial distribution of galaxy clusters can be used to constrain cosmological parameters, like the fraction of the energy density in the Universe due to matter (Omega_matter) or the variation in the density field on fixed physical scales (sigma_8) [26,33]. The individual clusters act as “Island Universes” and as such are laboratories here we can study the evolution of the properties of the cluster, like the hot, gaseous intra-cluster medium or shapes, colors, and star-formation histories of the member galaxies [17].
Isolated galaxies, pairs, and groups of galaxies
NASA Technical Reports Server (NTRS)
Kuneva, I.; Kalinkov, M.
1990-01-01
The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.
Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1
NASA Astrophysics Data System (ADS)
Galaz, Gaspar
2018-01-01
I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.
THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): THE X {sub CO} GRADIENT IN NGC 628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillermo A.; Schruba, Andreas; Evans, Neal J. II
2013-02-20
We measure the radial profile of the {sup 12}CO(1-0) to H{sub 2} conversion factor (X {sub CO}) in NGC 628. The H{alpha} emission from the VENGA integral field spectroscopy is used to map the star formation rate (SFR) surface density ({Sigma}{sub SFR}). We estimate the molecular gas surface density ({Sigma}{sub H2}) from {Sigma}{sub SFR} by inverting the molecular star formation law (SFL), and compare it to the CO intensity to measure X {sub CO}. We study the impact of systematic uncertainties by changing the slope of the SFL, using different SFR tracers (H{alpha} versus far-UV plus 24 {mu}m), and COmore » maps from different telescopes (single-dish and interferometers). The observed X {sub CO} profile is robust against these systematics, drops by a factor of two from R {approx} 7 kpc to the center of the galaxy, and is well fit by a gradient {Delta}log(X {sub CO}) = 0.06 {+-} 0.02 dex kpc{sup -1}. We study how changes in X {sub CO} follow changes in metallicity, gas density, and ionization parameter. Theoretical models show that the gradient in X {sub CO} can be explained by a combination of decreasing metallicity, and decreasing {Sigma}{sub H2} with radius. Photoelectric heating from the local UV radiation field appears to contribute to the decrease of X {sub CO} in higher density regions. Our results show that galactic environment plays an important role at setting the physical conditions in star-forming regions, in particular the chemistry of carbon in molecular complexes, and the radiative transfer of CO emission. We caution against adopting a single X {sub CO} value when large changes in gas surface density or metallicity are present.« less
NASA Astrophysics Data System (ADS)
Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.
2017-01-01
We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.
NASA Astrophysics Data System (ADS)
Cantiello, Michele; D'Abrusco, Raffaele; Spavone, Marilena; Paolillo, Maurizio; Capaccioli, Massimo; Limatola, Luca; Grado, Aniello; Iodice, Enrica; Raimondo, Gabriella; Napolitano, Nicola; Blakeslee, John P.; Brocato, Enzo; Forbes, Duncan A.; Hilker, Michael; Mieske, Steffen; Peletier, Reynier; van de Ven, Glenn; Schipani, Pietro
2018-04-01
We analyze the globular cluster (GC) systems in two very different galaxies, NGC 3115 and NGC 1399. With the papers of this series, we aim at highlighting common and different properties in the GC systems in galaxies covering a wide range of parameter space. We compare the GCs in NGC 3115 and NGC 1399 as derived from the analysis of one square degree u-, g-, and i-band images taken with the VST telescope as part of the VST early-type galaxy survey (VEGAS) and Fornax deep survey (FDS). We selected GC candidates using as reference the morpho-photometric and color properties of confirmed GCs. The surface density maps of GCs in NGC 3115 reveal a morphology similar to the light profile of field stars; the same is true when blue and red GCs are taken separately. The GC maps for NGC 1399 are richer in structure and confirm the existence of an intra-cluster GC component. We confirm the presence of a spatial offset in the NGC 1399 GC centroid and find that the centroid of the GCs for NGC 3115 coincides well with the galaxy center. Both GC systems show unambiguous color bimodality in (g - i) and (u - i); the color-color relations of the two GC systems are slightly different with NGC 3115 appearing more linear than NGC 1399. The azimuthal average of the radial density profiles in both galaxies reveals a larger spatial extent for the total GCs population with respect to the galaxy surface brightness profile. For both galaxies, the red GCs have radial density profiles compatible with the galaxy light profile, while the radial profiles for blue GCs are shallower. As for the specific frequency of GCs, SN, we find it is a factor of two higher in NGC 1399 than for NGC 3115; this is mainly the result of extra blue GCs. By inspecting the radial behavior of the specific frequency, SN(
The Halo Boundary of Galaxy Clusters in the SDSS
NASA Astrophysics Data System (ADS)
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.
2017-05-01
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.
Morphology of Dwarf Galaxies in Isolated Satellite Systems
NASA Astrophysics Data System (ADS)
Ann, Hong Bae
2017-08-01
The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.
The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode
NASA Astrophysics Data System (ADS)
Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing
2017-08-01
Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies
NASA Astrophysics Data System (ADS)
Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.
2017-10-01
The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.
Star Formation in Merging Galaxies Using FIRE
NASA Astrophysics Data System (ADS)
Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip
2018-01-01
Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faltenbacher, A.; Finoguenov, A.; Drory, N.
2010-03-20
The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present amore » simple fitting formula for the cumulative mass function accurate to {approx}<5% for halo masses between 10{sup 10} and 10{sup 15} h {sup -1} M{sub sun}. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.« less
Testing the gravitational instability hypothesis?
NASA Technical Reports Server (NTRS)
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.
The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~ 1
NASA Astrophysics Data System (ADS)
Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Carollo, C. M.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kovač, K.; Knobel, C.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Oesch, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Cappi, A.; Cimatti, A.; Coppa, G.; Franzetti, P.; Koekemoer, A.; Moresco, M.; Nair, P.; Pozzetti, L.
2014-10-01
We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 <= z <= 1.5. These galaxies span a range of stellar masses (9.45 <= log10[M */M ⊙] <= 10.7) and star formation rates (0.14 <= log10[SFR/M ⊙ yr-1] <= 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (ΣSFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -150 km s-1 ~-200 km s-1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ⊙ yr-1 and a mass loading factor ({ η = \\dot{M}out /SFR}) comparable to the star formation rates of the galaxies. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839.
The Physical Origin of Long Gas Depletion Times in Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.
2017-08-18
We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolatedmore » $$L_*$$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.« less
The Physical Origin of Long Gas Depletion Times in Galaxies
NASA Astrophysics Data System (ADS)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.
2017-08-01
We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.
ROTATIONAL DYNAMICS AND STAR FORMATION IN THE NEARBY DWARF GALAXY NGC 5238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, John M.; McNichols, Andrew T.; Teich, Yaron G., E-mail: jcannon@macalester.edu, E-mail: amcnicho@nrao.edu, E-mail: yateich@gmail.com
2016-12-01
We present new H i spectral-line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array. Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H α and ultraviolet (UV) continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H i images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. Themore » H i disk is asymmetric in the outer regions, and the areas of high H i mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H i column density exceeds 10{sup 21} cm{sup −2} in much of the disk. We quantify the degree of co-spatiality of dense H i gas and sites of ongoing star formation as traced by far-UV and H α emission. The neutral gas kinematics are complex; using a spatially resolved position–velocity analysis, we infer a rotational velocity of 31 ± 5 km s{sup −1}. We place NGC 5238 on the baryonic Tully–Fisher relation and contextualize the system among other low-mass galaxies.« less
Finite Temperature Density Profile in SFDM
NASA Astrophysics Data System (ADS)
Robles, Victor H.; Matos, T.
Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Vulcani
We present the first study of the spatial distribution of star formation in z ~ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 108-1011 M ⊙, and star formation rates in the range 1-20 M⊙ yr -1. In both environments, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental process that regulate star formation.
The Impact of Bars and Spiral Density Waves on the Relative Frequencies of Supernovae
NASA Astrophysics Data System (ADS)
Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; Barkhudaryan, L. V.; Karapetyan, A. G.; Adibekyan, V.; Turatto, M.
2017-07-01
We present the results of the analysis of the impact of bars and spiral density waves on the relative frequencies of supernovae (SNe). We find that for early -type Grand-Design (GD) and non-Grand-Design (NGD) galaxies, the NIa/NCC ratios, i.e., one of the tracers of specific star formation rate (sSFR), are not significantly different between barred and unbarred hosts. At the same time, for both barred and unbarred early-type galaxies, the NIa /NCC ratio in NGD hosts is significantly higher than that in GD, and for late-type galaxies no any significant difference exists between the N Ia/NCC ratios. Thus, in contrast to bars, the spiral density waves significantly enhance the relative frequencies of SNe in early-type GD galaxies, while not in late-type hosts. This result is actual also for galaxies when barred and unbarred categories are separated. Hence, the sSFR might be enhanced by density waves in early-type galaxies only.
ASTROBIOLOGICAL EFFECTS OF GAMMA-RAY BURSTS IN THE MILKY WAY GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowanlock, Michael G., E-mail: gowanloc@mit.edu
A planet having protective ozone within the collimated beam of a gamma-ray burst (GRB) may suffer ozone depletion, potentially causing a mass extinction event to existing life on a planet’s surface and oceans. We model the dangers of long GRBs to planets in the Milky Way and utilize a static statistical model of the Galaxy, which matches major observable properties, such as the inside-out star formation history (SFH), metallicity evolution, and three-dimensional stellar number density distribution. The GRB formation rate is a function of both the SFH and metallicity. However, the extent to which chemical evolution reduces the GRB ratemore » over time in the Milky Way is still an open question. Therefore, we compare the damaging effects of GRBs to biospheres in the Milky Way using two models. One model generates GRBs as a function of the inside-out SFH. The other model follows the SFH, but generates GRB progenitors as a function of metallicity, thereby favoring metal-poor host regions of the Galaxy over time. If the GRB rate only follows the SFH, the majority of the GRBs occur in the inner Galaxy. However, if GRB progenitors are constrained to low-metallicity environments, then GRBs only form in the metal-poor outskirts at recent epochs. Interestingly, over the past 1 Gyr, the surface density of stars (and their corresponding planets), which survive a GRB is still greatest in the inner galaxy in both models. The present-day danger of long GRBs to life at the solar radius ( R {sub ⊙} = 8 kpc) is low. We find that at least ∼65% of stars survive a GRB over the past 1 Gyr. Furthermore, when the GRB rate was expected to have been enhanced at higher redshifts, such as z ≳ 0.5, our results suggest that a large fraction of planets would have survived these lethal GRB events.« less
NASA Astrophysics Data System (ADS)
Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús
2017-12-01
Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc
NASA Astrophysics Data System (ADS)
Goudfrooij, P.; de Jong, T.
1995-06-01
We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of the galaxies, and heated by optical photons and/or hot electrons. The radial colour gradients implied by the diffuse dust component are found to be smaller than or equal to the observed colour gradients. Thus, we argue that the effect of dust extinction should be taken seriously in the interpretation of colour gradients in elliptical galaxies. We show that the amount of dust observed in luminous elliptical galaxies is generally higher than that expected from production by mass loss of stars within elliptical galaxies and destruction by sputtering in hot gas. This suggests that most of the dust in elliptical galaxies generally has an external origin.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
The distribution of early- and late-type galaxies in the Coma cluster
NASA Technical Reports Server (NTRS)
Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.
1995-01-01
The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.
Observational constraints on disc galaxy formation
NASA Astrophysics Data System (ADS)
Syer, D.; Mao, Shude; Mo, H. J.
1999-04-01
We use data from the literature to constrain theoretical models of galaxy formation. We show how to calculate the dimensionless spin parameter lambda of the haloes of disc galaxies, and we compare the distribution of lambda with that observed in cosmological N-body simulations. The agreement is excellent, which provides strong support for the hierarchical picture of galaxy formation. Assuming only that the radial surface density distribution of discs is exponential, we estimate crudely the maximum-disc mass-to-light ratio in the I band, and obtain < Upsilon_I> <~ 3.56 h, for a Hubble constant of 100 h km s^-1 Mpc^-1. We discuss this result and its limitations in relation to other independent determinations of Upsilon_I. We also define a dimensionless form of the Tully-Fisher relation, and use it to derive a value of the baryon fraction in disc galaxies; the median value is m_d = 0.084 (Upsilon_I3.56 h). Assuming that the gas fraction in galactic haloes is at most as large as that in clusters, we also conclude that < Upsilon_I> <~ 2.56 h^-1/2.
NASA Astrophysics Data System (ADS)
Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team
2018-01-01
We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.
LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Pereira, M. J.; Egami, E.
2015-06-10
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster,more » but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.« less
The EDGE-CALIFA Survey: Variations in the Molecular Gas Depletion Time in Local Galaxies
NASA Astrophysics Data System (ADS)
Utomo, Dyas; Bolatto, Alberto D.; Wong, Tony; Ostriker, Eve C.; Blitz, Leo; Sanchez, Sebastian F.; Colombo, Dario; Leroy, Adam K.; Cao, Yixian; Dannerbauer, Helmut; Garcia-Benito, Ruben; Husemann, Bernd; Kalinova, Veselina; Levy, Rebecca C.; Mast, Damian; Rosolowsky, Erik; Vogel, Stuart N.
2017-11-01
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas depletion time (τ dep) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within 0.1 {R}25, and the disk, defined as the region between 0.1 and 0.7 {R}25. We find that 14 galaxies show a shorter τ dep (˜1 Gyr) in the center relative to that in the disk (τ dep ˜ 2.4 Gyr), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter τ dep resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in τ dep is correlated with a central increase in the stellar surface density, suggesting that a shorter τ dep is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H2 conversion factor only exaggerates the central drop of τ dep.
NASA Astrophysics Data System (ADS)
Sheth, Kartik
2013-01-01
The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest and the most homogenous survey of the distribution of mass and stellar structure in over 2,300 nearby galaxies. With an integration time of four minutes per pixel at 3.6 and 4.5 microns, the S4G maps are extremely deep, tracing the stellar surface densities of < 1 solar mass per square parsec! S4G is the ultimate survey of the endoskeleton of nearby galaxies from dwarfs to ellipticals and affords an incredible treasury of data which we can address a host of outstanding questions in galaxy evolution. At this special session we will present details on the public release of this survey which will include science ready images, masks for the foreground and background stars, globally integrated properties and radial profiles of all galaxies. In addition we will release the results from a GALFIT decomposition of 200 galaxies which will be supplemented with the remainder of the survey within six months. The data are being released through the NASA/IPAC Infrared Science Archive (IRSA). I will present an overview of the survey, the data we are releasing, introduce the speakers and present science highlights from the team.
{sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with resultsmore » in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.« less
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
NASA Astrophysics Data System (ADS)
Ortega-Minakata, René A.
2015-11-01
In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six other catalogues, creating six subsamples from these matches used to characterize these new value-added catalogue. These catalogues are: the 2MIG catalogue of isolated galaxies with visual morphology; a catalogue of galaxies with visual morphology; a catalogue of galaxies with automated morphology; the first Galaxy Zoo catalogue of galaxies with visual morphology based on general public participation (citizen science); the MaxBCG catalogue of Brightest Cluster Galaxies found with an automatic method; and a compilation of galaxies in rich clusters maintained by H. Andernach. Using the information from the catalogue presented here, strong evidence of a downsizing effect in the formation of galaxies was found, with high mass galaxies showing older stellar populations and mean stellar ages at any redshift in the 0.03-0.30 range than low mass galaxies, which show increasing stellar ages with decreasing redshifts. A strong relation between the dominant activity type and the inferred morphologies of galaxies was also found, with star-forming galaxies having the latest morphologies, Sy2-dominated galaxies being of intermediate types, LINER-like galaxies having earlier morphologies, and passive galaxies showing the earliest morphologies. This relation is observed regardless of the environment of the galaxies and for both high and low stellar mass galaxies. This implies that the morphology and emission-line activity of galaxies are tightly linked to their evolution, and mostly determined by their stellar mass. Also, the morphology-density relation was recovered for galaxies in clusters, but was only observed weakly for the general galaxy population. This confirms that the processes that may change the morphology of individual galaxies are more common in the cluster environment but are mostly absent in other environments, and also implies that secular evolution may change the morphology of galaxies only for less massive galaxies that are still building up their mass. The star formation histories of galaxies in our catalogue were found to be strongly dependent on their morphology, and consequently on their emission-line activity. Star-forming galaxies are late types that have the youngest populations; Sy2-dominated galaxies show a mixture of young and old populations, while LINER-likes have older populations; and passive, early-type galaxies have the oldest populations and have no current star formation. This is consistent with the idea that the processes that fix or change the morphology of galaxies are more internal and modulated by their mass, and are tightly related to how much gas is available to stimulate or stop star formation or AGN activity. In contrast, the star formation histories of galaxies were found to be only weakly dependent on their environmental density, with isolated galaxies showing somewhat younger populations than galaxies in high-density environments. This is consistent with the weak morphology-density relation found for the general population of galaxies, and supports the idea that morphology and formation history are tightly related and, while the processes that change the morphology are more common in the cluster environment, the environmental density itself does not directly affect much the formation history of galaxies. The stellar mass of galaxies seems to modulate their activity and morphology: massive galaxies formed more rapidly in the past, efficiently converting their gas into stars, leaving little or no gas to form stars or fuel AGN activity later on, thus making them low-intensity active galaxies or passive galaxies. The formation of these massive galaxies would then only depend on the local density of protogalaxies, so a high merger rate in environments similar to compact groups of galaxies in the past would result in an early-type galaxy, effectively explaining the relation between mass, activity, morphology, stellar mean age and velocity dispersion of galaxies. The catalogue presented here is useful and relevant because it is a publicly available catalogue of galaxies with consistent, homogeneous information that allows for direct comparisons between samples defined from galaxies in the catalogue, thus providing less biased results, and the large number of galaxies within it allows for statistically significant results, increasing their reliability.
Global Relationships Among the Physical Properties of Stellar Systems.
NASA Astrophysics Data System (ADS)
Burstein, David; Bender, Ralf; Faber, S.; Nolthenius, R.
1997-10-01
The Κ-space three-dimensional parameter system was originally defined to examine the physical properties of dynamically hot elliptical galaxies and bulges (DRGs). The axes of Κ-space are proportional to the logarithm of galaxy mass, mass-to-light ratio, and a third quantity that is mainly surface brightness. In this paper we define self-consistent Κ parameters for disk galaxies, galaxy groups and clusters, and globular clusters and use them to project an integrated view of the major classes of self-gravitating, equilibrium stellar systems in the universe. Each type of stellar system is found to populate its own fundamental plane in Κ-space. At least six different planes are found: (1) the original fundamental plane for DRGs; (2) a nearly-parallel plane slightly offset for Sa-Sc spirals; (3) a plane with different tilt but similar zero point for Scd-Irr galaxies; (4) a plane parallel to the DRG plane but offset by a factor of 10 in mass-to-light ratio for rich galaxy clusters; (5) a plane for galaxy groups that bridges the gap between rich clusters and galaxies; and (6) a plane for Galactic globular clusters. We propose the term "cosmic metaplane" to describe this ensemble of interrelated and interconnected fundamental planes. The projection Κ1-Κ3 (M/L vs M) views all planes essentially edge-on. Planes share the common characteristic that M/L is either constant or increasing with mass. The Κ1-Κ2 projection views all of these planes close to face-on, while Κ2-Κ3 shows variable slopes for different groups owing to the slightly different tilts of the individual planes. The Tully-Fisher relation is the correct compromise projection to view the spiral-irregular planes nearly edge on, analogous to the Dπ-σ relation for DRGs. No stellar system yet violates the rule first found from the study of DRGs, namely, Κ1+Κ2 constant, here chosen to be 8. In physical terms, this says that the maximum global luminosity density of stellar systems varies as M-4/3. Galaxies march away from this "zone of exclusion" (ZOE) in Κ12 as a function of Hubble type: DRGs are closest, with Sm-Irr's being furthest away. The distribution of systems in Κ-space is generally consistent with predictions of galaxy formation via hierarchical clustering and merging. The cosmic metaplane is simply the cosmic virial plane common to all self-gravitating stellar systems, tilted and displaced in mass-to-light ratio for various types of systems due to differences in stellar population and amount of baryonic dissipation. Hierarchical clustering from an n =-1.8 power-law density fluctuation spectrum (plus dissipation) comes close to reproducing the slope of the ZOE, and the progressive displacement of Hubble types from this line is consistent with the formation of early-type galaxies from higher n-σ fluctuations than late Hubble types. The M/L values for galaxy groups containing only a few, mostly spiral galaxies, vary the strongest with M. Moreover, it is these groups that bridge the gap between the two planes defined by the brightest galaxies and the lowest mass rich clusters, giving the cosmic metaplane its striking appearance. Why this is so is but one of four key questions raised by our study. The second question is why the slopes of individual Hubble types in the Κ1-Κ2 lie plane parallel the ZOE. At face value, this appears to suggest less dissipation of massive galaxies within their dark halos compared to lower-mass galaxies of the same Hubble type. The third is why we find isotropic stellar systems only within an effective mass range of 109.5-11.75 Msun. This would seem to imply that dissipation only results in galaxy components flattened by rotation in a limited mass range. The fourth question, perhaps the most basic of all, is how does M/L vary so smoothly with M among all stellar systems so as to give the individual tilts of the various fundamental planes, yet preserve the overall appearance of a metaplane? The answer to this last question must await a more thorough knowledge of how galaxies relate to many parameters, including: their environment, structure, angular momentum acquisition, density, dark matter concentration, the physics of star formation in general, and the formation of the initial mass function in particular. The present investigation is limited by existing data to the B passband and is strongly magnitude-limited, not volume-limited. Rare or hard-to-discover galaxy types, such as R II galaxies, starburst galaxies and low-surface-brightness galaxies, are missing or are under-represented, and use of the B band over-emphasizes stellar population differences. A volume-limited Κ-space survey based on Κ-band photometry and complete to low surface brightness and faint magnitudes is highly desirable but requires data yet to be obtained.
Spiral Arm Morphology of Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ann, Hong Bae; Lee, Hyun-Rok
2013-06-01
We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.
2010-08-01
We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.« less
Constraining brane tension using rotation curves of galaxies
NASA Astrophysics Data System (ADS)
García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.
2018-04-01
We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.
NASA Astrophysics Data System (ADS)
Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.
2017-01-01
We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.
PAndAS' PROGENY: EXTENDING THE M31 DWARF GALAXY CABAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Jenny C.; Irwin, Mike J.; Chapman, Scott C.
2011-05-10
We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of {approx}150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery spacemore » for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L{sub *} disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 {+-} 0.2 to [Fe/H] =-1.9 {+-} 0.2 and absolute magnitudes ranging from M{sub V} = -7.1 {+-} 0.5 to M{sub V} = -10.2 {+-} 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r{sup -1}, a result seemingly in conflict with the predictions of cosmological simulations.« less
NASA Astrophysics Data System (ADS)
Freeman, P. E.; Izbicki, R.; Lee, A. B.
2017-07-01
Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.
Evolution of star formation conditions from high-redshift to low-redshift
NASA Astrophysics Data System (ADS)
Shirazi, Maryam
2015-08-01
There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.
NASA Astrophysics Data System (ADS)
Koyama, Yusei; Hayashi, Masao; Tanaka, Masayuki; Kodama, Tadayuki; Shimakawa, Rhythm; Yamamoto, Moegi; Nakata, Fumiaki; Tanaka, Ichi; Suzuki, Tomoko L.; Tadaki, Ken-ichi; Nishizawa, Atsushi J.; Yabe, Kiyoto; Toba, Yoshiki; Lin, Lihwai; Jian, Hung-Yu; Komiyama, Yutaka
2018-01-01
We present the environmental dependence of color, stellar mass, and star formation (SF) activity in Hα-selected galaxies along the large-scale structure at z = 0.4 hosting twin clusters in the DEEP2-3 field, discovered by the Subaru Strategic Program of Hyper Suprime-Cam (HSC SSP). By combining photo-z-selected galaxies and Hα emitters selected with broadband and narrowband (NB) data from the recent data release of HSC SSP (DR1), we confirm that galaxies in higher-density environments or galaxies in cluster central regions show redder colors. We find that there still remains a possible color-density and color-radius correlation even if we restrict the sample to Hα-selected galaxies, probably due to the presence of massive Hα emitters in denser regions. We also find a hint of increased star formation rates (SFR) amongst Hα emitters toward the highest-density environment, again primarily driven by the excess of red/massive Hα emitters in high-density environments, while their specific SFRs do not significantly change with environment. This work demonstrates the power of the HSC SSP NB data for studying SF galaxies across environments in the distant universe.
Pairs of galaxies in low density regions of a combined redshift catalog
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Salpeter, Edwin E.
1990-01-01
The distributions of projected separations and radial velocity differences of pairs of galaxies in the CfA and Southern Sky Redshift Survey (SSRS) redshift catalogs are examined. The authors focus on pairs that fall in low density environments rather than in clusters or large groups. The projected separation distribution is nearly flat, while uncorrelated galaxies would have given one linearly rising with r sub p. There is no break in this curve even below 50 kpc, the minimum halo size consistent with measured galaxy rotation curves. The significant number of pairs at small separations is inconsistent with the N-body result that galaxies with overlapping halos will rapidly merge, unless there are significant amounts of matter distributed out to a few hundred kpc of the galaxies. This dark matter may either be in distinct halos or more loosely distributed. Large halos would allow pairs at initially large separations to head toward merger, replenishing the distribution at small separations. In the context of this model, the authors estimate that roughly 10 to 25 percent of these low density galaxies are the product of a merger, compared with the elliptical/SO fraction of 18 percent, observed in low density regions of the sample.
NASA Astrophysics Data System (ADS)
Cantiello, Michele; Capaccioli, Massimo; Napolitano, Nicola; Grado, Aniello; Limatola, Luca; Paolillo, Maurizio; Iodice, Enrica; Romanowsky, Aaron J.; Forbes, Duncan A.; Raimondo, Gabriella; Spavone, Marilena; La Barbera, Francesco; Puzia, Thomas H.; Schipani, Pietro
2015-03-01
We present a study of globular clusters (GCs) and other small stellar systems (SSSs) in the field of NGC 3115, observed as part of the ongoing wide-field imaging survey VEGAS, carried out with the 2.6 m VST telescope. We used deep g and i observations of NGC 3115, a well-studied lenticular galaxy that is covered excellently well in the scientific literature. This is fundamental to test the methodologies, verify the results, and probe the capabilities of the VEGAS-SSS. Leveraging the large field of view of the VST allowed us to accurately study the distribution and properties of SSSs as a function of galactocentric distance, well beyond ~20 galaxy effective radii, in a way that is rarely possible. Our analysis of colors, magnitudes, and sizes of SSS candidates confirms the results from existing studies, some of which were carried out with 8-10 m class telescopes, and further extends them to previously unreached galactocentric distances with similar accuracy. In particular, we find a color bimodality for the GC population and a de Vaucouleurs r1/4 profile for the surface density of GCs similar to the galaxy light profile. The radial color gradient of blue and red GCs previously found, for instance, by the SLUGGS survey with Subaru and Keck data, is further extended out to the largest galactocentric radii inspected, ~65 kpc. In addition, the surface density profiles of blue and red GCs taken separately are well approximated by a r1/4 density profile, with the fraction of blue GCs being slightly larger at larger radii. We do not find hints of a trend for the red GC subpopulation and for the GC turnover magnitude to vary with radius, but we observe a ~0.2 mag difference in the turnover magnitude of the blue and red GC subpopulations. Finally, from inspecting SSS sizes and colors, we obtain a list of ultracompact dwarf galaxies and GC candidates suitable for future spectroscopic follow-up. In conclusion, our study shows i) the reliability of the methodologies developed to study SSSs in the field of bright early-type galaxies; and ii) the great potential of the VEGAS survey to produce original results on SSSs science, mainly thanks to the wide-field imaging adopted. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A14
The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA
NASA Astrophysics Data System (ADS)
Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian
2017-09-01
We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.
NASA Astrophysics Data System (ADS)
Chisholm, John
2013-10-01
Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta
2015-08-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation. The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extend of the star formation rate, showing that about half of the cluster members with significant Halpha detection have diffused star formation, larger than the optical counterpart. This suggests that star formation occurs out to larger radii than the rest frame continuum. For some systems, nuclear star forming regions are found. I will also present a comparison between the Halpha distribution observed in cluster and field galaxies. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations
NASA Astrophysics Data System (ADS)
Pandya, Viraj; Brennan, Ryan; Somerville, Rachel S.; Choi, Ena; Barro, Guillermo; Wuyts, Stijn; Taylor, Edward N.; Behroozi, Peter; Kirkpatrick, Allison; Faber, Sandra M.; Primack, Joel; Koo, David C.; McIntosh, Daniel H.; Kocevski, Dale; Bell, Eric F.; Dekel, Avishai; Fang, Jerome J.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Lu, Yu; Mantha, Kameswara; Mobasher, Bahram; Newman, Jeffrey; Pacifici, Camilla; Papovich, Casey; van der Wel, Arjen; Yesuf, Hassen M.
2017-12-01
We explore observational and theoretical constraints on how galaxies might transition between the 'star-forming main sequence' (SFMS) and varying 'degrees of quiescence' out to z = 3. Our analysis is focused on galaxies with stellar mass M* > 1010 M⊙, and is enabled by GAMA and CANDELS observations, a semi-analytic model (SAM) of galaxy formation, and a cosmological hydrodynamical 'zoom in' simulation with momentum-driven AGN feedback. In both the observations and the SAM, transition galaxies tend to have intermediate Sérsic indices, half-light radii, and surface stellar mass densities compared to star-forming and quiescent galaxies out to z = 3. We place an observational upper limit on the average population transition time-scale as a function of redshift, finding that the average high-redshift galaxy is on a 'fast track' for quenching whereas the average low-redshift galaxy is on a 'slow track' for quenching. We qualitatively identify four physical origin scenarios for transition galaxies in the SAM: oscillations on the SFMS, slow quenching, fast quenching, and rejuvenation. Quenching time-scales in both the SAM and the hydrodynamical simulation are not fast enough to reproduce the quiescent population that we observe at z ∼ 3. In the SAM, we do not find a clear-cut morphological dependence of quenching time-scales, but we do predict that the mean stellar ages, cold gas fractions, SMBH (supermassive black hole) masses and halo masses of transition galaxies tend to be intermediate relative to those of star-forming and quiescent galaxies at z < 3.
How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?
NASA Astrophysics Data System (ADS)
Wofford, Alia
2017-01-01
The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.
Optical and infrared spectrophotometry of 18 Markarian galaxies
NASA Technical Reports Server (NTRS)
Becklin, E. E.; Neugebauer, G.; Oke, J. B.; Searle, L.
1975-01-01
Slit spectra, spectrophotometric scans and infrared broad band observations are presented. Eight of the program galaxies can be classified as Seyfert galaxies. Arguments are given that thermal, nonthermal and stellar radiation components were present. One group of Seyfert galaxies was characterized both by the presence of a high density region of gas and by a continuum dominated by nonthermal radiation. The continua of the remaining program Seyferts, which did not have a high density region of gas, were dominated by thermal radiation from dust and a stellar continuum. Ten of the galaxies, which are not Seyfert galaxies, are shown to be examples of extragalactic H 2 regions.
Environmental Dependence of Warps in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Ann, Hong Bae; Bae, Hyun Jeong
2016-12-01
We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}
The Effect of Filaments and Tendrils on the H I Content of Galaxies
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; Phi, An; Wolfe, Pierre-Francois
2018-01-01
We use the ALFALFA H I survey to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments. Our sample includes 9947 late-type galaxies with H I detections and 4236 late-type galaxies with well-determined H I detection limits that we incorporate using survival analysis statistics. We find that, even at fixed local density and stellar mass, and with group galaxies removed, the H I deficiency of galaxies in the stellar mass range 8.5 < log(M/M ⊙) < 10.5 decreases with distance from the filament spine, suggesting that galaxies are cut off from their supply of cold gas in this environment. We also find that, at fixed local density and stellar mass, the galaxies that are the most gas-rich are those in small, correlated “tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more H I deficient. This stands in contrast to the fact that galaxies in tendrils are more massive than those in voids, suggesting a more advanced stage of evolution. Finally, at fixed stellar mass and color, galaxies closer to the filament spine, or in high-density environments, are more deficient in H I. This fits a picture where, as galaxies enter denser regions, they first lose H I gas and then redden as star formation is reduced.
NASA Astrophysics Data System (ADS)
Abdurro'uf; Akiyama, Masayuki
2017-08-01
We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.
Group galaxy number density profiles far out: Is the `one-halo' term NFW out to >10 virial radii?
NASA Astrophysics Data System (ADS)
Trevisan, M.; Mamon, G. A.; Stalder, D. H.
2017-10-01
While the density profiles (DPs) of Lambda cold dark matter haloes obey the Navarro, Frenk & White (NFW) law out to roughly one virial radius, rvir, the structure of their outer parts is still poorly understood, because the one-halo term describing the halo itself is dominated by the two-halo term representing the other haloes picked up. Using a semi-analytical model, we measure the real-space one-halo number DP of groups out to 20rvir by assigning each galaxy to its nearest group above mass Ma, in units of the group rvir. If Ma is small (large), the outer DP of groups falls rapidly (slowly). We find that there is an optimal Ma for which the stacked DP resembles the NFW model to 0.1 dex accuracy out to 13 virial radii. We find similar long-range NFW surface DPs (out to 10rvir) in the Sloan Digital Sky Survey observations using a galaxy assignment scheme that combines the non-linear virialized regions of groups with their linear outer parts. The optimal Ma scales as the minimum mass of the groups that are stacked to a power 0.25-0.3. The NFW model thus does not solely originate from violent relaxation. Moreover, populating haloes with galaxies using halo occupation distribution models must proceed out to much larger radii than usually done.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars
2011-12-01
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.
Environmental impacts on dust temperature of star-forming galaxies in the local Universe
NASA Astrophysics Data System (ADS)
Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi
2017-04-01
We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 < z < 0.07 and the stellar mass range of 9.2 < log 10(M*/M⊙). We select SF galaxies based on their Hα equivalent width (EWHα > 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.
ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta
2017-12-01
We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok
2012-02-01
We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z {approx} 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg{sup 2}) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {mu}m)-mid-IR (11 {mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominatedmore » star-forming galaxies that have star formation rates lower by {approx}4 Multiplication-Sign than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (10{sup 10} M{sub Sun} < M{sub *} < 10{sup 10.5} M{sub Sun }) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to <10% at larger masses (M{sub *} > 10{sup 10.5} M{sub Sun }) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 10{sup 10} M{sub Sun} < M{sub *} < 10{sup 11} M{sub Sun} also decreases as the density and mass increase. In particular, {approx}42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.« less
NASA Astrophysics Data System (ADS)
Ota, Kazuaki; Venemans, Bram P.; Taniguchi, Yoshiaki; Kashikawa, Nobunari; Nakata, Fumiaki; Harikane, Yuichi; Bañados, Eduardo; Overzier, Roderik; Riechers, Dominik A.; Walter, Fabian; Toshikawa, Jun; Shibuya, Takatoshi; Jiang, Linhua
2018-04-01
Quasars (QSOs) hosting supermassive black holes are believed to reside in massive halos harboring galaxy overdensities. However, many observations revealed average or low galaxy densities around z ≳ 6 QSOs. This could be partly because they measured galaxy densities in only tens of arcmin2 around QSOs and might have overlooked potential larger-scale galaxy overdensities. Some previous studies also observed only Lyman break galaxies (LBGs; massive older galaxies) and missed low-mass young galaxies, like Lyα emitters (LAEs), around QSOs. Here we present observations of LAE and LBG candidates in ∼700 arcmin2 around a z = 6.61 luminous QSO using the Subaru Telescope Suprime-Cam with narrowband/broadband. We compare their sky distributions, number densities, and angular correlation functions with those of LAEs/LBGs detected in the same manner and comparable data quality in our control blank field. In the QSO field, LAEs and LBGs are clustering in 4–20 comoving Mpc angular scales, but LAEs show mostly underdensity over the field while LBGs are forming 30 × 60 comoving Mpc2 large-scale structure containing 3σ–7σ high-density clumps. The highest-density clump includes a bright (23.78 mag in the narrowband) extended (≳16 kpc) Lyα blob candidate, indicative of a dense environment. The QSO could be part of the structure but is not located exactly at any of the high-density peaks. Near the QSO, LAEs show underdensity while LBGs average to 4σ excess densities compared to the control field. If these environments reflect halo mass, the QSO may not be in the most massive halo but still in a moderately massive one. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
NASA Technical Reports Server (NTRS)
Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.
1981-01-01
The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Zhang, Youcai; Shi, JingJing; Jing, Y. P.; Liu, Chengze; Li, Shijie; Kang, Xi; Gao, Yang
2016-11-01
A method we developed recently for the reconstruction of the initial density field in the nearby universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial conditions, with 30723 particles evolved in a 500 {h}-1 {Mpc} box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of Sloan Digital Sky Survey galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depends on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively, even for samples of small volumes.
The halo boundary of galaxy clusters in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
The Halo Boundary of Galaxy Clusters in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
NASA Astrophysics Data System (ADS)
Fossati, M.; Wilman, D. J.; Fontanot, F.; De Lucia, G.; Monaco, P.; Hirschmann, M.; Mendel, J. T.; Beifiori, A.; Contini, E.
2015-01-01
A well-calibrated method to describe the environment of galaxies at all redshifts is essential for the study of structure formation. Such a calibration should include well-understood correlations with halo mass, and the possibility to identify galaxies which dominate their potential well (centrals), and their satellites. Focusing on z ˜ 1 and 2, we propose a method of environmental calibration which can be applied to the next generation of low- to medium-resolution spectroscopic surveys. Using an up-to-date semi-analytic model of galaxy formation, we measure the local density of galaxies in fixed apertures on different scales. There is a clear correlation of density with halo mass for satellite galaxies, while a significant population of low-mass centrals is found at high densities in the neighbourhood of massive haloes. In this case, the density simply traces the mass of the most massive halo within the aperture. To identify central and satellite galaxies, we apply an observationally motivated stellar mass rank method which is both highly pure and complete, especially in the more massive haloes where such a division is most meaningful. Finally, we examine a test case for the recovery of environmental trends: the passive fraction of galaxies and its dependence on stellar and halo mass for centrals and satellites. With careful calibration, observationally defined quantities do a good job of recovering known trends in the model. This result stands even with reduced redshift accuracy, provided the sample is deep enough to preserve a wide dynamic range of density.
The halo boundary of galaxy clusters in the SDSS
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...
2017-05-18
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
Shocks and metallicity gradients in normal star-forming galaxies
NASA Astrophysics Data System (ADS)
Ho, I.-Ting
Gas flow is one of the most fundamental processes driving galaxy evolution. This thesis explores gas flows in local galaxies by studying metallicity gradients and galactic-scale outflows in normal star-forming galaxies. This is made possible by new integral field spectroscopy data that provide simultaneously spatial and spectral information of galaxies. First, I measure metallicity gradients in isolated disk galaxies and show that their metallicity gradients are remarkably simple and universal. When the metallicity gradients are normalized to galaxy sizes, all the 49 galaxies studied have virtually the same metallicity gradient. I model the common metallicity gradient using a simple chemical evolution model to understand its origin. The common metallicity gradient is a direct result of the coevolution of gas and stellar disk while galactic disks build up their masses from inside-out. Tight constraints on the mass outflow rates and inflow rates can be placed by the chemical evolution model. Second, I investigate galactic winds in normal star-forming galaxies using data from an integral field spectroscopy survey. I demonstrate how to search for galactic winds by probing emission line ratios, shocks, and gas kinematics. Galactic winds are found to be common even in normal star-forming galaxies that were not expected to host winds. By comparing galaxies with and without hosting winds, I show that galaxies with high star formation rate surface densities and bursty star formation histories are more likely to drive large-scale galactic winds. Finally, lzifu, a toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy data, is developed in this thesis. I describe in detail the structure of the toolkit and demonstrate the capabilities of lzifu.
Neutral hydrogen and optical properties of three amorphous galaxies
NASA Technical Reports Server (NTRS)
Hunter, Deidre A.; Woerden, Hugo Van; Gallagher, John S., III
1994-01-01
We present new interferometric H I and optical observations of three amorphous galaxies, systems with a smooth, high surface brightness but an asymmetrical distribution of light. All three galaxies are forming stars and have LMC-like emission-line ratios, low dust content, and high H I velocity dispersions. NGC 1140 has a boxy inner morphology with a hook off one corner. At low light levels unusual extensions of starlight are seen curving to the northwest and southeast. The galaxy contains a very luminous central star-forming region and a small chain of H II regions that coincide with the hook. The central H II region has broad H(alpha) velocity profiles full width at half maximum (FWHM) less than or equal to 140 km/s, and it is a radio continuum source. There is a rotating H I gas disk, 40 kpc in radius, at a position angle 51 deg from the optical major axis. The central gas ridge follows the chain of H II regions, and the H I peak is on the hook. The outer gas on the southeast side curves away from the H I major axis. The central gas density is high, and the surface density declines very slowly with radius. The rotation velocity yields a mass of 1 x 10(exp 11) solar mass at 3.3 Holmberg radii (R(sub H)). NGC 1800 has a hook that coincides with a large H II region, and an r(exp 1/4) luminosity distribution. There are numerous H II regions along the major axis and extraordinary filaments of ionized gas. Emanating from the major axis on either side of the galaxy are H(alpha) fingers approximately 750 pc long. About 2.3 kpc to the north is a web of filaments approximately 3 kpc in extent. H(alpha) profiles of H II regions and filaments are narrow. The H I gas disk has a position angle that is approximately 13 deg different from that of the optical axis. There are two peaks near the center, one of which is near the largest H II region. Beyond the Holmberg radius to the west is a 6 x 10(exp 6) solar mass H I cloud. Its velocity indicates a mass of approximately 6 x 10(exp 9) solar mass for NGC 1800 at 1.5 R(sub H). At approximately R(sub 25) to the east there is a large H I shell. Also at approximately R(sub 25) on both sides the velocity gradient switches by 90 deg, and in the interior the rotation is about the major axis. The central gas density is low and falls off slowly. In the inner regions NGC 4670 resembles an S0/a galaxy seen rather edge-on. It contains a central supergiant H II region with very high velocity widths (FWHM less than or equal to 180 km/s) and complex velocity structures. It is a radio continuum source as well. The H I gas is a single spherical cloud or a disk at low inclination centered on the galaxy with a slight elongation along the optical major axis and rotation about the minor axis. The central gas density is high, and there is a high degree of concentration. The rotation speed indicates a total mass of 5 x 10(exp 10) solar mass at 1.1 R(sub H). We compare these characteristics with properties of gas in the presence of stellar bar potentials, gas warps, and interacting and merging galaxy models. Although there are inconsistencies and uncertainties, we conclude that NGC 1140 is a spiral of low surface brightness that has undergone a merger, while NGC 1800 and NGC 4670 are, respectively, probably an Im system and a spiral that had an encounter of the Noguchi (1988a) kind.
The influence of environment on the properties of galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Yasuhiro
1999-11-01
I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star forming galaxies, the star formation rate is correlated both with the local galaxy density and rich cluster membership. It also shows a correlation with poor cluster membership. For strongly star forming galaxies, the star formation rate is correlated with the local density and the poor cluster membership. (3)Interacting galaxies (characterized by the asymmetry index and/or the existence of apparent companions) show no correlation with rich cluster membership, but show a fair to strong correlation with the poor cluster membership.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzin, Adam; Franx, Marijn; Labbé, Ivo
2013-11-01
We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K{sub s} -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ{sub star}∝(1 + z){sup –4.7±0.4} since z = 3.5,more » whereas the mass density of star-forming galaxies increases as ρ{sub star}∝(1 + z){sup –2.3±0.2}. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K{sub s} -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M{sub star}/M{sub ☉}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M{sub star}/M{sub ☉}) = 10.5 have grown by >1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.« less
A model for the origin of bursty star formation in galaxies
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-01-01
We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.
Limits on coronal material in normal galaxies
NASA Technical Reports Server (NTRS)
Mccammon, D.
1986-01-01
Measurements of the X-ray surface brightness of a face on disk galaxy M101, have previously been used to place upper limits on the power radiated by a hot corona. Such analysis contrains the effective density of the disk; either it must be so low that the remnants drive a fast hot wind (low radiated power) or so high that the remnant temperature at overlap is low (low X-ray power). These X-ray measurements are here used to constrain the properties of the population of supernova remnants evolving in the disk. This adds a further constraint since young remnants evolving in higher density radiate more of their energy in X-rays, whether or not they eventually overlap to generate a hot corona. The strength of this second limit depends strongly on the density history of the remnants and on the assumed supernova rate. For evaporative evolution the analysis rules out McKee and Ostriker ISM model in particular and evaporative evolution in general unless the supernova rate is at least several times lower than current expectations. For standard Sedov evolutions, the density limit marginally admits evolution in 0.2 cu m, a popular alternative to the McKee and Ostriker model.
A study of environmental effects on galaxy spin using MaNGA data
NASA Astrophysics Data System (ADS)
Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun
2018-06-01
We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.
General relativistic corrections in density-shear correlations
NASA Astrophysics Data System (ADS)
Ghosh, Basundhara; Durrer, Ruth; Sellentin, Elena
2018-06-01
We investigate the corrections which relativistic light-cone computations induce on the correlation of the tangential shear with galaxy number counts, also known as galaxy-galaxy lensing. The standard-approach to galaxy-galaxy lensing treats the number density of sources in a foreground bin as observable, whereas it is in reality unobservable due to the presence of relativistic corrections. We find that already in the redshift range covered by the DES first year data, these currently neglected relativistic terms lead to a systematic correction of up to 50% in the density-shear correlation function for the highest redshift bins. This correction is dominated by the fact that a redshift bin of number counts does not only lens sources in a background bin, but is itself again lensed by all masses between the observer and the counted source population. Relativistic corrections are currently ignored in the standard galaxy-galaxy analyses, and the additional lensing of a counted source populations is only included in the error budget (via the covariance matrix). At increasingly higher redshifts and larger scales, these relativistic and lensing corrections become however increasingly more important, and we here argue that it is then more efficient, and also cleaner, to account for these corrections in the density-shear correlations.
The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja
We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less
The Most Massive Galaxies and Black Holes Allowed by ΛCDM
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Silk, Joseph
2018-04-01
Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z > 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected ΛCDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass — stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.
Glimpsing the imprint of local environment on the galaxy stellar mass function
NASA Astrophysics Data System (ADS)
Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu
2017-12-01
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 < z < 1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower mass galaxies and/or (b) growth of higher mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).
NASA Astrophysics Data System (ADS)
Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.
2016-11-01
Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M* < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionized gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low-mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M* > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.
Protoclusters with evolved populations around radio galaxies at z ~ 2.5
NASA Astrophysics Data System (ADS)
Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard
2006-09-01
We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.
Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy
NASA Astrophysics Data System (ADS)
Inoue, Shigeki
2017-06-01
Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.
NASA Astrophysics Data System (ADS)
Barcos-Munoz, Loreto
2016-07-01
Luminous and Ultra-luminous Infrared galaxies (U/LIRGs) are one of the most powerful classes of extragalactic objects in the local universe, and they provide a unique opportunity to study star formation and feedback processes in extreme environments. They are primarily observed to be interacting or merging disk galaxies. During the interaction, large amounts of gas are funneled to the central few kpc, triggering high star formation rates (SFR) and dust production. The absorption of UV and optical radiation from stars, or active galactic nuclei (AGN), by dust produces their observed high infrared luminosities.The high level of dust obscuration intrinsic to U/LIRGs makes them difficult to study. Radio interferometry is thus the perfect tool for revealing the nature of these systems - it provides the high spatial resolution needed to resolve energetically dominant regions in U/LIRGs at wavelengths that have both diagnostic power and transparency to dust. In this thesis, 6 and 33 GHz radio continuum interferometric observations with the upgraded Karl G. Jansky Very Large Array (VLA) are used to study a sample of 22 local U/LIRGs.First, a detailed analysis of the 6 and 33 GHz radio continuum emission from the closest ULIRG, Arp 220, is presented. This late stage merger is highly obscured, being optically thick even at mid-infrared wavelengths. Further, due to its extreme environment, it is often used as a template for high redshift starbursts. Arp 220 hosts two distinct nuclei that are separated by (\\sim) 370 pc. The nuclei are well resolved with the 33 GHz observations (i.e., with a spatial resolution of ˜ 30 pc). The deconvolved radii enclosing half of the total 33 GHz light are approximately 50 and 35 pc for the eastern and western nucleus, respectively. Literature values of the gas mass and infrared luminosity are combined with the 33 GHz sizes under the assumption of co-spatiality to show that Arp 220 has one of the highest molecular gas surface densities ((\\Sigma_mol \\sim 10^{5.3}) (east) and (10^{5.7}) (west) (\\mathrm{M_\\odot pc^{-2}})) and SFR surface densities ((\\mathrm{\\Sigma_{SFR} \\sim 10^{4.0} (east) and 10^{4.0} (west) M_{\\odot} yr^{-1} kpc^{-2}})) measured for any star-forming system. Despite these high values, the nuclei of Arp 220 are not maximal starbursts (i.e., under the assumption that the main feedback mechanism is radiation pressure on dust). The small derived sizes for the nuclei indicate Arp 220 is only optically thin in a narrow frequency range, (\\sim) 5 to 350 GHz.The analysis of a larger sample of 22 U/LIRGs at 33 GHz with the VLA is also presented. It is found that, for most of these galaxies, the integrated radio flux densities correlate well with those at infrared wavelengths, indicating these systems follow the radio-IR correlation and that the emission at 33 GHz is primarily produced by star formation activity. The radio emission from most of these galaxies are resolved, with deconvolved half-light radii ranging from 20 pc to 1.7 kpc. Similar assumptions for Arp 220 above are used here to estimate SFR surface densities of (\\Sigma_SFR) from (10^{0.5}) to (10^{4.5}) (\\mathrm{M_{\\odot} yr^{-1} kpc^{-2}}) and molecular gas surface densities (\\Sigma_mol) of (\\mathrm{10^{2.5} to 10^{5.7} M_{\\odot} pc^{-2}}). These values are among the highest values measured for any galaxies. The star formation-gas scaling relation is used to compare the U/LIRGs with regions within normal spiral galaxies. The presence of two ``modes" of star formation is inferred in the comparison, although this result is extremely dependent on the CO-to-({H_{2}}) conversion factor. The local U/LIRGs studied in this survey show high infrared surface brightnesses, however 19 of the 22 sources are not maximal starbursts. Finally, those targets showing the flattest 1.5-6 GHz spectral indices and the highest surface brightnesses exhibit the strongest [Cii] deficits, which supports the idea that deficit is associated with the most highly obscured, high energy density star-forming regions.In order to determine the true limit for star formation in galaxies (e.g., through Eddington limit analysis), better measures of the gas content, opacity and velocity dispersion of U/LIRGs are needed. The last study presented in this thesis is an analysis of the first high spatial resolution ALMA observations of the mm continuum and dense molecular gas tracers in Arp 220. A spatial resolution of 30 pc is achieved using the most extended configuration available in Cycle 3. An optically thin model of the spectral flux density distribution is found to predict the continuum emission at 92 GHz, within the uncertainties of the measurement and accounting for extended emission that is potentially filtered out. At 92 GHz, the western nucleus is dominated by dust emission, while the eastern nucleus by free-free emission. High critical gas density tracers HCN, HCO(^{+}), their isotopologues, and the shock tracer SiO are detected. P-Cygni profiles are observed in the central beam of both nuclei, with a cleaner profile shape in the eastern nucleus. The western nucleus shows strong absorption in the center, which makes determination of the profile line shapes more complicated. These P-Cygni features indicate the presence of outflowing gas. The derived mass loading factors are 18 (east) and 35 (west), which may be an indication that active galactic nuclei help to boost the outflow mass rates. However, these numbers are strongly dependent on the highly uncertain HCN-to-gas mass conversion factor and should only be considered as upper limits. In addition to signatures of outflowing gas, clear evidence of gas rotation in both nuclei are observed.
Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li
2014-05-01
Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10'more » northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and higher interstellar medium metallicities. For the merging cluster A2319, local surface density is a better environmental indicator rather than the cluster-centric distance. Compared with the well-relaxed cluster A2589, a higher fraction of star-forming galaxies is found in A2319, indicating that the galaxy-scale turbulence stimulated by the subcluster merger might have played a role in triggering the star formation activity.« less
What drives galactic magnetism?
NASA Astrophysics Data System (ADS)
Chyży, K. T.; Sridhar, S. S.; Jurusik, W.
2017-07-01
Aims: Magnetic fields are important ingredients of the interstellar medium. They are suspected to be maintained by dynamo processes related to star-formation activity, properties of the interstellar medium and global features of galaxies. We aim to use statistical analysis of a large number of various galaxies to probe, model, and understand relations between different galaxy properties and magnetic fields. Methods: We have compiled a sample of 55 galaxies including low-mass dwarf and Magellanic-types, normal spirals and several massive starbursts, and applied principal component analysis (PCA) and regression methods to assess the impact of various galaxy properties on the observed magnetic fields. Results: According to PCA the global galaxy parameters (like H I, H2, and dynamical mass, star formation rate (SFR), near-infrared luminosity, size, and rotational velocity) are all mutually correlated and can be reduced to a single principal component. Further PCA performed for global and intensive (not size related) properties of galaxies (such as gas density, and surface density of the star formation rate, SSFR), indicates that magnetic field strength B is connected mainly to the intensive parameters, while the global parameters have only weak relationships with B. We find that the tightest relationship of B is with SSFR, which is described by a power-law with an index of 0.33 ± 0.03. The relation is observed for galaxies with the global SFR spread over more than four orders of magnitude. Only the radio faintest dwarf galaxies deviate from this relation probably due to the inverse Compton losses of relativistic electrons or long turbulence injection timescales. The observed weaker associations of B with galaxy dynamical mass and the rotational velocity we interpret as indirect ones, resulting from the observed connection of the global SFR with the available total H2 mass in galaxies. Using our sample we constructed a diagram of B across the Hubble sequence which reveals that high values of B are not restricted by the Hubble type and even dwarf (starbursting) galaxies can produce strong magnetic fields. However, weaker fields appear exclusively in later Hubble types and B as low as about 5 μG is not seen among typical spirals. Conclusions: The processes of generation of magnetic field in the dwarf and Magellanic-type galaxies are similar to those in the massive spirals and starbursts and are mainly coupled to local star-formation activity involving the small-scale dynamo mechanism. Based on observations with the 100-m telescope at Effelsberg operated by the Max-Planck-Institut für Radioastronomie (MPIfR) on behalf of the Max-Planck-Gesellschaft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Pereira, M. J.; Egami, E.
2013-10-01
We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among cluster galaxies since z ∼ 0.4 likely reflects the increased susceptibility of low-redshift spiral galaxies to gas removal mechanisms as their gas surface densities decrease with time. We find no evidence for the build-up of cluster S0 bulges via major nuclear starburst episodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Deidre A.; Herrmann, Kimberly A.; Johnson, Megan
We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey), which is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 dwarf irregular and 4 blue compact dwarf galaxies that is centered around H I-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The H I-line data are characterized by high sensitivity ({<=}1.1 mJy beam{sup -1} per channel), high spectral resolution ({<=}2.6 km s{sup -1}), and high angular resolution ({approx}6''). The LITTLE THINGS sample contains dwarf galaxies that are relatively nearbymore » ({<=}10.3 Mpc; 6'' is {<=}300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as H I map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the H I data we have GALEX UV and ground-based UBV and H{alpha} images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available online.« less
The Radial Distribution of Star Formation in Galaxies at z1 From The 3D-HST Survey
NASA Technical Reports Server (NTRS)
Nelson, Erica June; Dokkum, Pieter G. Van; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Tease, Katherine Whitaker; Cunha, Elisabete Da; Schreiber, Natascha Forster; Franx, Marijn;
2013-01-01
The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time.Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond thelocal Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming-galaxies at z1 in the 3D-HST Treasury survey. By stacking the Halpha emission, we find that star formation occurredin approximately exponential distributions at z1, with a median Sersic index of n=1.0 plus or minus 0.2. The stacks areelongated with median axis ratios of b/a 0.58 plus or minus 0.09 in Halpha consistent with (possibly thick) disks at randomorientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, withinclination corrected velocities of 90-330 km per second. The most straightforward interpretation of our results is that starformation in strongly star-forming galaxies at z1 generally occurred in disks. The disks appear to be scaled-upversions of nearby spiral galaxies: they have EW(Halpha)100 Angstroms out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.
A multiwavelength survey of H I-excess galaxies with surprisingly inefficient star formation
NASA Astrophysics Data System (ADS)
Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.
2018-05-01
We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction versus NUV-r colour and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the Giant Metrewave Radio Telescope, Keck optical long-slit spectroscopy, and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disc that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disc, where a large specific angular momentum has to be invoked to explain the extreme M_{H I}/M⋆ ratio of 166 per cent. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells, and streams) in these systems suggests that these gas-rich discs have been built several Gyr ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.
Distribution and motions of atomic hydrogen in lenticular galaxies. X - The blue S0 galaxy NGC 5102
NASA Technical Reports Server (NTRS)
Van Woerden, H.; Van Driel, W.; Braun, R.; Rots, A. H.
1993-01-01
Results of the mapping of the blue gas-rich S0 galaxy NGC 5102 in the 21-cm H I line with a spatial resolution of 34 x 37 arcsec (delta(alpha) x Delta(delta)) and a velocity resolution of 12 km/s are presented. The H I distribution has a pronounced central depression of 1.9 kpc radius, and most of the H I is concentrated in a 3.6 kpc wide ring with an average radius of 3.7 kpc, assuming a distance of 4 Mpc for NGC 5102. The maximum azimuthally averaged H I surface density in the ring is 1.4 solar mass/sq pc, comparable to that found in other S0 galaxies. The HI velocity field is quite regular, showing no evidence for large-scale deviations from circular rotation, and the H I is found to rotate in the plane of the stellar disk. Both the H I mass/blue luminosity ratio and the radial H I distribution are similar to those in early-type spirals. The H I may be an old disk or it may have been acquired through capture of a gas-rich smaller galaxy. The recent starburst in the nuclear region, which gave the galaxy its blue color, may have been caused by partial radial collapse of the gas disk, or by infall of a gas-rich dwarf galaxy.
The red-sequence of 72 WINGS local galaxy clusters
NASA Astrophysics Data System (ADS)
Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.
2011-12-01
We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
WFIRST: Predicting the number density of Hα-emitting galaxies
NASA Astrophysics Data System (ADS)
Benson, Andrew; Merson, Alex; Wang, Yun; Faisst, Andreas; Masters, Daniel; Kiessling, Alina; Rhodes, Jason
2018-01-01
The WFIRST mission will measure the clustering of Hα-emitting galaxies to help probe the nature of dark energy. Knowledge of the number density of such galaxies is therefore vital for forecasting the precision of thesemeasurements and assessing the scientific impact of the WFIRST mission. In this poster we present predictions from a galaxy formation model, Galacticus, for the cumulative number counts of Hα-emitting galaxies. We couple Galacticus to three different dust attenuation methods and examine the counts using each method. A χ2 minimization approach is used to compare the model counts to observed galaxy counts and calibrate the dust parameters. With these calibrated dust methods, we find that the Hα luminosity function from Galacticus is broadly consistent with observed estimates. Finally we present forecasts for the redshift distributions and number counts for a WFIRST-like survey. We predict that over a redshift range of 1 ≤ z ≤ 2 and with a blended flux limit of 1×10-16 erg s-1cm-2 Galacticus predicts that WFIRST would expect to observe a number density between 10400-15200 Hα-emitting galaxies per square degree.
The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos;
2012-01-01
We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample
NASA Astrophysics Data System (ADS)
Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.
2016-11-01
We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is < {f}\\star > =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.
The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.;
2012-01-01
We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.
Pressure from dark matter annihilation and the rotation curve of spiral galaxies
NASA Astrophysics Data System (ADS)
Wechakama, M.; Ascasibar, Y.
2011-05-01
The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).
A search at the millijansky level for milli-arcsecond cores in a complete sample of radio galaxies
NASA Technical Reports Server (NTRS)
Wehrle, A. E.; Preston, R. A.; Meier, D. L.; Gorenstein, M. V.; Shapiro, I. I.; Rogers, A. E. E.; Rius, A.
1984-01-01
A complete sample of 26 extended radio galaxies was observed at 2.29 GHz with the Mark III VLBI system. The fringe spacing was about 3 milli-arcsec, and the detection limit was about 2 millijanskys. Half of the galaxies were found to possess milli-arcsec radio cores. In all but three sources, the nuclear flux density was less than 0.04 of the total flux density. Galaxies with high optical luminosity (less than -21.2) were more likely than less luminous galaxies to contain a detectable milliparcsec radio core (69 percent vs. 20 percent). For objects with arcsec cores, 80 percent were found to have a milli-arcsec core, even though the milli-arcsec object did not always contribute the greater part of the arcsec flux density.
Exact density-potential pairs from complex-shifted axisymmetric systems
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Marinacci, Federico
2008-07-01
In a previous paper, the complex-shift method has been applied to self-gravitating spherical systems, producing new analytical axisymmetric density-potential pairs. We now extend the treatment to the Miyamoto-Nagai disc and the Binney logarithmic halo, and we study the resulting axisymmetric and triaxial analytical density-potential pairs; we also show how to obtain the surface density of shifted systems from the complex shift of the surface density of the parent model. In particular, the systems obtained from Miyamoto-Nagai discs can be used to describe disc galaxies with a peanut-shaped bulge or with a central triaxial bar, depending on the direction of the shift vector. By using a constructive method that can be applied to generic axisymmetric systems, we finally show that the Miyamoto-Nagai and the Satoh discs, and the Binney logarithmic halo cannot be obtained from the complex shift of any spherical parent distribution. As a by-product of this study, we also found two new generating functions in closed form for even and odd Legendre polynomials, respectively.
Giant Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi
2018-04-01
In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.
THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris
2011-07-15
We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less
NASA Astrophysics Data System (ADS)
Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.
2018-04-01
We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) <1013 cm-2). As field galaxies have an H I covering fraction of ˜ 100 per cent at similar radii, the dearth of CGM H I in our data indicates that the cluster environment has effectively stripped or overionized the gaseous haloes of these cluster galaxies. Secondly, we assess the contribution of warm-hot (105-106 K) gas to the ICM as traced by O VI and broad Ly α (BLA) absorption. Despite the high signal-to-noise ratio of our data, we do not detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.
Discovery of an Ultra-diffuse Galaxy in the Pisces--Perseus Supercluster
NASA Astrophysics Data System (ADS)
Martínez-Delgado, David; Läsker, Ronald; Sharina, Margarita; Toloba, Elisa; Fliri, Jürgen; Beaton, Rachael; Valls-Gabaud, David; Karachentsev, Igor D.; Chonis, Taylor S.; Grebel, Eva K.; Forbes, Duncan A.; Romanowsky, Aaron J.; Gallego-Laborda, J.; Teuwen, Karel; Gómez-Flechoso, M. A.; Wang, Jie; Guhathakurta, Puragra; Kaisin, Serafim; Ho, Nhung
2016-04-01
We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μV = 24.8 mag arcsec-2), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (Re(V) = 12″) and proximity (15‧) to the well-known dwarf spheroidal galaxy And II. Its red color (V - I = 1.0), shallow Sérsic index (nV = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (Vh = 5450 ± 40 km s-1) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (˜78 Mpc), DGSAT I would have an Re ˜ 4.7 kpc and MV ˜ -16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.
NASA Technical Reports Server (NTRS)
Steidel, Charles C.; Hamilton, Donald
1993-01-01
We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.
DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Delgado, David; Grebel, Eva K.; Läsker, Ronald
We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission aremore » typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.« less
The build-up of the cD halo of M 87: evidence for accretion in the last Gyr
NASA Astrophysics Data System (ADS)
Longobardi, A.; Arnaboldi, M.; Gerhard, O.; Mihos, J. C.
2015-07-01
Aims: We present kinematic and photometric evidence for an accretion event in the halo of the cD galaxy M 87 in the last Gyr. Methods: Using velocities for ~300 planetary nebulas (PNs) in the M 87 halo, we identify a chevron-like substructure in the PN phase-space. We implement a probabilistic Gaussian mixture model to identify PNs that belong to the chevron. From analysis of deep V-band images of M 87, we find that the region with the highest density of chevron PNs is a crown-shaped substructure in the light. Results: We assign a total of NPN,sub = 54 to the substructure, which extends over ~50 kpc along the major axis where we also observe radial variations of the ellipticity profile and a colour gradient. The substructure has highest surface brightness in a 20 kpc × 60 kpc region around 70 kpc in radius. In this region, the substructure causes an increase in surface brightness by ≳60%. The accretion event is consistent with a progenitor galaxy with a V-band luminosity of L = 2.8±1.0×109 L⊙ ,V, a colour of (B - V) = 0.76±0.05, and a stellar mass of M = 6.4±2.3×109 M⊙. Conclusions: The accretion of this progenitor galaxy has caused an important modification of the outer halo of M 87 in the last Gyr. This result provides strong evidence that the galaxy's cD halo is growing through the accretion of smaller galaxies as predicted by hierarchical galaxy evolution models. Based on observations made with the VLT at Paranal Observatory under programme 088.B-0288(A) and 093.B-066(A), and with the Subaru Telescope under programme S10A-039.
The central image of a gravitationally lensed quasar.
Winn, Joshua N; Rusin, David; Kochanek, Christopher S
2004-02-12
A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 x 10(8) solar masses (M(o)), and the galaxy's surface density at the location of the central image is > 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth.
Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy
NASA Technical Reports Server (NTRS)
Kundic, Tomislav; Wambsganss, Joachim
1993-01-01
We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
Global properties of infrared bright galaxies
NASA Technical Reports Server (NTRS)
Young, Judith S.; Xie, Shuding; Kenney, Jeffrey D. P.; Rice, Walter L.
1989-01-01
Infrared flux densities of 182 galaxies, including 50 galaxies in the Virgo cluster, were analyzed using IRAS data for 12, 25, 60, and 100 microns, and the results were compared with data listed in the Point Source Catalog (PSC, 1985). In addition, IR luminosities, L(IRs), colors, and warm dust masses were derived for these galaxies and were compared with the interstellar gas masses and optical luminosities of the galaxies. It was found that, for galaxies whose optical diameter measures between 5 and 8 arcmin, the PSC flux densities are underestimated by a factor of 2 at 60 microns, and by a factor of 1.5 at 100 microns. It was also found that, for 49 galaxies, the mass of warm dust correlated well with the H2 mass, and that L(IR) correlated with L(H-alpha), demonstrating that the L(IR) measures the rate of star formation in these galaxies.
The Mass and Absorption Columns of Galactic Gaseous Halos
NASA Astrophysics Data System (ADS)
Qu, Zhijie; Bregman, Joel N.
2018-01-01
The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.
First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system
NASA Astrophysics Data System (ADS)
Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.
2015-11-01
We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.
Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.
Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil
2015-09-10
Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu
We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less
NASA Astrophysics Data System (ADS)
Boissier, S.; Buat, V.; Ilbert, O.
2010-11-01
Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.
NASA Astrophysics Data System (ADS)
Cormier, D.; Bigiel, F.; Jiménez-Donaire, M. J.; Leroy, A. K.; Gallagher, M.; Usero, A.; Sandstrom, K.; Bolatto, A.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E. J.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Sliwa, K.; Walter, F.
2018-04-01
Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While 12CO has been targeted extensively, isotopologues such as 13CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new data set of 13CO(1-0) observations with the IRAM 30-m telescope of the full discs of nine nearby spiral galaxies from the EMPIRE survey at a spatial resolution of ˜1.5 kpc. 13CO(1-0) is mapped out to 0.7 - 1 r25 and detected at high signal-to-noise ratio throughout our maps. We analyse the 12CO(1-0)-to-13CO(1-0) ratio (ℜ) as a function of galactocentric radius and other parameters such as the 12CO(2-1)-to-12CO(1-0) intensity ratio, the 70-to-160 μm flux density ratio, the star formation rate surface density, the star formation efficiency, and the CO-to-H2 conversion factor. We find that ℜ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favoured explanations for the observed ℜ variations, while abundance changes may also be at play. We calculate a spatially resolved 13CO(1-0)-to-H2 conversion factor and find an average value of 1.0 × 1021 cm-2 (K km s-1)-1 over our sample with a standard deviation of a factor of 2. We find that 13CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than 12CO(1-0) in the galaxy centres where the fraction of dense gas is larger.
PAndAS' Progeny: Extending the M31 Dwarf Galaxy Cabal
NASA Astrophysics Data System (ADS)
Richardson, Jenny C.; Irwin, Mike J.; McConnachie, Alan W.; Martin, Nicolas F.; Dotter, Aaron L.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Chapman, Scott C.; Lewis, Geraint F.; Tanvir, Nial R.; Rich, R. Michael
2011-05-01
We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ~150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery space for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L * disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 ± 0.2 to [Fe/H] =-1.9 ± 0.2 and absolute magnitudes ranging from MV = -7.1 ± 0.5 to MV = -10.2 ± 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r -1, a result seemingly in conflict with the predictions of cosmological simulations. Based on observations obtained with the MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
The most massive galaxies and black holes allowed by ΛCDM
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Silk, Joseph
2018-07-01
Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.
Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882
NASA Astrophysics Data System (ADS)
Sengupta, Aparajita
We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies even in the far outskirts. However, unlike what we observe in this system, ideally would we expect the dwarf galaxies with their shallow potentials to be more vulnerable than more massive galaxies, and hence be quenched earlier. We propose harassment and/or ram-pressure stripping as the mechanism that might lead to the quenched galaxies near or inside the high density, high velocity dispersion region in and near the groups; and mergers as the mechanism for the intermediate mass quenched galaxies at the low density, low velocity dispersion outskirts. We also identify a starburst population preferentially occurring within the filaments, at least a subset of which must be progenitors of the quenched galaxies at the core of Abell 1882. This also indicates a higher degree of preprocessing within the filaments as compared to that of the field.
NASA Astrophysics Data System (ADS)
Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu
2013-04-01
We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.
NASA Technical Reports Server (NTRS)
Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.
1987-01-01
Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.
NASA Astrophysics Data System (ADS)
Nehlig, F.; Vollmer, B.; Braine, J.
2016-03-01
The cluster environment can affect galaxy evolution in different ways: via ram pressure stripping or by gravitational perturbations caused by galactic encounters. Both kinds of interactions can lead to the compression of the interstellar medium (ISM) and its associated magnetic fields, causing an increase in the gas surface density and the appearance of asymmetric ridges of polarized radio continuum emission. New IRAM 30m HERA CO(2-1) data of NGC 4501, a Virgo spiral galaxy currently experiencing ram pressure stripping, and NGC 4567/68, an interacting pair of galaxies in the Virgo cluster, are presented. We find an increase in the molecular fraction where the ISM is compressed. The gas is close to self-gravitation in compressed regions. This leads to an increase in gas pressure and a decrease in the ratio between the molecular fraction and total ISM pressure. The overall Kennicutt Schmidt relation based on a pixel-by-pixel analysis at ~1.5 kpc resolution is not significantly modified by compression. However, we detected continuous regions of low molecular star formation efficiencies in the compressed parts of the galactic gas disks. The data suggest that a relation between the molecular star formation efficiency SFEH2 = SFR/M(H2) and gas self-gravitation (Rmol/Ptot and Toomre Q parameter) exists. Both systems show spatial variations in the star formation efficiency with respect to the molecular gas that can be related to environmental compression of the ISM. An analytical model was used to investigate the dependence of SFEH2 on self-gravitation. The model correctly reproduces the correlations between Rmol/Ptot, SFEH2, and Q if different global turbulent velocity dispersions are assumed for the three galaxies. We found that variations in the NH2/ICO conversion factor can mask most of the correlation between SFEH2 and the Toomre Q parameter. Dynamical simulations were used to compare the effects of ram pressure and tidal ISM compression. These models give direct access to the volume density. We conclude that a gravitationally induced ISM compression has the same consequences as ram pressure compression: (I) an increasing gas surface density; (II) an increasing molecular fraction; and (III) a decreasing Rmol/Ptot in the compressed region due to the presence of nearly self-gravitating gas. The response of SFEH2 to compression is more complex. While in the violent ISM-ISM collisions (e.g., Taffy galaxies and NGC 4438) the interaction makes star formation drop by an order of magnitude, we only detect an SFEH2 variation of ~50% in the compressed regions of the three galaxies. We suggest that the decrease in star formation depends on the ratio between the compression timescale and the turbulent dissipation timescale. In NGC 4501 and NGC 4567/68 the compression timescale is comparable to the turbulent dissipation timescale and only leads to minor changes in the molecular star formation efficiency.
NASA Astrophysics Data System (ADS)
Colombo, D.; Kalinova, V.; Utomo, D.; Rosolowsky, E.; Bolatto, A. D.; Levy, R. C.; Wong, T.; Sanchez, S. F.; Leroy, A. K.; Ostriker, E.; Blitz, L.; Vogel, S.; Mast, D.; García-Benito, R.; Husemann, B.; Dannerbauer, H.; Ellmeier, L.; Cao, Y.
2018-04-01
We present a kpc-scale analysis of the relationship between the molecular depletion time (τ^mol_dep) and the orbital time (τorb) across the field of 39 face-on local galaxies, selected from the EDGE-CALIFA sample. We find that, on average, 5 per cent of the available molecular gas is converted into stars per orbital time, or τ^mol_dep˜ 20 τ_orb. The resolved relation shows a scatter of ˜0.5 dex. The scatter is ascribable to galaxies of different morphologies that follow different τ^mol_dep-τorb relations which decrease in steepness from early- to late types. The morphologies appear to be linked with the star formation rate surface density, the molecular depletion time, and the orbital time, but they do not correlate with the molecular gas content of the galaxies in our sample. We speculate that in our molecular gas rich, early-type galaxies, the morphological quenching (in particular the disc stabilization via shear), rather than the absence of molecular gas, is the main factor responsible for their current inefficient star formation.
Cosmography and Data Visualization
NASA Astrophysics Data System (ADS)
Pomarède, Daniel; Courtois, Hélène M.; Hoffman, Yehuda; Tully, R. Brent
2017-05-01
Cosmography, the study and making of maps of the universe or cosmos, is a field where visual representation benefits from modern three-dimensional visualization techniques and media. At the extragalactic distance scales, visualization is contributing to our understanding of the complex structure of the local universe in terms of spatial distribution and flows of galaxies and dark matter. In this paper, we report advances in the field of extragalactic cosmography obtained using the SDvision visualization software in the context of the Cosmicflows Project. Here, multiple visualization techniques are applied to a variety of data products: catalogs of galaxy positions and galaxy peculiar velocities, reconstructed velocity field, density field, gravitational potential field, velocity shear tensor viewed in terms of its eigenvalues and eigenvectors, envelope surfaces enclosing basins of attraction. These visualizations, implemented as high-resolution images, videos, and interactive viewers, have contributed to a number of studies: the cosmography of the local part of the universe, the nature of the Great Attractor, the discovery of the boundaries of our home supercluster of galaxies Laniakea, the mapping of the cosmic web, and the study of attractors and repellers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu
2014-06-01
Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less
NASA Astrophysics Data System (ADS)
Monna, A.; Seitz, S.; Zitrin, A.; Geller, M. J.; Grillo, C.; Mercurio, A.; Greisel, N.; Halkola, A.; Suyu, S. H.; Postman, M.; Rosati, P.; Balestra, I.; Biviano, A.; Coe, D.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.
2015-02-01
We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with Multiple Mirror Telescope Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17 per cent in terms of the image reproduction χ2, or 20 per cent in terms of the rms. The constraints on the mass parameters improve by ˜10 per cent for the DH, while for the galaxy component, they are refined correspondingly by ˜50 per cent, including the galaxy halo truncation radius. For an L* galaxy with M^{*}B=-20.96, for example, we obtain best-fitting truncation radius r_tr^{*}=20.5^{+9.6}_{-6.7} kpc and velocity dispersion σ* = 324 ± 17 km s-1. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on rtr of two nearby cluster members, which have measured velocity dispersions, by more than ˜30 per cent. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cikota, Aleksandar; Deustua, Susana; Marleau, Francine, E-mail: acikota@eso.org
We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxymore » center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.« less
Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling
NASA Astrophysics Data System (ADS)
Kamenetzky, J.; Privon, G. C.; Narayanan, D.
2018-05-01
Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4‑3 through J = 13‑12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the “best-case” scenario of a fully sampled SLED through J = 10‑9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.
The Origins of [C ii] Emission in Local Star-forming Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croxall, K. V.; Smith, J. D.; Pellegrini, E.
The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structuremore » line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y., E-mail: semenov@uchicago.edu
We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results inmore » a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L {sub *}-sized galaxy simulation that reproduces the observed Kennicutt–Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.« less
A large difference in the progenitor masses of active and passive galaxies in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Clauwens, Bart; Franx, Marijn; Schaye, Joop
2016-11-01
Cumulative number density matching of galaxies is a method to observationally connect descendent galaxies to their typical main progenitors at higher redshifts and thereby to assess the evolution of galaxy properties. The accuracy of this method is limited due to galaxy merging and scatter in the stellar mass growth history of individual galaxies. Behroozi et al. have introduced a refinement of the method, based on abundance matching of observed galaxies to the Bolshoi dark matter-only simulation. The EAGLE cosmological hydrosimulation is well suited to test this method, because it reproduces the observed evolution of the galaxy stellar mass function and the passive fraction. We find agreement with the Behroozi et al. method for the complete sample of main progenitors of z = 0 galaxies, but we also find a strong dependence on the current star formation rate. Passive galaxies with a stellar mass up to 1010.75 M⊙ have a completely different median mass history than active galaxies of the same mass. This difference persists if we only select central galaxies. This means that the cumulative number density method should be applied separately to active and passive galaxies. Even then, the typical main progenitor of a z = 0 galaxy already spans two orders of magnitude in stellar mass at z = 2.
NASA Astrophysics Data System (ADS)
Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.
2017-09-01
We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.
PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter
2013-08-20
We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Schmidt, Kasper B.; Poggianti, Bianca M.; Dressler, Alan; Fontana, Adriano; Bradač, Marusa; Brammer, Gabriel B.; Hoag, Austin; Huang, Kuan-Han; Malkan, Matthew; Pentericci, Laura; Trenti, Michele; von der Linden, Anja; Abramson, Louis; He, Julie; Morris, Glenn
2015-12-01
We present the first study of the spatial distribution of star formation in z ˜ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 108-1011 M⊙ and star formation rates in the range 1-20 M⊙ yr-1. Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ˜20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set.
Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P
2010-01-14
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
NGC1300 dynamics - II. The response models
NASA Astrophysics Data System (ADS)
Kalapotharakos, C.; Patsis, P. A.; Grosbøl, P.
2010-10-01
We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp pattern speed values. Our goal is to discover the geometries and the Ωp supporting specific morphological features of NGC1300. For this purpose we use the method of response models. In order to compare the images of NGC1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild-type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp ~ 16 and 22 kms-1kpc-1 are able to reproduce efficiently certain morphological features of NGC1300, with each one having its advantages and drawbacks. Based on observations collected at the European Southern Observatory, Chile: programme ESO 69.A-0021. E-mail: ckalapot@phys.uoa.gr (CK); patsis@academyofathens.gr (PAP); pgrosbol@eso.org (PG)
Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities
NASA Astrophysics Data System (ADS)
Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.
2011-11-01
In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z < 0.1 with long-slit Hα spectroscopy from Pizagno et al. and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ˜170 000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). The optimal photometric estimator of Vrot we find is stellar mass M★ from Bell et al., based on the linear combination of a luminosity and a colour. Assuming a Kroupa initial mass function (IMF), we find: log [V80/(km s-1)] = (2.142 ± 0.004) + (0.278 ± 0.010)[log (M★/M⊙) - 10.10], where V80 is the rotation velocity measured at the radius R80 containing 80 per cent of the i-band galaxy light. This relation has an intrinsic Gaussian scatter ? dex and a measured scatter σmeas= 0.056 dex in log V80. For a fixed IMF, we find that the dynamical-to-stellar mass ratios within R80, (Mdyn/M★)(R80), decrease from approximately 10 to 3, as stellar mass increases from M★≈ 109 to 1011 M⊙. At a fixed stellar mass, (Mdyn/M★)(R80) increases with disc size, so that it correlates more tightly with stellar surface density than with stellar mass or disc size alone. We interpret the observed variation in (Mdyn/M★)(R80) with disc size as a reflection of the fact that disc size dictates the radius at which Mdyn/M★ is measured, and consequently, the fraction of the dark matter 'seen' by the gas at that radius. For the lowest M★ galaxies, we find a positive correlation between TFR residuals and disc sizes, indicating that the total density profile is dominated by dark matter on these scales. For the highest M★ galaxies, we find instead a weak negative correlation, indicating a larger contribution of stars to the total density profile. This change in the sense of the correlation (from positive to negative) is consistent with the decreasing trend in (Mdyn/M★)(R80) with stellar mass. In future work, we will use these results to study disc galaxy formation and evolution and perform a fair, statistical analysis of the dynamics and masses of a photometrically selected sample of disc galaxies.
Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies
NASA Astrophysics Data System (ADS)
Willis, Sarah Elizabeth
The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming regions, indicating that they have a higher fraction of dense gas than the clouds that are forming primarily low mass stars. There is still significant spread at a given average gas density, indicating that the star formation history and dense gas fraction play important roles in determining an individual molecular cloud's place in a Sigma SFR vs. Sigmagas diagram. Zooming in, SigmaSFR vs. Sigma gas was examined within the individual clouds, revealing a decrease relative to the spread that is observed for the average over whole clouds. The dependence of SigmaSFR on Sigma gas increases significantly above AV ˜ 5 - 10 which is consistent with previous measurements of a threshold for star formation around AV = 8 or Sigma gas = 0.04 g cm-2. NGC 6334 was found to be consistent with a threshold for massive star formation at Sigmagas = 1 g cm-2.
What determines the morphological fractions in clusters of galaxies?
NASA Technical Reports Server (NTRS)
Whitmore, Bradley C.
1993-01-01
A reexamination of Dressler's (1980) sample of nearly 6000 galaxies in 55 clusters shows that the morphology-clustercentric radius relation is more fundamental than the morphology-local density relation. This conclusion is supported by improved correlations when the projected clustercentric radius is used as the independent parameter, and by a comparison of galaxies with the same normalized clustercentric radii by different values of the projected local density.
A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field
NASA Astrophysics Data System (ADS)
Galametz, Audrey; Candels Clustering Working Group
2017-07-01
In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.
Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.
2017-06-01
In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the dark matter. The suppression of the anisotropy when using the major axis of the light to define the geometry is indicative of a significant misalignment of mass and light in the Illustris-1 galaxies at large physical radii.
NASA Astrophysics Data System (ADS)
Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.
2016-02-01
We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.
Large-scale clustering of Lymanα emission intensity from SDSS/BOSS
Croft, Rupert A. C.; Miralda-Escudé, Jordi; Zheng, Zheng; ...
2016-01-27
Here we present a tentative detection of the large-scale structure of Ly α emission in the Universe at redshifts z = 2–3.5 by measuring the cross-correlation of Ly α surface brightness with quasars in Sloan Digital Sky Survey/Baryon Oscillation Spectroscopic Survey. We use a million spectra targeting luminous red galaxies at z < 0.8, after subtracting a best-fitting model galaxy spectrum from each one, as an estimate of the high-redshift Ly α surface brightness. The quasar–Ly α emission cross-correlation is detected on scales 1 ~ 15h ₋1 Mpc, with shape consistent with a ΛCDM model with Ω m =0.30± 0.10more » 0.07. The predicted amplitude of this cross- correlation is proportional to the product of the mean Lyα surface brightness, {μ α}, the amplitude of mass density fluctuations, and the quasar and Lyα emission bias factors. Using published cosmological observations to constrain the amplitude of mass fluctuations and the quasar bias factor, we infer the value of the product {μ α} (b α /3) = (3.9±0.9)×10 ₋21 erg s ₋1 cm ₋2 °A ₋1 arcsec ₋2, where b α is the Lyα emission linear bias factor. If the dominant sources of Lyα emission we measure are star forming galaxies, we infer a total mean star formation rate density of ρSFR = (0.28 ± 0.07)(3/b α ) yr ₋1 Mpc ₋3 at z = 2 ₋ 3.5. For b α = 3, this value is a factor of 21 ₋ 35 above previous estimates relying on individually detected Lyα emitters, although it is consistent with the total star-formation density derived from dust-corrected, continuum UV surveys. Our observations therefore imply that 97% of the Lyα emission in the Universe at these redshifts is undetected in previous surveys of Lyα emitters. Our detected Lyα emission is also much greater, by at least an order of magnitude, than that measured from stacking analyses of faint halos surrounding previously detected Lyα emitters, but we speculate that it arises from similar low surface brightness Lyα halos surrounding all luminous star-forming galaxies. We also detect a redshift space anisotropy of the quasar-Lyα emission cross-correlation, finding evidence at the 3.0σ level that it is radially elongated, contrary to the prediction for linear gravitational evolution, but consistent with distortions caused by radiative-transfer effects, as predicted by Zheng et al. (2011). Lastly, our measurements represent the first application of the intensity mapping technique to optical observations.« less
THE QUENCHING TIMESCALE AND QUENCHING RATE OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianhui; Kong, Xu; Yan, Renbin
2016-11-20
The average star formation rate (SFR) in galaxies has been declining since the redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching timescale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV- u color space and the distribution in NUV- u versus u - i color–color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 10{sup 10} and 10{sup 10.6} M {sub ⊙}. In the NUV- u versus u - i color–colormore » diagram, the red u - i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV- u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color–color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching phase) of 0.5 Gyr best fit the data. We further use the NUV- u number density profile to constrain the quenching rate among star-forming galaxies as a function of mass. Adopting an e-folding time of 0.5 Gyr in the second phase (or the quenching phase), we found the quenching rate to be 19%/Gyr, 25%/Gyr and 33%/Gyr for the three mass bins. These are upper limits of the quenching rate as the transition zone could also be populated by rejuvenated red-sequence galaxies.« less
Magnification bias as a novel probe for primordial magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camera, S.; Fedeli, C.; Moscardini, L., E-mail: stefano.camera@tecnico.ulisboa.pt, E-mail: cosimo.fedeli@oabo.inaf.it, E-mail: lauro.moscardini@unibo.it
2014-03-01
In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation,more » galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup −4} nG for values of the PMF power spectral index n{sub B} ∼ 0.« less
NASA Astrophysics Data System (ADS)
Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.
2017-06-01
We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.
NASA Astrophysics Data System (ADS)
Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.
2006-12-01
Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; Ebeling, Harald; Donovan, David; Barrett, Elizabeth
2008-09-01
We present the results of a wide-field spectroscopic analysis of the galaxy population of the massive cluster MACS J0717.5+3745 and the surrounding filamentary structure (z = 0.55), as part of our systematic study of the 12 most distant clusters in the MACS sample. Of 1368 galaxies spectroscopically observed in this field, 563 are identified as cluster members; of those, 203 are classified as emission-line galaxies, 260 as absorption-line galaxies, and 17 as E+A galaxies (defined by (H δ + H γ )/2 > 6 Å and no detection of [O II] and Hβ in emission). The variation of the fraction of emission- and absorption-line galaxies as a function of local projected galaxy density confirms the well-known morphology-density relation, and becomes flat at projected galaxy densities less than ~20 Mpc-2. Interestingly, 16 out of 17 E+A galaxies lie (in projection) within the ram-pressure stripping radius around the cluster core, which we take to be direct evidence that ram-pressure stripping is the primary mechanism that terminates star formation in the E+A population of galaxy clusters. This conclusion is supported by the rarity of E+A galaxies in the filament, which rules out galaxy mergers as the dominant driver of evolution for E+A galaxies in clusters. In addition, we find that the 42 e(a) and 27 e(b) member galaxies, i.e., the dusty-starburst and starburst galaxies respectively, are spread out across almost the entire study area. Their spatial distribution, which shows a strong preference for the filament region, suggests that starbursts are triggered in relatively low-density environments as galaxies are accreted from the field population. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based also in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The spectroscopic data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
A family of models for spherical stellar systems
NASA Technical Reports Server (NTRS)
Tremaine, Scott; Richstone, Douglas O.; Byun, Yong-Ik; Dressler, Alan; Faber, S. M.; Grillmair, Carl; Kormendy, John; Lauer, Tod R.
1994-01-01
We describe a one-parameter family of models of stable sperical stellar systems in which the phase-space distribution function depends only on energy. The models have similar density profiles in their outer parts (rho propotional to r(exp -4)) and central power-law density cusps, rho proportional to r(exp 3-eta), 0 less than eta less than or = 3. The family contains the Jaffe (1983) and Hernquist (1990) models as special cases. We evaluate the surface brightness profile, the line-of-sight velocity dispersion profile, and the distribution function, and discuss analogs of King's core-fitting formula for determining mass-to-light ratio. We also generalize the models to a two-parameter family, in which the galaxy contains a central black hole; the second parameter is the mass of the black hole. Our models can be used to estimate the detectability of central black holes and the velocity-dispersion profiles of galaxies that contain central cusps, with or without a central black hole.
NASA Astrophysics Data System (ADS)
Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES
2013-01-01
We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Christopher C.; Keres, Dusan; Jonsson, Patrik
2011-12-20
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less
Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging
NASA Astrophysics Data System (ADS)
Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.
2009-12-01
We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš
We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu
We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less
The Radial Distribution of Star Formation in Galaxies at z ~ 1 from the 3D-HST Survey
NASA Astrophysics Data System (ADS)
Nelson, Erica June; van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; Da Cunha, Elisabete; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; van der Wel, Arjen; Wuyts, Stijn
2013-01-01
The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Hα emission for a sample of 54 strongly star-forming galaxies at z ~ 1 in the 3D-HST Treasury survey. By stacking the Hα emission, we find that star formation occurred in approximately exponential distributions at z ~ 1, with a median Sérsic index of n = 1.0 ± 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 ± 0.09 in Hα consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s-1. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z ~ 1 generally occurred in disks. The disks appear to be "scaled-up" versions of nearby spiral galaxies: they have EW(Hα) ~ 100 Å out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.
The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey
NASA Technical Reports Server (NTRS)
Nelson, Erica June; vanDokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; DaCunha, Elisabete; Schreiber, Natascha Foerster; Franx, Marijn;
2013-01-01
The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming galaxies at z 1 in the 3D-HST Treasury survey. By stacking the H emission, we find that star formation occurred in approximately exponential distributions at z approximately 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90.330 km s(exp 1-). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z approximately 1 generally occurred in disks. The disks appear to be scaled-up versions of nearby spiral galaxies: they have EW(H alpha) at approximately 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.
NASA Astrophysics Data System (ADS)
Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.
2018-01-01
This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.
Properties and spatial distribution of galaxy superclusters
NASA Astrophysics Data System (ADS)
Liivamägi, Lauri Juhan
2017-01-01
Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future studies are needed to quantify the relations between superclusters and finer details of the galaxy distribution. Supercluster catalogues from this thesis have already been used in numerous other studies.
On the (Non)Evolution of H I Gas in Galaxies Over Cosmic Time
NASA Astrophysics Data System (ADS)
Prochaska, J. Xavier; Wolfe, Arthur M.
2009-05-01
We present new results on the frequency distribution of projected H I column densities f(N H I , X), total comoving covering fraction, and integrated mass densities ρH I of high-redshift, H I galactic gas from a survey of damped Lyα systems (DLAs) in the Sloan Digital Sky Survey, Data Release 5. For the full sample spanning z = 2.2-5 (738 DLAs), f(N H I , X) is well fitted by a double power law with a break column density Nd = 1021.55±0.04 cm-2 and low/high-end exponents α = -2.00 ± 0.05, - 6.4+1.1 -1.6. The shape of f(N H I , X) is invariant during this redshift interval and also follows the projected surface density distribution of present-day H I disks as inferred from 21 cm observations. We conclude that H I gas has been distributed in a self-similar fashion for the past 12 Gyr. The normalization of f(N H I , X), in contrast, decreases by a factor of 2 during the ≈2 Gyr interval from z = 4-2.2 with coincident decreases in both the total covering fraction and ρH I . At z ≈ 2, these quantities match the present-day values suggesting no evolution during the past ≈10 Gyr. We argue that the evolution at early times is driven by "violent" processes that removes gas from nearly half the galaxies at z ≈ 3 establishing the antecedents of current early-type galaxies. The perceived constancy of ρH I , meanwhile, implies that H I gas is a necessary but insufficient precondition for star formation and that the global star formation rate is driven by the accretion and condensation of fresh gas from the intergalactic medium.
NASA Astrophysics Data System (ADS)
Cucciati, O.; Davidzon, I.; Bolzonella, M.; Granett, B. R.; De Lucia, G.; Branchini, E.; Zamorani, G.; Iovino, A.; Garilli, B.; Guzzo, L.; Scodeggio, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Franzetti, P.; Fritz, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Blaizot, J.; Coupon, J.; Hawken, A.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Gargiulo, A.
2017-06-01
We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of the environment on the evolution of galaxies between z = 0.5 and z = 0.9. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the fifth nearest neighbour. This is performed by using a volume-limited sub-sample of galaxies complete up to z = 0.9, but allows us to attach a value of local density to all galaxies in the full VIPERS magnitude-limited sample to I < 22.5. We use this information to estimate how the distribution of galaxy stellar masses depends on environment. More massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV-r) vs. (r-K) colours, we then quantify the fraction of star-forming over passive galaxies, fap, as a function of environment at fixed stellar mass. fap is higher in low-density regions for galaxies with masses ranging from log (ℳ/ℳ⊙) = 10.38 (the lowest value explored) to at least log (ℳ/ℳ⊙) 11.3, although with decreasing significance going from lower to higher masses. This is the first time that environmental effects on high-mass galaxies are clearly detected at redshifts as high as z 0.9. We compared these results to VIPERS-like galaxy mock catalogues based on a widely used galaxy formation model. The model correctly reproduces fap in low-density environments, but underpredicts it at high densities. The discrepancy is particularly strong for the lowest-mass bins. We find that this discrepancy is driven by an excess of low-mass passive satellite galaxies in the model. In high-density regions, we obtain a better (although not perfect) agreement of the model fap with observations by studying the accretion history of these model galaxies (that is, the times when they become satellites), by assuming either that a non-negligible fraction of satellites is destroyed, or that their quenching timescale is longer than 2 Gyr. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-03-01
We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa
2016-12-01
We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipino, A.; Cibinel, A.; Tacchella, S.
2014-12-20
We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction Γ and merging galaxy properties in a sample of ∼1300 group galaxies with M > 10{sup 9.2} M {sub ☉} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that Γ decreases by a factor of ∼2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ☉} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measuremore » a variation of ΔΓ/Δlog (M {sub HALO}) ∼ –0.07 dex{sup –1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ☉}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ☉} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ∼2 × enhanced (specific) star formation rates and ∼1.5 × larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.« less
NASA Astrophysics Data System (ADS)
Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge
2018-02-01
The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco A.; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-07-01
We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M⋆ diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M⋆/M⊙) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M⋆/M⊙) > 10.0 are classified spectroscopically as central low-ionization emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star-forming galaxies with the same M⋆ and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
Outskirts of Distant Galaxies in Absorption
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen
QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.
A catalog of low surface brightness galaxies - List II
NASA Technical Reports Server (NTRS)
Schombert, James M.; Bothun, Gregory D.; Schneider, Stephen E.; Mcgaugh, Stacy S.
1992-01-01
A list of galaxies characterized by low surface brightness (LSB) is presented which facilitates the recognition of galaxies with brightnesses close to that of the sky. A total of 198 objects and 140 objects are listed in the primary and secondary catalogs respectively, and LSB galaxies are examined by means of H I redshift distributions. LSB disk galaxies are shown to have similar sizes and masses as the high-surface-brightness counterparts, and ellipticals and SOs are rarely encountered. Many LSB spirals have stellarlike nuclei, and most of the galaxies in the present catalog are late-type galaxies in the Sc, Sm, and Im classes. The LSB region of observational parameter space is shown to encompass a spectrum of types as full as that of the Hubble sequence. It is suggested that studies of LSB galaxies can provide important data regarding the formation and star-formation history of all galaxies.
Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies
NASA Technical Reports Server (NTRS)
Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.;
2014-01-01
Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
Two new confirmed massive relic galaxies: red nuggets in the present-day Universe
NASA Astrophysics Data System (ADS)
Ferré-Mateu, Anna; Trujillo, Ignacio; Martín-Navarro, Ignacio; Vazdekis, Alexandre; Mezcua, Mar; Balcells, Marc; Domínguez, Lilian
2017-05-01
We confirm two new local massive relic galaxies, I.e. untouched survivors of the early Universe massive population: Mrk 1216 and PGC 032873. Both show early and peaked formation events within very short time-scales (<1 Gyr) and thus old mean mass-weighted ages (˜13 Gyr). Their star formation histories remain virtually unchanged out to several effective radii, even when considering the steeper initial-mass-function values inferred out to ˜3 effective radii. Their morphologies, kinematics and density profiles are like those found in the z > 2 massive population, setting them apart from the typical z ˜ 0 massive early-type galaxies. We find that there seems to exist a degree of relic that is related to how far into the path, to become one of these typical z ˜ 0 massive galaxies, the compact relic has moved. This path is partly dictated by the environment the galaxy lives in. For galaxies in rich environments, such as the previously reported relic galaxy NGC 1277, the most extreme properties (e.g. sizes, short formation time-scales, larger supermassive black holes) are expected, while lower density environments will have galaxies with delayed and/or extended star formations, slightly larger sizes and not that extreme black hole masses. The confirmation of three relic galaxies up to a distance of 106 Mpc, implies a lower limit in the number density of these red nuggets in the local Universe of 6 × 10-7 Mpc3, which is within the theoretical expectations.
Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies
NASA Astrophysics Data System (ADS)
Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.
2014-02-01
Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr.
Bouwens, R J; Illingworth, G D; Labbe, I; Oesch, P A; Trenti, M; Carollo, C M; van Dokkum, P G; Franx, M; Stiavelli, M; González, V; Magee, D; Bradley, L
2011-01-27
Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ≈ 8 galaxies that, together with reports of a γ-ray burst at z ≈ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ≈ 7-8 galaxies suggest substantial star formation at z > 9-10 (refs 12, 13). Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ≈ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ≈ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (∼10%) at this time than it is just ∼200 Myr later at z ≈ 8. This demonstrates how rapid galaxy build-up was at z ≈ 10, as galaxies increased in both luminosity density and volume density from z ≈ 10 to z ≈ 8. The 100-200 Myr before z ≈ 10 is clearly a crucial phase in the assembly of the earliest galaxies.
The Survival of the Core Fundamental Plane against Galactic Mergers
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Richstone, Douglas
1999-05-01
The basic dimensional properties of the centers of elliptical galaxies, such as length scale, luminosity, and velocity dispersion, lie on a fundamental plane similar to that of elliptical galaxies as a whole. The orientation of this plane, and the distribution of core parameters within it, point to a strong correlation of core density with either core or total luminosity, and indicate that low-luminosity ellipticals are much denser than high-luminosity galaxies (Hubble Space Telescope data suggest that this relationship may be as steep as ρc~L-2). In addition, low-luminosity ellipticals have a much smaller length scale than their high-luminosity counterparts. Since we think that small galaxies are occasionally accreted by big ones, the high density of these galaxies and their likely durability against the time-varying tidal field of the bigger ones suggests that they will survive substantially intact in the cores of larger galaxies and would be easily visible. Their presence would destroy the observed correlation. Motivated by this apparent inconsistency between an observed fact and a simple physical argument, we have developed an effective simulation method and applied it to the problem of the accretion of very dense secondary companions by tenuous primaries. We have studied the accretion of objects of varying luminosity ratios, with sizes and densities drawn from the fundamental plane under the assumption that the mass distribution in the central parts of the galaxies follows the light. The results indicate that in mergers with mass ratios greater than 10, chosen with an appropriate central density dependence on luminosity, the smaller object is only stripped down to the highest density encountered in the primary during the accretion process. Thus, the form of the core fundamental plane suggests that the mass distribution in galaxy centers is different from the light distribution, or that an understanding of secondary survival requires more than the dynamics of visible stars.
The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chihway; et al.
Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less
Sloan Great Wall as a complex of superclusters with collapsing cores
NASA Astrophysics Data System (ADS)
Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan
2016-10-01
Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. Aims: We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe. Methods: We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state. Results: The lower limit of the total mass of the SGW is approximately M = 2.5 × 1016 h-1 M⊙. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2 - 5.9 × 1015 h-1 M⊙ and sizes of up to ≈60 h-1 Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h-1 Mpc and masses of up to M = 2 × 1015 h-1 M⊙ may be collapsing. Conclusions: The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems.
Deeper Insights into the Circumgalactic Medium using Multivariate Analysis Methods
NASA Astrophysics Data System (ADS)
Lewis, James; Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn
2017-01-01
Drawing from a database of galaxies whose surrounding gas has absorption from MgII, called the MgII-Absorbing Galaxy Catalog (MAGIICAT, Neilsen et al 2013), we studied the circumgalactic medium (CGM) for a sample of 47 galaxies. Using multivariate analysis, in particular the k-means clustering algorithm, we determined that simultaneously examining column density (N), rest-frame B-K color, virial mass, and azimuthal angle (the projected angle between the galaxy major axis and the quasar line of sight) yields two distinct populations: (1) bluer, lower mass galaxies with higher column density along the minor axis, and (2) redder, higher mass galaxies with lower column density along the major axis. We support this grouping by running (i) two-sample, two-dimensional Kolmogorov-Smirnov (KS) tests on each of the six bivariate planes and (ii) two-sample KS tests on each of the four variables to show that the galaxies significantly cluster into two independent populations. To account for the fact that 16 of our 47 galaxies have upper limits on N, we performed Monte-Carlo tests whereby we replaced upper limits with random deviates drawn from a Schechter distribution fit, f(N). These tests strengthen the results of the KS tests. We examined the behavior of the MgII λ2796 absorption line equivalent width and velocity width for each galaxy population. We find that equivalent width and velocity width do not show similar characteristic distinctions between the two galaxy populations. We discuss the k-means clustering algorithm for optimizing the analysis of populations within datasets as opposed to using arbitrary bivariate subsample cuts. We also discuss the power of the k-means clustering algorithm in extracting deeper physical insight into the CGM in relationship to host galaxies.
NASA Astrophysics Data System (ADS)
Lee, Bomee; Giavalisco, Mauro; Whitaker, Katherine; Williams, Christina C.; Ferguson, Henry C.; Acquaviva, Viviana; Koekemoer, Anton M.; Straughn, Amber N.; Guo, Yicheng; Kartaltepe, Jeyhan S.; Lotz, Jennifer; Pacifici, Camilla; Croton, Darren J.; Somerville, Rachel S.; Lu, Yu
2018-02-01
We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M *), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2< z< 4. We do this by making new measures of M *, SFR, and stellar age thanks to an improved SED fitting procedure that allows various star formation history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the ({M}* ;{SFR}) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high {{{Σ }}}1 (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of {{{Σ }}}1, which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of {{{Σ }}}1 for fixed values of M * shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of {{{Σ }}}1 (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-09-01
We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
The spatial distribution of dwarf galaxies in the CfA slice of the universe
NASA Technical Reports Server (NTRS)
Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.
1987-01-01
A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.
SMOOTHING ROTATION CURVES AND MASS PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrier, Joel C.; Sellwood, J. A.
2015-02-01
We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modesmore » develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ''disk-halo conspiracy'', could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu
2011-03-15
We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionarymore » trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.« less
NASA Astrophysics Data System (ADS)
Yun, Min
Studies of massive galaxy clusters and groups at redshifts below 1 typically find environments with little-to-no star formation activity, in sharp contrast with the field. Over-dense regions are dominated by passively-evolving spheroidal (S0) and elliptical galaxies, whereas galaxies in the field tend to have spiral morphologies, younger stellar populations, and systematically higher star formation rates. Studies of the galaxy populations of clusters and massive galaxy groups have found that the increase in the fraction of spirals at higher redshifts corresponds to a decline in the fraction of S0 galaxies, which strongly suggests that field spirals are transformed into S0 galaxies at some point in their transition between field and cluster regions. This transformation necessarily involves an increase in the stellar content of the bulge relative to the disk, and then a removal of disk gas accompanied by either a rapid or gradual decline in star formation to eventually produce a red, spheroidal, passively-evolving S0 galaxy. Deep and wide area cosmological surveys such as the GOODS and COSMOS have shown that both environment and stellar mass play a distinct role in the overall galaxy evolution over a wide redshift range (to z~3). The density-morphology relation and the blue-fraction, first noted in the targeted studies of clusters and groups, also appears to be an extension of the evolutionary trends seen in the field sample. However, the trends seen in these large cosmological surveys should be taken with a caution since they are broad statistical trends of primarily massive galaxies with relatively poor sensitivity on star formation rate (SFR), associated with a relatively narrow range of sparsely sampled galaxy density. This can lead to potentially serious shortcomings when studying the role of environment because many of the physical mechanisms involved may preferentially impact the lower mass galaxies. The dominant physical mechanism(s) responsible for this transformation are still being debated, but the overwhelming evidence has shown that spirals are readily altered in groups or cluster outskirts prior to falling into a galaxy cluster (pre-processing). This implies that the best approach to catch galaxy transformation in the act is to examine galaxies in lower density environments. A complete accounting of star-formation activity for galaxies over a wide range masses and environments is needed to assess which of many possible mechanisms is the dominant cause of galaxy transformation in over-dense regions. The main goal of this proposed study is to examine the SF and quenching activities associated with galaxies using the high spatial resolution of the targeted studies of individual clusters, but covering much larger areas and density ranges (from voids to cluster cores) with the sample statistics approaching those of the cosmological surveys such as COSMOS, using exquisite stellar mass and SFR (both UV and IR) sensitivity. To achieve this, we propose a multi-wavelength study (with a specific emphasis on GALEX and WISE) of the two most prominent large scale structures in the local universe: the Coma and Perseus-Pisces Superclusters. The total sample area covers ~3000 sq. degree and contains about 7000 spectroscopically identified galaxies (from SDSS and archival spectra). In addition, we will evaluate the impacts of the high mass and SFR cut employed by deep cosmological surveys by paring down our sample in stellar mass and SFR (and resulting coarse galaxy density estimates) and examine whether any important insights are missed as a result.
NASA Astrophysics Data System (ADS)
Milvang-Jensen, Bo; Jørgensen, Inger
We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.
SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Wang, Huiyuan; Ge, Junqiang; Mao, Shude; Li, Cheng; Li, Ran; Mo, Houjun; Goddard, Daniel; Bundy, Kevin; Li, Hongyu; Nair, Preethi; Lin, Lihwai; Long, R. J.; Riffel, Rogério; Thomas, Daniel; Masters, Karen; Bizyaev, Dmitry; Brownstein, Joel R.; Zhang, Kai; Law, David R.; Drory, Niv; Roman Lopes, Alexandre; Malanushenko, Olena
2017-03-01
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA (Mapping Nearby Galaxies at APO) integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV - r colour and environments, as identified by both the large-scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV - r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
Environment Dependence of Disk Morphology of Spiral Galaxies
NASA Astrophysics Data System (ADS)
Ann, Hong Bae
2014-02-01
We analyze the dependence of disk morphology (arm class, Hubble type, bar type) of nearby spiral galaxies on the galaxy environment by using local background density (Σ_{n}), project distance (r_{p}), and tidal index (TI) as measures of the environment. There is a strong dependence of arm class and Hubble type on the galaxy environment, while the bar type exhibits a weak dependence with a high frequency of SB galaxies in high density regions. Grand design fractions and early-type fractions increase with increasing Σ_{n}, 1/r_{p}, and TI, while fractions of flocculent spirals and late-type spirals decrease. Multiple-arm and intermediate-type spirals exhibit nearly constant fractions with weak trends similar to grand design and early-type spirals. While bar types show only a marginal dependence on Σ_{n}, they show a fairly clear dependence on r_{p} with a high frequency of SB galaxies at small r_{p}. The arm class also exhibits a stronger correlation with r_{p} than Σ_{n} and TI, whereas the Hubble type exhibits similar correlations with Σ_{n} and r_{p}. This suggests that the arm class is mostly affected by the nearest neighbor while the Hubble type is affected by the local densities contributed by neighboring galaxies as well as the nearest neighbor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritschneder, Matthias; Lin, Douglas N. C., E-mail: gritschneder@ucolick.org
2013-03-01
In the widely adopted {Lambda} cold dark matter ({Lambda}CDM) scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies are found in the galactic halo around the Milky Way, their phase-space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the {Lambda}CDM scenario. In order to account for this discrepancy, we consider themore » possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars that formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.« less
Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations
NASA Astrophysics Data System (ADS)
Brzycki, Bryan; Silvia, Devin
2018-01-01
We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
On the Nature of the First Galaxies Selected at 350 Micrometers
NASA Technical Reports Server (NTRS)
Khan, Sophia A.; Chanial, Pierre F.; Willner, S. P.; Pearson, Chris P.; Ashby, M. L. N.; Benford, Dominic J.; Clements, David L.; Dye, Simon; Farrah, Duncan; Fazio, G. G.;
2009-01-01
We present constraints on the nature of the first galaxies selected at 350 micrometers. The sample includes galaxies discovered in the deepest blank-field survey at 350 micrometers (in the Bo6tes Deep Field) and also later serendipitous detections in the Lockman Hole. In determining multiwavelength identifications, the 350 lam position and map resolution of the second generation Submillimeter High Angular Resolution Camera are critical, especially in the cases where multiple radio sources exist and the 24 micrometer counterparts are unresolved. Spectral energy distribution templates are fitted to identified counterparts, and the sample is found to comprise IR-luminous galaxies at 1 < z < 3 predominantly powered by star formation. The first spectrum of a 350 micrometer selected galaxy provides an additional confirmation, showing prominent dust grain features typically associated with star-forming galaxies. Compared to submillimeter galaxies selected at 850 and 1100 micrometers, galaxies selected at 350 micrometers have a similar range of far-infrared color temperatures. However, no 350 micrometer selected sources are reliably detected at 850 or 1100 micrometers. Galaxies in our sample with redshifts 1 < z < 2 show a tight correlation between the far- and mid-infrared flux densities, but galaxies at higher redshifts show a large dispersion in their mid- to far-infrared colors. This implies a limit to which the mid-IR emission traces the far-IR emission in star-forming galaxies. The 350 micrometer flux densities (15 < S(sub 350) < 40 mJy) place these objects near the Herschel/SPIRE 350 micrometer confusion threshold, with the lower limit on the star formation rate density suggesting the bulk of the 350 micrometers contribution will come from less luminous infrared sources and normal galaxies. Therefore, the nature of the dominant source of the 350 micrometers background-star-forming galaxies in the epoch of peak star formation in the universe-could be more effectively probed using ground-based instruments with their angular resolution and sensitivity offering significant advantages over space-based imaging. Key words: galaxies: high-redshift galaxies: starburst infrared: galaxies submillimeter
Effect of dark matter halo on global spiral modes in a collisionless galactic disk
NASA Astrophysics Data System (ADS)
Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.
2017-07-01
Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.
Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Maubon, G.; Prugniel, Ph.
We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.
The Number Density of Quiescent Compact Galaxies at Intermediate Redshift
NASA Astrophysics Data System (ADS)
Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor
2014-09-01
Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
Inferring physical properties of galaxies from their emission-line spectra
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.
2017-02-01
We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.
Do satellite galaxies trace matter in galaxy clusters?
NASA Astrophysics Data System (ADS)
Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas
2018-04-01
The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 < λ < 100, and Pcen > 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).
A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ˜ 2.5
NASA Astrophysics Data System (ADS)
Salimbeni, S.; Castellano, M.; Pentericci, L.; Trevese, D.; Fiore, F.; Grazian, A.; Fontana, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Menci, N.; Nonino, M.; Paris, D.; Santini, P.; Vanzella, E.
2009-07-01
Aims: The aim of the present paper is to identify and study the properties and galactic content of groups and clusters in the GOODS-South field up to z˜ 2.5, and to analyse the physical properties of galaxies as a continuous function of environmental density up to high redshift. Methods: We used the deep (z850˜ 26), multi-wavelength GOODS-MUSIC catalogue, which has a 15% of spectroscopic redshifts and accurate photometric redshifts for the remaining fraction. On these data, we applied a (2+1)D algorithm, previously developed by our group, that provides an adaptive estimate of the 3D density field. We supported our analysis with simulations to evaluate the purity and the completeness of the cluster catalogue produced by our algorithm. Results: We find several high-density peaks embedded in larger structures in the redshift range 0.4-2.5. From the analysis of their physical properties (mass profile, M200, σ_v, L_X, U-B vs. B diagram), we find that most of them are groups of galaxies, while two are poor clusters with masses a few times 1014~M_⊙. For these two clusters we find from the Chandra 2Ms data an X-ray emission significantly lower than expected from their optical properties, suggesting that the two clusters are either not virialised or are gas poor. We find that the slope of the colour magnitude relation, for these groups and clusters, is constant at least up to z ˜ 1. We also analyse the dependence on environment of galaxy colours, luminosities, stellar masses, ages, and star formations. We find that galaxies in high-density regions are, on average, more luminous and massive than field galaxies up to z ˜ 2. The fraction of red galaxies increases with luminosity and with density up to z˜ 1.2. At higher z this dependence on density disappears. The variation of galaxy properties as a function of redshift and density suggests that a significant change occurs at z ˜ 1.5-2.
Habitability in the Local Universe
NASA Astrophysics Data System (ADS)
Mason, Paul A.
2017-01-01
Long term habitability on the surface of planets has as a prerequisite a minimum availability of elements to build rocky planets, their atmospheres, and for life sustaining water. They must be within the habitable zone and avoid circumstances that cause them to lose their atmospheres and water. However, many astrophysical sources are hazardous to life on the surfaces of planets. Planets in harsh environments may require strong magnetic fields to protect their biospheres from high energy particles from the host star(s). Planets in harsh environments may additionally require a strong astrosphere to be sufficiently able to deflect galactic cosmic-rays. Supernovae (SNe) play a central role in the habitability of planets in the disks of star forming galaxies. Currently, the SNe rate maintains a relativistic galactic wind shielding planets in the disk from extragalactic cosmic rays. However, if the density of SNe in the disk of the galaxy were significantly higher, as it was 6-8 GYA, the frequency of nearby catastrophic events and often prolonged harsh environment may have strongly constrained life in the early history of the Milky Way. Active galactic nuclei (AGN) may remain quiescent for hundreds of millions of years only to activate for some time due extraordinary accretion episode due to for instance a galactic merger. The starburst galaxy M82 is currently undergoing a merger, probably strongly compromising habitability within that galaxy. The giant elliptical M87 resides in the center of the Virgo supercluster and has probably consumed many such spiral galaxies. We show that super-Eddington accretion onto the supermassive black hole in M87, even for a short while, could compromise the habitability for a large portion of the central supercluster. We discuss environments where these effects may be mitigated.
The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies
NASA Astrophysics Data System (ADS)
Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.
2018-04-01
We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.
CO line emission from galaxies in the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Vallini, L.; Pallottini, A.; Ferrara, A.; Gallerani, S.; Sobacchi, E.; Behrens, C.
2018-01-01
We study the CO line luminosity (LCO), the shape of the CO spectral line energy distribution (SLED), and the value of the CO-to-H2 conversion factor in galaxies in the Epoch of Reionization (EoR). For this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30 pc), cosmological simulation of a main-sequence (M* ≈ 1010 M⊙, SFR ≈ 100 M⊙ yr- 1) galaxy, 'Althæa', at z ≈ 6. We find that the CO emission traces the inner molecular disc (r ≈ 0.5 kpc) of Althæa with the peak of the CO surface brightness co-located with that of the [C II] 158 μm emission. Its LCO(1-0) = 104.85 L⊙ is comparable to that observed in local galaxies with similar stellar mass. The high (Σgas ≈ 220 M⊙ pc- 2) gas surface density in Althæa, its large Mach number (M ≈ 30) and the warm kinetic temperature (Tk ≈ 45 K) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-J and a CO-to-H2 conversion factor α _CO≈ 1.5 M_{⊙} (K km s^{-1} pc^2)^{-1} lower than that of the Milky Way. The Atacama Large Millimeter/submillimeter Array observing time required to detect (resolve) at 5σ the CO(7-6) line from galaxies similar to Althæa is ≈13 h (≈38 h).
MALATANG: MApping the dense moLecular gAs in the sTrongest stAr-formiNg Galaxies
NASA Astrophysics Data System (ADS)
Gao, Yu; Zhang, Zhiyu; Greve, Thomas; MALATANG Team
2017-01-01
The MALATANG Large Program is a 390 hr campaign, using the heterodyne array HARP on the JCMT to map theHCN and HCO+ J = 4 - 3 line emission in 23 of the nearest IR-brightest galaxies beyond the Local Group. Theobservations will reach a sensitivity of 0.3 K km/s (~ 4.5 x 10^6 Msun) at linear resolutions of 0.2-2.8kpc. It is thefirst survey to systematically map the distribution of dense molecular gas out to large galactocentric distances in a statisticallysignificant sample of nearby galaxies. MALATANG will bridge the gap, in terms of physical scale and luminosity,between extragalactic (i.e., galaxy-integrated) and Galactic (i.e., single molecular clouds) observations. A primarygoal of the survey is to delineate for the first time the distributed dense gas star-formation relations, as traced by theHCN and HCO+ J = 4-3, on scales of ~1kpc across our targets. Exploring the behaviour of these star-formationrelations in low surface density regions found in the disks as well as in the nuclear regions where surface densitiesare high, will shed new light on whether such environments are host to fundamentally different star-formation modes.The MALATANG data products of resolved HCN and HCO+ J = 4-3 maps of 23 IR-bright local galaxies, will beof great value to the extragalactic community and, in and of themselves, carry significant legacy value. At the moment,about 50% (~195hrs) of the 390hrs of time allocated to MALATANG has been observed. We here show somevery preliminary results as well after introducing our project.
Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.
2009-08-01
We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.
NASA Astrophysics Data System (ADS)
Zegeye, David W.
2018-01-01
We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A.
2016-10-01
Following our first detection reported in Izotov et al., we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. These galaxies, at redshifts of z ˜ 0.3, are characterized by high emission-line flux ratios [O III] λ5007/[O II] λ3727 ≳ 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ˜6-13 per cent, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Ly α emission lines are detected in the spectra of all four galaxies, compatible with predictions for LyC leakers. We find escape fractions of Ly α, fesc(Ly α) ˜ 20-40 per cent, among the highest known for Ly α emitting galaxies. Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the centre and exponential discs in the outskirts with disc scalelengths α in the range ˜0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ˜1/8-1/5 solar, low stellar mass ˜(0.2-4) × 109 M⊙, high star formation rates, SFR ˜ 14-36 M⊙ yr-1, and high SFR densities, Σ ˜ 2-35 M⊙ yr-1 kpc-2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al., reveal that a selection for compact star-forming galaxies showing high [O III] λ5007/[O II] λ3727 ratios appears to pick up very efficiently sources with escaping LyC radiation: all five of our selected galaxies are LyC leakers.
On the Kennicutt-Schmidt Relation of Low-Metallicity High-Redshift Galaxies
NASA Astrophysics Data System (ADS)
Gnedin, Nickolay Y.; Kravtsov, Andrey V.
2010-05-01
We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z ~ 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H2 formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H2 by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z ≈ 3 is substantially steeper and has a lower amplitude than the z = 0 relation at ΣH <~ 100 M odot pc-2. The predicted relation, however, is consistent with existing observational constraints for the z ≈ 3 damped Lyα and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help explain the prevalence of the thin stellar disks in the local universe.
On the Bar Pattern Speed Determination of NGC 3367
NASA Astrophysics Data System (ADS)
Gabbasov, R. F.; Repetto, P.; Rosado, M.
2009-09-01
An important dynamic parameter of barred galaxies is the bar pattern speed, Ω P . Among several methods that are used for the determination of Ω P , the Tremaine-Weinberg method has the advantage of model independence and accuracy. In this work, we apply the method to a simulated bar including gas dynamics and study the effect of two-dimensional spectroscopy data quality on robustness of the method. We added white noise and a Gaussian random field to the data and measured the corresponding errors in Ω P . We found that a signal to noise ratio in surface density ~5 introduces errors of ~20% for the Gaussian noise, while for the white noise the corresponding errors reach ~50%. At the same time, the velocity field is less sensitive to contamination. On the basis of the performed study, we applied the method to the NGC 3367 spiral galaxy using Hα Fabry-Pérot interferometry data. We found Ω P = 43 ± 6 km s-1 kpc-1 for this galaxy.
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Koopmans, Léon V. E.
2018-02-01
In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.
2016-10-01
Exponential radial profiles are ubiquitous in spiral and dwarf Irregular galaxies, but the origin of this structural form is not understood. This talk will review the observations of exponential and double exponential disks, considering both the light and the mass profiles, and the contributions from stars and gas. Several theories for this structure will also be reviewed, including primordial collapse, bar and spiral torques, clump torques, galaxy interactions, disk viscosity and other internal processes of angular momentum exchange, and stellar scattering off of clumpy structure. The only process currently known that can account for this structure in the most theoretically difficult case is stellar scattering off disks clumps. Stellar orbit models suggest that such scattering can produce exponentials even in isolated dwarf irregulars that have no bars or spirals, little shear or viscosity, and profiles that go out too far for the classical Mestel case of primordial collapse with specific angular momentum conservation.
DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.
2015-02-01
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly largermore » than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.« less
Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424
NASA Astrophysics Data System (ADS)
Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas
2017-01-01
The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.
NASA Astrophysics Data System (ADS)
Schneider, Glenn
2016-10-01
We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.
NASA Astrophysics Data System (ADS)
Schneider, Glenn
2017-08-01
We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.
Dwarf Hosts of Low-z Supernovae
NASA Astrophysics Data System (ADS)
Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis
2018-01-01
Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.
Morphological and Star Formation Evolution to z = 1
NASA Astrophysics Data System (ADS)
Hammer, F.
The decrease, since z = 1, of the rest-frame UV luminosity density is related to global changes in morphology, color and emission lines properties of galaxies. This is apparently followed by a similar decrease of the rest-frame IR luminosity density. I discuss the relative contribution from the different galaxy morphological types to the observed evolution. The main contributors are compact galaxies observed in large number at optical wavelengths, and the sparse population of extincted & powerful starbursts observed by ISO. This latter population is made of large and massive galaxies mostly found in interacting systems, some of which could be leading to the formation of massive ellipticals at z < 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncalves, Thiago S.; Menendez-Delmestre, Karin; Martin, D. Christopher
2012-11-01
The bimodality in galaxy properties has been observed at low and high redshifts, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate properties indicates that the quenching of star formation and subsequent transition between populations must happen rapidly. In this paper, we present a study of over 100 transiting galaxies in the so-called green valley at intermediate redshifts (z {approx} 0.8). By using very deep spectroscopy with the DEIMOS instrument at the Keck telescope we are able to infer the star formation histories ofmore » these objects and measure the stellar mass flux density transiting from the blue cloud to the red sequence when the universe was half its current age. Our results indicate that the process happened more rapidly and for more massive galaxies in the past, suggesting a top-down scenario in which the massive end of the red sequence is forming first. This represents another aspect of downsizing, with the mass flux density moving toward smaller galaxies in recent times.« less
Density fluctuations from strings and galaxy formation
NASA Technical Reports Server (NTRS)
Vilenkin, A.; Shafi, Q.
1983-01-01
The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.
Imprints of the large-scale structure on AGN formation and evolution
NASA Astrophysics Data System (ADS)
Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem
2018-04-01
Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.
The ALMA View of GMCs in NGC 300: Physical Properties and Scaling Relations at 10 pc Resolution
NASA Astrophysics Data System (ADS)
Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan
2018-04-01
We have conducted a 12CO(2–1) survey of several molecular gas complexes in the vicinity of H II regions within the spiral galaxy NGC 300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10 pc and 1 {km} {{{s}}}-1, sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC 300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth ΔV (ΔV ∝ R 0.48±0.05), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60 {M}ȯ pc‑2. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size–linewidth relation.
The size and structure of the spheroid of IC 1613
NASA Astrophysics Data System (ADS)
Battinelli, P.; Demers, S.; Artigau, É.
2007-05-01
Context: Nearby galaxies, spirals as well as irregulars, have been found to be much larger than previously believed. The structure of the huge spheroid surrounding dwarf galaxies could give clues to their past gravitational history. Thanks to wide field imagers, nearby galaxies with diameter of dozens of arcmin can be effectively surveyed. Aims: We obtain, from the CFHT archives, a series of i' and g' MegaCam images of IC 1613 in order to determine the stellar surface density of the field and determine the shape of its spheroid. Methods: From the colour magnitude diagram we select some 36 000 stars, in the first three magnitudes of the red giant branch. The spatial distribution of these stars is used to establish the structure of the spheroid. Results: The position angle of the major axis of the stellar spheroid is found to be ≈90°, some 30° from the major axis of the HI cloud surrounding IC 1613. The surface density profile of the spheroid is not exponential over all the length of the major axis. A King profile, with a core radius of 4.5' and a tidal radius of 24' fits the data. The tidal truncation of the spheroid suggests that IC 1613 is indeed a satellite of M 31. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
The Structural Evolution of Milky-Way-Like Star-Forming Galaxies zeta is approximately 1.3
NASA Technical Reports Server (NTRS)
Patel, Shannon G.; Fumagalli, Mattia; Franx, Marun; VanDokkum, Pieter G.; VanDerWel, Arjen; Leja, Joel; Labbe, Ivo; Brammr, Gabriel; Whitaker, Katherine E.; Skelton, Rosalind E.;
2013-01-01
We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to zeta is approx. 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HT survey, which utilizes spectroscopy from the HST-WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of zeta = 0 SFGs with stellar mass M = 10(exp 10.5) solar mass are typically half as massive at zeta is approx. 1. This late-time stellar mass grow is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at zeta is approx. 0 have grown in half-light radius by a factor of approx. 1.4 zeta is approx. 1. The half-light radius grows with stellar mass as r(sub e) alpha stellar mass(exp 0.29). While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H(a) maps for SFGs at zeta approx. are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R - 8 kkpc to have increased by a factor of approx. 2 since zeta is approx. 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.
H I-SELECTED GALAXIES AS A PROBE OF QUASAR ABSORPTION SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoshi, Katsuya; Nagashima, Masahiro; Gouda, Naoteru
2010-02-20
We investigate the properties of H I-rich galaxies detected in blind radio surveys within the hierarchical structure formation scenario using a semianalytic model of galaxy formation. By drawing a detailed comparison between the properties of H I-selected galaxies and H I absorption systems, we argue a link between the local galaxy population and quasar absorption systems, particularly for damped Lyalpha absorption (DLA) systems and sub-DLA systems. First, we evaluate how many H I-selected galaxies exhibit H I column densities as high as those of DLA systems. We find that H I-selected galaxies with H I masses M{sub H{sub I}} {approx}>more » 10{sup 8} M{sub sun} have gaseous disks that produce H I column densities comparable to those of DLA systems. We conclude that DLA galaxies where the H I column densities are as high as those of DLA systems, contribute significantly to the population of H I-selected galaxies at M{sub H{sub I}} {approx}> 10{sup 8} M{sub sun}. Second, we find that star formation rates (SFRs) correlate tightly with H I masses (M{sub H{sub I}}) rather than B- (and J-) band luminosities: SFR {proportional_to} M {sup alpha}{sub H{sub I}}, alpha = 1.25-1.40 for 10{sup 6} <= M{sub H{sub I}}/M{sub sun} <= 10{sup 11}. In the low-mass range M{sub H{sub I}} {approx}< 10{sup 8} M{sub sun}, sub-DLA galaxies replace DLA galaxies as the dominant population. The number fraction of sub-DLA galaxies relative to galaxies reaches 40%-60% for M{sub H{sub I}} {approx} 10{sup 8} M{sub sun} and 30%-80% for M{sub H{sub I}} {approx} 10{sup 7} M{sub sun}. The H I-selected galaxies at M{sub H{sub I}} {approx} 10{sup 7} M{sub sun} are a strong probe of sub-DLA systems that place stringent constraints on galaxy formation and evolution.« less
The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies
NASA Astrophysics Data System (ADS)
Piscionere, Jennifer
2015-01-01
We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the samples exhibit flattening of wp at roughly the same comoving distance of 100kpc.
Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales
NASA Astrophysics Data System (ADS)
Patej, Anna
2017-01-01
We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.
How stellar feedback simultaneously regulates star formation and drives outflows
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Hopkins, Philip F.
2017-02-01
We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.
Size evolution of star-forming galaxies with 2
NASA Astrophysics Data System (ADS)
Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.
2016-08-01
Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with IAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2
Environmental dependence of star formation induced by cloud collisions in a barred galaxy
NASA Astrophysics Data System (ADS)
Fujimoto, Yusuke; Tasker, Elizabeth J.; Habe, Asao
2014-11-01
Cloud collision has been proposed as a way to link the small-scale star formation process with the observed global relation between the surface star formation rate and gas surface density. We suggest that this model can be improved further by allowing the productivity of such collisions to depend on the relative velocity of the two clouds. Our adjustment implements a simple step function that results in the most successful collisions being at the observed velocities for triggered star formation. By applying this to a high-resolution simulation of a barred galaxy, we successfully reproduce the observational result that the star formation efficiency (SFE) in the bar is lower than that in the spiral arms. This is not possible when we use an efficiency dependent on the internal turbulence properties of the clouds. Our results suggest that high-velocity collisions driven by the gravitational pull of the clouds are responsible for the low bar SFE.